
Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Visualization of Online Datasets

Christopher Johnston Downie, Taoxin Peng

School of Computing, Edinburgh Napier University,

10 Colinton Road,

Edinburgh, EH10 5DT, United Kingdom

E-mail: cdownie90@gmail.com

E-Mail: t.peng@napier.ac.uk

Abstract

As computing technology advances, computers are being used to orchestrate and advance wide spectrums of

commercial and personal life, information visualization becomes even more significant as we immerse ourselves

into the era of big data, leading to an economy heavily reliant on data mining and precise, meaningful

visualizations. However, accuracy of information visualization techniques is heavily dependent on the knowledge

and capabilities of users, leaving novices in many fields at a disadvantage. This is a challenging problem that has

been inadequately addressed regardless of the influx in visualization tools. Therefore, this paper proposes a novel

approach with a focus on online datasets, allowing users to automatically and accurately visualize datasets.

Experiment results show that using a browser extension and specially created HTML tables containing custom

attributes - stating the data attribute type - the approach is able to detect and present the most suitable visualizations

at the click of a mouse. This proposed approach provides a means for novices to quickly and accurately visualize

online datasets.

Keywords: Online datasets, Visualization, Browser Extensions, Data transformation, HTML.

1. Introduction

As big data continues to dominate large aspects of

business and domestic life - growing exponentially,

information visualization has also seen significant

growth figures in terms of use in research, development

and all fields of life, resulting in a rise in numbers of

visualization tools. As the volume of data generated by

organizations continues to grow, greater numbers of

people in all manner of fields are making use of what

visualization offers, from senior management presenting

data in an attempt to persuade an audience or academics

seeking to uncover hidden information within a dataset,

to domain experts exploring the depths of a dataset. This

far-reaching desire to effectively visualize data has led

to a significant increase in the number of visualization

tools available, offering a diverse array of functionality

to users on various differing platforms. Nevertheless,

such progression has opened the door to a new problem

– how can a visualization tool successfully perform for

users that are new or uniformed in the field of

visualization. Highlighted by the fact that novices will

generally misunderstand encodings, ignore all but the

most basic functionalities and produce visualizations

incapable of answering their desired questions. To

prevent future novice users from these pitfalls, a tool

should be created that will be able to dynamically create

accurate, informative visualizations based on the

attribute types encountered. Additionally, research has

shown an absence in the understanding and awareness

to the benefits that visualization brings, leading to a

perceived indifference to the field of visualization

amongst certain factions. With such a tool, it brings

optimism that a larger demographic could be obtained,

further advancing the field of visualization.

 International Journal of Networked and Distributed Computing, Vol. 6, No. 1 (January 2018) 11–23

11

mailto:cdownie90@gmail.com

The work undertaken focused upon datasets found

online, with the aim of determining whether a browser

extension could be implemented to allow users to

dynamically and effectively visualize their chosen

online dataset. In doing so, maximization of efficiency

would provide mutual benefit for both the website

proprietor and users, allowing for effortless, fast

analysis of data in greater detail.

Test results show that the approach is capable of

accurately obtaining and transforming the data into

visualizations, by the use of a browser extension,

nevertheless it is hindered in the detection of data

attribute types, required to dynamically provide the

optimum visualization method. Proposed by this paper

is the creation of a new HTML attribute for tables that

will enable for the dynamic detection of the

corresponding data attribute types. The extension will

use the stated data attribute to dynamically provide the

suitable visualization for users.

The remainder of this paper will be structured as

follows. Section 2 examines related works. The main

approach, including components in the design and

implementation stages are covered in section 3. Section

4 gives a detailed example to demonstrate the success of

the proposed approach. Testing and evaluation are

provided in section 5. Finally, section 6 concludes the

paper and offers an outlook towards future works.

2. Related Works

Grammel et al [1] carried out revealing research into the

attempts and failings of visualization novices to

construct meaningful findings. Via participant

observation, the research found that the main obstacles

faced by novices were transforming their questions into

the necessary data attributes, design of visual mappings

and then understanding of the visualizations created.

Additionally, novices will simply stick to using simple

visualization they already know such as pie, bar and line

charts. They outline in their findings the requirement for

the creation of a tool that may suggest visualizations to

users and aid in understanding, including the barriers

that are challenging for information novices: translating

questions into data attributes, constructing

visualizations and interpreting the visualizations. All

these three aspects will be tackled in this research.

