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Abstract 

The future of biofuel production hinges on a cheap, readily available feedstock. In terms 

of resources available, lignocellulose is the most abundant renewable resource on the 

planet, available from a plethora of sources such as agriculture, forestry, industry and 

municipals, therefore presenting an attractive resource. Cellulose, hemicellulose and 

lignin are the three main constituents of lignocellulose. The viability of such a feedstock 

requires as much of these constituents being converted to product as possible and 

therefore requires the suitable candidate organism to achieve this.  Hemicellulose, an 

often pentose-rich portion of lignocellulose, can constitute as much as 

35%. Traditionally yeasts, namely Saccharomyces cerevisiae, have been employed in 

biofuel production. However, yeasts are often unable to utilise pentose sugars found in 

the hemicellulose fraction.  

 

In this study the ability of Clostridium beijerinckii to utilise the pentose sugars xylose 

and arabinose was investigated. The ability of C. beijerinckii to utilise these pentose 

sugars was established, total solvent yields were 0.34 gram/gram (g.g) of arabinose or 

xylose consumed, in comparison to 0.41 g.g of glucose consumed.  The presence of 

glucose on low mixed-sugar concentrations (1%), but not on high (6%) hindered the use 

of both pentoses.  The ability of C..beijerinckii to utilise pentose sugars in xylan. 

C..beijerinckii was capable of fermenting xylan and smaller hydrolysate units of xylan, 

however the solvent yield was poor.  The ability of C..beijerinckii to utilise a pentose-

rich waste stream, spent dried distillers’ grains (DDGS) was also investigated. 

Simultaneous saccharification and fermentation of DDGS produced a total solvent yield 

of 0.25 g.g in comparison to 0.34 g.g on media containing the equivalent soluble sugars.   

 

The ability of C..beijerinckii to utilise both pentose sugars led to in-silico studies to 

identify gene systems involved and implicated several genes organised in two distinct 

clusters, one for each pentose sugar, within the genome.  Proteomic analyses by liquid 

chromatography electrospray ionisation tandem mass spectrometry of whole-cell 

proteins harvested from cultures of C..beijerinckii grown on either xylose or arabinose 

as the sole carbon source provided further evidence to implicate the gene systems 

identified by the in silico analyses. Genes were then targeted for characterisation in-vivo 

using a number of E. coli knock-out mutants, lacking one or more of key genes involved 

in pentose sugar use.  This identified arabinose isomerase, xylose isomerase and 

xylulokinase genes.  
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TalB  Transaldolase 

TE  Tris EDTA 

TktB  Transketolase 

TLC  Thin Layer Chromatography 

TMHMM Transmembrane helices Hidden Markov Model 

TYA  Tryptone Yeast Extract 

UK  United Kingdom 

US  United States 

UV  Ultra Violet 

V  Volts 

Vis  Visual 

v/v  Volume per volume 

VOC  Volatile Organic Compounds 

w/v  Weight per Volume 

w/w  Weight per Weight 

xg  Relative Centrifugal Force 

X-gal  5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 

XylA  Xylose isomerase 

XylB  Xylulokinase 

XylF  Xylose binding protein 

XylG  Xylose ATPase 

XylH  Xylose permease 

XylR  Xylose repressor 

XynA  Endo 1,4-Xylanase 

XynB  β-Xylosidase 
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1 Introduction 

1.1 A Requirement for Fuel Alternatives 

Globally, energy demand has risen by seventeen fold over the past century (Demirbas, 

2007).  Fossil fuels currently meet 85% of the total energy demand.  However, its 

combustion releases greenhouse gases such as CO2, SO2 and nitrous oxide (NOX) into 

the atmosphere, to the detriment of public health and the environment (Ture et al., 1997, 

Demirbas, 2007). Transport is the greatest contributor; petrol and diesel combustion 

results in CO2, SO2 and unburned hydrocarbons (HC), the latter of which results in 

smog formation encountered in urban areas (Galbe and Zacchi, 2002, Zaldivar et al., 

2001). Of the greenhouse gases (GHG), CO2 is described as the major contributor to 

global warming.  Its presence in the atmosphere has increased by over a third from 280 

parts per million (ppm) to 365 ppm in 150 years (Galbe and Zacchi, 2002).  Over a 

twenty year period extending from 1970s to 1990s a 27% CO2 elevation, with an 

average 0.5 degrees Celsius (°C) global temperature increase has been observed.  If no 

restrictions are enforced on fossil fuel combustion, this trend is likely to continue 

resulting in an average 2-5°C elevation in global temperature causing rise in sea levels 

by 2.4 metres (Ture et al., 1997).   

 

In 1997 the Kyoto protocol was introduced and six gases were targeted for mitigation.  

These include methane, hydrofluorocarbons, perfluorocarbons and sulphur 

hexafluorides, alongside CO2 and N2O.  Members signed up to the protocol are required 

to increase and develop alternative methods to provide forms of energy to limit 

emissions of these GHG and to abide to the limits assigned to them.  Over the 2008 to 

2012 period a target 5% GHG abatement of the levels observed in 1990 is sought.  

Therefore, there is great importance placed on nations to find fuel alternatives that will 

not contribute to and aim towards mitigating global warming through GHG reduction 

(United_Nations, 1998). 

 

Globally the United States (US) is responsible for one of the highest CO2 discharge 

rates.  Along with Europe the US has set targets for biofuels to replace petroleum-based 

fuels (Demirbas, 2007).  The US, under the Energy Policy Act, aims to replace over 

75% of imported oil with alternatives by 2025 (Hahn-Hagerdal et al., 2006) with an 

increase in bioenergy three-fold over the next decade (Demirbas, 2007, Hahn-Hagerdal 

et al., 2006).  Under the European Union (EU) directive 2003/30/EC, by the end of 
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2010 biofuels and other alternative fuels had to hold 5.75% of the market share.  By 

2020 this will increase to 20% substitution of fossil fuels by alternatives (European 

Parliament, 2003).   

1.2 Biofuels 

Biofuels are described as either liquid or gas fuels derived from biomass. Current 

liquid-based biofuels encompass biodiesel and bioethanol, which are described as first 

generation biofuels, generated from purpose grown crops.   However, both bioethanol 

and biodiesel bear a number of limitations.  

 

1.2.1 Biodiesel 

Biodiesel is used as a diesel alternative. It is produced by transesterification of vegetable 

oil which can be carried out in the absence or presence of a catalyst such as KOH or 

NaOH, with methanol (Demirbas, 2007).  This process reduces the viscosity of the oil 

by reducing the large branched structure into a smaller and linear form (Demirbas, 

2007). Rapeseed oil is used in Europe and palm oil in tropical regions of the World. 

Germany is currently the largest producer of biodiesel in Europe, responsible for half of 

EU biodiesel production and some 2.2 billion litres were produced by the country in 

2004 (Frondel and Peters, 2007).  However, the advantages of using biodiesel over its 

fossil fuel counterpart are small. In its production, crops require large quantities of 

fertilisers and pesticides, this application causes an increase SO2 and NOx emissions as 

well as causing eutrophication of water courses due to surface run-off. In addition, on 

the claim that the combustion of biodiesel reduces SO2 emissions by half, it is arguable 

that improvements to particle filters for fossil fuel based diesel could meet this 

reduction.  Furthermore, it is not known whether biodiesel combustion produces more 

‘photochemical’ smog (Frondel and Peters, 2007).  

 

1.2.2 Bioethanol 

Currently, bioethanol is the most widely used biofuel and under the EU quality standard  

EN228 a 5% ethanol blend in petrol does not require any vehicle engine modifications 

and is covered by vehicle warrantees (Demirbas, 2007, Frondel and Peters, 2007, 

Union, 2003). 

 

Brazil and USA are the World’s largest producers of ethanol fuels, using sugar cane and 

corn, respectively.  Brazil produces 12 million Metre
3
 year

-1
 in comparison to Europe, 



Chapter 1: Introduction 

4 

 

which produces about one sixtieth of this (Galbe and Zacchi, 2002).  Bioethanol 

produces low CO2, HC, CO, NOx and volatile organic acid (VOC) emissions.  The 

production of aldehydes such as acetaldehyde and formaldehyde is of concern as these 

may affect air quality in urban areas (Galbe and Zacchi, 2002).  The use of ethanol 

provides many advantages, such as adding oxygen to the combustion mixture when 

added to petrol.  Ethanol has a higher heat of vaporisation and a higher octane rating.  

This therefore replaces the need for toxic octane enhancing additives, and reduces the 

CO and unburned HCs produced during petrol combustion (Galbe and Zacchi, 2002, 

Hahn-Hagerdal et al., 2006, Hansen et al., 2005). Ethanol provides approximately two-

thirds less energy in comparison to petrol, however, an ethanol-fuelled vehicle can still 

be expected to do up to 80% of the distance of that of a petrol-fuelled vehicle (Galbe 

and Zacchi, 2002).  

 

Ethanol also holds a number of disadvantages as a biofuel.  Firstly, it is not miscible 

with diesel.  Diesel-ethanol blends are subject to phase separation under cold and damp 

conditions and therefore the addition of emulsifiers is required (Hansen et al., 2005, 

Lenz and Moreira, 1980).  It also lowers the cetane rating of diesel, which causes longer 

ignition delays while the fuel vaporises.  In addition because of its chemical properties, 

there are problems with viscosity and lubricity which lead to pump and injector leakage, 

therefore decreasing fuel delivery and ultimately power to the vehicle.  Ethanol is also 

corrosive to engine components causing swelling of seals and corrosion to injection 

pumps.  Finally, there are issues with handling and storage of ethanol, because of its 

low flash point and highly flammable vapours (Hansen et al., 2005).  

 

1.2.3 Biobutanol 

The problems associated with ethanol can be addressed whilst simultaneously retaining 

the advantageous qualities, by another alcohol, butanol.  Butanol is seen as a superior 

biofuel to ethanol for many reasons.  Butanol has a longer HC chain in comparison to 

ethanol and thus shares more chemical properties to petrol and diesel (Lenz and 

Moreira, 1980).  Butanol is completely miscible with diesel.  Having a low vapour 

pressure makes the handling and storage of butanol compatible with current 

infrastructure and this is much easier and safer in comparison to ethanol (Lenz and 

Moreira, 1980, Durre, 2007). Butanol can be blended to any concentration with petrol, 

whereas ethanol is limited to 85%.  The combustion of butanol does not require any 

engine modifications and is less corrosive than ethanol (Durre, 2007).  DuPont and 
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British Petroleum (BP) created a partnership in 2006 for developing biobutanol in 

United Kingdom (UK) (Durre, 2007),   as a next generation biofuel.  A summary of the 

advantages of biobutanol is shown in Table 1-1. 

Table 1-1: The advantages of biobutanol 

Advantages of Butanol 

Not hygroscopic 

Completely miscible with diesel 

Low vapour pressure 

Adds oxygen to petrol reducing GHG & unburned HC emissions 

Higher octane rating than petrol/diesel 

Blending with petrol to any per cent 

No engine modifications required 

Can be piped using current infrastructure  
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1.3 Substrates for Biofuel Production 

1.3.1 Purpose grown crops 

Bioethanol is primarily produced using purpose grown crops, such as corn and sugar 

cane; and biodiesel from rapeseed and palm oil.  This has led to questions about the 

sustainability of biofuels as a fuel alternative. Large amounts of crops and thus large 

areas of land are required to meet the energy demand of the World.  This could result in 

less food crop availability and/or land availability for food crop growth.  Additionally, 

the use of intensive agricultural practices can result in environmental impacts, such as 

soil degradation, toxin accumulation from pesticide use, eutrophication of local water 

courses and increased NOx gas emissions, from the use of fertilisers.  The  latter is most 

notable, as N2O, a NOx gas is a GHG and has more potency than CO2 (Wheals et al., 

1999, Frondel and Peters, 2007). Further controversy over biofuels has come from 

deforestation in tropical countries in palm oil plantations, which not only has a massive 

impact on wildlife biodiversity and the environment, but results in yet further CO2 

emissions from human activity. Indeed, a reported average six billion tonnes of CO2 is 

emitted annually by this activity alone (Ture et al., 1997).  

 

A further weakness of the current biofuels, bioethanol and biodiesel, comes during the 

production. Currently only the starch or oily fraction is utilised in each case, 

respectively, and the remainder is unfermentable.  The whole use of the substrate 

biomass would allow more value to be extracted, making such a process more 

economically viable with more of the substrate being converted to product. This and 

along with the environmental impacts could be addressed by employing clostridia to 

wholly ferment sustainable waste biomass. 

 

1.3.2 Waste biomass 

Waste biomass is an alternative to purpose grown crops and may be sourced from 

agriculture, forestry, industry, and municipal wastes (Zaldivar et al., 2001).  These are 

cheap, readily available and renewable resources and the use of waste biomass can 

alleviate problems associated with their disposal.  

 

Industries often require waste removal which can be expensive and have an impact on 

the environment.  Organic waste is generally disposed of via landfill.  However, this 
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route is no longer an option due to the EU landfill directive (1999/31/EC).   Targets 

aimed for biodegradable municipal solid waste was reduced by 75% in 2010 and by 

50% in 2013 and 35% by 2020, to that of the levels in 1995 (European-commission, 

1999).  There are a number of other options such as incineration, anaerobic digestion 

and composting available.  But another option is to extract further value from the 

organic fraction of the biomass by converting it to biobutanol. 
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1.4 Lignocellulose 

For biofuel production lignocellulose represents the most abundant renewable resource 

on the planet (Galbe and Zacchi, 2002, Jones and Woods, 1986).  Sources of 

lignocellulosic wastes are numerous; forestry residues, sawdust, recycled paper and 

paper mill residues, municipal waste and agricultural waste can all be used.  

Agricultural waste may consist of corn stover, bagasse, wheat and rice straw. Sources 

are cheap, plentiful and use materials which may be destined for disposal, which is an 

industrial expense as well as potentially polluting the soil, water courses and the 

atmosphere (Demain et al., 2005, Gallert and Winter, 2002).   Upon use of such a 

resource there are a number of factors to consider.  Firstly, there may be great seasonal 

variation of lignocelluloses sourced from agriculture and forestry. Secondly, these 

resources are required to be transported and stored until use (Lin and Tanaka, 2006).  

Lastly, it is also important that over-utilisation of agricultural wastes is avoided, as this 

could potentially lead to environmental damage due to soil organic matter reduction and 

erosion (Kim and Dale, 2006).   

 

Lignocellulose constitutes the cell wall of plants.  It is made up of three main 

constituents: cellulose which accounts for 40-50%, hemicellulose 25-35% and lignin 

15-20% (Gray et al., 2006).  The exact ratios of each are source dependent.  Cellulose is 

made of long linear glucose polymer chains linked to one another by hydrogen bonding 

(Perez et al., 2002).  This polymer has a characteristic orderly and compact crystalline 

structure, thus the individual glucose units linked by β-1, 4 bonds, are highly resistant to 

enzymatic degradation, making it such a recalcitrant resource.  Hemicellulose is 

associated with cellulose by hydrogen bonding and in turn hemicelluloses are covalently 

linked to lignin by ferulic acid and ester bonds (Demain et al., 2005, Shallom and 

Shoham, 2003), together making a cross-linked network. The basic structure of 

lignocellulose is shown in Figure 1-1. 
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Figure 1-1: The structure of lignocellulose 

Lignocellulose is composed of bundles of cellulose (light blue), hemicellulose (orange) 

is associated with cellulose via hydrogen bonding; and lignin (green) is covalently 

linked to hemicelluloses, forming a cross-linked network. Taken and adapted from 

(Thostrup, 2006) 
 

 

1.4.1 Hemicellulose 

After cellulose, hemicellulose comprises the next largest constituent of lignocellulose. 

Hemicellulose, in contrast to cellulose, is much easier to degrade.   Hemicellulose is a 

heteropolysaccharide of hexose, pentose and acid sugars and the exact composition is 

source dependent (Saha, 2003).  The most prevalent in nature is heteroxylan, which is 

composed of a backbone of xylan, a polymer of xylose units held together by β-1, 4 

linkages (Saha, 2003, Shallom and Shoham, 2003, Gray et al., 2006).  The backbone 

has heterosaccharides branching off, with the extent and contents of the branching again 

being source dependent. Sugar units of glucose, galactose, xylose, arabinose, glucuronic 

acid and mannose may be found (Gray et al., 2006, Perez et al., 2002).  The 

hemicellulose of hardwoods is composed mainly of heteroxylans, and in softwoods it 

consists mainly of glucomannans. Examples of a few plant resources and their sugar 

make-up are shown in  
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Table 1-2. Other than xylans, hemicelluloses may include arabinans, mannans and 

galactans.  As their names suggest they consist of a backbone of arabinose, mannose or 

galactose, respectively (Perez et al., 2002).  

 

Table 1-2: Examples of plant-based resources and their hemicellulose constituent 

composition 
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Birchwood 89.3 1 1.4 - - - 8.3 

Rice bran 46 44.9 1.9 6.1 - - 1.1 

Wheat arabinoxylan 65.8 33.5 0.3 0.1 0.1 - - 

Corn fibre 48-54 33-35 - 5-11 - 3.6 - 
Some examples of plant sources hemicellulose constituents (Taken from: Saha, 2003) 
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1.5 Pentose Sugars 

Xylose and arabinose are also known as aldopentoses, five carbon sugars carrying an 

aldehyde group.  The name xylose is derived from the Greek word for wood and 

arabinose from gum Arabic, so called because of the region where it was first isolated. 

Both sugars are structurally similar, but structural distinction lies with the orientation of 

the hydroxyl groups on C1-C4 (Figure 1-2).  The D- form of xylose and L- form of 

arabinose are more common in nature than the other stereoisomers (Lee et al., 1970).  

Pentose metabolism is distinct between prokaryotes and eukaryotes.  Prokaryotes use 

isomerases and eukaryotes use redox reactions, to produce xylulose 5-phosphate which 

is then fed into the pentose phosphate pathway (PPP) (Bettiga et al., 2008). 

 

 

Figure 1-2: Structure of pentose sugars xylose and arabinose 

There are two stereoisomers of each sugar, the L-arabinose and D-xylose forms are 

more prevalent in nature and their structures are shown above. 

 

Pentose sugars have been shown to be fermentable by a wide variety of bacteria such as 

Escherichia coli, Salmonella enterica, bacilli, staphylococci, streptomycetes, and 

thermophiles such as geobacilli, thermoanaerobacteriae and Thermus sp. However, 

pentose sugars cannot be fermented by a large number of yeasts.  The commonly used 

bioethanol producing organism Saccharomyces cerevisiae, preferred for its robustness, 

cannot ferment xylose and thus genetic engineering has been employed to enable xylose 

fermentation.  However, use of such an organism at industrial scale is not feasible if 

antibiotics are required to maintain a selective pressure.  Other yeasts cannot provide an 
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adequate alternative where S. cerevisiae fails. Pichia stipitis can ferment xylose, but is 

inhibited by compounds arising from pre-treatment, whereas, filamentous fungi are 

tolerant to such inhibitors, but ferment the sugars too slow for industrial use (Hahn-

Hagerdal et al., 2006).  Some of the solventogenic strains of clostridia have been found 

to be also tolerant to some of the inhibitors.  The presence of furfural, hydroxymethyl 

furfural (HMF) and glucuronic acid have been shown to have a stimulatory effect with 

C. beijerinckii, C. butylicum, C. saccharolyticum, with an increase in cell density and 

Acetone Butanol Ethanol (ABE) production (Ezeji et al., 2007, Ezeji and Blaschek, 

2008). Therefore may be advantageous over fungi in the fermentation of plant-based 

waste streams. However, other inhibitors such as ferulic and p-coumaric acids and 

syringaldehyde had an inhibitory effect on all strains and dramatically reduced the cell 

density and thus ABE production with increasing concentration in all the strains (Ezeji 

et al., 2007, Ezeji and Blaschek, 2008).   
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1.6 The Genus Clostridium 

Clostridium is an extensive genus comprising some medically important members 

which produce toxins.  Examples include C. tetani, C. botulinum and C. difficile.  

Infection with such clostridia causes illness, due to the effect the toxins have on the 

host. Alternatively, members can be of industrial importance, producing solvents rather 

than toxins. Examples of industrially important members include C. acetobutylicum, C. 

saccharobutylicum and C..beijerinckii.  Clostridia are Gram-positive, rod-shaped 

bacteria and are equipped with flagella allowing cell motility (Jones et al., 1982). A 

noteworthy feature of clostridia is the inability to grow in the presence of oxygen, i.e. 

clostridia are obligate anaerobes. Moreover, clostridia are sporulators (Durre and 

Hollergschwandner, 2004). Sporulation permits survival over long periods of time in 

hostile environments. Spore formation occurs upon entry into the stationary phase of 

growth, when nutrients are becoming scarce and toxic metabolites start to accumulate 

(Durre et al., 1995). Simultaneous with this phase is the toxin or solvent production 

associated with medical and industrial clostridia, respectively. Solvents are of high 

importance industrially as a renewable source of chemicals, which can be used as fuels.  

A selection of clostridial species and the individual solventogenic end-products 

generated are shown in Table 1-3 below. Clostridial genomes are of low Guanine/ 

Cytosine (G/ C) content (de Vos et al., 1997), a feature which is also shared with a 

number of other Gram positive bacteria, such as bacilli, lactobacilli and staphylococci. 

The genomes of a number of Clostridium species have been sequenced, including 

C..acetobutylicum American type culture collection (ATCC) 824 (Nolling et al., 2001), 

C..beijerinckii National culture collection of industrial food and marine bacteria 

(NCIMB) 8052 (Copeland et al., 2007b) and C. thermocellum ATCC 27405 (Copeland 

et al., 2007a).  

 

Table 1-3: Solvent end-products of a range of clostridia 

Clostridium Species Solvents Produced 

C. acetobutylicum Acetone Butanol Ethanol 

C. beijerinckii Acetone Butanol Ethanol Isopropanol 

C. pasteurianum Acetone Butanol Ethanol 

C. saccharobutylicum Acetone Butanol Ethanol 

C. thermocellum Ethanol 
The solvent profile produced is strain dependent in clostridia capable of production. 
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1.7 Solvent Production in Clostridia 

1.7.1 The history of clostridial solvent production 

During the former part of twentieth Century Acetone Butanol (AB) fermentation was a 

very important biotechnological process, surpassed only by ethanol fermentation, as the 

most successful industrial process.  Its origins sprung from a high demand for natural 

rubber, where a shortage and expense had prompted research for  a cheaper synthetic 

substitute (Durre, 1998).  This work was led by Chaim Weizmann whose work led to 

the isolation of a strain of Clostridium acetobutylicum, a strain which he referred to as 

BY (Gabriel, 1928). BY had the ability to produce acetone, butanol and ethanol as 

fermentation end-products. However, the work of Weizmann became invaluable for 

another reason.  The onset of World War I demanded an abundance of munitions, 

smokeless gunpowder – cordite, was required in vast quantities.  Cordite manufacture 

required acetone and with the supply from Austria and Germany interrupted, left only a 

short supply from the US.  Because of the capability of Weizmann’s BY strain to 

produce acetone, Weizmann made his work known and he was later commissioned to 

produce acetone using the ABE fermentation or Weizmann process, as it was also called 

(Gabriel, 1928).   

 

Over the next twenty years expansion of AB fermentation continued on a global scale. 

In addition, improvements were made through the use of molasses, a cheap and plentiful 

substrate; and new strains, boosting the efficiency and solvent yield of the process 

(Jones and Woods, 1986, Nolling et al., 2001). Demand for butanol continued and 

coupled with the requirement for acetone during World War II the AB industry was at 

its peak.  In the Post–war years there was a very rapid decline in AB fermentation, 

which eventually led to all but a few plants closing.   

 

The decline of the AB fermentation industry was due to the process being no longer 

economically viable and reasons for this were two-fold.  Firstly, butanol could be 

synthesised by a more efficient and cheaper method, from crude oil.  Secondly, 

competition had arose for the feedstock used at the time, molasses, which were being 

used in cattle feed.  Leading to this once cheap and plentiful carbon source becoming 

too expensive for the AB industry to compete with the petrochemical industry (Jones 

and Woods, 1986, Nimcevic and Gapes, 2000).   
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Research and plant operation continued in very few places post Second World War.  

Plants in South Africa, China and Russia remained operational for decades afterwards.  

Eventually research was rekindled again in a wider field, including western societies, 

prompted by the oil crisis of the 1970s. This led to fuel alternatives being sought and in 

Brazil the Proalcool program begun, where ethanol produced from the fermentation of 

sugar cane, replaced the need for the importation of oil as a fuel.   

1.7.2 Solvent production in clostridia 

In batch cultures, solventogenic clostridia display a biphasic growth pattern.  Firstly, 

acids and gases are generated by fermentation of the carbon source, causing a decrease 

in pH of the culture medium.  In the second stage, the acids are reassimilated 

concomitantly with carbon source uptake, solvents are produced and the pH rises.  

These two phases are known as acidogenesis and solventogenesis, respectively.  During 

acidogenesis, acetate, butyrate, CO2 and H2 are produced. The conversion of pyruvate 

from glycolysis to acetyl CoA; and electron transfer from pyruvate to protons via 

hydrogenase (see Figure 1-3 reactions 1 and 2, 3, 4 respectively) generates the CO2 and 

H2, respectively.  During solventogenesis products are strain dependent, in the case of 

C..acetobutylicum and C..saccharobutylicum the major products are butanol, acetone 

and ethanol in the ratio of 6:3:1.  With C..beijerinckii the same solvents are obtained, 

but acetone can be further reduced to isopropanol. 