Ali et al [2] conducted thorough research and reviews of

visualization tools. However, it must be acknowledged

it was conducted with Big Data, unstructured data as the

focus, whereas, the focus of this paper is concerned with

structured data. Findings still highlight relevant details,

they propose that current tools such as Tableau, Plotly

and Excel 2016 functionally work well, providing rich

visualizations, although programming is required in

some instances. Nevertheless, they suggest that one

must identify their needs and tool strengths before

beginning and that price dictates to most single

users/small businesses, accentuating the unsuitable

nature of visualization tools for the beginner.

A different method to negating visualization issues

of novice users is proposed by Koh et al [3] through an

approach focused upon user-centered design.

Acknowledging the problems caused by a lack of

understanding, they altered the approach to include

prototyping at the earliest stages in designing a tool for

the healthcare sector. Findings show that in doing so,

they could better educate the users on the capabilities of

the tool and information visualization techniques. The

drawback with such a method is that it cannot be

transferred to work as a general concept. To tackle the

problems that exist for novices on a grand scale, it must

effectively solve the issue and educate independently,

after the creation.

Web based visualization tools cover a wide area of

interests, large quantities of tools exist from web portals

[4] whereby, Becirspahic & Karabegovic use a web

portal to gather data from online sources to form a tool

allowing users to interact and visualize spatial data.

Others are concerned with tracking and visualising user

actions online, such as DemographicVis [5] which

visualizes people’s demographics based on their actions.

Nevertheless, these tools do not function with the

users’ own dataset. A vast array of tools exist online

that allow users to upload CSV files, and create

visualization from there [6][7][8][9]. However, these

tools do not address the problems faced for novices such

as which visualization techniques are suitable or educate

them in understanding. Additionally, if working from an

online source, novices would have to manually

transform the data to a CSV file or use additional tools

for data scrapping.

 International Journal of Networked and Distributed Computing, Vol. 6, No. 1 (January 2018) 11–23

12

3. Approach

This section describes the proposed approach, covering

design and implementation, which allows users to

dynamically create visualizations for online datasets.

3.1. Methodology

The tool was implemented using evolutionary

prototyping which was broken down into three stages or

‘evolutions’, in which a version of the tool was

produced and tested by visualization novice users by the

means of focus groups, providing feedback, meaning

the tool was then refined. The adoption of such an

approach prevented any assumptions about novice

knowledge and understanding, meaning a tool for

novices could be developed by novices, tailored to their

wants and needs.

At the end of each evolution of the development, a

focus group of both novices and intermediaries was

formed to provide the necessary feedback. This

feedback, particularly focused on usability and

functionality meant that improvement could be made

before additional functionality was added.

3.2. Functions

The design and implementation of this system is defined

by its requirements. The functional requirements of the

system are that it will be able to detect HTML tables,

provide a means for users to select and then

dynamically handle and transform the dataset before

creation of an accurate visualization for the user.

Functions implemented are:

• Identification and selection of HTML tables.

• Transferring and formatting dataset. – the

dataset must conform with the C3.js array.

• Filtering blank rows. – removing null tuples

from the dataset.

• User dataset filtering. – allow the user to refine

the dataset in accordance to their interest.

• User chart selection – Allow the user to try

different charting options for their visualization.

• Chart Generation.

• Chart interactions – Allows for greater

exploration and understanding of the dataset.

• Exportation – Via .CSV for the dataset or PDF

for the visualization produced.

3.3. Architecture

Although browser extensions are built using the same

technologies as websites, the architecture of an

extension is different. This architecture is made up of a

series of files that are held within one main folder which

is then compressed with a special .crx suffix.

Several choices need to be made when it comes to

the architecture of the extension. Firstly, it is that of the

background page. In this instance, the tool is required to

have a continuously running script, opposed to one that

only runs when an event occurs, due to the necessity of

dynamically locating HTML tables when a webpage is

loaded. Therefore, the extension will be built with the

use of ‘Background Pages’ opposed to ‘Event Pages’.

Although this leads to a knock-on effect in performance,

with ‘Event Pages’ possessing the ability to unloaded

when not active, freeing up resources such as memory.

This tool is being designed primarily for desktop

computers and will require little memory, meaning the

effects won’t be as costly as if the tool was to be design

for some less powerful mobile devices. [10]

Another key consideration for the design is content

scripts. This will be constructed via the use of

JavaScript and will allow for the extension to interact

and manipulate the webpages it encounters through the

Document Object Model (DOM).

3.3.1. User interface

The design of this extension will allow it to be effective,

while limiting the interference with the interfaces

created by their corresponding web-designers. With this

in mind, the extension will possess very little in the

sense of a User Interface (UI) on the web pages being

viewed, the detected tables will become highlighted,

presenting to the user that selection is available. When

the user clicks on the table a new webpage will be

activated presenting the chart and other functionalities.

The charts themselves created using C3.js a D3 charting

library, recognised for its fast performance,

compatibility with Google Chrome and data

transformation time [11].

3.3.2. Activity diagram

 International Journal of Networked and Distributed Computing, Vol. 6, No. 1 (January 2018) 11–23

13

Highlight Tables User Selects Table Transform Data

Error?

Launch Table Vis Tab

User Chart Selection

User Filters Data
Visualisation
Generated

User Exports Dataset
or Visualisation

Activate Extension

Tool Returns
to Initial
Stage

Fig. 1. Activity diagram outlining extension process.

Fig. 1 displays the functional process to be undertaken

by the extension. As it shall be implemented using

background pages, the extension will be running

continuously if it is enabled. Therefore, the diagram

starts at the point of the extension being activated.

When this occurs, the tool begins identifying and

highlighting HTML tables embedded in the page. When

tables are highlighted, it enables an onClick function on

the table. Upon the user making a selection, the process

of transforming the data begins. If no problems occur in

the process the data will be passed along the extension

where it will be used for charting. If the transfer is

unsuccessful, an error message will be displayed to the

user and the process will return to the initial table

highlighting stage. If the data has been received by the

extension, the user will then be redirected to the new

tab, where they can select a chart type. Once chosen the

visualization will be generated and displayed to the

user, where they can then filter the dataset if desired. At

this point the user will also be able to export their

chosen data as a .CSV file or a PDF of their

visualization created.

3.3.3. Sequence Diagram

Fig. 2. Sequence diagram.

The sequence diagram in Fig. 2 outlines how the various

components interact with one another while different

interactions take place. Going from top to bottom, in

the first instance the user selects a table of their choice,

this starts a chain of actions, the user clicks on a table.

This alerts the extension to open a new Table Vis tab

which the data should be passed to through a JSON

object. The Table Vis tab waits on the user to select a

chart of their choice, once a chart has been chosen, the

tab acknowledges this, generates the chart and displays

the visualization to the user.

The second interaction shown is for the user

selecting to export the visualization. The action is

received by the Table Vis tab, processed and sent back

to the user in the form of a file.

3.4. Table Detection

For the user to be able to select a table and capture the

data inside, the proposed tool must be able to detect the

tables on the webpage. Tables are defined in HTML

using the standard tag “<table>”. These tags

automatically become DOM objects enabling the

programmer to access them easily in Javascript and

assign functions to the table upon a user action.

For example, the pseudocode below.

Table.on(‘click’, function(){

 Variable data = input table data into

the data array.

})

The pseudocode specifies that on the left-click of the

mouse on a table element, a function is to be triggered

that will retrieve the data from the table cells and place

them in an array in the variable ‘data’.

The Table Vis Chrome extension requires a specific

structure as shown in figure 3. To manipulate web pages

for tables and the data embedded inside, a content script

is required (content_script.js). This is a JavaScript page

 International Journal of Networked and Distributed Computing, Vol. 6, No. 1 (January 2018) 11–23

14

that runs in the context of the webpage loaded opposed

to in the extension, enabling it to interact and make

changes to the DOM. Also required is a background

page (background.js) which controls the behaviour of

the extension and runs continuously controlling aspects

such as the browser action and creation of the Table Vis

tab (tab.html) which is controlled by its own JavaScript

page (tab.js).

Fig. 3. Extension structure.

Once this structure was in place it was required to

form a connection between these pages to allow for

interaction as the content script and background script

are running in different contexts. The solution to this is

via the implementation of ‘message passing’ [12]. This

sets up a channel on both ends in which they can listen

out for events and then send responses. Message passing

comes in two different forms; one-time requests which

are of course a one-time event and long-lived

connections that remain open to conversation. For this

tool, both were used, which will be covered at their

specific points in this implementation section.