 

The pH at which solventogenesis is initiated is also strain dependent, but is generally 

below pH 5. The role of the acids is as a final e
- 
acceptor, however this comes at a cost 

to the cell because in this reduced form acids are toxic to the cell (Jones and Woods, 

1986).  The acids at high enough concentrations have a deleterious effect on the cell and 

therefore a shift to solventogenesis is required as a detoxification method (Mitchell, 

1998). The acids behave as uncouplers, partitioning in the cell membrane and this 

allows the entrance of H
+
 from the cell’s exterior environment. In the presence of 

undissociated acids at high concentrations the pH gradient across the cell membrane is 

collapsed resulting in inhibition of metabolic function due to a decrease of the 

Adenosine triphosphate/ adenosine diphosphate (ATP/ADP) ratio (Bowles and Ellefson, 

1985, Jones and Woods, 1986).  The concentration of acids in the medium has been 

shown to have a concentration-dependent effect on the internal pH (Scotcher et al., 

2003).  Membrane bound ATPase is responsible for controlling the pH of the cell by 

expending ATP (Bowles and Ellefson, 1985, Durre and Hollergschwandner, 2004, 
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Jones and Woods, 1986).  Treatment of cells to inhibit ATPase is associated with early 

onset of solventogenesis, this is caused when ATPase is unable to serve its function in 

pH control.  The resulting fall in the internal pH makes conditions favourable for the 

acids to be in the undissociated form and an increase in undissociated acids levels 

triggers solventogenesis (Huang et al., 1985, Mitchell, 1998).  However, in some 

situations it should be noted that if an excess of acids is produced too rapidly during the 

fermentation, this has a toxic effect on the cells and no solventogenesis takes place. This 

phenomenon is called ‘acid crash’ (Maddox et al., 2000).   

 

The pSOL1 megaplasmid carries the main genes for solventogenesis in 

C..acetobutylicum and C..saccharobutylicum and loss of this plasmid through 

continuous subculturing removes the ability of the organism to produce solvents; this is 

termed degeneration (Cornillot et al., 1997, Scotcher et al., 2003).  Conversely, genes 

for solventogenesis in C..beijerinckii are carried on the chromosome, but even so 

degeneration has still been observed (Chen and Blaschek, 1999). Sporulation is 

concomitant with the onset of solventogenesis and the Spo0A protein is termed the 

‘master regulator’ of endospore formation (Durre and Hollergschwandner, 2004, 

Mitchell, 1998).  Studies have linked the effect Spo0A with the onset of sporulation, 

granulose formation and a metabolic shift to solventogenesis (Bahl et al., 1995). The 

inactivation of the spo0A gene in C..acetobutylicum is associated with a severe 

deficiency in solventogenesis; no cell swelling and no endospore formation, associated 

with granulose formation and sporulation. Whereas the overexpression of spo0A 

enhances the butanol concentration and sporulation by accelerating time taken for the 

expression of genes involved in solvent formation and sporulation, in comparison to the 

wild type (Harris et al., 2002).  

 

Spore formation in clostridia occurs when the parent cell undergoes asymmetric 

septation.  The mother cell produces as many as five spores per cell and is lysed when 

the forespore(s) reach maturity.  The released spores are covered in a slime coat and 

have appendages.  It is this process of sporulation that allows the organism to survive 

the impending unfavourable conditions for life (Durre and Hollergschwandner, 2004).  

Produced during solventogenesis, butanol is considered to be the main toxicant.  

Butanol is hydrophobic and causes disruption to the phospholipids found in the cell 

membrane, increasing the fluidity.  This disrupts functioning of ATPase and nutrient 
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uptake, inhibiting cell growth and hence the amount of butanol yielded (Huang et al., 

1986, Jones and Woods, 1986).     

 

1.7.3 The future of clostridial fermentations 

The replacement of oil as a fuel is of current importance as within the next fifty years, 

this finite fuel resource is estimated to be fully depleted (Demirbas, 2007).  Also, global 

warming has prompted a greater response into alternative fuels in recent years, in an 

attempt to cut the carbon (C) emissions produced by fossil fuel combustion.  However 

the success of an alternative fuel would be subject to a number of criteria.  The major 

issues affecting the competitiveness of biobutanol with petrochemicals is the cost of the 

substrates and the product recovery and are therefore both important targets for 

research.  Substrates that are plentiful and of low value are necessary, lignocellulosic 

material presents an attractive resource in this respect (Ni and Sun, 2009).  The low 

product yield due to the inhibitory effect butanol has on the growth of the cells could be 

improved by metabolic engineering to increase the tolerance and improve the ratio of 

butanol and hence improve the butanol production (Ni and Sun, 2009, Claassen et al., 

2000).  Additionally the method of product recovery could also allow for improved 

solvent recovery and reduce the solvent inhibition effect on the cells, by the way of 

methods such as gas stripping, which remove solvents continuously throughout the 

duration of the fermentation (Ni and Sun, 2009). 
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Figure 1-3: Biochemical pathway of solvent production in C..beijerinckii 

The biochemical pathway shows how solvents are produced in C..beijerinckii. Blue 

signifies the major the products obtained from acidogenesis phase and the red the major 

products of solventogenesis. The same steps occur in C..acetobutylicum with the 

exception of step 15. 1 pyruvate ferredoxin oxidoreductase; 2 Nicotinamide adenine 

dinucleotide (NADH)  ferredoxin oxidoreductase; 3  Nicotinamide adenine dinucleotide 

phosphate (NADPH) ferredoxin oxidoreductase; 4 hydrogenase; 5 

phosphotransacetylase; 6 acetate kinase; 7 thiolase; 8 β-hydroxybutyryl CoA 

dehydrogenase; 9 crotonase; 10 butyryl CoA dehydrogenase; 11 

phosphotransbutyrylase; 12 butyrate kinase; 13 CoA transferase; 14 acetoacetate 

decarboxylase; 15 isopropanol dehydrogenase; 16 butyraldehyde dehydrogenase; 17 

butanol dehydrogenase; 18 acetaldehyde dehydrogenase; 19 ethanol dehydrogenase. 
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1.8 Carbohydrate Utilisation in Clostridia 

 

Clostridia are able to metabolise a wide diversity of carbohydrates, making these 

organisms very versatile when it comes to the range of substrates which can be used for 

solvent production.  This potentially allows for a number of cheap resources in the form 

of waste streams to be utilised.   

1.8.1 The use of polymers 

Cellulose, a linear glucose polymer, is the most abundant polymer in nature, however, 

not all clostridia are able to directly utilise it as a carbon source.  C..acetobutylicum 

possesses a cellulosome with components necessary for cellulose degradation (Sabathe 

et al., 2002, Sabathe and Soucaille, 2003). The cellulases are expressed and have high 

similarity to those of clostridia known for their ability to use cellulose, such as 

C..cellulolyticum and C..thermocellum. However, C..acetobutylicum is unable to utilise 

cellulose directly (Lopez-Contreras et al., 2003, Sabathe et al., 2002). It has been noted 

that cellulosomes have elevated activity to crystalline cellulose, however despite a 

cellulosome complex being secreted from C..acetobutylicum it is inactive towards 

cellulose. Reasons for this may lie in the absence of exoglucanases, which are required 

to work synergistically alongside endoglucanases for efficient cellulose degradation 

(Mitchell, 1998); or the regulation of the cellulases.  However, C..acetobutylicum is 

reported to exhibit endoglucanase, cellobiosidase and cellobiase activities when grown 

in the presence of a number of carbon sources, such as glucose, xylose, cellobiose and 

mannose (Lee et al., 1985a). Endoglucanase, celG, is expressed in the presence of 

lichenan, but not in the presence of cellobiose, in contrast to C. cellulovorans, where the 

orthologous gene is expressed in the presence of cellulose and cellobiose (Lopez-

Contreras et al., 2003).  A similar finding was apparent with another endoglucanase, 

CelF, which again possessed higher activity in cells grown on lichenan and xylose in 

comparison to glucose and cellobiose (Lopez-Contreras et al., 2004).  Recent research 

revealed that specific chaperones involved in the secretion of Cel48 and probably Cel9G 

and Cel9E endoglucanases are missing or insufficiently synthesised because their 

interaction with the secretory system has a deleterious effect to the cell (Mingardon et 

al., 2011). Another reason for these results may lie with the lack of catabolite 

responsive element (CRE) sites in the coding or promoter regions surrounding the 

putative cellulosome genes, and thus CcpA (catabolite control protein A) cannot bind 
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and negatively regulate these genes (Lopez-Contreras et al., 2004).  Carbon catabolite 

repression (CCR) of most genes is regulated by a carbon response element.  A CRE is a 

palindromic sequence which either overlaps with a gene promoter or is present in the 

open reading frame of the gene, where transcription is either unable to initiate or 

elongation is not able to take place, respectively (Hueck and Hillen, 1995, Seidel et al., 

2005).  It is CcpA which binds to the CRE in response to the presence of a catabolite, 

for example glucose and dependent upon the regulatory mechanism, the downstream 

genes or operon are expressed or repressed (Kim et al., 2005).  

 

Another glucose polymer, starch is also fermentable by clostridia.  In both 

C..acetobutylicum and C..beijerinckii starch degrading enzymes are present (Mitchell, 

1998).  α-amylase an endo-acting enzyme cleaves α-1,4 glycosidic links of starch, with 

the major products being glucose, maltose and maltotriose (Paquet et al., 1991). The 

other enzyme is glucoamylase which is an exo-acting enzyme cleaving glucose units 

from the non-reducing ends of the starch molecule. 

 

Xylan the polymer of xylose, has been found to be incompletely used by 

C..acetobutylicum (Mitchell, 1998).   An excess of xylose in the culture medium 

improves the activity of xylanases.  Xylanases have an optimal activity at pH6 and thus 

as the fermentation proceeds, the pH will become unfavourable.  Based on this finding 

the use of a chemostat to regulate the pH at the optimum was found to aid xylan 

consumption (Lee et al., 1985b).  Xylanase genes (Xyn) found on the megaplasmid, 

endo 1,4-xylanase (xyn10A) and β-xylosidase (xyn10B) have been cloned from 

C..acetobutylicum and the encoded proteins were shown to convert xylan and xylo-

oligosaccharides to xylobiose and xylotriose or xylose, respectively.  Xyn10A was 

found to be moderately active towards a number of substrates including lichenan, 

carboxymethyl cellulose (CMC), β-glucan, p-nitrophenyl monosaccharides and avicel.  

Xyn10B was found to only be slightly active towards CMC, p-nitrophenyl 

monosaccharides and arabinogalacturonic acid (Ali et al., 2004, 2005). 

 

1.8.2 The use of hexose sugars 

Much work has been conducted with regards to the utilisation of di- and 

monosaccharides of hexose sugars.  Hexose sugar uptake and metabolism is mediated 

by the phosphoenolpyruvate dependent phosphotransferase system (PTS). The PTS 

allows the uptake and phosphorylation of the carbon source via transferring phosphate 
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from phosphoenolpyruvate along a chain of proteins, enzyme I, HPr and enzyme II 

domains A and B. Phosphorylation of the substrate occurs concomitant with entry into 

the cell (Mitchell, 1998, Tangney et al., 2001).  In C. acetobutylicum, the PTS is the 

mechanism for glucose, maltose, sucrose and lactose uptake (Tangney and Mitchell, 

2000, 2007, Tangney et al., 2001, Yu et al., 2007) and in C..beijerinckii glucose, 

glucitol and sucrose uptake have all been characterised (Mitchell et al., 1991, Reid et 

al., 1999, Tangney et al., 1998). These characterised PTS are subject to catabolite 

repression in the presence of glucose, resulting in the sugars not getting utilised until the 

glucose is exhausted from the culture medium.   

 

1.8.3 The use of pentose sugars 

No PTS has been found in bacteria for the uptake of pentose sugars.  With the exception 

of C. acetobutylicum, little research has been carried out to identify the genes involved 

in the uptake, metabolism and regulation of pentoses in solventogenic clostridia.  

Several studies have determined that C..acetobutylicum is able to utilise pentose sugars 

such as arabinose and xylose as sole carbon sources (Ounine et al., 1983, Ounine et al., 

1985).  However, if a cheap and abundant resource such as lignocellulosic biomass is to 

be utilised efficiently, to maximise the productivity of solvents, it is necessary to gain a 

fundamental understanding of the pathways involved and their regulation.  Glucose is 

the preferred carbon source of many bacteria including clostridia.  Indeed, diauxie is 

observed when C..acetobutylicum cultures are grown on media containing both xylose 

and glucose.  It is not until the glucose had been fully depleted from the medium that 

xylose is utilised (Ounine et al., 1985).  Cultures growing on glucose produce a higher 

butanol yield compared to those growing on xylose.  A 28% conversion of xylose to 

ABE solvents (29% for arabinose), in comparison to 32% on glucose has been observed 

(Ounine et al., 1983).  The growth of C..acetobutylicum on arabinose is comparable to 

glucose, and as a result yields of ethanol and acetone at the end of fermentation are 

similar. Cultures on xylose are  slower to grow and butanol has a more pronounced 

inhibitory effect on cells growing on xylose (Ounine et al., 1985), accounting for the 

difference in the yield obtained on xylose in comparison to the other sugars.  
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1.9 Aims of Research 

Lignocellulose is an attractive resource for biofuel production in the future, as it is the 

most abundant polymer on the planet and is sustainable.  To utilise sustainable or waste 

substrates efficiently as possible it is necessary to convert all constituents to product. 

One component of lignocellulose, hemicellulose, is usually pentose-rich and organisms 

currently used to produce biofuel yeasts, are often unable to utilise these pentose sugars 

and additionally do not produce biobutanol.  Conversely, clostridia are able to utilise a 

wide variety of substrates. In the light of glucose catabolite repression in most bacteria, 

whereby the presence of glucose affects the utilisation of other sugars at the 

transcription level, it is necessary to gain a fundamental understanding of the utilisation 

of other sugars, including pentose sugars in such a biofuel-producing organism.  Very 

little research has been conducted with regards to pentose sugar use in solventogenic 

clostridia, with the exception of some work in C..acetobutylicum (Gu et al., 2010).  

Knowledge in this area could benefit future research, revealing targets for genetic 

manipulation, more efficient carbon source utilisation and improved substrate to product 

yields.  In addition, such knowledge could provide information to biofuel producers on 

potential substrates that could be utilised, how they can be efficiently and wholly 

utilised and the potential product yields.  C..beijerinckii is capable of utilising a wide 

range of sugars.  It has been observed from a genomic analysis of phosphotransferases 

for sugar uptake that there are 42 putative systems in C..beijerinckii in comparison to 13 

putative PTS in C..acetobutylicum (Mitchell, personal communication). In terms of non-

PTS for sugar uptake, such as ATP binding cassette (ABC) transporters, symporters 

etc., there are 30 putative transporters in C..beijerinckii in comparison to 6 putative 

transporters in C. acetobutylicum. Thus, C..beijerinckii may confer superior 

carbohydrate utilisation capabilities for biofuel production.  C..beijerinckii is the 

preferred solventogenic clostridial strain by the industrial sponsors of this project, 

Green Biologics limited (LTD).  Little research has been carried out into the ability of 

C..beijerinckii to grow on pentose sugars or the effect mixed glucose-pentose sugar 

media has on sugar use preference, as well as the organism’s ability to utilise the xylose 

polymer xylan. So it stands to reason that research on this organisms’ ability to utilise 

constituents of lignocellulosic waste for future industrial biobutanol production is 

highly beneficial. 
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The hypothesis 

The purpose of this study is to therefore investigate the ability of C..beijerinckii to 

utilise the pentose sugars xylose and arabinose.  

 

The hypothesis was investigated using a two-tier approach. Firstly to assess the 

competency of C..beijerinckii to utilise the pentose sugars D-xylose and L-arabinose.  

The effect of a well known carbon catabolite repressor, glucose on the utilisation of 

these sugars was also investigated, as it is likely any future process using waste streams 

will be based on a mixture of sugars. Finally the ABE yields from pentose sugar 

fermentations were monitored.  Then following on from this to assess if C..beijerinckii 

is capable of using pentose sugars in the natural state, as the xylose polymer, xylan and 

a pentose-rich waste stream.  The second objective was to propose gene systems 

involved in the uptake and utilisation of pentose sugars via bioinformatic analysis and to 

characterise key genes involved in the utilisation of xylose and arabinose by a two tier 

approach, using proteomic analysis of whole cell protein extracts of C..beijerinckii 

grown on xylose or arabinose then gene cloning and characterisation in vivo, employing 

mutant strains of Escherichia coli lacking the key genes essential for pentose sugar 

utilisation. 
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2 Materials and Methods 

 

2.1 Bacterial Strains 

Clostridium.beijerinckii NCIMB 8052 was obtained from The National Collection of 

Industrial, Marine and Food Bacteria (NCIMB, Aberdeen, Scotland). Escherichia coli 

UP1089 was purchased from the E. coli genetic stock centre (Yale). E. coli XK100 was 

obtained from Dr. W. Mitchell (Heriot-Watt University, Scotland).  E. coli DS941 was 

obtained from Prof. I. S. Hunter (University of Strathclyde, Scotland) and E. coli 

TOP10 from Invitrogen (UK).  Genotypes of the E. coli strains used in this study are 

given in Table 2-1. 

 

 

 

Table 2-1: Details of E. coli strains used in this study 

E. coli 

strain 

Genotype Phenotype of relevance Reference 

UP1091 araA204 L-arabinose isomerase 

negative (araA
-
) 

(Englesberg, 1961) 

 

DS941 

 

 

thr1 leu6 hisG4 thi1 

ara14 proA2 argE3 

galK2 sup37 xyl15 

mtl1 tsx33 str31 

recF143 supE44 

lacl
q
Z∆M15 

D-xylose isomerase 

negative (xylA
-
)   

L-ribulokinase negative 

(araB
-
) 

(Toivonen and 

Jacobs, 1999) 

(Englesberg, 1961) 

 

 

 

 

XK100 pro xxk D- xylulokinase negative 

(xylB
-
) 

(Scangos and 

Reiner, 1978) 

 

TOP10 F
-
 mcrA (mrr-

hsdRMS-mcrBC) 

80lacZ M15 

lacX74 recA1 

ara 139 (ara-

leu)7697 galU galK 

rpsL (Str
R
) endA1 

nupG 
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2.2 Growth of C. beijerinckii 

2.2.1 Media 

2.2.1.1 Reinforced clostridial media (RCM) 

RCM (Oxoid) was made by adding 38 gram (g) in 1 litre (L) of distilled water (dH2O). 

2.2.1.2 Clostridial basal media (CBM) 

CBM consisted of: 10 g/L carbon source (Arabinose, Sigma-Aldrich; Glucose, Fisher 

Scientific; Xylose, Merck), 0.2 g/L MgSO4.7H2O (Sigma), 0.01 g/L MnSO4.4H2O 

(BDH Chemicals), 0.01 g/L NaCl (Fisher Scientific), 0.01 g/L FeSO4.7H2O (Sigma-

Aldrich), 1 milligram (mg)/L p-aminobenzoic acid (Sigma), 2 microgram (µg)/L biotin 

(Sigma), 1 mg/L thiamine HCl (BDH Chemicals), 4 g/L casein hydrosylate (Oxoid), 

0.5.g/L K2HPO4 (BDH Chemicals) and 0.5 g/L KH2PO4 (BDH Chemicals) (O'Brien and 

Morris, 1971).  All of the ingredients were autoclaved together with the exception of the 

iron and vitamins which were made as stock solutions and filter sterilised.  The carbon 

sources were also filter sterilised. The phosphate solutions were autoclaved separately 

and all ingredients added together aseptically after autoclaving. 

2.2.1.3 Tryptone yeast extract acetate medium (TYA) 

TYA consisted of per litre dH2O: 60 g sugar (Sigma-Aldrich), 6 g tryptone (Oxoid), 2 g 

yeast extract (Oxoid), 3 g ammonium acetate (Sigma-Aldrich), 0.5 g KH2PO4 (BDH 

Chemicals), 0.3 g MgSO4.7H2O (Sigma-Aldrich),  and 10 mg FeSO4.7H2O (Sigma-

Aldrich) (Batycka et al., 2006).  Sugar solutions were autoclaved separately and added 

aseptically to TYA medium after autoclaving. 

2.2.2 Revival of spores 

C..beijerinckii spores (1 ml), kept at 4°C in suspension, were heat shocked (10 min, 

80°C), inoculated into reinforced clostridial medium (RCM, Oxoid), and grown in an 

anaerobic cabinet (Modular Atmosphere Controlled System, Don Whitely) overnight 

under an atmosphere of 80:10:10 (N2:H2:CO2) at 34°C. Cultures of 5% volume per 

volume (v/v) were used as starter cultures for subculturing and for experiments.  

2.2.3 Growth of C. beijerinckii 

Starter cultures 5% (v/v) were inoculated into 20 ml volumes of either CBM or TYA 

supplemented with 1% weight per volume (w/v) of the appropriate sugar (glucose, 

xylose or arabinose), were grown overnight and 5% (v/v) was then used to inoculate 

100 millilitre (ml) volumes of TYA or CBM (100 ml) supplemented with 1% (w/v) of 

the appropriate sugar.  Cultures were grown overnight and 5% (v/v) was used to 
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inoculate media for experiments.  All experiments were carried out in an anaerobic 

cabinet under the conditions previously mentioned and all media was made anaerobic 

by incubating overnight in an anaerobic cabinet prior to use.  

2.2.4 Optical density and pH measurement 

Optical density (OD) was measured at 650 nanometres (nm) (Nicolet Evolution 300 

spectrophotometer, Thermoelectron Corporation) and pH was measured (Jenway 3100 

bench top pH meter, calibrated with buffers of known pH).  Samples with an OD > 0.6 

were diluted with dH2O in order to maintain a reading of <0.6.  

 

2.3 Fermentation Conditions 

Sartorius Biostat® A plus vessels (1 L) and the BioPAT® MFCS SCADA system 

software were used to control and record conditions during fermentations.  The TYA 

medium was autoclaved in the 1-L fermenter vessel.  Sugar solutions (either glucose, 

arabinose or xylose) were autoclaved separately and added to the vessels aseptically 

prior to the fermentation.  Prior to inoculation each vessel was sparged with N2 gas for 1 

hour (hr) to achieve anaerobic conditions. Starter cultures  5% (v/v) were grown in an 

anaerobic cabinet using the conditions previously mentioned, were inoculated into 20 

ml volumes of either TYA supplemented with 1% weight per volume (w/v) of glucose, 

were grown overnight and 5% (v/v) was then used to inoculate 150 ml volumes of TYA 

supplemented with 1% (w/v) of glucose.  Cultures were grown overnight and 5% (v/v) 

was aseptically injected into each fermenter vessel and grown at 34°C and agitated at 

200 revolutions per minute (rpm). 

 

2.4 Waste stream Degradation 

2.4.1 Determination of total carbohydrates in biomass 

Following the method of Sluiter et al. (2008), triplicate samples of weighed 0.3 g dried 

and milled (Kenwood ‘Smoothie’ blender) dried distillers’ grains (DDGS) were placed 

in 100 ml  bottles and 3 ml of H2SO4 (Fisher Scientific; 72%  weight per weight (w/w)) 

was added.  Samples were incubated for 1 hr at 30°C at 200 rpm on a horizontal shaking 

incubator (Unitron, HT Infors).  dH2O (84 ml) was added to each bottle to form a 4% 

(w/w) H2SO4 solution (final concentration).  Recovery standards were prepared (1 g.L
-1

 

glucose, 1 g.L
-1

 xylose, 0.5 g.L
-1

 arabinose, 0.1 g.L
-1

 galactose, and 0.05 g.L
-1

 

mannose).  H2SO4 (95% w/w, 236 microlitres (µl)) was added to achieve a 4% (w/w, 
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final conc.).  The bottles were weighed, autoclaved (121°C, 1 hr) and re-weighed.  

Triplicate 10 ml samples from each bottle were dispensed into 50 ml sized bottles and 

solid Ca2CO3 (Sigma) was added slowly to achieve pH 5–6.  Each sample supernatant 

was transferred to 2 ml microcentrifuge tube and centrifuged (10 minutes (min), 12000 

rpm, Eppendorf 5810R, Helena Biosciences, Sunderland).  The supernatants were 

filtered through 0.2.µM cellulose acetate syringe filters and sugar content analysed by 

HPLC (section 2.5.2). 

2.4.2 Acid and Enzymatic treatment of dried distillers’ grains 

H2SO4 was used to reduce the pH of each bottle (0.08 molar (M) final concentration).  

DDGS samples were autoclaved and 10 M NaOH (Sigma) was used to increase the pH 

to pH 5.0 after cooling.  CTec (cellulase, 15% (w/w), Novazymes) and HTec (0.5% 

w/w, hemicellulase, Novazymes) were added and the reaction mixture was incubated at 

50°C on a horizontal shaking incubator (200 rpm, Unitron, HT Infors) for 24 hours.  

 

2.5 Carbon and Solvent-Content Determination 

Culture samples (1–2 ml) were centrifuged (10 min, 13000 rpm, MSE microcentaur 

bench top centrifuge, Sanyo), supernatants were removed, filtered with 0.2-micrometers 

(µm) cellulose acetate syringe filters and frozen (–20°C).  Samples were thawed prior to 

gas chromatography and high pressure liquid chromatography analysis and transferred 

to glass vials.   