Once the connection is in place, tables can now be

accessed and manipulated. Initiating by assigning a

long-lived connection listener and a switch statement

that allows the extension to toggle on/off. When the

extension is in the state of ‘enabled’, an addClass()

function and CSS styling is used to highlight tables as

the user hovers the mouse pointer over them. Secondly,

a function is added to the click event on HTML tables

that then uses Table-to-JSON, an open source library

that allows for you to pass in data from a table and then

transform it into JSON. The JSON object is placed

inside of the ‘json’ variable and placed into the long-

lived connection channel.

3.5. Producing Charts

Once the data has been collected and stored within a

variable, the array of data held within the variable must

then be reformatted and transferred to the charting

function in order to populate the chart.

The proposed tool achieves this once the data is stored

in JSON, it can now be passed from the content script to

the background page. An additional long-lived

connection is used to trigger a new tab and via the use

of a one-time request, ‘chrome.tabs.insertCSS’ and

‘chrome.tabs.executeScript’ the required files were

programmatically inject into the new tab.

Transformation of the JSON was then required for

compatibility with C3.js. Parameters required to create a

chart include, ‘type’ for the type of chart desired and

‘data’ in which it needs data passed into its array called

‘columns’. The JSON object needed restructured to

correspond the columns array needed by C3.js.

The pseudocode for data restructuring and chart

generation is shown below:

drawChart = function() {

columns = new array

columnTitles = titles from table

 forEach (title in columnTitles)

 column = get column values table

 column.unshift(append the Titles to

front of

column

array)

 columns.push(add column to columns

array)

 }

 chart.load({

 columns: load in new array

 type: chart type to generate

 unload: draw visualization

 })

The pseudocode selects the titles from the table,

places them first in the array, then adds the rest of the

table values. These are then passed into the load

function provided by C3.js and the visualization can

then be drawn.

3.6. Filtering Blank Data Rows

Blank rows are often used in the styling of HTML tables

which can prove troublesome for the extension. If these

values were left in the dataset, anomalies in their

visualization occur. (see Fig. 4.)

 International Journal of Networked and Distributed Computing, Vol. 6, No. 1 (January 2018) 11–23

15

Fig. 4. No filtering vs. filtering of rows.

In this example, empty rows were placed at three

different sections of the HTML table to mark different

sections. However, these rows produced misleading

information when the charts are drawn, at points 3, 7,

and 23.

A filtering function is designed to remove such

blank row. This function loops through all rows in the

dataset checking for rows that are made up of entirely of

empty rows and removed them before the dataset is

processed for charting.

The pseudocode for the filtering is shown below:

filter = function(table) {

 forEach (row in table) {

 values = get values from object row

 values = ignore any repeating

values

 if (first and only value = '') {

 remove row from table

 }

 }

 return filtered table

}

3.7. Detection of Suitable Charts

This proved most problematic as there currently exists

no fully functional method for detecting the data

attribute type. Charting suitability is dependent on

examining the data attribute types and using a chart that

best represents and reveals the dataset. For example,

provided a table such as displayed in Fig. 5.

Fig. 5, Discrete Categorical Data.

The Data held within is ‘Last Name’ which is

categorical given the finite number of categories or

possible names, and points are a discrete numerical

variable (a count). Such data would therefore be suited

to a bar chart as this would denote each name and their

corresponding points as stand alone, unconnected values

that can be examined. As shown in the Fig. 6.

Fig. 6, Chart Comparison.

Fig. 6 also provides an example of a line chart being

chosen to represent the data. Although the line appears

to represent the data adequately, it is incorrect as the

line represents a continuation or connection between

values that should be discrete.

To provide a means for the proposed tool to identify

the attribute types and determine the suitable charting

option, some technologies need to be defined first;

Custom attributes – Within HTML, tags may have

attributes assigned to them. Standard attributes such as

id or custom attribute that are created and defined by the

user.

For example:

<table id=”standard-tag” attributeType=“non-

standard-tag”>

 International Journal of Networked and Distributed Computing, Vol. 6, No. 1 (January 2018) 11–23

16

This allows for custom data from HTML-elements

to be passed to Javascript.

Case statement – case statements allows a program

to perform different predefined actions based on which

conditions are met. For the proposed tool, the

predefined actions state which chart should be used. The

conditions are provided by the custom attributes

included in the table tag.

For Example:

switch (new Chart().getattributeType()) {

 case discrete & categorical:

 if it possesses these values Chart Type

= "Bar Chart";

 break;

 case proportional & discrete:

 if it possesses these values Chart Type

= "Pie Chart";

 default:

if no data attribute value is defined

Chart Type = "Bar chart";

}

Bar chart is set as the default charting option,

however as outlined later in section I, step 4, the user

may choose a charting option from a dropdown menu.

Custom attribute types were placed within purpose

made HTML tables to denote the data type held within

the table. For example, “discrete” and “categorical” are

values provided to a table using this method, upon the

user selecting the table, these values are used alongside

a case statement asserting which chart type should be

used depending on the attributes stated. However, the

future of this approach is dependent on such an attribute

type being accepted and implemented as a new industry

standard for HTML tables

3.8. Charting Options

For the tool proposed to work efficiently, it is

imperative that suitable charts for the various data

attribute types are implemented. For the prototype four

different charting options were selected with a focus not

only on variety, however, the charts must be simple to

understand for the novice user. The charts will be

developed in C3.js, a JavaScript library that uses a

mixture of HTML, CSS and SVG to build

visualizations.

3.8.1. Bar chart

A very commonly used charting option for the

visualization of categorical data. Chosen due to its

ability to accurately represent data holding discrete

values. This chart is easily recognisable and analyse for

the novice, which enhance their confidence and

understanding. This C3.js bar chart displays several of

the design principles that should be expected from a

visualization, its possesses color encodings which

include a change of color on hover over – as seen on

attribute L- an interaction technique that will hand more

control to the users.

Fig. 7. Bar Chart.

For example, shown in Fig, 8, is a categorical online

dataset. Highlighted in red upon the user hover.

Fig. 8, Positive & Negative Discrete Categorical Dataset.

The online table is coded with the custom attributes

“categorical” and “discrete”. These values correspond

with the attributes suited to a bar chart, which when

present, the extension can identify and generate the

chart as a bar chart shown in Fig. 9.

 International Journal of Networked and Distributed Computing, Vol. 6, No. 1 (January 2018) 11–23

17

Fig. 9, Bar Chart Displaying Positive & Negative Values.

Through using the custom attributes, the proposed

tool can automatically generate the most suitable chart.

Furthermore, the tool is able to handle positive and

negative values, while the visual encodings on hover

shown in Fig. 9 allow for the user to effectively explore

their dataset.

3.8.2. Line chart

In Fig. 10, is the design for a line chart. Similar to that

of the bar chart, however, allows for the support of

continuous values, displayed by a collection of data

points, or ‘markers’. This again benefits from clear

labelling, while the squared background allows for

increased legibility.

Fig. 10. Line Chart.

For example, Fig. 11 displays an online dataset

consisting of continuous categorical data. This

highlighted table contains the custom attribute values

“continuous” and “categorical”, advising the proposed

tool that a line chart should be used.

Fig. 11, Continuous Categorical Dataset.

Upon selection, the proposed tool automatically

generates the line chart shown in Fig, 12. The chart also

possesses encodings on hover that allows the user to

explore the data.

Fig. 12, Auto-Generated Line Chart.

3.8.3. Pie chart

Fig. 13 displays the design for the pie chart. Used to

represent the proportional data where each segment

represents a data percentage, clearly segregated using

color encodings and labels. Chosen as it is again easily

recognisable and understandable to the novice, it is

however only truly effective when displaying the data of

6 or fewer categories. It is for this reason; user dataset

filtering will be encouraged to reduce visual noise,

 International Journal of Networked and Distributed Computing, Vol. 6, No. 1 (January 2018) 11–23

18

although clear color encoding and labelling arguable

increases the number of categories it may handle.

Fig. 13. Pie Chart.

For example, Fig. 14, provides an example of the

proposed tool being used on a proportional dataset.

Fig. 14, proportional dataset.

In keeping with the previous examples, this table is

coded using custom attribute types to indicate to the tool

what chart type should be used. For the table in Fig. 12,

the attribute “Proportional” is used.

Fig. 15, Auto-Generated Pie Chart.

Presented above in Fig. 15 is the pie chart produced

by the proposed tool. It uses color encodings to clearly

provide differentiation between the values and

informative data upon user hover. Moreover, the tool

provides a table below the chart that allows for the user

to filter and edit the data that they wish to include in

their chart.

3.8.4. Scatterplot

The final chart choice for the prototype is the

Scatterplot. Fig. 16, outlines the design for the chart

used for a bivariate data set (consisting of two

variables). This allows for the variables to be compared

side by side in real-time, with color encodings for clear

distinction.