 

2.5.1 Gas Chromatography (GC) 

Solvent analysis was carried out on a Chrompack 9001 gas chromatograph with flame 

ionisation detector using a 10 metre length, 0.32 millimetres (mm) diameter CP SIL 

5CB column (Chrompack).  A calibration curve was generated with ethanol, acetone 

and butanol (all obtained from Sigma) standards of known concentration (0.25%, 0.5%, 

0.75%, 1% and 1.5% v/v). 

 

2.5.2 High Performance Liquid Chromatography (HPLC) 

Samples were filtered and acidified with 0.25% (v/v) 1 M H2SO4. A Varian 920 LC 

system fitted with an integrated refractive index detector and ultraviolet-visual (UV-

VIS) dual wavelength detector (Varian Ltd) was used to detect sugars and acids, 

respectively.  Sugars and acids were separated on a Rezex (rezex organic acid) ROA 

Organic acid ion (H
+
) 8% 300 × 7.8 mm column (Phenomenex) with 0.005 normality 
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(N) H2SO4 as the mobile phase at a flow rate of 0.5 ml/min. Sugars were detected by the 

refractive index detector and acids by UV detection at 210 nm.  A calibration curve was 

produced with acetic, butyric acid, glucose, arabinose and xylose solutions of known 

concentrations (0.2%, 0.4%, 0.6%, 0.8%, 1% w/v for sugars and v/v for acids).  

2.6 Xylan Degradation  

2.6.1 Xylanase kinetics 

A xylanase stock solution (0.25%, w/w Xylanase NS22036, Novozymes) was prepared 

in sterile dH2O and stored at 4°C. The stock solution of xylanase (100 µl) was added to 

a Tryptone Yeast Extract (TYA, 20 ml) solution supplemented with beech wood or 

birch wood xylan (Sigma-Aldrich; 1% (w/v)), incubated at 37°C and shaken at 200 rpm 

in a horizontal shaking incubator (Unitron, HT infors).  At various intervals (before the 

addition of xylanase and 30 min, 1 hr, 3 hr, 6 hr and 24 hr after the addition of xylanase) 

a 1 ml sample was taken and heated (100°C, 15 min) to inactivate the enzyme. 

2.6.2 Growth of C. beijerinckii on xylan 

An overnight starter culture (5% v/v) was used to inoculate TYA broths (20 ml) 

supplemented with 1% (w/v) xylose and grown overnight in an anaerobic cabinet (as 

previously described).  Overnight cultures 5% (v/v) were inoculated into TYA (60 ml) 

with 1% (w/v) xylose solution and was grown overnight and the following day, a 5% 

(v/v) was inoculated into TYA (20 ml) supplemented with either 1% or 5% (w/v) of 

xylose, xylan, xylan pre-treated with xylanase for 24 hr (as in section 1.6.1), xylan 

supplemented with 0.1% (w/v) xylose.  In buffered media experiments 1% (w/v) 

Ca2CO3 (Sigma) was added. 

 

2.7 Thin layer chromatography (TLC) 

The samples (2µl) were loaded onto a TLC plate (Polygram Sil G pre-coated plastic 

sheets, Macherey-Nagel) and placed into a glass tank containing ethyl 

acetate:pyridine:acetic acid:propanol:dH2O 5:2:2:1:1 (v/v). The tank was sealed with a 

glass lid and the plate was removed when the solvent front was approximately 2 cm 

from the top of the plate. The TLC plate was stained with thymol sulphuric acid reagent 

(thymol (0.53% w/v) in ethanol with 5.3% (v/v) H2SO4) and heated at 120°C for 5 min. 
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2.8 Bioinformatics 

2.8.1 Genomic DNA sequence database 

Putative gene systems for xylose and arabinose utilisation were identified by the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) 

http://www.genome.jp/kegg/catalog/orglist.html.   

2.8.2 Basic local alignment search tool (BLAST) analysis 

BLAST (blastp program) was used to compare the potential genes with those of other 

organisms, using the national centre for biotechnological information (NCBI) open 

reading frame (ORF) finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html).   

2.8.3 Radial trees 

The Amino Acid (AA) sequences were input into ClustalW2 

http://www.ebi.ac.uk/Tools/clustalw2.html, which produced a .nxs file.  The .nxs file 

was then used to carry out the phylogenetic analysis using MrBayes 

http://mrbayes.sourceforge.net/ (using amino acid model set to pr=mixed and lset rates 

= gamma. The (Markov chain Monte Carlo) MCMC analysis was ran with nchains=1 

and ngen=300000 producing standard deviation of the split frequencies of <0.05 and 

SumT Potential Scale Reduction Factor (PRSF) =~1.000) producing a .tre file. 

TreeView (Version 1.6.1) http://taxonomy.zoology.gla.ac.uk/rod/treeview.html was 

then used to produce radial tree using the .tre file (The input amino acid sequences taken 

from either KEGG or obtained via the accession numbers from published data, which 

were input into the European molecular biology laboratory (EMBL) nucleotide 

sequence database http://www.ebi.ac.uk/embl/ to obtain the AA sequence .respectively 

from files). 

 

2.8.4 Multiple alignments 

The Amino Acid (AA) sequences were input into ClustalW2, which produced an .aln 

file and then GeneDoc (version 2.6.002) program (downloaded from: 

http://www.nrbsc.org/gfx/genedoc/) was then used to produce the alignment. 

 

2.8.5 Prediction of transmembrane helices in proteins 

The transmembrane helices Hidden Markov model (TMHMM) Server v. 2.0 

(http://www.cbs.dtu.dk/services/TMHMM/) was used.  Amino acid sequences were 

taken from KEGG and input into the server, which gave a data output of the predicted 
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transmembrane structure of the queried sequences, which was then input into 

TMRPres2D version 0.93 (http://bioinformatics.biol.uoa.gr/TMRPres2D/). 

 

2.9 Cloning of candidate pentose sugar utilisation genes 

2.9.1 Reagents 

2.9.1.1 Ampicillin 

Ampicillin sodium salt (Sigma, 50 µg/ml) stock solutions of (50 mg/ml) were made, 

filter sterilised and stored in 1 ml aliquots at -20 °C until use.  These were thawed and 

added to LB agar after autoclaving, when the agar had cooled sufficiently before 

pouring plates. 

2.9.1.2 Agarose gels 

1% (w/v) gels were made by adding 1 g of Agarose multipurpose (Bioline) to a solution 

of 10 ml Tris Acetate Ethylenediaminetetraacetic acid (EDTA) (TAE) buffer x 10 

concentration, consisting of 890mM Tris borate, 20mM EDTA at pH8.3(Sigma); with 

dH2O (90ml) and either 3 µl Ethidium Bromide (10 mg/ ml) from Sigma or 10 µl Safe 

View from NBS biologicals (consisting of 96.9% H2O, <0.1% C21H28N4, <1% tris base, 

<1% boric acid, <1% EDTA). 

2.9.1.3 Luria-Bertoni (LB) media 

Agar plates consisted of: 10 g/L tryptone (Oxoid), 5 g/L yeast extract (Oxoid) and 

10.g/L NaCl (Fisher Scientific).   For LB agar (LBA) 12 g/L technical agar number 3 

was added (Oxoid) and for broths the same constituents were added together but in the 

absence of agar. 

2.9.1.4 MacConkey agar 

MacConkey agar consisted of: 20 g/L bacteriological peptone (Oxoid), 10 g/L carbon 

source, 5 g/L bile salts (Oxoid), 5 g/L NaCl, 1 ml/L from a 3% (w/v) solution of neutral 

red, 1 ml/L from a 0.1% (w/v) solution of crystal violet and 12 g/L agar technical 

number 3 (Oxoid).  The sugar solution was autoclaved separately and added aseptically 

afterwards. Neutral red stock solution was made by 0.3 g added to 10 ml dH2O and 

Crystal violet 0.01 g added to 10 ml dH2O, these solutions were stored at room 

temperature and added to media prior to autoclaving. 
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2.9.2 Deoxyribose nucleic acid (DNA) purification 

DNA was prepared from overnight cultures of C..beijerinckii grown in 20 ml volumes 

of RCM (as section 1.1.1).  This purification was carried out with a Wizard
®

 Genomic 

DNA purification kit (Promega). A 1 ml sample of the overnight culture was 

centrifuged (13200 relative centrifugal force (xg), Eppendorf bench top centrifuge 

5415D, Helena Biosciences, Sunderland) in a 1.5 ml microcentrifuge tube for 2 min and 

the supernatant was removed, leaving behind a pellet of cells, which was resuspended in 

another 1 ml of overnight culture and centrifuged and the supernatant was removed as 

before. The pellet of cells was then resuspended in 480 µl of 50 millimolar (mM) EDTA 

(BDH chemicals) and then 120 µl of a 10 mg/ml Lysozyme solution (Sigma-Aldrich) 

added and gently mixed.  The solution was incubated (45 min, 37°C), centrifuged 

(13200 xg, 2 min) and the supernatant removed.  Nuclei lysis solution (600 µl) was used 

to gently mix and resuspend the pellet. The mixture was incubated (80°C, 5 min), 

cooled to room temperature Ribonuclease (RNase) solution (3 µl) was added and the 

sample was agitated by tube inversion (5-fold).  The sample was incubated (37°C, 

40.min), and cooled to room temperature. Protein solution (200 µl) was added and the 

sample was vortexed for 20 seconds (s) followed by 5 min incubation on ice.  The 

solution was then centrifuged (3 min, 13200 xg), the supernatant was transferred into a 

sterile 1.5 ml microcentrifuge tube and isopropanol (600 µl) was added.  The tube was 

repeatedly inverted until DNA strands were visualised.  The samples were centrifuged 

(2 min, 13200 xg) and the supernatant was discarded.  Ethanol (600 µl, 70% v/v) was 

added; the tube was inverted gently and centrifuged (13200 xg, 2 min).  The ethanol 

was removed and the pellet was left to dry (15 min).  The pellet was resuspended in 

DNA rehydration solution (100 µl, 1 hr, 65°C) and gently agitated.  The DNA was then 

stored at 4°C.  This DNA was then used for PCR. 

2.9.3 Polymerase chain reaction (PCR) conditions 

Genomic DNA gDNA of C. beijerinckii, purified as previously stated was used to 

amplify CBEI4457, 4452 and 4455, putative L- arabinose isomerase, L-ribulokinase and 

L-ribulose 5-phosphate 4-epimerase (araABD) genes, and CBEI2383 and 2384, putative 

D- xylose isomerase and D-xylulokinase (xylAB genes), respectively.  Primers, 

conditions and reagents used are shown in Table 2-2, Table 2-3 and Table 2-4. Primers 

were designed by eye by looking for GC rich regions up- and downstream of the ORF, 

these were then synthesised by Eurofins-MWG. 

 



 

33 

 

Table 2-2: Primer sequences used to amplify araABD and xylAB candidates 

Putative 

gene 

Locus tag Primer Sequence 

araA CBEI4457 4457F 5’-ACCGCAAGGCTGTCTTTACC-3’ 

  4457R 5’-GGGGAGTGGCAAATATTAGG-3’ 

araB CBEI4452 4452F 5’-GGACGGTAACGGTATGAGGGCT-3’ 

  4452R 5’-AGCTGATCCTTAGCCGCTTCAATGA-3’ 

araD CBEI4455 4455F 5’-AGCCTCAATACACATACAGTGCTGAAC-3’ 

  4455R 5’-TGAATCGCTGCAATTTCTCTTCCTT-3’ 

xylA CBEI2383 2383F 5’- GGGCTAGTTATTACTAACGTTGGC -3’ 

  2383R 5’- CCCGTACAAGTCGGAATAAAAGC -3’ 

xylB CBEI2384 2384F 5’- CATGCTTTTATCCCGACTTGTAC -3’ 

  2384R 5’- AAATCCGATACTACTACACACCC -3’ 

 

Table 2-3: PCR conditions used to amplify araABD candidates 

Stage Locus Tag Conditions 

Hot start  95°C 5 min 

Denaturation  95°C 1 min 

 

 

Annealing 

CBEI4457 58.5°C  

 

1 min 
CBEI4452 56.3°C 

CBEI4455 

CBEI2383 

CBEI2384 

53.7°C 

60.5°C 

56.8°C 

Extension  72°C 1 min 

Final extension  72°C 10 min 

Soak  4°C ∞ 

 

 

Table 2-4: Reagents used for PCR amplification of araABD candidates 

(A) Biotaq (Bioline)    (B) Biomix (Bioline) 

Component Volume 

(µµµµl) 

 Component Volume 

(µµµµl) 

10x NH4 buffer 5  Biomix 25 

dNTP
+
 (100 mM) 1.25    

MgCl2 (50 mM) 2    

Biotaq (5 units/µl) 2.5    

Forward primer (100 pmol) 1  Forward primer (100 pmol) 1 

Reverse primer (100 pmol) 1  Reverse primer (100 pmol) 1 

Template* (190 µg/ml) 2  Template* 2 

Molecular grade dH2O* 35.25  Molecular grade dH2O* 21 

Final reaction volume 50  Final reaction volume 50 
*For negative controls mol. grade dH2O was increased in place of the template 

araA and xylAB candidate was amplified using the reagents shown in A, araBD candidates were 

amplified using the reagents shown in B. + includes ATP, cytosine triphosphate (CTP), guanine 

triphosphate (GTP) and thyamine triphosphate (TTP). 

 

 

(25 cycles) 
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2.9.4 Plasmid restriction analysis 

Webcutter 2.0 http://rna.lundberg.gu.se/cutter2/  was used to find a suitable restriction 

enzyme.  The restriction enzymes and the reagents used are shown in Table 2-5 A & B. 

All reaction mixtures were then incubated for 2 hr at 37°C and then 15 min at 65°C to 

inactivate the enzymes.  

 

Table 2-5: Restriction enzymes and reagents used 

pDNA Enzyme Excision sequence 

pJW6 & 7 (CBEI
+
 4457) HindIII A/AGCTT 

pJW1 & 3(CBEI2383) 

pJW19 & pJW20(CBEI2384) 

  

pJW31 & 33(CBEI4452) SpeI A/CTAGT 

pJW21 & 22(CBEI4455 XbaI T/CTAGA 

 

 

 
 

 
 

 

* Extra Mol. grade dH2O was added in place of enzyme for controls, restriction enzyme & buffer were 

supplied by Roche. 
+
 CBEI -Clostridium beijerinckii locus tag number 

 

 

2.9.5 Gel Electrophoresis 

PCR products (4 µl) were mixed with 1 µl of 5x DNA loading buffer (Bioline); the 

solution was loaded and run on a 1% (w/v) agarose gel (Bioline) with size standards 

shown in Appendix section Figure 7-1 .  Gels were viewed and photographed with 

Biorad molecular imager


 FX and Quantity One


 software or Biorad Chemidoc XRS
+ 

molecular imager and Image lab software. 

2.9.6 DNA clean up  

Promega Wizard SV gel and a PCR clean-up system was used to extract the PCR 

products from agarose gels.  The products were visualised with a UV lamp and the 

relevant gel section was cut and dissolved.  Membrane binding solution (10 µl) was 

added per 10 mg of gel slice.  The mixture was vortexed and incubated (57°C, 10 min, 

periodically vortexed).  The dissolved mixture was incubated (room temperature, 1 min) 

and added into a SV minicolumn and centrifuged (14000 rpm, 1 min). The eluent was 

discarded, membrane wash solution (700 µl) was added to the minicolumn and the 

column was centrifuged (1 min, 14000 rpm).  The eluent was discarded, membrane 

wash solution (500 µl) was applied and the column was centrifuged (5 min, 14000 rpm).  

Reagent Volume (µµµµl) 

Buffer 2.5 

Plasmid DNA (pDNA) 5 

Molecular grade dH2O 16.5 

Enzyme 1* 

Total 25 

(A) 

(B) 
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The eluent was discarded and the column was centrifuged (14000 rpm, 1 min). The spin 

column was dispensed into a sterile 1.5 ml microcentrifuge tube and nuclease-free water 

(50 µl) was applied to the centre of the column.  This was then incubated (1 min, room 

temperature) and centrifuged (1 min, 14000 rpm).  The fraction that contained the DNA 

was stored (4°C). 

2.9.7 TOPO-TA cloning  

E. coli Top10 cells (Invitrogen) stored at –80°C were thawed slowly.  DNA solution 

(4.µl), was missed with 1 µl Salt solution (1.2 M NaCl and 0.06 M MgCl2) was mixed 

with a TOPO-TA
®

 vector (1 µl) was added, the reaction was gently mixed and 

incubated (5 min) at room temperature.  An aliquot (2 µl) was added to the thawed 

Top10 cells; the solution was gently mixed and returned to ice (15 min).  The cells were 

heat shocked (42°C, 30 s) and returned to ice.  A volume of 250 µl of SOC medium 

(consisting of 2% Tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM 

MgCl2, 10 mM MgSO4 and 20 mM glucose from Sigma) was added to the cells and the 

solution was incubated (1 hr) on a horizontal shaking incubator (200 rpm). LB plates 

that contained 50 µg/ml ampicillin were incubated in a WTB Binder incubator (Jencons 

Scientific LTD; 30 min, 37°C), 40 µl of a 40 mg/ml 5-bromo 4-chloro 3-indolyl β-D-

galactopyranoside (X-gal) solution (Bioline) was spread on the surface of the agar and 

the plates were returned to the incubator.  The transformation mixture (50, 100 or 150 

µl) was spread on a plate and incubated overnight (37°C).  Blue and white colonies 

were picked and inoculated into LB broth with 50 µg/ml ampicillin and grown 

overnight (37°C) in a horizontal shaking incubator (200 rpm). 

2.9.8 Plasmid purification 

Overnight cultures (that contained the pJW plasmid DNA) were used for plasmid 

extraction with a Purelink quick plasmid miniprep kit (Invitrogen). Overnight culture 

(1.5 ml) was harvested and centrifuged (10 min, 13000 rpm, Sanyo MSE microcentaur 

bench top centrifuge).  The supernatant was discarded and the cell pellet was completely 

resuspended in 250 µl of resuspension buffer (20 mg/ ml RNase, 50 mM Tris-HCl 

pH8.0 and 10 mM EDTA).  A volume of 250 µl Lysis buffer (200 mM NaOH and 1% 

w/v SDS) was added and the reaction mixture was incubated (5 min, room temperature). 

Precipitation buffer (350 µl) was added; the sample was inverted several times and 

centrifuged (13000 rpm, 10 min).  The supernatant was loaded onto a spin column and 

centrifuged (13000 rpm, 1 min).  The eluent was discarded, wash buffer W10 (500 µl) 

was added to the spin column, centrifuged (1 min, 13000 rpm) and the eluent discarded.   
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Wash buffer W9 (700 µl) was added to the spin column, centrifuged as previous, the 

eluent was discarded and the column was centrifuged once more to remove any residual 

wash buffer.  The spin column was removed, placed into a sterile 1.5 ml 

microcentrifuge tube and Tris-EDTA (TE) buffer (75 µl, 67°C) was added to the centre 

of the spin column and centrifuged (13000 rpm, 1 min). The eluted DNA was stored at 

–20 °C. 

2.9.9 The preparation of competent E. coli UP1091, XK100 and DS941 cells 

A 5 ml volume from a 20 ml overnight culture was used to inoculate a fresh 200 ml LB 

broth in a 250 ml conical flask and grown at 37°C and 200 rpm on a horizontal 

incubator to mid-log phase (OD600 of 0.5–0.9). The culture was placed in water chilled 

in an ice bath for 30 min. Aliquots (45 ml) of the culture were added to 50 ml pre-

chilled screw-capped vials and centrifuged. (4°C, 4000 rpm, 15 min, pre-chilled 

Heraeus multifuge 3L-R centrifuge).  The pellet was resuspended in 45 ml dH2O at 4°C 

and re-centrifuged. This procedure was repeated three times and the final pellet was 

resuspended in 10% (v/v) glycerol (5 ml) at 4°C and vortexed.  Each of the pellets were 

fully resuspended in 10% (v/v) glycerol and combined in one tube.  Glycerol (Sigma) 

10% (v/v) was added (final vol. 45 ml).  This was centrifuged as before. The 

supernatant was discarded and the pellet was resuspended in 10% (v/v) glycerol 

(400.µl), from which 40 µl aliquots were transferred to 1.5 ml cryovials and stored in a 

freezer at –80°C until use. 

2.9.10 Transformation E. coli UP1091, XK100 and DS941 

Competent cells (40 µl) were used for electroporation. Plasmid DNA (2 µl) was added, 

and incubated (1 min, on ice) and transferred into a cold 2 mm electroporation cuvette 

(the mixture completely covered the bottom of the cuvette). The cuvette was placed in 

the shockpod of a Biorad gene pulser Xcell™ electroporator and was pulsed once (5 

milliseconds at 2481 V).  The cuvette was immediately removed from the shockpod and 

250 µl SOC (Sigma-Aldrich) was added and gently mixed.  The cell suspension was 

then transferred to a 1.5 ml microcentrifuge tube and incubated (1 hr, 37°C, 200 rpm on 

a horizontal shaking incubator).  A volume of 50 – 100 µl transformed cells was spread 

on LB plates with 50 µg/ µl ampicillin and incubated (overnight at 37°C). 
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2.10 Proteomics 

2.10.1 Reagents 

2.10.1.1 Proteomics wash buffer 

The wash buffer contained 50 mM KH2PO4/K2HPO4, 5 mM MgSO4 and 1 mM 1, 4-

dithioerythritol (Fluka Biochemika).  The phosphate solutions were made up as separate 

50 mM stock solutions and added in different ratios to the rest of the ingredients in 

order to obtain a pH of 7.0.  The solution was then filter-sterilised with a 0.2 µM 

nitrocellulose filter. 

2.10.1.2 Bicinchoninic acid solution (BCA) 

A 20 ml BCA solution was made by adding 0.4 ml of 4% (w/v) copper (II) sulphate 

solution (Sigma) to 19.6 ml bicinchoninic acid (Sigma). 

2.10.1.3 Standard protein solution 

A 1 mg/ml solution was made by gently dissolving Bovine Serum albumin (BSA) from 

Sigma into sterile molecular grade dH2O to make a stock solution and serial dilutions 

were performed to obtain the desired BSA concentration. 

2.10.1.4 Wash solution 

Methanol (Sigma; 10 ml) was added to 5 ml of nanopure dH2O, acetic acid (1 ml) was 

then added and the volume was adjusted to 20 ml with dH2O. 

2.10.1.5 Extraction buffer 

ACN (Sigma; 10 ml) was added to 5 ml dH2O, followed by 1 ml formic acid and the 

volume was adjusted to 20 ml with dH2O. 

2.10.2 Growth and harvesting of clostridia 

Starter culture (1 ml) was inoculated into CBM (20 ml) with 1% (w/v) of either 

arabinose or xylose.  The cultures were grown overnight and 5 ml was added to CBM 

(100 ml) supplemented with either 1% (w/v) arabinose or xylose.  The cultures were 

grown overnight and 25 ml was used to inoculate CBM (500 ml) supplemented with 1% 

arabinose or xylose and grown for 14 hr. 

 

The cultures were transferred into 50 ml centrifuge tubes and centrifuged (10 min, 

12000 rpm) in a bench-top centrifuge (Eppendorf 5810R, Helena Biosciences). The 

supernatants were discarded and the pellets were combined, resuspended with wash 
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buffer and centrifuged (12000 rpm, 10 min).  This was repeated three times.  The 

supernatant was discarded and the pellets were frozen and stored at –20 °C. 

2.10.3 Protein extraction 

Pellets were slowly thawed on ice and fully resuspended in wash buffer with a glass 

rod. Wash buffer was added gradually in-between stirring to homogenise the cells to a 

final concentration of 4 ml/g of cell pellet. 

 

Cells were broken in a French pressure cell press (GLM instruments LTD, AMINCO) 

with a pre-chilled pressure cell at 20000 pounds per inch squared (lb/ in
2
).  The samples 

were pressed twice.  The cells were kept on ice when out of the press. 

 

The samples were centrifuged (12000 rpm, 15 min, 4°C), the supernatant was extracted, 

1 ml aliquots were frozen in liquid N2 in 1.5 ml microcentrifuge tubes and stored at        

-80°C. 

2.10.4 Bicinchoninic acid protein concentration assay 

The assay was conducted in triplicate.  An aliquot (10 µl) of a 0 – 1 mg/ml BSA 

solution was added to each well of 96-well TPP flat bottom test plate (Sigma Aldrich). 

Three dilutions of the unknown samples from C..beijerinckii (unknown sample: water, 

1:1, 1:10, 1:100; 10 µl final vol.) were assayed as previously conducted with BSA. 

Bicinchoninic acid (BCA) solution (200 µl) was added and the plate was incubated (1 

hr, 37°C; WTB Binder).  The plate was read at 570 nm (Dynex MRX Revelation, 

Magellan Biosciences) and a standard curve of known concentrations (0, 0.1, 0.2, 0.4, 

0.6, 0.8, 0.9, 1 mg/ml) of the standard protein (BSA) was constructed and an equation of 

the standard curve slope produced, so that the OD570 of the whole cell proteins of 

C..beijerinckii could be used to determine a protein concentration.  

2.10.5 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

Pre-cast Novex tris-glycine gels (gradient 4 – 20%; Invitrogen) were used.  Each gel 

was rinsed with sterile dH2O, the comb was removed and the wells were washed three 

times with 1x Tris-glycine SDS running buffer (Invitrogen).    

 

Protein (5 µl of 1, 2, 5, 10 or 20 µg) was added to 5 µl Tris-glycine SDS (2x) sample 

buffer (Invitrogen), heated (85°C, 2 min) and 10 µl was loaded into each well.  The 

loaded samples were separated by electrophoresis (125 volts (V), 90 min) alongside 
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protein markers (Colourburst electrophoresis marker 8–220 Dalton (Da), Sigma, 

Appendix section Figure 7-2). 

2.10.6 Gel staining and destaining 

The gels were rinsed three times with sterile dH2O, placed in a plastic container with 

20.ml SimplyBlue safe stain (Invitrogen) and left at room temperature for 1 hr on a 

rotating platform.  The stain was discarded and the gel was rinsed with sterile dH2O.  

Sterile dH2O (100 ml) was added to the gel and agitated (1 hr).  The gel was imaged on 

a Biorad Chemidoc XRS
+ 

molecular imager with Image lab software.  The gels were 

stored in sterile dH2O at 4°C. 

2.10.7 Liquid chromatography electrospray ionisation tandem mass spectrometry 

(LC-ESI-MS/MS) analysis 

All the steps of LC-ESI-MS/MS were carried out by staff at the Moredun Research 

Institute, with the exception of the data analysis. 

2.10.7.1 Gel lane extraction and trypsin digestion 

The 20-µg lane (section 2.9.4) was excised and was sliced horizontally into 28 slices 

(approximately 2.5 mm) and each slice was washed, reduced, alkylated and digested 

with trypsin. This procedure was carried out as part of the proteomic services at the 

Moredun Research Institute. The samples were transferred to a sealed HPLC vial and 

stored at 4°C. 

2.10.7.2 LC-ESI-MS/MS  

An Ultimate 3000 nano-HPLC system (Dionex) fitted with a WPS-3000 well-plate 

micro autosampler, FLM-3000 flow manager and column compartment, UVD-3000 UV 

detector, LPG-3600 dual-gradient micropump and SRD-3600 solvent rack was 

employed to perform liquid chromatography on the samples.  The samples were 

separated on an i.d monolithic reverse-phase 5 cm x 200 µm column (Dionex-LC 

Packings) using solvent B (80% ACN, 0.1% (v/v) formic acid) mobile phase with a 8-

45% linear gradient applied over 15 min at a final flow rate of 3 µl/min, achieved by 

combining a micro-pump flow rate of 246 µl/min and cap-flow splitter cartridge with 

1/82 split.  Peptides were eluted through a 3 nanolitre (nl) UV detector flow cell and fed 

into a stainless steel nebuliser (Agilent) with a maximum volume of 50 µl/min, and fed 

into a 3-D high capacity ion trap MS (Esquire HCTplus™, Bruker Daltonics).  ESI-

MS/MS analysis was applied upon the receiving of a contact closure signal from 

Chromeleon software that controlled the nano-HPLC system. 
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2.10.7.3 Data analysis 

Onsite DataAnalysis™ software (Bruker Daltonics) was used to process the raw 

chromatography data and create MASCOT™ compatible files.  MASCOT™ software, 

Matrix Science,  (Perkins et al., 1999) was then used to present and interpret the data 

with published guidelines (Taylor and Goodlett, 2005).  A peptide and fragment mass 

tolerance of 1.5 and 0.5, were used for each respectively. Proteins were identified on the 

basis of at least two peptides being present.  Molecular weight search (MOWSE) scores 

of 25–40 were manually inspected for two peptides with four continuous y or b ions. A 

MOWSE score above 25 is equivalent to p<0.05 significance. Scores below 25 were 

insignificant and disregarded. 
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3 Pentose Sugar Utilisation by C. beijerinckii 

3.1 Introduction 

Carbohydrates are a major source of carbon (a source of energy) and are essential to the 

survival of all heterotrophic organisms.  Saccharolytic bacteria including clostridia are 

able to utilise a wide variety of sugars.  A number of bacteria show a preference for 

glucose over other carbon sources.  A classic example is glucose preference over lactose 

in E.coli (Inada et al., 1996).  In clostridia glucose is used in preference to maltose, 

sucrose, lactose and xylose in C..acetobutylicum, and over glucitol and sucrose in 

C..beijerinckii (Tangney et al., 2001, Tangney and Mitchell, 2000, Yu et al., 2007, 

Tangney et al., 1998, Reid et al., 1999, Mitchell et al., 1995).  C..acetobutylicum is also 

capable of utilising both arabinose and xylose (Ounine et al., 1983).  A preference for 

glucose over xylose in mixed sugar media containing 0.6% (w/v) is shown regardless of 

which sugar the cultures are established in (Ounine et al., 1985).  However, in mixed 

xylose-glucose sugar media containing 7.2% (w/v), xylose-established cultures of 

C..acetobutylicum utilise xylose simultaneously with glucose, as long as xylose is in 

excess in the culture medium (Fond et al., 1985a).  Little research has been carried out 

into the ability of C..beijerinckii to grow on pentose sugars or the effect mixed glucose-

pentose sugar media has on sugar use preference.  One study, carried out on a 6% (w/v) 

total sugar medium containing a ratio of 5:4:2:1 of glucose, xylose, arabinose and 

mannose, observed the simultaneous use of all sugars by cultures of C. acetobutylicum, 

C..beijerinckii, C. butylicum and C. saccharolyticum that were established on glucose.  

Although simultaneous utilisation was observed, the sugars were used at different rates 

depending on the strain, but glucose was used more rapidly than the other sugars across 

all the species investigated (Ezeji et al., 2007).  Carbon catabolite repression (CCR) 

exerted by glucose functions to prevent unnecessary expenditure of cellular resources 

for the metabolism of other carbon sources, which may not be present in the organism’s 

environment and allows expenditure only when glucose, a ubiquitous carbon source, is 

not available.  Sometimes diauxie or ‘double growth’ is evident on growth curves with 

mixed carbon source media, whereby an organism will grow on the preferred carbon 

source until it is exhausted.  The growth then arrests, as the organism takes time to 

synthesise necessary components for the metabolism of the second carbon source.  Then 

once equipped, the cultures will continue to grow again.  CCR has potential impacts on 

the utilisation of all carbon sources in mixed sugar waste streams for biofuel production, 
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since least preferred sources will be ignored or not wholly utilised and therefore wasted 

as the fermentation reaches the end point.   

 

Therefore, the aims were to establish if C..beijerinckii can utilise pentose sugars 

arabinose and xylose for solvent production.  To assess the effect of glucose on the 

utilisation of these pentose sugars and then finally to assess the competence of 

C..beijerinckii to use  xylan and a pentose sugar-rich waste stream for biofuel 

production. 
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3.2 The Utilisation of Pentose Sugars on Minimal Media 

3.2.1 Arabinose utilisation 

In order to investigate the ability of C..beijerinckii to utilise arabinose as a sole carbon 

source and whether utilisation is subject to CCR in the presence of glucose, spores of  

C..beijerinckii revived and cultures of C..beijerinckii were established on glucose or 

arabinose (by subculturing on CBM with 1% (w/v) glucose or arabinose for two 

consecutive days) and were inoculated in 100ml of CBM containing 1% (w/v) glucose 

(positive control), 1% (w/v) arabinose or 0.5% (w/v) of both sugars, or no sugar 

(negative control). Aliquots (5 ml) were taken from each culture and OD650 and the pH 

was measured at several time-points over 24 hours (Figure 3-1A-C for the glucose-

established cultures and Figure 3-2A-C for the arabinose-established cultures of 

C..beijerinckii).  This was monitored for 24 hours.  Samples were taken at regular 

intervals up to 12 hours as this period show any CCR, by way of the preferred sugar 

being utilised and the other remaining unused.  A further sample was taken at 24 hours 

to ascertain if the other carbon source was still utilised after the preferred one has been 

exhausted.  Samples were also taken, stored and analysed as described in Section 2.5 for 

sugar concentration analysis by HPLC.   
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Figure 3-1: Utilisation of glucose and arabinose by glucose-established cultures 

of C..beijerinckii 

C..beijerinckii cultures were established on glucose and inoculated into 100 ml 

CBM supplemented with 1% total concentration of either (A) arabinose; (B) 

arabinose and glucose; or (C) glucose.  OD650 on log scale (♦); pH(�); glucose 

concentration (•); arabinose concentration (•).  The average of triplicates was 

plotted with the standard deviation bars denoting the range between the triplicates. 

 

 

(A) 

(B) 

(C) 
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Figure 3-2: Utilisation of glucose and arabinose by arabinose-established cultures 

of C..beijerinckii 

C..beijerinckii cultures were established on arabinose and inoculated into 100 ml CBM 

containing a total concentration of 1% of either (A) arabinose; (B) arabinose and 

glucose; or (C) glucose.  OD650 on log scale (♦); pH(�);  glucose concentration(•); 

arabinose concentration(•).  The average of triplicates was plotted with the standard 

deviation bars denoting the range between the triplicates. 

 

(A) 

(B) 

(C) 
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C..beijerinckii was unable to grow on CBM without the addition of a sugar (data not 

shown).  C..beijerinckii was able to grow well on arabinose and in a comparable fashion 

to glucose (Figure 3-1A and C). Arabinose was consumed steadily and almost to 

exhaustion in 24 hours. In the presence of both sugars glucose was used preferentially 

over arabinose, the concentration of arabinose remaining stable over the course of the 

fermentation (Figure 3-1B). It is not known whether arabinose was consumed after 24 

hours from this particular experiment. To establish if the same effect is a consequence 

of cultures being established on glucose prior to the experiment, the same experiment 

was repeated but cultures were established on arabinose prior to the experiment.  It was 

evident in mixed sugar cultures that the concentration of arabinose remained constant 

over the first 12 hours of the fermentation as glucose was preferentially consumed 

(Figure 3-2 A-C).   At some point during 12–24 hours of the fermentation, arabinose 

was consumed to almost exhaustion.  Such a finding suggests a mechanism of 

repression of arabinose use in the presence of glucose.  
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3.2.2 Xylose utilisation 

In order to investigate the ability of C..beijerinckii to grow on and utilise xylose as a 

sole carbon source, and whether this utilisation is subject to any CCR in the presence of 

glucose such as that observed with arabinose, cultures of C..beijerinckii were 

established on either glucose or xylose and experiments conducted in the same manner 

as in section 3.2.1. C..beijerinckii growing on xylose were observed as growing well  

and in a comparable fashion to glucose, however the utilisation of xylose was poor with 

cultures established on glucose (Figure 3-3A compared to 3-3C and 3-4A and 3-4C).  

However, xylose appeared to be poorly utilised with more than half the sugar remaining 

after 24 hours (Figure 3-3A). In the presence of both sugars, glucose was used 

preferentially by C..beijerinckii cultures and the concentration of xylose remained stable 

over the course of the first half of the fermentation, decreasing in the latter half to near 

exhaustion (Figure 3-3B).  To establish if the finding of preferential use of glucose over 

xylose was a consequence of cultures being established on glucose prior to the 

experiment, another experiment was conducted with cultures established on xylose.  As 

observed with arabinose-established cultures growing in the presence of both glucose 

and a pentose sugar, a preferential use of glucose was evident on mixed glucose-xylose 

sugar media (Figure 3-4B).  This finding therefore suggests there is also a mechanism of 

repression of xylose utilisation.   
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Figure 3-3: Utilisation of glucose and xylose by glucose-established cultures of 

C..beijerinckii 

C..beijerinckii cultures were established on glucose and inoculated into 100 ml 

CBM containing 1% of either (A) xylose; (B) xylose and glucose; or (C) glucose. 

OD650 on log scale (♦); pH (�); glucose concentration (•); xylose concentration (•) 

The average of triplicates was plotted with the standard deviation bars denoting the 

range between the triplicates.   

 

(A) 
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Figure 3-4: Utilisation of glucose and xylose by xylose-established cultures of 

C..beijerinckii 

C..beijerinckii cultures were established on xylose and inoculated into 100 ml CBM 

containing 1% of either (A) xylose; (B) xylose and glucose; or (C) glucose.  OD650 on 

log scale (♦); pH (�); glucose concentration (•); xylose concentration (•).  The average 

of triplicates was plotted with the standard deviation bars denoting the range between 

the triplicates.   

 

(C) 

(A) 

(B) 
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3.3 Effect of High Sugar Concentrations on Pentose Sugar Utilisation 

 

In the previous section, regardless of the carbon source cultures of C..beijerinckii are 

established on, glucose is used preferentially over either pentose sugar on a 1% (w/v) 

total sugar concentration.  It is not until glucose has been exhausted or approaching 

exhaustion that the pentose sugars are used. This has also been observed in 

C..acetobutylicum (Ounine et al., 1985).  On high sugar concentrations of 7.2% (w/v) 

C..acetobutylicum has been observed using xylose and glucose simultaneously, if xylose  

is in excess in the culture medium (Fond et al., 1985a, b). To establish whether the same 

result would be evident for C..beijerinckii and if the inoculum preparation and the ratio 

of pentose to glucose sugar on the use of pentose sugars has an effect in mixed sugar 

fermentations, a series of experiments were employed.  A longer fermentation time and 

longer intervals between samples was used to accommodate the time taken for cultures 

to utilise a higher sugar load, in comparison to the previous experiments. 
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3.3.1 Arabinose 

 

Cultures of C..beijerinckii established on either arabinose or glucose prior to the 

experiments.  Despite cultures growing well on 6% (w/v) of arabinose or glucose,  

arabinose-established cultures (Figure 3-5G) utilised less glucose over the course of the 

fermentation, than the glucose-established cultures (Figure 3-5H and Figure 3-6H).  In 

contrast the utilisation rates of arabinose were similar (Figure 3-5A & 3-6A) regardless 

of the carbon source the cultures were established on, though there was a slightly faster 

utilisation rate for cultures established on arabinose (Figure 3-5H and Figure 3-6H).   

 

On media containing equal ratios of glucose to arabinose, more than double the amount 

of glucose over arabinose was utilised over 72 hours, regardless of the carbon source 

that cultures were established on (Figure 3-5D and Figure 3-6D). The rate of utilisation 

of arabinose was considerably less than that of glucose (Figures 3-5H and 3-6H).  

 

When cultures were grown on media with an excess of glucose, the arabinose was 

barely used over the course of the fermentation (Figure 3-5 EF and Figure 3-6EF) and 

the utilisation rates reflect this (Figure 3-5H and Figure 3-6H).  In cultures where 

arabinose was in excess at a ratio of 2:1 (A4G2), a larger amount of arabinose was 

depleted from the culture medium in comparison to the same ratio where glucose was in 

excess (Figure 3-5C in comparison to 3-5E; Figure 3-6C in comparison to 3-6E). On the 

A4G2 ratio glucose utilisation was twice as fast as that of arabinose despite the amount 

of arabinose present being double that of glucose (Figure 3-5H and Figure 3-6H).   

 

In cultures where arabinose was in excess to glucose by a ratio of 5:1, the rate of 

utilisation of arabinose was faster than that of glucose (Figure 3-5H and Figure 3-6H).   
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Figure 3-5: Effect of high sugar concentrations on glucose-arabinose utilisation 

Cultures of C..beijerinckii were established on TYA supplemented with arabinose and 

inoculated into triplicate 100 ml volumes of TYA medium with either (A) 6% arabinose (B) 5% 

arabinose: 1% glucose (C) 4% arabinose: 2% glucose (D) 3% arabinose: 3% glucose (E) 2% 

arabinose: 4% glucose (F) 1% arabinose: 5% glucose (G) 6% glucose (H) sugar utilisation rates 

averaged over 72 hrs (gL
-1

.hr
-1

), A – Arabinose, G- glucose, number is the % of sugar in the 

medium.  (•) arabinose (•) glucose concentrations, (�) OD650 on log scale. The average of 

triplicates was plotted with the standard deviation bars denoting the range between the 

triplicates.  The OD650 is plotted on a log scale. 

 

Ratio Arabinose Glucose Total 

A6 0.39 - 0.39 

A5G1 0.21 0.13 0.34 

A4G2 0.14 0.27 0.41 

A3G3 0.09 0.31 0.40 

A2G4 0.05 0.20 0.25 

A1G5 0.02 0.19 0.21 

G6 - 0.19 0.19 

 

(A) (B) 

(C) (D) 

(E) (F) 

(G) 
(H) Sugar utilisation rates averaged over 72 hours 

(gL
-1

.hr
-1

) 
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Figure 3-6: Effect of high sugar concentrations on glucose-arabinose utilisation 
Cultures of C..beijerinckii were established on TYA supplemented with glucose and inoculated 

into triplicate 100  ml volumes of TYA medium with either (A) 6% arabinose (B) 5% arabinose: 

1% glucose (C) 4% arabinose: 2% glucose (D) 3% arabinose: 3% glucose (E) 2% arabinose: 

4% glucose (F) 1% arabinose: 5% glucose (G) 6% glucose (H) sugar utilisation rates averaged 

over 72 hrs (gL
-1

.hr
-1

), A – Arabinose, G- glucose, number is the % of sugar in the medium. (•) 

arabinose (•) glucose concentrations, (�) OD650 on log scale. The average of triplicates was 

plotted with the standard deviation bars denoting the range between the triplicates.  The OD650 is 

plotted on a log scale. 

 

Ratio Arabinose Glucose Total 

A6 0.30 - 0.30 

A5G1 0.20 0.17 0.37 

A4G2 0.09 0.20 0.29 

A3G3 0.02 0.27 0.29 

A2G4 0.04 0.36 0.40 

A1G5 0.01 0.22 0.23 

G6 - 0.48 0.48 

 (H) Sugar utilisation rates averaged over 72 hours 

(gL
-1

.hr
-1

) 

 

(A) (B) 

(G) 

(C) (D) 

(E) (F) 



Chapter 3: Pentose Sugar Utilisation by C. beijerinckii 

55 

 

3.3.2 Xylose 

 

Cultures of C..beijerinckii established on either xylose or glucose grew well on 6% 

(w/v) of either sugar.  More xylose was depleted during the course of the fermentation 

by cultures established on glucose (Figure 3-7A and Figure 3-8A) and a higher rate of 

xylose utilisation was also evident (Figure 3-7H and Figure 3-8H).    

 

Cultures growing on equal ratios of glucose to xylose, regardless of the carbon source 

established on, xylose was utilised faster and the difference between the rate of glucose 

use and pentose sugar use was considerably less than that of glucose and arabinose 

(Figure 3-7H, Figure 3-8H, Figure 3-5H and Figure 3-6H). The depletion of glucose and 

xylose is very comparable over the duration of the fermentation whichever carbon 

source the cultures were established on (Figures 3-7D and 3-8D), especially with 

xylose-established cultures (Figure 3-7D).  

 

The cultures grown on media with an excess of glucose utilised xylose slower than 

glucose (Figure 3-7EF and Figure 3-8EF). At a ratio of 2:1 (X2G4), the utilisation rate 

of glucose was twice as fast as that of xylose (Figure 3-7H and Figure 3-8H), which is 

in contrast to the arabinose-glucose experiments where the rate difference was 

considerably larger.  A similar observation was noted where the ratio was 5:1 (X1G5), 

however the rate of xylose utilisation was faster than the equivalent on arabinose 

(Figure 3-7H, Figure 3-8H, Figure 3-5H and Figure 3-6H).   

 

A larger amount of xylose was depleted from the culture medium where xylose was in 

excess at a ratio of 2:1 (X4G2), in comparison to cultures established on glucose (Figure 

3-7C and Figure 3-8C).  The rate of xylose utilisation was very similar between the two 

(Figure 3-7H and Figure 3-8H).  However the glucose was nearly fully depleted at the 

fermentation end point for xylose established cultures (Figure 3-7C).   

 

In cultures where xylose was in excess to glucose by a ratio of 5:1 (X5G1), the rate of 

utilisation of xylose was faster than that of glucose (Figure 3-7H and Figure 3-8H), in 

the arabinose-glucose experiments a much smaller difference in comparison.   
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Figure 3-7: Effect of high sugar concentrations on glucose-xylose utilisation 

Cultures of C..beijerinckii were established on TYA supplemented with xylose and inoculated 

into triplicate 100 ml volumes of TYA medium with either (A) 6% xylose (B) 5% xylose: 1% 

glucose (C) 4% xylose: 2% glucose (D) 3% xylose: 3% glucose (E) 2% xylose: 4% glucose (F) 

1% xylose: 5% glucose (G) 6% glucose (H) sugar utilisation rates averaged over 72 hours (gL
-

1
.hr

-1
), X – xylose, G- glucose, number is the % of sugar in the medium. (•) xylose (•) glucose 

concentrations, (�) OD650 on log scale. The average of triplicates was plotted with the standard 

deviation bars denoting the range between the triplicates.  The OD650 is plotted on a log scale. 

   

(G) 

(H) Sugar utilisation rates averaged over 72 hours 

(gL
-1

.hr
-1

) 

(E) (F) 
 

Ratio Xylose Glucose Total 

X6 0.45 - 0.45 

X5G1 0.43 0.14 0.57 

X4G2 0.25 0.24 0.49 

X3G3 0.17 0.28 0.45 

X2G4 0.16 0.33 0.49 

X1G5 0.09 0.49 0.58 

G6 - 0.46 0.46 

 

(A) (B) 

(C) (D) 
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Figure 3-8: Effect of high sugar concentrations on glucose-xylose utilisation 

Cultures of C..beijerinckii were established on TYA supplemented with glucose and inoculated 

into triplicate 100   ml volumes of TYA medium with either (A) 6% xylose (B) 5% xylose: 1% 

glucose (C) 4% xylose: 2% glucose (D) 3% xylose: 3% glucose (E) 2% xylose: 4% glucose (F) 

1% xylose: 5% glucose (G) 6% glucose (H) sugar utilisation rates averaged over 72 hrs (gL
-1

.hr
-

1
), X – xylose, G- glucose, number is the % of sugar in the medium.  (•) xylose (•) glucose 

concentrations, (�) OD650 on log scale. The average of triplicates was plotted with the standard 

deviation bars denoting the range between the triplicates.  The OD650 is plotted on a log scale. 

 

Ratio Xylose Glucose Total 

X6 0.54 - 0.54 

X5G1 0.26 0.12 0.38 

X4G2 0.18 0.16 0.34 

X3G3 0.15 0.19 0.34 

X2G4 0.09 0.21 0.30 

X1G5 0.05 0.22 0.26 

G6 - 0.28 0.28 

 

(A) (B) 

(C) (D) 

(E) (F) 

(G) 

(G) 

(H) Sugar utilisation rates averaged over 72 hours 

(gL
-1

.hr
-1

) 
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3.4 Solvent Production by C. beijerinckii from Pentose Sugars 

Next, in order to ascertain what level of solvents could be produced by C..beijerinckii 

cultures grown on pentose sugars, cultures were established on glucose and these were 

used to inoculate two 1 Litre fermenter vessels, which were ran in parallel, with TYA 

supplemented with either glucose and arabinose or glucose and xylose (6% w/v).  The 

cultures were monitored for 72 hours and samples taken periodically.  Fermenters were 

used as the agitation they provide allows temperature and nutrient circulation and 

preventing toxic metabolites pooling.  This mixing effect provides the best conditions 

for culture growth and therefore solvent production. 

 

There was a notable difference in the degree of sugar utilisation by cultures of 

C..beijerinckii depending on the carbon source.  Cultures growing on glucose had half 

the sugar remaining compared to either pentose sugar by the end of the 72 hour 

fermentation (Figure 3-9 and Table 3-1).  The rate of sugar utilisation was more rapid, 

with a quicker butanol and total solvent production rate, in the first 62 hours of the 

fermentation on glucose.  In the latter 10 hours, the utilisation rate of arabinose was 

slightly faster in comparison to glucose and xylose, hence the butanol and total solvent 

production rates were also increased (Figure 3-9A and Table 3-1).   

 

Approximately three-fold more acids were present at the fermentation end-point on both 

pentose sugars than on glucose (Table 3-1), although it cannot be ascertained from this 

experiment whether or not the extra acids at the fermentation endpoint would have 

eventually been converted to solvents if a longer fermentation time was employed.    

 

The solvent levels produced by cultures on arabinose were akin to those grown on 

xylose (Table 3-1). The ratio of acetone to butanol produced varied depending on the 

carbon source that the cultures were grown on.  Glucose-grown cultures produced a 

higher acetone to butanol ratio in line with expected ratios, whereas cultures grown on 

the pentose sugars produced a lower acetone to butanol ratio. This contributed to the 

higher total solvent production observed by cultures grown on glucose was due to the 

higher acetone levels produced (Table 3-1).  The butanol yield was similar between all 

three sugars. Cultures grown on xylose had a slightly higher butanol yield of 0.27 g.g in 

comparison to 0.25 g.g on arabinose and 0.26 g.g on glucose (Table 3-1).  Although less 

xylose was utilised, a greater proportion was converted to butanol.  
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Figure 3-9: Fermentation of glucose and pentose sugars 

C..beijerinckii was established on TYA supplemented with glucose and inoculated in 1L 

fermenters with TYA medium supplemented with 6% of either (A) Arabinose (B) 

Glucose (C) Xylose.  Over a 72 hour fermentation Graph on the left: (•) OD650, (▬) pH, 

Graph on the right: (•) Sugar; Acids (dashed line): (♦) acetate, (♦) butyrate; (�) 

acetone, (�) butanol, (�) ethanol and (�) total solvents concentrations were monitored 

periodically over 72 hr. The average of triplicates was plotted with the standard 

deviation bars denoting the range between the triplicates.   