Fig. 16. Scatterplot.

3.9. Data Selection

After the chart, has been produced. A corresponding

table of the data can be found underneath the chart. This

table provides a method for users to select the data that

they wish to include within their chart.

Each column within the data is stored as its own

array. In doing so, the reproduced table has a checkbox

present in the header of each of the columns allowing

for the user to select columns. When the user selects a

column, all remaining unselected columns are removed

and the chart automatically updates to reveal the new

visualization.

3.10. The Algorithm

The approach describe above is now summarised as the

following algorithm:

Step 1. Table detection. Access and

manipulate the table on a website via the

installed Chrome extension;

Step 2. Producing Charts. Once the table data

is stored, pass it from the content script to

the background page, then transform and

 International Journal of Networked and Distributed Computing, Vol. 6, No. 1 (January 2018) 11–23

19

restructure the JSON object, in order to

create charts based on the types of data

attributes;

Step 3. Filtering blank rows. Remove all null

tuples from the dataset;

Step 4. Detection of suitable charts.

Determine suitable chart type based on

attribute types that describe the data types

held within the HTML table;

Step 5. Charting options. Select a suitable

chart type based on the user’s choice. There

are four different types of charts available:

bar chart, line chart, pie chart and

scatterplot.

Step 6. Data Selection, refine and select data

based on users charting choice, at step 5.

4. Proposed Tool Demonstration

This section will use a detailed example to demonstrate

the functioning of the proposed tool.

Given the Fisher’s Iris data shown on a website

HTML table, seen in Fig. 18, this demonstration shows

how the approach could be used to visualize the data

directly from the web page step by step.

Step 1: Table Detection.

The proposed tool will exist as a Chrome browser

extension, enabled upon the user clicking the icon -

located in the top right of the browser, shown in Fig. 17,

toggling between on and off.

Fig. 17, Tool Icon.

Such a design will mean that the tool is available for

each webpage a user visits, furthermore, it will remain

noninvasive to the webpage design or experience.

When enabled, no visual presence will appear until

the user hovers the mouse pointer over a table on the

webpage. When the user hovers over an HTML table, a

red highlight of the table will appear, as displayed in

Fig. 18 providing clarity on which table is being

selected. To select the table, and obtain the data, the

user is only required to left-click upon the desired table.

Fig. 18, Table selection example. (Wikiwand, 2017)

Step 2: Producing Chart

 When the user selects a table, the Table-Viz webpage is

spawned, as shown in Fig. 19. In this instance, a

Scatterplot is chosen as the most suitable charting

option, with color encodings used to identify between

attributes.

Fig. 19, Scatterplot generated example.

Step 3: Filtering Blank Data Rows.

As the Tool-Viz webpage is spawned, and the data is

passed, the data is filtered for blank data rows via the

filtering function highlighted in section 3.6, and

demonstrated in Fig. 4.

Step 4: Detection of Suitable Charts.

 International Journal of Networked and Distributed Computing, Vol. 6, No. 1 (January 2018) 11–23

20

As the Tool-Viz webpage and corresponding chart is

generated, the proposed tool checks for custom attribute

types that describe the data types held within the HTML

table, allowing for the tool to automatically determine

the most suitable chart type. However, as these attribute

types are not present in the currently available HTML

tables found online, and in the interest of flexibility of

the tool, a dropdown menu has been implemented to

allow users to select a charting option of their own,

shown in Fig. 20.

Fig. 20, Chart Dropdown Menu.

Step 5: Charting Options

As mentioned above in Step 4, to provide for flexibility

and greater user choice, a dropdown menu is provided

allowing for users to select their preferred option.

 Fig. 21, User Choice of Bar Chart.

Although a poor charting option for the data, given

the noise created in using a bar chart, Fig. 21

demonstrates the proposed tools ability to present one’s

data in a chart of their choice.

In future, the proposed tool will alert the user to

such an issue via prompts when the action is taken to

change the chart type.

Additionally, more options are provided to the user.

Focusing on Fig. 21, displayed in the top right corner

are the download (.CSV) and chart exportation options.

Additionally, beneath the visualization is a reproduction

of the HTML table, allowing the user to easily compare

and analyze the dataset.

Furthermore, the reproduced table in the Tool-Viz

page and corresponding ‘Key’ dropdown menu provides

a means for the user to filter the data they wish to

include in their visualization.

Step 6: Data Selection

Fig. 22, filtering Data.

Displayed in Fig. 22, shows the data filtering and

dynamic updating of the table in action. The user has

selected species from the Key dropdown list and cross

referenced it against Sepal width, chosen using the

checkbox in the table. In doing so, they can effortlessly

filter and examine the dataset in detail.

 This demonstration displays the value and ease of the

approach. Unlike currently available tools this approach

allows users to directly access the dataset straight from

the HTML table and visualize the data without the

requirement for manual steps. This proposed tool is well

suited to novices, removal of manual steps makes

visualization fast, easy and accurate, eliminating the

pitfalls that exists in current tools that lead to novices

creating inaccurate visualizations.

5. Testing & Evaluation

The focus of this section is to test and evaluate the

success of the proposed approach. Both functional and

non-functional tests were performed.

 International Journal of Networked and Distributed Computing, Vol. 6, No. 1 (January 2018) 11–23

21

5.1. Functional Test

All functions implemented were tested and analysed.

The testing results indicated a resounding success in

functions in the proposed tool. Key functions including

selecting tables, obtaining the dataset and generation of

charts containing useful interactions all proved

successful. The proposed tool also succeeded in filtering

of blank rows and allowing for users to filter the chosen

dataset values, reproducing the visualization

dynamically as the dataset is cropped. Dynamic

production of suitable chart functionality worked to

great effect. However, this success was only partial

because it relied on working upon custom created

attributes in the HTML tables created for testing that are

not present in generic HTML tables found online.

5.2. Non-Functional Test

Additionally, testing involving a user group of 42

university students, consisting of both visualization

novices and intermediaries yielded positive feedback.

The questions were designed to focus upon the most

essential non-functional requirement required by the

proposed tool;

Accessibility – Tool was easy to activate and make a

selection with?

The results consisted of 71% strongly agreeing and the

remaining 29% mostly agreeing. Vital as the inability of

the novice to easily create visualizations would

represent the failure of the approach.

Usability – Can you easily choose desired chart? (focus

on manual chart selection, not dynamic selection.)

57% strongly agreed, with 43% choosing mostly agree.

The answers to mostly agree corresponding to not

seeing the dropdown menu right away, however, found

it easy to use once acknowledged.

Effectiveness (A) – Are the interactions helpful?

There was a 71% split between strongly & mostly agree

with the remaining 29% opting for neutral, stating

additional interactions would be preferential.

Effectiveness (B) – Do the color encodings aid

legibility?

Results showing an even split of 85% voting for

strongly & mostly agree with the remaining answering

that similar shades and color-blindness meant the help

was minimal.

Emotional factors (A) – Tool Viz webpage is

aesthetically pleasing.

43% opted for mostly agree, with 14 % opting for

strongly agree. 14% remaining natural and the

outstanding 29% voting strongly & mostly disagree.

Commenting on a lack of animations.

Emotional factors (B) – Tool Viz is fun to use.

Results from the participants stayed exactly the same,

indicating a possible correlation between the enjoyment

of the webpage and the satisfaction with the tool.

Data Integrity – Do the charts accurately represent your

data?

Findings showed that 57% opted for strongly agree

and the remaining users choosing mostly agree. The

validity of the charts produced is the fundamental

requirement of such a tool, meaning the positive

feedback here is vital.

5.3. Evaluation

Overall, the tool developed met the aim of the research.

User testing proved the tool to be easy to use and

understand, taking the data directly from the webpage,

removing the requirement for manually transferring data

or using additional tools to first scrape data and then

upload it. Moreover, the visualization produced were

accurate, filtering void attributes within tables and

supported different visualization techniques. The only

major drawback was the inability to dynamically select

chart type based on the data gathered, although the

solution of an HTML attribute detailing the data

attribute type works, such an attribute is not present on

current webpage tables.

TABLE I TOOL COMPARISON

Table 1 compares current tools available in aspects

significant to novice users. Including, whether the tool

can visualize the data directly from a webpage, clarity,

filtering of junk values, cost and learning curve. With

the proposed tool displaying a clear advantage in direct

access to webpage datasets, cost, filtering of junk data

and a low learning curve.

 International Journal of Networked and Distributed Computing, Vol. 6, No. 1 (January 2018) 11–23

22

Although, more established platforms currently

possess more charting options and additional

functionality such as Datacopia’s chart animations. The

purpose of this approach was not to create a

visualization tool with advanced interactions and

animations, instead the approach proposed successfully

tackles areas where other options fail to address.