 

(A) 

(B) 

(C) 
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Figure 3-10: Solvent production on glucose and pentose sugars 

Solvent end products after 72 hr fermentation (�) ethanol, (�) acetone, (�) butanol, (�) 

total ABE on TYA supplemented with 6% sugar. The average of triplicates was plotted 

with the standard deviation bars denoting the range between the triplicates.   

 

 

Table 3-1: Sugar consumption and solvent production on glucose and pentose 

sugars 

  Arabinose Glucose Xylose 

Sugar start (gL
-1

) 59.27 58.41 61.40 

Sugar end (gL
-1

) 28.70 13.17 30.23 

Sugar used (%) 52 77 51 
     

Acetate (gL
-1

) 2.38 0.63 1.03 

Butyrate (gL
-1

) 1.44 0.49 2.57 

Total Acids (gL
-1

) 3.82 1.12 3.60 
     

Acetone (gL
-1

) 2.54 6.21 1.92 

Butanol (gL
-1

) 7.71 11.97 8.46 

Ethanol (gL
-1

) 0.14 0.20 0.11 

Total Solvents (gL
-1

) 10.38 18.39 10.49 
Acetone:Butanol ratio  1:3 1:2 1:4 

     

Butanol yield g.g 0.25 0.26 0.27 

Solvent yield g.g 0.34 0.41 0.34 
Sugar utilisation rate (gL

-1
.hr

-1
)* 0.42 0.63 0.43 

Butanol production rate (gL
-1

.hr
-1

)* 0.11 0.17 0.12 

Solvent production rate (gL
-1

.hr
-1

)* 0.14 0.26 0.15 
* Averaged over 72 hours 
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3.5 The Utilisation of Xylan and Xylan Hydrolysates by C..beijerinckii 

It has been established C..beijerinckii can utilise xylose as a carbon source for growth. 

However, the majority of xylose found naturally is in the form of the polysaccharide 

xylan.   Xylans are the second most abundant polymer in nature after cellulose,  making 

up a third of all renewable organic carbon (Collins et al., 2005), it is of interest to 

determine whether C..beijerinckii can utilise xylans for biofuel production.  

 

Xylan is a highly branched heteropolymer.  The exact constituents and arrangement of 

its building blocks are source-specific, but the basic structure is a xylose polymer 

backbone with side-chains of xylose and other sugars such as galactose, mannose, 

fucose, glucuronate, rhamnose and arabinose.  Xylan is found in most abundance in 

hardwoods, where it constitutes up to 30% of the cell wall contents.  It may also be 

present in softwoods, grasses and annual plants.  

 

Using commercially available xylan from two different sources (beechwood and 

birchwood), small-scale fermentations were carried to ascertain the ability of 

C..beijerinckii to utilise xylan and xylan-hydrolysates in parallel to xylose utilisation. 

 

3.5.1 Kinetic Investigation of Activity of Commercial Xylanase on Xylans 

 

In order to ascertain the time required for commercial xylanase (Novozymes) to 

breakdown commercial xylans from beechwood and birchwood (Sigma), an 

investigation of the kinetic activity of a commercial xylanase on the two types of xylans 

was conducted. The hydrolysis of both types of xylans by xylanase was evident within 

30 minutes with little difference in the profile of hydrolysates including xylose after six 

hours of enzymatic treatment (Figure 3-11).  Fewer larger xylan hydrolysates, found 

closest to the origin, after 24 hours of treatment. The effect of autoclaving xylan was 

also assessed ahead of any fermentations with C..beijerinckii, to ensure any breakdown 

of xylan was not an effect of heat and only attributable to enzymes.  Autoclaving did not 

cause any degradation of either of the xylans used, as can be seen by the lack of visible 

products above the origin on the TLC plate (Figure 3-11 A & B). 
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Figure 3-11: Xylanase time treatment of xylan 

TYA medium containing 1% (w/v) xylan was autoclaved to assess its effect on xylan 

degradation then treated with xylanase over a period of 24 hours and samples were 

taken at various time intervals and boiled to inactivate the xylanase. Samples were then 

subject to TLC after loading on to TLC plate.  Xylan appears at the line of origin, 

smaller constituents, down to the monomer units (xylose) and a xylose control are found 

further up the TLC plate (A) Beechwood xylan (B) Birchwood xylan 

 

3.5.2 The ability of C. beijerinckii to utilise xylan and xylan hydrolysates  

Different solutions were employed to assess the ability of C..beijerinckii to utilise 

xylans, and xylan hydrolysates; TYA media containing 1 % (w/v) xylan, xylan 

hydrolysates (xylanase-treated xylan for 24 hours prior to inoculation), xylan 

supplemented with 0.1% (w/v) xylose, as this was found to boost the utilisation of xylan 

in C. acetobutylicum (Lee et al., 1985b); and xylose. TLC was carried out as previously 

described on samples from the culture media prior to inoculation and at the end of 

fermentation (96 hours).  C..beijerinckii was found to be able to grow on and utilise 

both xylans and the xylan hydrolysates, as indicated by the pH profiles consistent with 
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acidogenesis, where the pH is observed as falling steadily over the first 24 hours of the 

fermentation on all substrates (Figure 3-12A and Figure 3-12B). Figure 3-13 A and B 

shows the breakdown of beech and birch wood xylan by the appearance of smaller 

carbohydrate units at 96 hours.  Xylan hydrolysates were used during the course of the 

fermentation as indicated by the disappearance of ‘spots’ from the profile at 96 hours. 

C..beijerinckii was unable to grow on TYA without an added carbon source (data not 

shown).  The addition of 0.1% (w/v) xylose had no observable effect on the utilisation 

of either xylans, as indicated by the same breakdown profile as that of xylan after 96 

hours (Figure 3-13).  The pH reached a plateau on all of the substrates after 

acidogenesis, at 24 hours and remained stable, failing to rise, indicative of a poor level 

of solventogenesis occurring (Figure 3-14A).  This result was further reflected in the 

high levels of acid and solvent at the fermentation endpoint (Figure 3-14B). The best 

solvent production occurred with the xylose control, followed by the pre-enzymatic 

treatment of xylans.  A difference in the solvent profiles of cultures grown on xylans 

and those grown on xylan hydrolysates and xylose was observed.  The ratios of acetone 

to butanol were almost equal to those found from cultures grown on xylans, whereas the 

other substrates produced a more commonly observed solvent profile, with a 2:1 ratio of 

acetone: butanol, or higher.   
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Figure 3-12: pH profile of C..beijerinckii cultures grown on 1% (w/v) xylan 

Cultures were established on xylose and inoculated into TYA with 1% of (A) 

Beechwood xylan (B) Birchwood xylan (•) Untreated xylan  (•) Xylan supplemented 

with 0.1% xylose (•) Pre xylanase-treated xylan (•) Xylose. The error bars denote the 

differences between triplicates in standard deviation. 

(A) 

(B) 
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Figure 3-13: Xylan utilisation by C..beijerinckii 

TLC analysis of the utilisation of (A) Beechwood xylan (B) Birchwood xylan, by C..beijerinckii. T0 indicates time zero prior to 

inoculation and T96 after 96 hour fermentation.  Cultures were inoculated into triplicates of TYA with 1% xylose, 1% xylan, 1% xylan 

supplemented with 0.1% (w/v) xylose, or 1% xylan pre-treated with xylanase.  
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Figure 3-14: Solvent and acid production of C..beijerinckii grown on 1% xylan 

Cultures were established on xylose and inoculated into 1% of xylan or xylose (A) 

Solvents at 96 hours: (�) Ethanol (�) Acetone (�) Butanol (�) Total ABE (B) Acids at 

96 hours: (�)Acetate (�)Butyrate (�) Total acids.  The error bars denote the differences 

between triplicates in standard deviation. 
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3.5.3 Effect of Higher Xylan Concentrations on Solvent Production 

 

One possible reason for the poor solvent production observed in the previous 

experiment could be that there was an insufficient level of utilisable carbon source 

remaining in the culture medium to allow any level of sustained solventogenesis.  

Therefore, the experiment was repeated with a 5% (w/v) concentration of carbon 

sources, so a plentiful supply was available to allow solventogenesis.  Despite a five-

fold increase in carbon source, very little difference to the pH profiles of C..beijerinckii 

was observed.  A rise in pH, consistent with solventogenesis, was evident only in 

cultures grown on xylose (Figure 3-15). The pH of the cultures on all the other carbon 

sources used fell lower towards the fermentation endpoint in comparison to 1% (w/v) 

concentration and no plateau in the pH level after 24 hours was evident.  Consistent 

with more acid production, in comparison to the 1% (w/v) concentration experiment, 

thus poor solvent production was still observed (Figure 3-16).  Although the 

concentration of xylan or xylan hydrolysates used was five-fold greater than that used in 

the previous experiment, only twice the amount of solvent was produced for cultures 

grown on xylan and around 1.5 times the amount for those grown on xylan 

supplemented with xylose and the pre-enzymatically treated xylan, whereas the cultures 

grown on xylose produced ten-fold more solvents compared to cultures grown on xylan 

(Figure 3-14A).  The level of acids at the fermentation endpoint was very similar across 

all the substrates used (Figure 3-16B) and were only marginally more than in the 

previous experiments.   
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Figure 3-15: pH profile of C..beijerinckii grown on 5% xylan 

Cultures were established on TYA supplemented with xylose and inoculated into TYA 

with 5% (w/v) (A) Beechwood xylan or (B) Birchwood xylan (•) Untreated xylan  (•) 

Xylan supplemented with 0.1% (w/v) xylose (•) Pre xylanase-treated xylan (•) Xylose. 

The error bars denote the differences between triplicates in standard deviation. 

(A) 

(B) 
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Figure 3-16: Solvent and acid production of C..beijerinckii grown on 5% xylan 

Cultures were established on xylose and inoculated into 5% of xylan or xylose (A) 

Solvents after 96 hours: (�) Ethanol (�) Acetone (�) Butanol (�) Total ABE (B) Acids 

after 96 hours: (�)Acetate (�)Butyrate (�) Total acids. The error bars denote the 

differences between triplicates in standard deviation. 
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3.5.4 Effect of Buffering on Solvent Production from Xylans  

 

It is possible the previous results may be explained by findings of research in 

C..acetobutylicum, where xylanase activity is found to be at an optimum at pH 5.2 in a 

chemostat (Lee et al., 1985b).  It may be that xylanases of C..beijerinckii are only active 

within a narrow pH range and are therefore susceptible to the changes in pH during the 

course of the fermentation.  In order for solventogenesis to occur, acids are 

reassimilated and used alongside the carbon source cultures are grown on.  Therefore, 

an insufficient or unavailable carbon source, due to unfavourable conditions for 

xylanase activity, could explain the poor solvent yields observed.  It has also been 

demonstrated in C..acetobutylicum that calcium carbonate increases the utilisation of 

xylose and the solvent yield of cultures grown on xylose (El Kanouni et al., 1998), 

though this effect was put down to possibly the Ca
2+

 ions providing stability to 

membrane proteins involved in xylose use and therefore providing an increased butanol 

tolerance.  So to investigate if buffering could help solventogenesis the previous 

experiment was repeated with the addition of 1% (w/v) calcium carbonate in to the 

medium as a buffer.  A rise in pH was observed between 24–48 hours of fermentation in 

the pH profile on all the substrates (Figure 3-17) and a solvent yield increase of 1.5–4 

fold was observed compared to the previous experiment (Figure 3-18B).   
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Figure 3-17: pH profile of C..beijerinckii grown on 5% xylan supplemented with 

Ca2CO3 

Cultures were established on TYA supplemented with xylose and inoculated into TYA with 

5% (w/v) (A) Beechwood xylan or (B) Birchwood xylan (•) Untreated xylan (•) Xylan 

supplemented with 0.1% xylose (•) Pre xylanase-treated xylan (•) 5% Xylose. The error 

bars denote the differences between triplicates in standard deviation. 

(A) 

(B) 
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Figure 3-18: Solvent and acid production of C..beijerinckii grown on 5% xylan 

supplemented with Ca2CO3 

Cultures were established on xylose and inoculated into 5% of xylan or 5% xylose 

buffered using Ca2CO3(A) Solvents at 96 hours: (�) Ethanol (�) Acetone (�) Butanol 

(�) Total ABE (B) Acids at 96 hours: (�)Acetate (�)Butyrate (�) Total acids. The 

error bars denote the differences between triplicates in standard deviation. 
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3.6 The fermentation of pentose-sugar-rich waste streams by C. beijerinckii 

 

It has been established that C..beijerinckii is capable of utilising pentose sugars to as a  

carbon source for solvent production.  The next step was to establish the ability of 

C..beijerinckii to utilise pentose sugars in waste streams for future biofuel production. 

Because waste streams also contain potential inhibitory substrates, such as furfurals, 

which could interfere with fermentations and any level of interference needs to be 

assessed, for future biofuel production on these types of resources. 

 

3.6.1 Total carbohydrate determination  

Maize-based dried distillers’ grains (DDGS, North British Distillery) and were further 

dried overnight in an oven at 80–90°C, to remove as much of the residual moisture 

content as possible. More than 7% extra moisture was removed in this way (as 

calculated by the percentage weight difference before and after the overnight drying).  

Then samples were taken and total carbohydrate content was determined by acid 

hydrolysis (Table 3-2). 

 

Table 3-2: Carbohydrate content of maize draff 

Carbohydrate* g per 100g biomass  

Glucose (glucan) 19.6 (17.7) 

Xylose (xylan) 17.2 (15.2) 

Arabinose (arabinan) 6.4 (5.7) 
* Galactose was also detected but the concentration was very low and could not be determined accurately 

by HPLC. No mannose was detected. The polymer values are shown in parentheses 

 

Once the sugar content of DDGS was determined experiments were conducted to assess 

the ability of C..beijerinckii to utilise the sugar constituents of DDGS using different 

treatment conditions (Table 3-3). It was not possible to measure the OD, because of the 

appearance of the DDGS in suspension.  So only the pH profile and solvent production 

is presented here. 

 

No appreciative level of solvent was produced by C..beijerinckii cultures growing in 

untreated DDGS (Table 3-4), suggesting that C..beijerinckii was unable to breakdown 

DDGS, or unable to breakdown sufficient amounts to release sugars and sustain growth.  

There was a difference in the solvent production depending upon when enzymatic 

treatment was carried out.  Cultures of C..beijerinckii grown under SSF conditions 
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produced nearly twice as much solvents as the pre-treated (Figure 3-19).  More sugar 

was released and used by cultures under these conditions (Table 3-4).  However, the 

largest sugar use, and hence the largest solvent production and yield, was observed with 

cultures growing in soluble sugars.  Differences between DDGS and soluble sugar 

equivalent of DDGS can be explained by potential inhibitors such as ferulic acids or p-

coumaric acid being present as a product of the acid hydrolysis, which could affect the 

growth and hence the sugar utilisation and solvent production by cultures.  The total 

solvent and butanol yields of cultures growing in pre-treated DDGS were 60% of that of 

SSF cultures and 40% of that produced by cultures growing in soluble sugars.  SSF 

cultures total solvent and butanol yields were about 70% of the total solvent and butanol 

yields of cultures growing in soluble sugars (Table 3-4).  Based on all these 

observations, SSF seems to be the best option for the fermentation of DDGS for by 

C..beijerinckii. 
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Table 3-3: Treatment conditions of DDGS 

Treatment Acid Enzyme treatment inoculated 

None  None none yes 

Pre Added 24 hours prior 

(enzymes optimum 

conditions
#
) 

yes 

SSF Added during
+
 yes 

SSF control Added during
+
 no 

Soluble sugars* none None yes 

 *Sugars autoclaved in separate solutions and added to TYA aseptically after autoclaving.  
#
 pH 5.0, 50°C, 

200 rpm in horizontal shaking incubator.  
+
“During” refers to the enzymatic treatment throughout the 

duration of the fermentation.  After 24 hours the bottles were heated for 15 min >100°C in order to 

inactivate the enzymes.  Enzymes used were CTec and HTec (Novazymes).  SSF = Simultaneous 

saccharification and fermentation 

 

 

 

 

 

 

 

Figure 3-19: The solvent production of C..beijerinckii grown in DDGS 

C..beijerinckii was established on TYA supplemented with glucose, 72 hour 

fermentation was carried out on 40g DDGS in 200 ml TYA which was either subjected 

to acid hydrolysis accompanied with heat treatment (autoclaving) and either treated with 

cellulase and hemicellulase before the fermentation (pre-treated) or during fermentation 

(SSF – Simultaneous saccharification and fermentation), or no treatment at all (no 

treatment and soluble sugars).  SSF control was not inoculated with C..beijerinckii 

cultures. (�) Ethanol (�) Acetone (�) Butanol (�) Total ABE The average of 

triplicates was plotted with the standard deviation bars denoting the range between the 

triplicates.   
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Table 3-4: Sugar utilisation, acid and solvent production by C..beijerinckii on 

DDGS 

  No 

treatment 

Enzymatic 

Pre-treatment 
SSF 

Soluble 

sugars 

Total released sugar * (gL-1) 0.22 15.52 18.12 25.38 

Total used sugar (gL-1) 0.22 8.47 11.96 21.99 

      

Acids  
(gL-1) 

Acetic 1.95 2.87 2.21 2.91 

Butyric 1.84 2.39 2.96 1.58 

Total 3.79 5.26 5.17 4.49 

      

Solvents 
(gL-1) 

Acetone 0 0.37 0.63 0.96 

Butanol 0.003 0.98 2.33 6.58 

Ethanol 0 0 0 0 

Total 0.003 1.34 2.96 7.54 

      

Yields 
(g.g) 

Total ABE 0.01 0.16 0.25 0.34 

Butanol 0.01 0.12 0.2 0.3 
* this is the total sugar available present at the beginning of the fermentation for pre-enzymatically treated 

samples or the total sugar released during the course of the fermentation, calculated based on the control 

SSF.  



Chapter 3: Pentose Sugar Utilisation by C. beijerinckii 

77 

 

 

3.7 Discussion 

It has been established that C..beijerinckii is able to use both pentose sugars, arabinose 

and xylose, as sole carbon sources. Regardless of the carbon source (glucose or pentose) 

used to establish cultures in mixed sugar media, on 1% (w/v) total sugar, glucose is 

preferentially utilised first. This is in line with studies with a number of organisms, 

including B..megaterium, T..thermosaccharolyticum, C..acetobutylicum, (Schmiedel 

and Hillen, 1996, Aduse-Opoku and Mitchell, 1988, Ounine et al., 1985).  In 

C..acetobutylicum,  xylose permease activity has been observed as being induced by the 

presence of xylose but inhibited by the presence of glucose on mixed sugar media 

(Ounine et al., 1985).  In B. subtilis the utilisation of arabinose is subject to catabolite 

repression by glucose (Sa-noguiera et al., 1988; Inacio et al., 2003). However, 

C..thermoaceticum and Sulfolobus acidocaldarius have been observed to utilise xylose 

and glucose simultaneously (Andreesen et al., 1973, Joshua et al., 2011) and 

Corynebacterium glutamicum utilised arabinose and glucose simultaneously 

(Kawaguchi et al., 2009).   

 

Despite the presence of glucose affecting the use of xylose, simultaneous use in 

C..acetobutylicum of glucose and xylose can be manipulated by high sugar 

concentrations (72 gL
-1

) when xylose is in excess of glucose and cultures are established 

on xylose (Fond et al., 1985a).  In slight contrast to C..acetobutylicum, C..beijerinckii 

used both sugars simultaneously, regardless of the carbon source established on or 

whether the pentose sugar was in excess or not.  The utilisation rate of xylose was 

greater than that of glucose when the ratio of pentose to glucose is 5:1 or 4:2.  On 

glucose-arabinose containing media, the utilisation of arabinose was greater if the ratio 

was 5:1.  Other strains of C..beijerinckii, C..beijerinckii NCP260 and C..beijerinckii 

BA101 as well as C..saccharolyticum 262, C..butylicum NRRL592 and 

C..acetobutylicum ATCC824, have all been observed utilising arabinose and xylose 

simultaneously with glucose, cellobiose, galactose and mannose in high sugar 

concentrations of 60 gL
-1

 of mixed sugars (Ezeji and Blaschek, 2008).  

 

The differences in the sugar utilisation behaviour of C..beijerinckii cultures in media 

containing low sugar and high sugar concentrations suggests the mechanism of 

repression exerted by glucose can be affected by modifying concentrations.  

Furthermore, xylose appears to exert a greater influence than arabinose in this case.  
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Solvent production by C..beijerinckii cultures was much lower on pentose sugars 

compared to glucose.  This has also been observed in C..acetobutylicum, where cultures 

are observed entering the stationary phase later, at 70 hours, on xylose-containing media 

in comparison to glucose (33 hours).  Additionally, the specific growth rate per hour 

over the course of the fermentation was also much lower.  On the other hand cultures 

grown in arabinose entered stationary phase after 30 hours (Ounine et al., 1983).  In 

contrast, C..beijerinckii cultures grown in glucose or xylose entered stationary phase at 

the same time (36 hours), whereas arabinose-grown cultures entered after 43 hours. 

Despite this finding, less sugar was utilised by cultures growing on both pentose sugars 

and more acids were present at the fermentation end-point.  Additionally the acetone: 

butanol production ratio was higher with pentose sugars than with glucose, a finding 

which has also been observed in C. acetobutylicum (Ounine et al., 1983, Mes-Hartree, 

1982)  

 

A number of factors could be responsible for less sugar being utilised and hence less 

solvents produced from pentose sugars. A lag in the growth rate at the beginning of the 

fermentation, because all cultures were established on glucose, would cause a delay to 

the assimilation of the necessary cellular components for pentose sugar use.  Another 

reason may lie in the observation that C..acetobutylicum cells grown on pentose sugars 

may be more sensitive to the effects of butanol levels (Ounine et al., 1985). Therefore 

growth and solvent production would be reduced.   

 

A number of studies have looked at the addition of chemicals to boost the solvent 

production of cultures grown on xylose.  The addition of acetate or butyrate increases 

the consumption of xylose and thus the yield of acetone and butanol by xylose-grown 

cultures of C..acetobutylicum, as long as it is added to the culture medium prior to 

inoculation.  Although this suggests that it is a direct conversion of the acids added, the 

extent at which butanol and acetone levels increased could not be accounted for because 

upon the addition of only one of them caused both acetone and butanol levels to be 

boosted (Yu and Saddler, 1983).  The addition of 10 gL
-1

 Ca2CO3 to the culture medium 

has also been observed to increase the utilisation of xylose and lessen the inhibitory 

effect of butanol to C..acetobutylicum cells (El Kanouni et al., 1998).  
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Other factors such as iron limitation have been shown to be detrimental to xylose 

utilisation, or cysteine addition for utilisation of xylose, mannose, cellobiose and 

arabinose by C..acetobutylicum (El Kanouni et al., 1998, Yu and Saddler, 1983). 

 

Based on the previous finding that C..beijerinckii was capable of using xylose as a main 

carbon source for biofuel production, it was of interest to establish if the polymer xylan, 

which forms the majority of xylose is found in nature, was also of potential use for 

biofuel production.  It is more economical if xylan does not require to broken down into 

its constituent units in order to be utilised.  An initial experiment indicated that 

C..beijerinckii was indeed capable of utilising xylan and xylan-hydrolysates.  However, 

the solvent profile produced after 96 hours of fermentation was poor, suggesting a 

condition in the fermentation affecting the solventogenesis.  Increasing the amount of 

carbon source had very little effect on solvent yield.  Growth of C..acetobutylicum in 

batch cultures was poor with rapid acid production thought to be a consequence of the 

lack of buffering capacity in the medium used (Lee et al., 1985b).  Although the growth 

of C..beijerinckii was not directly measured it could be inferred from the pH profile, 

which was consistent with acidogenesis, and the presence of acids at the fermentation 

endpoint, that poor growth had occurred, which possibly mirrored what is observed with 

C. acetobutylicum.   

 

Lee et al., (1985b) also discovered that xylanase enzyme of C..acetobutylicum had a pH 

range optimum between pH 5.8–6.0 and was stable down to pH 5.2.  Below pH 5.2, 

xylanase activity dropped five-fold, with the utilisation of xylan decreasing from 50% to 

30%.  Calcium carbonate was therefore added to provide buffering capacity and 

maintain a higher pH profile, based on the assumption that the xylanase of 

C..beijerinckii had a similar optimal pH range.  This boosted the amount of solvent 

produced by up to two-fold, suggesting the pH has a profound effect on xylanase 

activity as acidogenesis proceeds.  This could be investigated further by using 

chemostat or by using a series of media buffered at a range of different pH. The putative 

xylanase from C..beijerinckii could also be isolated and activity determined under a 

range of conditions.  

 

Another explanation to the poor xylan utilisation observed may have come from 

accumulation of xylose produced from the breakdown of xylan negatively regulated the 

xylanase genes, the expression of xylanase in the fungus Hypocrea jecori has been 
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observed to be regulated by the concentration of xylose.  Higher xylose concentrations 

resulted in a decrease in xylanase expression (Mach-Aigner et al., 2010).  However, 

such an effect can be discounted, as the TLC analysis showed no evidence of xylose 

accumulation.  A more likely explanation comes from upon onset of solventogenesis, 

the pH may have fallen below the optimum for the xylanase to function, resulting in 

insufficient carbon source was available for solventogenesis.  

 

The presence of 0.1% xylose in xylan in the experiments conducted here showed no 

indication of a delay in the production of acids, indicated by the pH profile or of a 

reduced solvent production, which would be expected to be associated with this.   

 

The effect of other carbon sources on the utilisation of xylan could also be of 

importance and is an avenue for future research.  Glucose has been observed to affect 

the expression of xylosidase in B. subtilis had no effect on the expression of xylanase 

(Linder et al., 1994) whereas the xylanase promoter in Trichoderma reesei was silenced 

in the presence of glucose (Zeilinger et al., 1996). 

 

Lignocellulose presents an attractive resource in terms of biofuel production for a 

number of reasons. It is widely available from many sources, such as agriculture, 

forestry, industry and municipals.  It is the most abundant polymer on the planet and is a 

renewable, sustainable and cheap resource.  All qualities needed for a substrate for 

biofuel production. A number of resources have been investigated and found suitable 

for biofuel production in solventogenic clostridia. Wheat straw, corn fibre, corn cobs, 

soy bean, domestic organic waste, soft and hardwoods and dried distillers’ grains have 

all been found to be fermentable substrates.   

 

Agricultural resources can be by-products of grain, oil-seed, fruit and vegetable 

harvesting, such as stalks, seeds, shells, husks, straw, sludge, wastewater and juice 

(Howard et al., 2003). Resources are dependent upon the area of the World. Favourable 

substrates for biofuel production in Asia are rice straw, wheat straw and corn stover, in 

Europe wheat straw and in North America Corn stover (Kim and Dale, 2006). There is 

an estimated 60-80 million dry tonnes of corn stover available in the USA for 

fermentations and a number of investigations into the ability of solventogenic clostridia 

to utilise products of corn waste have been carried out. C..beijerinckii BA101 was able 

to produce 0.39 grams of ABE solvents per gram of corn fibre, if the acid hydrolysed 
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corn fibre was treated with XAD-4 resin, as the latter removed the cell growth inhibition 

attributed to the products arising from acid hydrolysis (Qureshi et al., 2008).   

C..beijerinckii P260 was able to produce 0.41g of butanol per gram of corn fibre xylan 

(Qureshi et al., 2006).  Additionally, C..beijerinckii strains, NCIMB8052 and BA101 

when grown on corn-steep water (a by-product of the wet-milling industry), were found 

to produce 16 gL
-1

 and 8.5 gL
-1

 butanol, respectively (Parekh et al., 1999).  In Russia, 

post second World War corn cobs and agricultural waste such as hemp waste and 

sunflower seeds were a waste problem in some areas (Nakhmanovich and Shcheblykina, 

1959, Zverlov et al., 2006).  In 1962, at Dokshukino, one of the major plants in Russia, 

925 tonnes of corn cob waste was used per month in clostridial fermentations (Zverlov 

et al., 2006). Reported yields of solvents at this plant averaged 32 g per 100g of sugars.  

Other agricultural residues, derived from wheat, such as bran and straw have also been 

used successfully as feedstocks for clostridial fermentations. The fermentation of wheat 

straw hydrolysate by C..beijerinckii P260 was found to produce 0.42 g of solvents per 

gram of sugars (Qureshi et al., 2007).  C. beijerinckii ATCC55025 was found to use 

hexose and pentose sugars simultaneously in wheat bran hydrolysate with a yield of 

0.32 g ABE per gram of sugar (Liu et al., 2010). 

 

Other sources for feedstocks come from forestry and paper-pulp mills, including wood, 

bark, leaves, saw dust, fibre and black liquor (Howard et al., 2003). Steam exploded 

aspen wood has been shown to be a usable resource by C. acetobutylicum ATCC824 for 

the production of biofuel (Saddler et al., 1983, Yu and Saddler, 1983).  Steam exploded 

woodchips were shown to produce 0.26g of butanol per gram of sugar consumed.   

 

Municipal wastes such as food waste, paper, card and wood (Howard et al., 2003). 

Waste paper, plant residues, sawdust and fruit and vegetable waste encompasses a 

considerable amount of the solid-based wastes in Tanzania (Mtui and Nakamura, 2005). 

Such wastes as these could be dealt with using solventogenic clostridia.  Indeed, fruit, 

vegetable and garden wastes have been found to be fermentable without the addition of 

extra nutrients to the culture medium in C..acetobutylicum strains ATCC824 and 

DSM1731, C..beijerinckii B-592 and Clostridium LMD84.48 (Lopez-Contreras et al., 

2000, Claassen et al., 2000).  Domestic organic waste hydrolysate fermented by 

C..acetobutylicum DSM1731 produced 28g of ABE per 100g of the sugar available in 

the (Claassen et al., 2000). A study by (Kobayashi et al., 2005) sludge from a Japanese 

waste water treatment was not useable by C..saccharoperbutylacetonicum without the 
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addition of a carbon source.  Using glucose as a carbon source the more sludge added to 

the medium resulted in more glucose to be used, which in turn increased the amount of 

butanol produced.  Such a resource would have to be mixed with a carbon-rich waste 

stream, which maybe poor in other nutrients and thus would complement each other and 

to be a viable feedstock for biofuel production. 

 

Dried distillers’ grains are a waste product of the production of ethanol for beverage and 

transport industries. DDGS are rich in glucans, arabinans and xylans, so are an 

attractive resource. In this study the ability of C..beijerinckii cultures to ferment DDGS 

was investigated.  A very similar study was carried out with several solventogenic 

clostridia strains, C..beijerinckii BA101 and 260, C..acetobutylicum, C..butylicum and 

C..saccharolyticum, using hydrolysates of DDGS produced with either dilute acid, hot 

water or ammonium fibre explosion pre-treatment.  Depending on the strain and the 

production method of the hydrolysate, yields ranged from 0.3–0.35 g.g, in comparison 

to 0.33–0.39 g.g obtained on the DDGS equivalent soluble sugars (Ezeji and Blaschek, 

2008).  In this study C..beijerinckii had a total solvent yield of 0.34 g.g on the 

equivalent DDGS soluble sugars, which is similar to the yields obtained of the 

solventogenic clostridia. However there was a big difference between the yield of the 

pre-treated DDGS and that of the equivalent soluble sugars.  A total solvent yield of 

0.16 g.g was obtained, for acid and enzyme pre-treated DDGS.  

 

A number of differences in Materials and Methods exist between this study and that of 

Ezeji et al. (2008) and therefore direct comparisons cannot be made.  However, the 

yields between DDGS and the equivalent sugars were notably different in this study 

whereas Ezeji et al. (2008) found similar yields. These results could be due to inhibitory 

compounds released from the hydrolysis of DDGS which may have interfered with the 

enzymatic breakdown and/or the fermentation.  Strains of C..acetobutylicum have been 

observed producing total solvent yields of 0.15 g.g and 0.17 g.g for hardwood and 

softwood hydrolysates, respectively, which is notably lower than the highest theoretical 

yield of 0.32 for cultures on a glucose soluble sugar-based medium (Saddler et al., 

1983, Maddox and Murray, 1983).  

 

Although pre-treatment of substrates allows for optimal conditions for sugar release and 

fermentation, it also has drawbacks, such as the accumulation of sugar products in the 

culture medium.  This can inhibit the breakdown of other sugars if the expression of a 
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particular gene associated with their use is inhibited by the presence of another sugar 

(Galbe and Zacchi, 2002).  For the simultaneous saccharification and fermentation 

cultures the yield was higher at 0.25 g.g, suggesting these conditions are the best to 

derive solvent from the DDGS for C..beijerinckii, despite the compromise on the 

conditions for enzyme activity and fermentation. 
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4 in silico Analysis for Genes Involved in Pentose Sugar Utilisation 

4.1 Introduction 

It has been established that C..beijerinckii is able to utilise arabinose, xylose, xylan and 

xylan hydrolysates as sole carbon sources and produce solvents (Chapter 3). These 

findings, taken along with a preferential use of glucose over both pentose sugars on 1% 

(w/v) total sugar, suggests there are genes present within the genome for the transport 

and utilisation of xylan, xylose and arabinose.  In a number of organisms gene systems 

involved in pentose sugar have been firmly established (Sa-Nogueira et al., 1997, 

Schmiedel et al., 1997, Shamanna and Sanderson, 1979, Kawaguchi et al., 2009, 

Takeda et al., 1998), as have genes involved in the use of xylan (Ko et al., 1992, 

Gasparic et al., 1995, Luthi et al., 1990, Wolf et al., 1995).  Based on this information, 

candidates for key genes associated with the use of pentose sugars and xylan were 

searched for within the annotated genome of C..beijerinckii. The genome of 

C..beijerinckii consists of 6Mb circular chromosome and was sequenced and made 

available 2007 by DOE joint genome institute (Project id 3634512).  The candidates 

identified using KEGG were then used for further analysis using various bioinformatics 

programs detailed here and in Chapter 2.  This was carried out to provide more evidence 

for the candidate’s likely function ahead of any characterisation studies, which are 

necessary to confirm the definite function. 

 

Bioinformatics is described broadly as the application of computer technology to allow 

the user to analyse and make sense of large sets of biological data (Attwood and Parry-

Smith, 1999).  The label applied to a particular ORF within a genome may not 

necessarily reflect the true function, so it is necessary to employ further analyses. 

Analyses performed and presented here took the approach of assessing the level of 

similarity of the candidates with published characterised genes of other bacteria.   This 

was based on the principal proteins which perform the same or similar function, harbour 

particular structural or functional domains necessary for a particular function.  So in 

order to preserve this function these domains possess identical or very similar AA 

sequences, even across different species. 

 

For each sequence of an ORF putatively involved in pentose sugar utilisation was 

identified from a genomic search and input into BLAST.  BLAST performs local 

alignments between a query sequence and those of other species within the database in a 
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pair-wise fashion.  It does so by analysing domains of sequence similarity, which are 

often involved in function (Madden, 2003).  Such a tool displays results in table format 

providing a statistical significance, to infer whether the two sequences are likely to be 

orthologues.  Additionally, the level of AA sequence identity (identical AAs) in terms 

of percentage and AA sequence similarity (identical and substituted AAs of similar 

properties) between the query and the database sequences, are also displayed. 

 

Following on from this the AA sequences were taken either from BLAST searches or 

from the EMBL accession database, the latter using accession numbers from 

publications.  These were then used to construct multiple alignments and phylograms, 

or for transmembrane prediction. 

 

Multiple alignments allow analysis of a number of sequences at once for conserved 

domains across protein families or groups of species.  The alignments vertically align 

the input sequences in such a way as to preserve an individual sequence’s residues, as 

well as taking into account differences accumulated through evolution, by the use of gap 

insertions.  These can reveal possible functional and structural motifs indicative of a 

particular type of protein (Attwood and Parry-Smith, 1999).  The AA sequence of the 

candidate ORFs or the published characterised proteins were input into ClustalW2, 

producing an .aln file which was viewed as a multiple alignment in GeneDoc.  The 

results from ClustalW2 also provided the values of percentage identity between 

candidates that is identical AAs and known pentose sugar utilisation AA sequences. 

 

Radial trees allow analysis of selected sequences in comparison to one another, 

providing inference of evolutionary history.  Such ancestral relationships can be inferred 

by the ‘clustering’ in the tree and the number of changes in AAs can be inferred by the 

branch length (Attwood and Parry-Smith, 1999).  The AA sequence of the candidate 

proteins or the published characterised proteins were input into ClustalW2 producing a 

.nxs file, which was then run in MrBayes (Huelsenbeck and Ronquist, 2001), in order to 

obtain a Bayesian inference of phylogeny, providing a confidence level to the topology 

and accuracy of how the radial tree was built.  A .tre file was produced from MrBayes 

which was viewed TreeView program. 

 

The Hidden Markov Model (HMM) can be used to predict and model membrane α 

helices in terms of location and orientation.  When tested on datasets of proteins with 
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known topology HMM has an accuracy of 97-98% (Krogh et al., 2001).  The model 

works on a number of known parameters: transmembrane alpha helices have long 

stretches of hydrophobic AAs, the orientation can be assumed because it is known that 

arginine and lysine, positive charged amino acids, are mainly found on the cytoplasmic 

side of a membrane and thus in this way the AA loops found on either side of a 

membrane can be differentiated (Sonnhammer et al., 1998).  All sections of the 

transmembrane protein are predicted based on the probability score. Some sections 

show potential qualities of one or more of the sections making up a transmembrane 

protein, but the final prediction is based on which has the highest probability score.  AA 

sequences were input into the TMHMM server which produced a data output which was 

used to produce a two dimensional structure of putative transmembrane proteins using 

TMRPres2D (Spyropoulos et al., 2004).  

 

Bioinformatic analyses were carried out with the aim of proposing gene systems 

involved in arabinose, xylose and xylan utilisation in C..beijerinckii.   
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4.2 Pentose sugar utilisation in bacteria 

The known pathway of pentose sugar metabolism is shown in Figure 4-1 (Bettiga et al., 

2008).  The breakdown of xylan is achieved naturally by two groups of enzymes of the 

glycosidase family.  These are endo 1,4-xylanase (European Community (EC) 3.2.1.8), 

which randomly cleave the backbone into short oligomers and β-xylosidase (EC 

3.2.1.37), which are exo-acting, hydrolysing the small oligomers into single xylose 

units, as shown in Figure 4-2 (Shallom and Shoham, 2003, Saha, 2003, Perez et al., 

2002, Wong et al., 1988).  

 

Based on this a basic genome search was conducted to find candidate genes for 

arabinose, xylose and xylan utilisation in C..beijerinckii and a candidate gene system 

was identified for each pentose sugars utilisation (Figure 4-3 & Figure 4-4) and xylan 

utilisation (Figure 4-5). 

 

Various bioinformatic analyses were performed on each individual ORF within the 

candidate gene systems to assess the potential identities further and to provide more 

evidence of the likely function. The results of those analyses are presented here. 
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Figure 4-1: The metabolism of Pentose sugars by bacteria 

Pentose sugars are transported within the cell then metabolised by this pathway in 

bacteria. AraA- L-arabinose isomerase, AraB- L-ribulokinase, AraD-L-Ribulose 

5-phosphate 4-epimerase, XylA- D-xylose isomerase, XylB- D-xylulokinase 

  

 

Figure 4-2: Enzymes involved in xylan hydrolysis 

(A) shows the action of endoxylanases on xylan backbone and (B) shows the action of 

exo-acting β xylosidases. Diagram taken from Goldman, (2009).  
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Figure 4-3: The candidate arabinose utilisation gene system in C..beijerinckii 

This is a candidate gene system for arabinose utilisation proposed after a genomic search, see text for details. Numbers above candidate 

genes denote the locus tag. The labels given to each ORF remain putative and are the labels applied in the genomic database.  tktB – 

Transketolase, talB – Transaldolase, araD – Ribulose 5-phosphate 4-epimerase, araR – Arabinose transcriptional repressor, araA – 

Arabinose isomerase, ABC – ABC transporter related. 

 

 

 

 

xylF xylG xylH xylA xylB ROK talB tktB

0 1000

bp

2380 23822381 23842383 2385 2386 2387

 

Figure 4-4: The candidate xylose utilisation gene system of C..beijerinckii 

xylF – Xylose binding protein, xylG - ATPase, xylH – Permease, xylA – Xylose isomerase, xylB – Xylulokinase, ROK – ROK family, 

talB – Transaldolase, tktB – Transketolase.  Numbers above denote locus tag. 
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Figure 4-5: The candidate xylan gene system of C. beijerinckii  

CBEI3038 – Membrane zinc metallopeptidase, CBEI3038 – Fructose- 1,6 bisphosphate aldolase, CBEI3040 – Hypothetical protein, 

CBEI3041(xynA) – Endo 1,4-β-xylanase, CBEI3042 – CBEI3044 Hypothetical protein, CBEI3045 – Methyl-accepting chemotaxis 

protein, CBEI3046- NADPH- dependent FMN reductase, CBEI3047 (xynB) – Xylan 1,4- β-xylosidase, CBEI3048 – Pseudogene, 

CBEI3049 – ABC transporter, CBEI3050 – Response regulator receiver protein. The genes are annotated with their putative identity and 

are not drawn to scale. 
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4.3 Arabinose Utilisation Genes 

araABD are key genes associated with the use of arabinose in a number of prokaryotes 

(Sa-Nogueira and de Lencastre, 1989, Kawaguchi et al., 2009, Lee et al., 1986, Lin et 

al., 1985b) and function sequentially to catabolise arabinose into ribulose, ribulose 5-

phosphate and xylulose 5-phosphate, respectively (Figure 4-1).  The latter is then fed 

into the pentose phosphate pathway.  Candidate genes for arabinose utilisation were 

identified from a genome search, ORF CBEI4452, 4455 and 4457 were identified as 

putative araBDA genes, respectively. Further bioinformatics analyses as already 

detailed were applied to provide more evidence for the likely function.  

 



Chapter 4: In silico Analysis for Genes Involved in Pentose Sugar Utilisation  

93 

 

 

4.3.1 L- arabinose isomerase (araA)  

The AA sequence of the candidate AraA of C..beijerinckii and of published 

characterised AraA sequences, were used to assess the percentage of sequence identity 

and to construct a radial tree. Analysis of published characterised AraA sequences and 

the AA sequence of CBEI4457 (Table 4-1) revealed the most sequence similarity to 

AraA of Alicyclobacillus acidocaldarius (66% identity) and the least identity with 

Thermoanaerobacter mathranii (26%). The radial tree reflected the results of Table 4-1.  

CBEI4457 was clustered amongst the AraA sequences with 60% or more sequence 

identity.  The clustering and distribution of sequences did not seem to be subject to any 

particular feature, Gram identity, a high or low genome GC content or the AA sequence 

length (Figure 4-6).   

 

 

A multiple alignment of characterised AraA AA sequences of both Gram negative and 

positive species and CBEI4457, was then constructed (Figure 4-7), large blocks of 

conserved residues were evident between all the sequences analysed (black shading), 

suggestive of structurally and functionally important regions, which have been 

conserved across both the Gram negative and positive species. Indeed, AA residues 

associated with AraA function in E. coli consisting of two histidine (His) and two 

glutamine (Glu) residues, thought to be a part of the AraA active site were also present 

in the other the AraA sequences and CBEI4457 (Manjasetty and Chance, 2006). In 

CBEI4457 they were present at 440 and 342 (His) and 300 and 325 (Glu). In 

comparison to positions 450, 350, 306 and 333, respectively in E..coli.   
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Table 4-1: The sequence identity of CBEI4457 with published characterised AraA 

proteins 

Organism Identity (%) 

Alicyclobacillus acidocaldarius 66 

Bacillus stearothermophilus 65 

Geobacillus thermodenitrificans 65 

Thermus sp.IM6501 65 

Bacillus halodurans 62 

Bacillus licheniformis 62 

Bacillus subtilis 60 

Thermotoga maritima 56 

Thermotoga neapolitana 56 

Escherichia coli 52 

Lactobacillus plantarum 52 

Salmonella typhimurium 52 

Mycobacterium smegmatis 51 

Thermoanaerobacter mathranii 26 
Identity is the percentage of identical shared AA between CBEI4457 and the AraA sequences in the table 
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Figure 4-6: A radial tree of published characterised AraA sequences and 

CBEI4457, the candidate araA of C..beijerinckii 

The AA sequences of AraA proteins and CBEI4457, the AraA candidate of 

C..beijerinckii were used to construct a phylogram, see text for details. Scale 

denotes 0.1 amino acid substitutions per site. 

A. acidocaldarius (Lee et al., 2005), B. licheniformis (Prabhu et al., 2008),  

B..halodurans (Rhimi and Bejar, 2006), B stearothermophilus (Rhimi and Bejar, 

2006), B. subtilis (Sa-Nogueira and de Lencastre, 1989), E. coli (Lee et al., 1986), 

G. thermodentrificans (Kim and Oh, 2005), L. plantarum (Chouayekh et al., 

2007), M. smegmatis (Takata et al., 2007), S. typhimurium (Lin et al., 1985c), 

T..mathranii (Jorgensen et al., 2004), T. maritima (Lee et al., 2004), 

T..neapolitana (Kim et al., 2002), Thermus sp. IM6501(Kim et al., 2003). 
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Figure 4-7: Multiple alignment of a selection of published AraA proteins and 

CBEI4457 

The AA sequences of AraA proteins and C..beijerinckii candidate were used to 

construct a multiple alignment, see text for details. Black shading denotes 100% 

sequence similarity (similarity shared by all sequences in the multiple alignment 

at the shaded point), Grey shading with white text- 80%, grey shading with 

black text – 60% sequence similarity. Asterisks indicate the conserved His and 

Glu residues thought to be associated with the active site. In E.coli the positions 

are 450, 350, 306 and 333, respectively.  In CBEI4457 they were present at 440 

and 342 and 300 and 325 AAs, respectively (Manjasetty & Chance, 2006). 

bli- B. licheniformis (Prabhu et al., 2008), cbei- C..beijerinckii (locus tag 

CBEI4457) eco- E. coli (Lee et al., 1986), gth- G. thermodentrificans (Kim and 

Oh, 2005), sty- S. typhimurium (Lin et al., 1985b). 
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4.3.2 L-ribulokinase (araB) 

The second protein involved in arabinose metabolism, AraB was then investigated. 

CBEI4452 shared most sequence identity with AraB of Cornynebacterium glutamicum 

(Table 4-2).  A radial tree of characterised AraB sequences and the candidate AraB of 

C..beijerinckii was constructed using the AA sequences (Figure 4-8). This reflected the 

sequence identity shared between CBEI4452 and that of the AraB of C. glutamicum and 

the differences between this pair and the other AraB sequences in Table 4-2. The extent 

of sequence similarity, between this pair of sequences is highly likely based on the even 

distribution of similarity throughout the sequences, as shown in an alignment (Figure 

4-9).  

 

 

Table 4-2: The sequence identity of CBEI4452 with published characterised AraB 

proteins 

Organism Identity (%) 

Corynebacterium glutamican 48 

Bacillus stearothermophilus 15 

Bacillus subtilis 13 

Escherichia coli 11 

Salmonella enterica 8 
Identity is the percentage of identical shared AA between CBEI4452 and the AraB sequences in the table 
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Figure 4-8: A radial tree of characterised AraB proteins and CBEI4452, 

the AraB candidate of C..beijerinckii 

The AA sequences of characterised AraB proteins and the putative AraB of 

C..beijerinckii were used to construct a phylogram, see text for details. Scale 

denotes 0.1 amino acid substitutions per site 

B. subtilis (Sa-Nogueira and de Lencastre, 1989), C..beijerinckii (locus tag 

CBEI4452), E. coli (Lee et al., 1986), S. enterica (Lin et al., 1985b), 

C..glutamicum (Kawaguchi et al., 2009)  
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Figure 4-9: Alignment AraB of C. glutamicum with the putative AraB, 

CBEI4452 

An alignment was constructed using the AA sequence of a confirmed AraB protein 

from C. glutamicum and the putative AraB of C..beijerinckii, see text for details.  

Sequence similarity between the two sequences is shaded in black.  cbei- 

C..beijerinckii (locus tag CBEI4452), cgl- C. glutamicum (Kawaguchi et al., 2009). 
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4.3.3 L-ribulose 5-phosphate 4-epimerase (araD) 

The final protein involved in arabinose utilisation prior to the pentose phosphate 

pathway, AraD (putatively CBEI4455) was then compared to characterised AraD 

sequences (Table 4-3). The greatest sequence similarity was apparent between AraD of 

E. coli and CBEI4455.  The radial tree highlighted Gram identity specific similarities 

between the sequences, with sequences of Gram negative organisms clustered together 

and Gram positive sequences, with the exception of AraD of C. glutamican, suggesting 

less sequence similarity to the others. The extent and presence of similarity between 

AraD of E. coli and CBEI4455, was investigated by an alignment (Figure 4-11).  An 

even distribution of similarity was evident throughout the two sequences, suggestive of 

common or related functions between the two sequences being highly likely.  

 

Table 4-3: The sequence identity of CBEI4455 with published characterised AraD 

proteins 

Organism Identity (%) 

Escherichia coli  62 

Bacillus subtilis 56 

Salmonella enterica 53 

Corynebacterium glutamican 33 
Identity is the percentage of identical shared AA between CBEI4455 and the AraD sequences in the table 



Chapter 4: In silico Analysis for Genes Involved in Pentose Sugar Utilisation  

101 

 

 

 

 

 

 

Figure 4-10: A radial tree of characterised AraD proteins and the putative 

AraD of C..beijerinckii, CBEI4455 

The AA sequences of characterised AraD proteins were used alongside the 

putative AraD of C..beijerinckii to construct a phylogram, see text for details. 

Scale denotes 0.1 amino acid substitutions per site. 