Primarily, the proposed tool focuses on a means in

which the visualization novice may be aided and

encouraged to successfully create meaningful charts.

Additionally, the currently available tools functioned

via having a .CSV file loaded in for charting, they do

not offer a means in which the user could directly

accessing a dataset on a webpage. This results in the

user having to find a method for scrapping the data from

the source and then loading it into the chosen tool,

again, a process unsuitable to novices. Furthermore, the

use of tools such as the Google Chrome browser

extension ‘Data Scaper’ [13] will transform a chosen

dataset, however, the corresponding .CSV file produced

will contain any junk values existing which will

negatively impact upon the accuracy of the visualization

produced. This proposed tool possesses filtering of Junk

Values, without any knowledge of action required by

the user, greatly aiding the suitability and

encouragement for novices to create accurate

visualizations.

6. Conclusion & Future Work

The approach proposed presents a novel viable solution

to visualising HTML table datasets easily and

accurately. The testing and evaluation results show that

the proposed approach is successfully designed and

implemented. It also proves that browser extensions can

be used to obtaining and transforming online data into

visualizations.

 The tool implemented successfully allows for the

generation of HTML table dataset visualizations, with

the option of four different chart types. The

visualizations come with features such as clear and

precise axis, color encoding, user interactions and a

selection of exportation methods. Testing results found

the tool to be able to maintain data integrity with the

clear majority of the feedback proving extremely

positive, providing much to be optimistic about in the

future.

Although, a very promising start, there remains

elements that could be performed to improve the tool.

Such areas include, implementing additional charting

options and increasing functionality such as, note taking

and animations, providing tutorials and popup prompts

to users aiding education. However, most importantly,

find and implement a method for dynamically detecting

data attribute type and chart selection. A proposed

further research direction will be via the semantic web

and the creation of an appropriate ontology. From

which point the tool could be published to the Chrome

Store.

References

1 Grammel, L., Tory, M., & Story, M.-A. (2011). How

information visualization novices construct

visualizations. IEEE Transactions on Visualization and

Computer Graphics, 16(6), 943-952.

2 Ali, S. M., Noopur, G., Rakesh, K. L. & Nayak, G. K.,

(2016). Big Data Visualization: Tools and Challenges.

Noida, IEEE.

3 Koh, L. C., Slingsby, A., Dykes, J. & Kam, T. S.,

(2011). Developing and Applying a User-Centered

Model for the Design and Implementation of

Information Visualization Tools. London, IEEE.

4 Becirspahic, L. & Karabegovic, A., (2015). Web

portals for visualizing and searching spatial data.

Opatija, IEEE.

5 Dou, W. et al., 2015. DemographicVis: Analyzing

demographic information based on user generated

content. Chicago, IL, IEEE.

6 Charted.co, (2016). Charted. [online] Available at:

http://www.charted.co/ [Accessed 23 Feb. 2017].

7 DataHero Self Service Cloud BI Tool, (2016).

DataHero - simple yet powerful data visualization.

[online] Available at: https://datahero.com/ [Accessed 23

Feb. 2017].

8 Raw.densitydesign.org, (2016). Raw. [online]

Available at: http://raw.densitydesign.org/ [Accessed

23 Feb. 2017].

9 Datacopia.com, (2016). [online] Available at:

http://www.datacopia.com/ [Accessed 23 Feb. 2017].

10 Chrome, G. (2016). Event Page - Google Chrome.

[Online]

Available at:

https://developer.chrome.com/extensions/event_pages

[Accessed 23 Feb. 2017].

11 Lee, S., Jo, J.-Y. & Kim, Y., 2014. Performance testing

of web-based data visualization. San Diego, California,

IEEE.

12 Chrome, G., 2016. Messaging - Google Chrome.

[Online]

Available at:

https://developer.chrome.com/extensions/messaging

[Accessed 23 Feb. 2017].

13 Miner, D., 2017. Data Miner. [Online]

Available at: https://data-miner.io/ [Accessed 1 March

2017.]

 International Journal of Networked and Distributed Computing, Vol. 6, No. 1 (January 2018) 11–23

23

https://developer.chrome.com/extensions/event_pages
https://developer.chrome.com/extensions/messaging
https://data-miner.io/