B. subtilis (Sa-Nogueira and de Lencastre, 1989), C..beijerinckii (locus tag 

CBEI4455), C. glutamicum (Kawaguchi et al., 2009), E. coli (Lee et al., 1986), 

S..enterica (Lin et al., 1985a) 

 

 

 

 

Figure 4-11: A multiple alignment of AraD of E. coli with CBEI4455, the 

putative AraD candidate of C..beijerinckii 

A multiple alignment was constructed using the AA sequences of a confirmed 

AraD protein of E. coli and the putative AraD of C..beijerinckii, see text for 

details.  The sequence similarity between the two is shaded in black.  cbei- 

C..beijerinckii (locus tag CBEI4455), eco- E. coli  (Lee et al., 1986). 
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4.4 Xylose Utilisation Genes 

Candidates for the genes involved xylose utilisation were identified from a genome 

search as previously described (Chapter 2). ORFs CBEI2383 and CBEI2384 were 

identified as putative xylAB genes, respectively.  xylAB are key genes associated with 

the use of xylose in a number of other bacteria (Scheler et al., 1991, Schmiedel et al., 

1997, Wilhelm and Hollenberg, 1984, Lawlis et al., 1984, Feldmann et al., 1992, 

Lokman et al., 1991, Erlandson et al., 2000, Wong et al., 1991, Takeda et al., 1998, 

Erbeznik et al., 1998). XylAB work sequentially to convert xylose into xylulose and 

xylulose 5-phosphate, respectively and xylulose 5-phosphate then enters the pentose 

phosphate pathway.   
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4.4.1 Xylose isomerase (xylA) 

The candidate XylA for C. beijerinckii, CBEI2383, was firstly compared to published 

characterised XylA sequences to investigate the level of sequence identity. CBEI2383 

shared 71% identity with three species of Thermoanaerobacterium (Table 4-4). A radial 

tree constructed using the AA sequences of characterised XylA proteins and the 

CBEI2383 (Figure 4-12) revealed two groups of XylA sequences.  A reason for the two 

distinct clusters of groups these was then sought. What was evident was there were 

differences in the sequence length and the genomic G/C content of the organism.  One 

group consisted of organisms with a lower G/C content and generally longer AA 

sequence length, this included CBEI2383 and XylA of bacilli, thermoanaerobacteriae, 

lactobacilli and others (AA length of 435-465).  Though E. coli was an exception in this 

group (333AA). These sequences shared 48-72% identity with CBEI2383. The second 

group contained XylA sequences from G/C rich organisms, including streptomycetes, 

Actinoplanes, Arthrobacter and Thermus species and had an AA length of 387-395AA.  

The members of this group shared 15-22% sequence identity with CBEI2383.  

 

Residues involved in the activity of XylA, have been identified in L. brevis (Bor et al., 

1992).  These consist of two His residues involved in catalytic activity and metal 

binding, respectively, and a ‘WGGREG’ motif is involved in xylose binding. This 

revealed the presence of the two residues and motif residues present in all the XylA 

sequences and CBEI2383, as shown on a multiple alignment constructed of a selection 

of XylA sequences (Figure 4-13). The two residues and the motif in the C..beijerinckii 

protein were present at the same or at residue positions of close proximity as that of L. 

brevis, (at 103AA, 273AA and 190-195AA, for each respectively).  In C..beijerinckii 

the two his residues were at 101AA, 271AA and the WGGREG motif at 188-193AA. 
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Table 4-4: The sequence identity of CBEI2383 with published characterised XylA 

proteins 

Organism Identity (%) 

Thermoanaerobacter pseudethanolicus 71 

Thermoanaerobacterium saccharolyticum 71 

Thermoanaerobacterium thermosaccharolyticum 71 

Bacillus sp. LW2 68 

Thermoanaerobacterium thermosulfurogenes 68 

Bacillus megaterium 67 

Bacillus subtilis 66 

Thermotoga neapolitana 66 

Bacillus licheniformis 63 

Staphylococcus xylosus 63 

Tetrageneococcus halophilus 58 

Lactococcus lactis 54 

Lactobacillus brevis 53 

Lactobacillus pentosus 52 

Salmonella enterica 50 

Klebsiella pneumoniae 49 

Escherichia coli 48 

Thermus thermophilus 22 

Actinoplanes sp ATTC 31351 20 

Actinoplanes missouriensis 19 

Arthrobacter sp. NRRL B3728 18 

Streptomyces diastaticus 18 

Streptomyces olivaceoviridis 18 

Streptomyces rubiginosus 18 

Streptomyces chorchorusii 17 

Streptomyces murinus 17 

Streptomyces violaceusniger 17 

Streptomyces lividens 15 
Identity is the percentage of identical shared AA between CBEI2383 and the XylA sequences in the table 
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Figure 4-12: A radial tree of characterised XylA proteins and candidate XylA of  

C..beijerinckii 

The AA sequences of confirmed XylA proteins and that of the C..beijerinckii XylA 

candidate were used to construct a radial tree, see text for details. Scale denotes 0.1 

amino acid substitutions per site. 

Actinoplanes sp. ATCC 31351 (Saari et al., 1987), A. missouriensis (Amore and 

Hollenberg, 1989), Arthrobacter sp NRRL B3728 (Loviny-Anderton et al., 1991), 

Bacillus.sp. LW2 (Liao et al., 1995), B. licheniformis (Scheler et al., 1991), 

B..megaterium (Schmiedel et al., 1997), B. subtilis (Wilhelm and Hollenberg, 1984), 

C..beijerinckii CBEI2383, E. coli (Lawlis et al., 1984), K. pneumoniae (Feldmann et 

al., 1992), L. brevis (Bor et al., 1992), L. pentosus (Lokman et al., 1991), L. lactis 

(Erlandson et al., 2000), S..typhimurium (Shamanna and Sanderson, 1979), S. xylosus 

(Sizemore et al., 1992), S..albus (griseus) (Sanchez and Smiley, 1975), S. chibaensis J-

59 (chorchorusii)  (Joo et al., 2005), S. diastaticus (Wang et al., 1994), S. rochei S-

41(griseofuscus)  (Kikuchi et al., 1990), S. lividens (Heo et al., 2008), S. murinus 

(Rasmussen et al., 1994), S..olivaceoviridis E-86 (Kaneko et al., 2001), S. rubiginosus 

(Wong et al., 1991), S..violaceusniger (Drocourt et al., 1988), T. halophilus (Takeda et 

al., 1998), T..pseudethanolicus (Erbeznik et al., 1998), T. thermosaccharolyticum 

(Meaden et al., 1994), T..thermosulfurogenes (Haldrup et al., 1998), T. 

saccharolyticum (Lee et al., 1993), T..neapolitana (Vieille et al., 1995), T. 

thermophilus  (Dekker et al., 1991). 
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Figure 4-13: A Multiple alignment of XylA proteins and the XylA candidate of 

C..beijerinckii 

A multiple alignment was constructed using AA sequences of a selection of confirmed 

XylA proteins, most similar in terms of sequence similarity from BLAST analysis to the 

candidate XylA of C..beijerinckii (CBEI2383), see text for details. Black shading 

denotes 100% sequence similarity (similarity shared by all sequences in the multiple 

alignment at the shaded point), Grey shading with white text- 80%, grey shading 

with black text – 60% sequence similarity.  The presence of conserved residues 

indicative of XylA proteins, which have been  identified in XylA of L. brevis (Bor et 

al., 1992).  These are indicated by the asterisks above the sequences and include an H 

residue thought to be involved in catalytic activity (103AA), ‘WGGREG’ motif 

involved in xylose binding (190-195AA), and an H residue involved in metal binding at 

the active site (273AA). 

bli- B. licheniformis (Scheler et al., 1991), cbei-  C..beijerinckii (CBEI2383), kpn- 

K..pneumoniae (Feldmann et al., 1992), lbr- L. brevis (Bor et al., 1992), sxy- S. xylosus 

(Sizemore et al., 1992), tha- T. halophilus (Takeda et al., 1998), tne- T. neapolitana 

(Vieille et al., 1995), tth- T. thermophilus  (Dekker et al., 1991) 
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4.4.2 Xylulokinase (xylB) 

The final protein involved in xylose utilisation prior to the pentose phosphate pathway, 

XylB (putatively CBEI2384) was then compared to characterised XylB sequences 

(Table 4-5). T. pseudethanolicus had the highest sequence identity with CBEI2384 of 

50%. A radial tree was then constructed to compare the all the AA sequences 

collectively with one and another. The tree reflected the results of Table 4-5 as 

CBEI2384 was clustered with XylB of T. pseudethanolicus. Distinct clusters of XylB 

were evident dependent upon the Gram identity of the organism the XylB belonged to 

(Figure 4-14).  One cluster contained XylB sequences of Gram negative organisms and 

another of XylB sequences of Gram positive organisms (with the exception of the XylB 

of L. brevis, T. pseudethanolicus and CBEI2384). An alignment of the most similar 

sequence to CBEI2384 and the XylB of T. pseudethanolicus (Figure 4-15) highlighted 

the level of sequence similarity between the two sequences. 
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Table 4-5: The sequence identity of CBEI2384 with published characterised XylB 

proteins 

Organism Identity (%) 

Thermoanaerobacter pseudethanolicus 50 

Lactobacillus pentosus 39 

Bacillus subtilis 38 

Tetrageneococcus halophilus 38 

Lactococcus lactis 37 

Staphylococcus xylosus 37 

Escherichia coli 35 

Klebsiella pneumoniae 33 

Bacillus megaterium 32 

Bacillus licheniformis 29 

Streptomyces rubiginosus 24 

Streptomyces lividens 21 

Lactobacillus brevis 6 
Identity is the percentage of identical shared AA between CBEI2384 and the XylB sequences in the table 
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Figure 4-14: A radial tree of characterised XylB proteins with the XylB candidate 

of C..beijerinckii 

A radial tree was constructed using the AA sequences of confirmed XylB proteins and 

the XylB candidate of C..beijerinckii, see text for details. Scale denotes 0.1 amino acid 

substitutions per site. 

B. licheniformis (Scheler et al., 1991), B. megaterium (Schmiedel et al., 1997), B. 

subtilis (Wilhelm and Hollenberg, 1984), C..beijerinckii CBEI2384, E. coli (Lawlis et 

al., 1984), K..pneumoniae (Feldmann et al., 1992), L. pentosus (Lokman et al., 1991), 

L. lactis (Erlandson et al., 2000), S. typhimurium (Shamanna and Sanderson, 1979), S. 

xylosus (Sizemore et al., 1992), S. rubiginosus (Wong et al., 1991), T. halophilus 

(Takeda et al., 1998). 
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Figure 4-15: An alignment of the XylB of T. pseudethanolicus with the 

C..beijerinckii XylB candidate 

A multiple alignment was constructed using the AA sequences of the putative XylB of 

C..beijerinckii and the XylB T. pseudethanolicus proteins. Black shading denotes 100% 

sequence similarity between the two sequences.  cbei- C..beijerinckii CBEI2384, tps- 

Thermoanaerobacter pseudethanolicus (Erbeznik et al., 1998) 
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4.5 Candidate Xylanases and Xylosidases in C..beijerinckii 

 

As previously described there are two types of enzymes which can hydrolyse xylans, 

xylanase and xylosidase.   Xylanase and xylosidase candidates were identified in the 

genome and are separated by five putatively unrelated genes (Figure 4-5). The deduced 

AA sequences of the encoded enzymes were used in further analyses. First of all a radial 

tree was created of the AA sequences of the putative enzymes in C..beijerinckii and 

known xylanase (XynA) and xylosidase (XynB) sequences of various organisms 

(Figure 4-16).  The tree shows four clusters of sequences; two groups for XynB 

enzymes and two groups of XynA enzymes.  CBEI3041, the putative xylanase of 

C..beijerinckii, is found clustered with XynA sequences with species of bacilli and had 

the most sequence similarity to the xylanase of B. subtilis sharing 72% identity (Table 

4-6). Next, to observe sequence similarity further, a multiple alignment of sequences 

was constructed from the AA sequences of CBEI3041 and a very high level of sequence 

identity was observed between these three sequences (Figure 4-17).  For CBEI3047, the 

putative xylosidase, was clustered with the XynB sequence of C. saccholyticus sharing 

26% identity (Table 4-7).  There is a substantial difference in the length of CBEI3047 

and other XynB sequences.  All of the characterised xylosidases are around 500 AA in 

length with the exception of Prievotella ruminicola which contains 319 AA in length, 

while CBEI3047 is much larger at 841 AA (Figure 4-18).  A considerable number of 

gap insertions were required to accommodate the length differences between CBEI3047 

and xylosidase of C. saccholyticus.   The CBEI3047 appears to have extra N-terminal 

domain.  Upon BLAST analysis there appeared to be an AraC-like ligand binding 

domain between 11-146 AAs and a XynB domain from 351-836, within the latter was a 

family 39 glycosyl hydrolase catalytic core which is associated with β-xylosidases 

(Czjzek et al., 2004). There were small regions of identity shared between all three 

sequences, but the extent of gap insertions makes it difficult to assess if these enzymes 

show any meaningful homology. 
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Figure 4-16: A radial tree of characterised XynAB proteins with the XynAB 

candidates of C..beijerinckii 

A radial tree was constructed using the AA sequences of confirmed XynAB proteins 

and the XynAB candidates of C..beijerinckii, see text for details. Scale denotes 0.1 

amino acid substitutions per site. 

Bacillus pumilus (X00660/ X05793); Bacillus subtilis (Z34519/ U66480); 

Caldicellulosiruptor saccholyticus (AF005383); CBEI- Clostridium beijerinckii 

(number denotes the locus tag); Prevotella ruminicola (Z49241). Accession numbers 

are quoted in parenthesis.  

 

Table 4-6: The sequence identity of CBEI3041 with published characterised XynA 

proteins 

Organism Identity (%) 

Bacillus subtilis 72 

Bacillus pumilus 43 

Prevotella ruminicola 9 

Caldicellulosiruptor saccholyticus 6 
Identity is the percentage of identical shared AA between CBEI3041 and the XynA sequences in the table 

Table 4-7: The sequence identity of CBEI3047 with published characterised XynB 

proteins 

Organism Identity (%) 

Caldicellulosiruptor saccholyticus  26 

Bacillus subtilis 6 

Bacillus pumilus 6 

Prevotella ruminicola 3 
Identity is the percentage of identical shared AA between CBEI3047 and the XynB sequences in the table 
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Figure 4-17: An alignment of a characterised xylanase with the C..beijerinckii 

candidate  

The AA sequences of characterised xylanases with the greatest sequence identity with 

the candidate XynA gene of C..beijerinckii (CBEI3041) and the xylanase of B. subtilis 

were used to construct a multiple alignment using ClustalW2 and GeneDoc. Black 

shading indicates AA identity shared between two of the sequences. As can be 

observed, a substantial level of identity exists between all three sequences indicative of 

the same or similar function. * denotes positions of residues associated with the active 

site function. ♦ denotes positions likely to be involved in substrate binding (Wakarchuk 

et al., 1994).  BSU- B. subtilis (accession number: Z34519), CBEI3041- C..beijerinckii 

CBEI3041 

 

 

 

 

Figure 4-18: An alignment of a characterised xylosidase with the C..beijerinckii 

candidate  

The AA sequences of a characterised xylosidase with the greatest sequence identity with 

the candidate XynB gene of C..beijerinckii (CBEI3047) was used to construct an 

alignment using ClustalW2 and GeneDoc. Black shading indicates AA identity shared 

across the sequences.  CBEI3047- C..beijerinckii CBEI3047, CSA- 

Caldicellulosiruptor saccharolyticus (accession number: AF005383) 
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4.6 Transporters 

A genome search identified two candidate ABC transporter ORFs for arabinose 

(CBEI4448-50 and CBEI4459-61) and one for xylose (CBEI2380-82). 

 

ABC transporters are composed of three main units which are coded for on separate 

genes (Schneider, 2001).  There is a substrate-binding protein, found on the outside of 

the membrane which has a role in binding and presenting the substrate to a 

transmembrane protein, or permease, which is coupled to the third unit, the ATP-

binding protein.  When the substrate is presented to the permease, ATP is hydrolysed by 

the ATP-binding protein and this facilitates the translocation of the substrate across the 

membrane to the inside of the cell.   

 

The AA sequences of candidate ABC transporter components of pentose sugars in 

C..beijerinckii and published characterised ABC transporter proteins were used to 

construct a radial tree (Figure 4-19). Three distinct clusters of similarity were apparent 

for each ABC transporter component, one for solute-binding proteins, one for ATPases 

and one for permeases. For the putative arabinose ABC transporter components, there 

were two candidate groups, CBEI4448-4450 and CBEI4459-61. CBEI4448, 4459 and 

4460 showed most similarity with permeases, CBEI4448 had the most percentage 

similarity to xylose binding protein (XylF) of T. pseudethanolicus and the latter two 

with B. subtilis ribose binding protein (RbsC) (Table 4-8). CBEI4449 and 4461 with 

ATPases, having most similarity to xylose ATPase (XylG) of T. pseudethanolicus 

(Table 4-8); and CBEI4450 with substrate binding proteins (which had most sequence 

similarity to XylF of E. coli). The results suggest that only of one set of genes, encode 

all the components necessary for an arabinose ABC transporter, from ORF CBEI4448-

50; and the other has an incomplete set, CBEI4459-61 encoding two candidate 

permeases but lacking a candidate substrate binding protein.  

 

A candidate for each component a xylose ABC transporter was identified.  CBEI2380 

has most similarity to solute-binding proteins, CBEI2381 to ATPases and CBEI2382 to 

permeases, all three had most sequence identity with the AA sequences of XylF, XylG 

and xylose permease (XylH) of T. pseudethanolicus respectively (Table 4-8).   
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Figure 4-19: A radial tree of characterised pentose sugar ABC transporter 

proteins and candidates of C..beijerinckii putatively involved in pentose sugar 

transport  

The AA sequences of candidate and confirmed ABC transporters were used to construct 

a radial tree. Scale denotes 0.1 amino acid substitutions per site. 

Candidate AA sequences of C..beijerinckii are labelled with locus tag CBEIXXXX, 

published characterised sequences are labelled with the organism and the protein.  

AraF- arabinose-binding protein, RbsB- Ribose-binding protein, XylF- xylose-binding 

protein, AraG/XylG- ATPase, AraH/XylH- permease. E. coli K12 (Horazdovsky and 

Hogg, 1989, Sumiya and Henderson, 1989, Groarke et al., 1983), T. ethanolicus ATCC 

33223 (Erbeznik et al., 2004). 
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Table 4-8: Sequence identities of pentose sugar ABC transporters with the putative 

ABC transporters of C. beijerinckii 

Sequence 
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E
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4
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Escherichia coli (AraF) 10 13 2 6 4 12 4 7 8 

Escherichia coli (AraG) 7 39 8 3 39 4 7 7 37 

Escherichia coli (AraH) 2 4 32 32 4 3 25 25 7 

Thermoanaerobacter pseudethanolicus 

(XylF) 
62 7 2 8 12 34 2 2 7 

Thermoanaerobacter pseudethanolicus 

(XylG) 

3 53 10 4 54 7 7 9 39 

Thermoanaerobacter pseudethanolicus 

(XylH) 

5 9 47 40 4 4 24 24 7 

Bacillus subtilis (RbsA) 7 43 8 6 44 9 4 3 37 

Bacillus subtilis (RbsB) 25 7 4 3 9 18 2 0 11 

Bacillus subtilis (RbsC) 5 11 37 35 8 4 31 34 6 

Escherichia coli (RbsB) 3 1 2 2 1 2 5 2 1 

Escherichia coli (XylF) 61 6 2 7 11 37 3 4 8 

CBEI2380 - 6 2 5 6 35 2 2 8 

CBEI2381 6 - 5 4 52 6 1 6 38 

CBEI2382 2 5 - 36 3 3 27 25 5 

CBEI4448 5 4 36 - 6 3 27 23 8 

CBEI4449 6 52 3 6 - 7 1 10 40 
CBEI4450 35 6 3 3 7 - 1 2 5 

CBEI4459 2 1 27 27 1 1 - 22 5 

CBEI4460 2 6 25 23 10 2 22 - 2 

CBEI4461 8 38 5 8 40 5 5 2 - 
Identity is the percentage of identical shared AA between putative ABC transporters and published 

characterised ABC transporter sequences.  Red bold – denotes the highest sequence identity of the 

putative ABC transporter proteins of C. beijerinckii with published characterised ABC transporter 

proteins.  Black bold – denotes the highest identity share amongst the putative ABC transporters of C. 

beijerinckii.  Ara – Arabinose, Xyl – Xylose Rbs – Ribose. Suffix: B/F- Sugar binding protein; A/G- 

ATPase,C/H- Permease. CBEI- C. beijerinckii (suffix number denotes the locus tag)   

 

The binding site of ATP on ATP-binding proteins is highly conserved across both 

prokaryotes and eukaryotes.  Known as the Walker motif, it provides a cleft in which 

the ATP is positioned and is hydrolysed.  The cleft is made by two domains A and B 

which are linked by a helix of approximately one hundred amino acids containing an 

ABC signature (Fath and Kolter, 1993, Schneider, 2001). The Walker motifs and ABC 

signatures of AraG of E. coli and XylG of T. ethanolicus share a considerable level of 

sequence similarity at similar AA sequence positions with putative AraG and XylG 

sequences of C..beijerinckii (Figure 4-20). However the motifs are not perfectly 

conserved. Some AAs are substituted with AAs of similar properties and few similar 

properties. 
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Figure 4-20: Proposed Walker motifs and ABC signatures of C..beijerinckii 

candidates in comparison with characterised AraG of  E.coli 

The AA sequences of candidates and AraG proteins were used to construct a 

multiple alignment. The predicted Walker motifs and ABC signatures are marked. 

Residues which are the same or have the same AA properties are highlighted in 

black and residue differences with different AA properties are highlighted in grey. 

AraG- E. coli K12 AraG sequence (Horazdovsky and Hogg, 1989),  

CBEI4449/4461- Locus tag numbers of AraG candidates of C..beijerinckii, 

CBEI2381- XylG candidate of C..beijerinckii, XylG – XylG of T. ethanolicus 

(Erbeznik et al., 1998).  

 

As described earlier the Hidden Markov Model (HMM) can be used to predict the 

structure of membrane-bound proteins, based on the AA sequences.  Within an ABC 

transporter group there was only one transmembrane protein, for arabinose, AraH and 

xylose, XylH. TMHMM was used to analyse for and predict the helical structure of the 

putative AraH and XylH of C..beijerinckii.  Using the results of the TMHMM were 

presented on sequence alignments, to compare the sequence positions of the 

transmembrane regions, then TMRPres2D program was used to produce a two-

dimensional model of the structures.  The other putative ABC transporter proteins, 

AraFG and XylFG, were also analysed but no helical structure was observed using the 

model in these sequences (results not shown).  What was apparent was there appears to 

be an additional >50 AAs on the sequence of CBEI4448 (Figure 4-21) in comparison to 

the other sequences analysed. When comparing the sequences of the alignment with the 

two dimensional model (Figure 4-22), there was a noticeably larger extracellular region 

from 124-180 AA and therefore it would appear there is one less transmembrane 

Walker A 

ABC Signature Walker B 

Walker A 

ABC Signature Walker B 
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spanning domain in this region in comparison to the AraH of E. coli. CBEI4459 also 

had one less transmembrane spanning helix.  Of the three putative AraH sequences of 

C..beijerinckii, CBEI4460, had the same number of transmembrane spanning domains 

as the AraH of E. coli (Figure 4-22). 

 

 

 

 

Figure 4-21: A multiple alignment of a characterised AraH sequence and the 

candidate AraH sequences of C. beijerinckii 

A multiple alignment was produced based on the results of TMHMM to compare the 

transmembrane structure of the AraH of E. coli and putative AraH proteins of 

C..beijerinckii. The putative transmembrane regions (�) the cytoplasmic regions (�); 

extracellular regions (�).  CBEIXXXX denotes the C. beijerinckii candidate sequence 

locus tag; E.coli – E. coli AraH (Horazdovsky and Hogg, 1989) 
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Figure 4-22: Modelling of transmembrane protein AraH proteins and C..beijerinckii candidates 
The hidden Markov model was applied to all candidate ABC transporter associated AA sequences of C..beijerinckii and 

compared to the published characterised AraH of E. coli.  TMRPres2D was used to produce a 2D model of the structure.   

(A) E..coli K12 AraH (Horazdovsky and Hogg, 1989); (B) CBEI4448; (C) CBEI4459; (D) CBEI4460               

(A) 

(B) 

(C) 

(D) 
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Out of the three xylose ABC transporter candidates, CBEI2380-2382, only CBEI2382 

was predicted as being transmembrane protein. The predicted number of transmembrane 

helices of CBEI2382 was eleven in comparison to ten in XylH of T. pseudethanolicus 

(Figure 4-23& Figure 4-24), there appeared to be an extra transmembrane spanning 

region between the 328-348 AA region for CBEI2382 and an extra-long extracellular 

region for T. pseudethanolicus in the same area (Figure 4-23).  Both AA sequences 

were of a similar length (Figure 4-24).  

 

 
 

Figure 4-23: An alignment of a characterised XylH sequence and the candidate 

XylH sequence of C. beijerinckii 

An alignment was produced based on the results of TMHMM to compare the 

transmembrane structure of the XylH of T. pseudethanolicus and putative XylH protein 

of C..beijerinckii. The putative transmembrane regions (�) the cytoplasmic regions 

(�); extracellular regions (�).  CBEIXXXX denotes the C. beijerinckii candidate 

sequence locus tag; T. ethanol – T. pseudethanolicus XylH (Erbeznik et al., 2004) 
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Figure 4-24: Modelling and comparison of a known transmembrane protein and a 

C..beijerinckii candidate 

The hidden Markov model was used to predict the presence of transmembrane helices 

and then TMRPres2D was used to produce a 2D model of the structure of a confirmed 

XylH protein of T. ethanolicus and the XylH candidate of C..beijerinckii,  CBEI2382, 

using the AA sequences of each. (A) T. pseudethanolicus XylH (Erbeznik et al., 2004), 

(B) C..beijerinckii locus tag CBEI2382.  
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4.7 Regulation 

Regulation of pentose utilisation is distinct between Gram negative and Gram positive 

organisms, studied thus far.  The arabinose operon in Gram positive organisms is 

negatively regulated by the repressor AraR, binding to operator regions of the arabinose 

operon in the absence of arabinose, forming a loop in the DNA.  In the presence of 

arabinose, arabinose is thought to bind to araR causing a conformational change and 

thus preventing its binding to DNA (Franco et al., 2006).  In Gram negative organisms 

arabinose transcription regulator (AraC) functions as a activator/positive regulator and a 

repressor, in the absence of arabinose, blocking transcription of the arabinose operon by 

forming a DNA loop between operator and initiator sites.  The presence of arabinose 

stimulates transcription by binding to two initiator sites, therefore AraC behaves as a 

positive regulator (Kawaguchi et al., 2009).  

 

To predict a mechanism of regulation for arabinose and xylose utilisation in 

C..beijerinckii, the AA sequences of characterised pentose sugar utilisation gene 

regulators that act positively and/or negatively, were used to compare to the candidates 

of C..beijerinckii. The radial tree produced revealed three main clusters of similarity 

between the different pentose sugar regulatory genes, one for xylose repressor (XylR), 

another for AraC and XylS (xylose transcription regulator) and finally one for both 

arabinose repressor (AraR) and ribose regulator (RbsR) (Figure 4-25). Both CBEI4456 

and CBEI2385 showed the least similarity with AraC and XylS, a longer branch length 

was evident between the two.  The shorter branch length and clustering with AraR and 

RbsR demonstrated CBEI4456, is more likely to be AraR than AraC.  CBEI4456 shared 

the highest sequence identity of 40% (Table 4-9), with AraR of B. subtilis.  An 

alignment highlighted an extensive amount of sequence similarity between the two, 

therefore suggestive of a common or related function between these two proteins 

(Figure 4-25).  All DNA binding proteins carry a helix-turn-helix motif.  This has two 

helices, one for the interaction with DNA molecules and the other for stabilisation 

(Religa et al., 2007). Indeed, a putative DNA binding site (helix-turn helix motif) was 

identified from the BLAST analysis of CBEI4456 and is indicated in Figure 4-26.  

 

CBEI2385 had the greatest similarity to XylR sequences (Figure 4-25), it shared 28% 

sequence identity with the XylR sequences of B. subtilis, B. megaterium and T. 

halophilus (Table 4-10). The greatest similarity was observed with the XylR sequence 

of B. subtilis (46% sequence similarity), the sequence similarity was evenly distributed 
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throughout the sequences with some long regions of consecutive identical AAs or AAs 

with similar chemical properties being conserved (Figure 4-27). 

 

These results suggest a negative regulatory mechanism for the use of arabinose and 

xylose by C..beijerinckii. 
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Figure 4-25: Radial Tree of characterised pentose sugar repressors and the 

putative pentose repressors of C..beijerinckii 

The AA sequences of a number of proteins with functions confirmed in pentose 

sugar regulation were used along with candidates putatively involved in pentose 

sugar utilisation in C..beijerinckii, see text for details. Scale denotes 0.1 amino 

acid substitutions per site. 

AraC – arabinose regulator/activator, AraR- arabinose repressor, RbsR- ribose 

repressor, XylR- xylose repressor, XylS- xylose regulator/activator.  CBEIXXXX 

denotes the locus tag of C..beijerinckii. 

B. licheniformis (Scheler et al., 1991), B. megaterium (Rygus et al., 1991), 

B..subtilis AraR (Sa-Nogueira and Mota, 1997) RbsR (Woodson & Devine, 

1994), XylR (Kreuzer et al., 1989), C..glutamicum (Kawaguchi et al., 2009), E. 

coli AraC (Wallace et al., 1980) XylS (Song and Park, 1997), RbsR (Mauzy and 

Hermodson, 1992), L. pentosus (Lokman et al., 1991), S. enterica (Clarke et al., 

1982), S. xylosus (Sizemore et al., 1992), S. lividens (Heo et al., 2008), 

T..halophilus (Takeda et al., 1998). 

 



Chapter 4: In silico Analysis for Genes Involved in Pentose Sugar Utilisation  

125 

 

 

 

 

 

 

 

 

 

Table 4-9: The sequence identity of CBEI4456 with published characterised 

arabinose regulation proteins 

Organism Identity (%) 

Bacillus subtilis 55 

Escherichia coli (AraC) 48 

Salmonella enterica (AraC) 48 
Identity is the percentage of identical shared AA between CBEI3047 and the XynB sequences in the table 

 

 

 

Table 4-10: The sequence identity of CBEI2385 with published characterised 

xylose regulation proteins 

Organism Identity (%) 

Bacillus megaterium 59 

Tetragenococcus halophilus 59 

Staphylococcus xylosus 55 

Bacillus licheniformis 52 

Lactobacillus pentosus 52 

Escherichia coli (XylS) 46 

Bacillus subtilis 26 
Identity is the percentage of identical shared AA between CBEI3047 and the XynB sequences in the table 
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Figure 4-26: An alignment of characterised AraR of B. subtilis and CBEI4456 

A multiple alignment was constructed using the AA sequences of a confirmed AraR 

protein of B. subtilis and the putative AraR of C..beijerinckii, see text for details.  

Sequence similarity between the two is shaded black.  The helix-turn-helix motif 

associated with DNA binding in B. subtilis (Sa-Nogueira and Ramos, 1997) is 

indicated in the alignment.  A BLAST analysis revealed a putative DNA binding 

site in CBEI4456.  bsu- B. subtilis (Sa-Nogueira and de Lencastre, 1989) cbei – 

C..beijerinckii (CBEI4456) 

 

 

 

Figure 4-27: An alignment of XylR of B. subtilis and CBEI2385 

A multiple alignment was constructed using the AA sequences of a confirmed XylR 

protein of B. subtilis and the putative XylR of C..beijerinckii, see text for details. 

Homologous sequences between the two are shaded in black. The helix-turn-helix motif 

associated with DNA binding in B. subtilis (Titgemeyer et al., 1994) is indicated in the 

alignment.  A BLAST analysis revealed a putative DNA binding site in CBEI2385.  

bsu- B. subtilis (Kraus et al., 1994), cbei- C..beijerinckii (CBEI2385) 
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4.8 Pentose Phosphate Pathway 

After arabinose and xylose are catabolised to form xylulose 5-phosphate, transketolase 

and transaldolase act together to produce glyceraldehyde 3-phosphate, fructose 6-

phosphate and NADPH in a series of reactions that form part of the pentose phosphate 

pathway (Figure 4-28). 
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Figure 4-28: Pentose phosphate pathway 

After arabinose and xylose are metabolised to xylulose 5-phosphate (boxed text) - the 

entry point is shown by the dashed arrow; transketolase and transaldolase metabolise 

these intermediates via the pentose phosphate pathway. Note ‘P’ is shorthand for 

phosphate.  Gnd – Gluconate-6-phosphate dehydrogenase, Pgi – Glucose 6-phosphate 

isomerase, Pgl- Phosphogluconolactonase, Rpe – Ribulose 5-phosphate 3-epimerase, 

Rpi – Ribulose 5-phosphate isomerase, TalB – Transaldolase, TktB – Transketolase, 

Zwf – Glucose 6-phosphate dehydrogenase 

 

Several candidates for transaldolases and transketolases were identified by a basic 

genome search of C..beijerinckii.  A candidate for each gene was observed within the 

putative arabinose and xylose utilisation gene systems, these were then compared to 
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characterised transketolases and transaldolases of E. coli and a transaldolase of 

C..acetobutylicum. 

 

4.8.1 Transketolase 

An extensive sequence similarity between TktB AA sequence of E. coli (Iida et al., 

1993) and the two TktB candidates AA sequences of C..beijerinckii was evident (Figure 

4-29).  Both of the TktB candidates had 60% sequence identity with the TktB of E. coli 

and the two C..beijerinckii protein sequences had 99% sequence similarity with each 

other.  

 

 

 

Figure 4-29: A multiple alignment of characterised TktB of E. coli and two 

C..beijerinckii candidates 

A multiple alignment was constructed using the AA sequences of a confirmed TktB 

protein of E. coli and the putative TktB sequences of C..beijerinckii (CBEI2387 & 

CBEI4453). 100% sequence similarity is shaded black, sequence similarity between 

two of the sequences is shaded grey.  cbei- C..beijerinckii, eco- E. coli (Iida et al., 

1993) 
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4.8.2 Transaldolase 

Upon the comparison of TalB AA sequence of E. coli and C..acetobutylicum (Sprenger 

et al., 1995) and the TalB candidates of C..beijerinckii (Figure 4-30),  an approximate 

100 AA difference in length between TalB of E. coli and the other sequences was 

evident and as a result there were a lot of gap insertions applied to the alignment.  

Despite this there were sizeable regions of similarity shared by all four sequences 

(shaded in black). However, the extent of gap insertions in the alignment makes it 

difficult to assess if there is any meaningful similarity between the E..coli sequence and 

the other three. Indeed both C..beijerinckii TalB candidate sequences had 22% sequence 

identity and C..acetobutylicum 20%.  Conversely there was 73% sequence identity 

between the TalB sequence of C..acetobutylicum and the two candidates of 

C..beijerinckii.  The extent of similarity is evident between these three sequences, 

highly suggestive of a common function and common ancestry.  The two C..beijerinckii 

sequences shared 99% sequence identity and thus are highly likely to have the same 

function. 

 

 

 

Figure 4-30: A multiple alignment of the TalB E. coli and C..acetobutylicum and 

two candidates of C..beijerinckii 

A multiple alignment was constructed using the AA sequences of a confirmed TalB 

protein of E. coli and C..acetobutylicum the putative TalB sequences of 

C..beijerinckii (CBEI2386 & CBEI4454) Black shading denotes 100%, dark grey 

(white text) 75% and light grey (black text) 50% sequence similarity.  cac – 

C..acetobutylicum (Gu et al., 2009), cbei- C..beijerinckii (CBEI2386/4454) eco- 

E..coli (Iida et al., 1993). 
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As mentioned there were several candidates for transaldolase and transketolases 

discovered from a genome search. CBEI2386 and CBEI4454 shared 99% identity with 

one and another and they shared 100% and 99% respectively with CBEI4645, the other 

candidates had 27-34% identity with the other candidates (Table 4-11A).  For the 

putative transketolases, CBEI2387 and CBEI4453, had 98% identity with each other 

and 23-35% identity with other candidates (Table 4-11B).   

Table 4-11: The identity shared between all putative TalB and TktB in 

C..beijerinckii 

 CBEI2386 CBEI4454 

CBEI0317 34% 34% 

CBEI0338 35% 36% 

CBEI2742 27% 27% 

CBEI4454 99% - 

CBEI4645 100% 99% 
The percentage of identical shared AA between all putative TalB of C..beijerinckii 

 

 CBEI2387 CBEI4453 

CBEI0224 31% 31% 

CBEI0225 23% 23% 

CBEI0545 33% 33% 

CBEI0546 23% 23% 

CBEI4453 98% - 

CBEI4870 26% 26% 

CBEI4871 35% 35% 
The percentage of identical shared AA between all putative TktB of C..beijerinckii 

 

(A) 

(B) 
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4.9 Discussion 

Based on the findings of the previous chapter which revealed that C..beijerinckii could 

utilise arabinose and xylose as carbon sources and produce solvents when grown on 

them, this indicated the presence of genes involved in the uptake and metabolism of 

pentose sugars. Therefore the next step was to search for candidate gene systems within 

the genome responsible for this. This revealed two potential separate gene systems for 

the use of the pentose sugars. Each candidate AA sequence was assessed further using 

various modes of bioinformatics.  

 

In this study, AA sequences of proteins putatively involved in xylose, arabinose  and 

xylan utilisation were subjected to analysis.  ClustalW2 and BLAST programs were 

used to perform pairwise alignments comparing ORF sequence with characterised 

sequences to produce a percentage identity. The percentage similarity between the 

unknown and characterised sequences gives a level of reliability in inferring supposed 

relationships. Indeed, with a sequence identity score of <50%, the inference of a 

relationship becomes increasingly less reliable (Attwood and Parry-Smith, 1999).  

Pairwise alignments can be deceptive, in that it is easy to find weak similarity, where no 

true relationships lie (Fasman and Salzberg, 1998). It is therefore important to use other 

means of analysis, as well as assigning a threshold indicating the reliability of the 

relationship.   

 

The pairwise and multiple alignments were based on the AA sequences rather than 

nucleotide sequences.  This is because the comparison of the AA sequences is much 

more sensitive, due to the redundancy of the genetic code, whereby often the same AA 

will have a number of differing codons and therefore a base substitution between two 

sequences may not affect the amino acid coded for (Attwood and Parry-Smith, 1999, 

Fasman and Salzberg, 1998).  Additionally, a change in the AA sequence at a particular 

position does not always impact on the structure and function of the coded protein.  

Alignments vertically align the enquiries in such a way as to preserve an individual 

sequence’s residues, but also take into account differences accumulated through 

evolution, by the use of gap insertions.  This can reveal possible functional and 

structural motifs indicative of a particular protein (Attwood and Parry-Smith, 1999). 

However the use of gap insertions must be taken as a penalty as too many could be 

inserted to deceptively infer a relationship where none exist.  



Chapter 4: In silico Analysis for Genes Involved in Pentose Sugar Utilisation  

132 

 

Bioinformatic analyses conducted here have implicated a potential mechanism of 

pentose sugar transport used by C..beijerinckii.  There are several modes of transport of 

solutes observed in bacteria and these may be passive or active. Passive transport 

equates to facilitated diffusion, whereby the substrate moves from a high concentration 

to a low one, but this method does not allow the accumulation of a substrate in the cell.  

Active transport on the other hand allows this through the expense of energy.  Such 

mechanisms include proton or ion symporters, whereby a substrate is taken up the same 

time as a hydrogen, potassium or sodium ion (Dills et al., 1980). E. coli, L. brevis and 

B. subtilis use such a mechanism to transport pentose sugars (Henderson, 1990, 

Chaillou et al., 1998, Sa-Nogueira and Mota, 1997); also group translocation for 

example the PEP dependent phosphotransferase system (PTS), whereby the transport 

and accumulation of a substrate is coupled to a chain of reactions which phosphorylates 

the substrate, upon entry into the cell.  Such a mechanism has been firmly established in 

clostridia for a number of substrates including glucose, maltose, sucrose and glucitol, 

but never with pentose sugars (Tangney and Mitchell, 2000, 2007, Tangney et al., 2001, 

Yu et al., 2007, Mitchell et al., 1991, Reid et al., 1999, Tangney et al., 1998). No PTS 

has ever been discovered for pentose sugar transport in bacteria studied thus far.   

 

Based on the analyses done here pentose sugar transport in C..beijerinckii is predicted to 

be via ATP binding cassette (ABC) transporters. ABC transporters are made up of three 

constituents. First, two hydrophobic units, permeases, found within the cell membrane 

forming a channel through which the substrate can pass to the inside of the cell.  Second 

there are two further units, ATP-binding proteins, which function to hydrolyse ATP 

providing energy for facilitating the transport of the substrate across the membrane.  

Such a mechanism confers substrate accumulation (Matuschek et al., 1997).  These 

units are found in the cytoplasm but are associated with the permease units. The final 

unit is a periplasmic binding protein. The substrate binds to this and is transported to the 

permeases and interaction between the substrate binding protein complex and the 

permeases occurs allows the substrate to be released and transported across the cell 

membrane (Fath and Kolter, 1993, Greller et al., 1999).  In prokaryotes including 

Sulfolobus solfatorious, Thermoccous litoralis, E. coli, G. stearothermophilus and T. 

ethanolicus (Elferink et al., 2001, Greller et al., 2001, Horazdovsky and Hogg, 1989, 

Sumiya and Henderson, 1989, Groarke et al., 1983, Erbeznik et al., 2004) a variety of 

carbohydrates have been found to be associated with transportation in this manner.  

Carbohydrates accumulated by this mechanism include monosaccharides, such as 
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arabinose, ribose and xylose and disaccharides such as lactose, maltose and cellobiose 

((Saier, 2000).  

 

Though one putative group of genes encoding each of the ABC transporter components 

was identified for xylose transport, there appeared to be two candidate groups of ABC 

transporter components for arabinose transport. These were positioned adjacent either 

up- or downstream to other genes putatively involved in the metabolism of arabinose 

(CBEI4448-4450 and CBEI4459-4461, respectively). An initial analysis in the form of a 

radial tree revealed that only one of the candidate groups possessed a putative arabinose 

binding protein, AraF. Upon further analysis each of the groups was shown possess a 

putative AraG, while the upstream group possessed a putative AraH and the 

downstream group appeared to possess two AraH candidates.  Such a finding is not 

unusual, in T. ethanolicus there is a duplication of both xylF and xylH genes (Erbeznik 

et al., 2004).  It might be that the downstream group is a result of an event such as a 

horizontal gene transfer.  

 

As previously described, bacteria use isomerases to metabolise pentose sugars, distinct 

from fungi which use redox reactions.  In S. typhimurium, E. coli, B. subtilis and C. 

glutamicum AraABD, are key proteins involved sequentially in arabinose utilisation, in 

E. coli, B. subtilis, L. pentosus, B. licheniformis, B. megaterium, T. halophila, and L. 

lactis XylAB, are key proteins involved sequentially in xylose utilisation, prior to being 

fed into the PPP. Candidate araABD and xylAB were identified within the genome of 

C..beijerinckii.  A high level of evidence was accumulated for the function of AraA and 

XylA, due to the presence of motifs associated with the proteins’ functioning, as well as 

a high level of sequence identity shared with characterised proteins. What was also 

evident about these two proteins is that there appeared to be two classes or groups.  

Such a finding has been highlighted previously for XylA sequences (Meaden et al., 

1994).  This appears to be dictated by the G/C content of the genome the species the 

XylA is from. XylA sequences of high (≥65%) G/C content species, were found in one 

group and XylA sequences of lower G/C content (≤52%) species, were found in the 

other group.  With regards AraA, differences between the groups did not correlate with 

the G/C content of the species, the length of the sequence, or the Gram reaction of the 

organism. 
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Evidence for the next proteins involved in pentose sugar metabolism, AraB and XylB 

was less persuasive.  The percentage identities with characterised proteins were lower 

than the recommended threshold for relationship reliability. The putative XylB shared a 

higher level of similarity with Gram negative species XylB sequences rather than Gram 

positive sequences while the opposite was true for AraB, hinting at distinct evolutionary 

paths.  Evidence for the presence of the next protein involved in arabinose metabolism, 

AraD, CBEI4455, was more convincing, due to a high level of sequence similarity 

between the candidate and characterised AraD proteins.  In both putative pentose sugar 

utilisation gene systems there were genes encoding a transaldolase and transketolase 

enzymes involved in the PPP, a known pathway involved in pentose sugar use in both 

prokaryotes and eukaryotes.  Comparison with a Gram positive TalB revealed a more 

convincing line of evidence of the similarity than with a Gram negative.  Conversely, 

putative transketolase sequences showed a reliable sequence relationship with the TktB 

sequence from E. coli.  

 

Having established that C..beijerinckii could utilise xylan, candidate genes within the 

genome were sought.  Two candidate genes, one a putative xylanase and the other a 

putative xylosidase, were identified and bioinformatic analyses revealed a notable 

sequence identity existed between the candidate XynA with two bacilli XynA AA 

sequences. However, little demonstrable homology could be established for the 

candidate XynB with characterised XynB sequences and therefore no inference of the 

identity of this candidate sequence could be made.  

 

In prokaryotes regulation of pentose sugar utilisation occurs via one of two 

mechanisms, depending on the Gram identity of the organism. Gram positive organisms 

use negative regulation and Gram negatives use positive and negative regulation. 

Putative pentose sugar repressors of C..beijerinckii appear to follow this trend as 

highlighted by their relationship with repressors of other Gram positive organisms. In 

C..beijerinckii the induction of gene expression would presumably occur due to the 

pentose sugar binding to the repressor protein, causing a conformational change that 

prevents the repressor from binding to the promoter/operator regions and allowing the 

expression of genes associated with pentose sugar metabolism, a mechanism firmly 

established in a number of Gram positive organisms (Sizemore et al., 1992, Scheler and 

Hillen, 1994, Schmiedel et al., 1997, Takeda et al., 1998, Mota et al., 1999).  In the 

absence of the pentose sugar the regulator would bind to the operator/promoter region 
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preventing transcription (Mota et al., 1999, Scheler and Hillen, 1994).  This mechanism 

is very distinct from that of Gram negative organisms. In E. coli and S. enterica the 

presence of the pentose sugar the repressor, to the operator site and in the absence, is 

thought to bind to the initiator site and operator sites, forming a DNA loop. Therefore 

activating or blocking expression of genes associated with pentose sugar use, 

respectively (Gallegos et al., 1997, Song and Park, 1997, Kawaguchi et al., 2009). 

 

 

Based on the bioinformatic analyses performed distinct gene systems have been 

identified as candidates for xylose and arabinose utilisation and therefore set a base for 

further studies of in vivo gene function characterisation, to ascertain the true function of 

the genes.  A proposed pathway of arabinose and xylose utilisation in C..beijerinckii 

based on the results accumulated here is shown in Figure 4-31. 
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Figure 4-31: The proposed pentose sugar utilisation pathway in C..beijerinckii 

Based on bioinformatic analyses performed, gene systems and hence a pathway of 

pentose sugar utilisation in C..beijerinckii could be proposed. AraA- L-arabinose 

isomerase, AraB- L-ribulokinase, AraD-L-Ribulose 5-phosphate 4-epimerase, AraF- 

arabinose binding protein, AraG-ATP-binding protein, AraH-permease, XylA- D-

xylose isomerase, XylB- xylulokinase, XylF- xylose binding protein, XylG- ATP-

binding protein, XylH- permease. 
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5 Characterisation and Expression of Pentose Utilisation Genes 

5.1 Introduction 

It has been established that C..beijerinckii is capable of both arabinose and xylose 

utilisation (Chapter 3). This indicates that C..beijerinckii must possess genes for the 

utilisation of both pentose sugars and potential candidates within the genome were 

sought and identified using bioinformatics (Chapter 4).  The next step was to ascertain if 

these candidate genes were indeed involved in the use of pentose sugars.  To do this 

whole cell protein extracts from cultures of C..beijerinckii grown on minimal media 

supplemented with either arabinose or xylose as the sole carbon sources were analysed 

using LC-ESI-MS/MS, to provide a qualitative picture of the proteins necessary for 

arabinose or xylose utilisation and compare them to the in order to ascertain if the genes 

bioinformatic analyses (Chapter 4) to provide targets for gene cloning and 

characterisation. 

 

Proteomics provides whole cell analysis of gene expression under a particular condition, 

such as a stimulus or stress; at a particular time, for example during a cellular process; 

and in a particular location for example a specific organelle.  As such it is therefore 

described as an alternative to cDNA microarrays, the current preferred method of gene 

expression analysis. Proteomics is more expensive, time consuming and technically 

demanding.  However, these two methods are on a par in terms of analysis capability 

(Cutillas and Timms, 2010) and proteomic analysis is becoming more and more 

popular.  Proteomic analysis can be quantitative but the analysis conducted here was 

qualitative to provide a snapshot of the genes expressed and hence the proteins required 

for pentose sugar utilisation in C..beijerinckii. 

 

Proteomic analysis was carried out as shown in the schematic diagram (Figure 5-1).  As 

already described whole-cell protein extracts of C..beijerinckii grown on pentose sugar 

were prepared and were fractionated using SDS-PAGE. The lane was then excised and 

sliced horizontally into 28 slices of ~2.5mm size.  Each gel slice was then subject to in-

gel trypsinolysis, which included the gel being washed, the proteins reduced and 

alkylated and then trypsin digestion was conducted.  The peptides produced were then 

subjected to LC-ESI MS/MS analysis. 
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The first stage of LC-ESI MS/MS analysis is reverse phase HPLC, the most commonly 

used LC method for this purpose.  This separates sample peptides based on 

hydrophobicity. Each peptide will have a different hydrophobicity which dictates how 

strongly the peptide adsorbs to the hydrophobic solid phase of the column. A gradient of 

organic solvent, ACN, the mobile phase, causes the desorption and therefore elution of 

peptides from the solid phase.  Peptides with lower hydrophobicity elute first and 

peptides with higher hydrophobicity are eluted last, as a higher organic solvent 

concentration is required to provide decreasing polarity to allow these peptides to 

desorb. Chromatography is advantageous step because it allows the detection of more 

ions, because the peptides elute separately on a gradient based on hydrophobicity rather 

than all at once, therefore providing a more complete ionisation of a protein and 

therefore a better sample coverage. 

 

In the next stage of LC-ESI MS/MS the peptides elute from the HPLC column into a 

nebuliser into which N2 gas is pumped.  The purpose is to volatilise or create aerosol 

droplets containing the peptides, the so called electro-spray ionisation (ESI). Once 

droplets are produced the next step is to decrease the droplet size and increase the 

charge prior to MS analysis.  This was done when the eluted peptides pass through an 

electrospray needle with a high voltage applied to it under atmospheric pressure. 

Droplets with the same charge as the needle are repelled and therefore sprayed from the 

needle. The droplets then come into contact with N2 gas, allowing evaporation of 

solvent from the droplets and size reduction occurs, until the surface tension reaches the 

Rayleigh limit causing a Coulombic explosion where the droplet is fragmented into 

smaller ones and this process continues until single analyte ions are produced.  

 

The final stage is MS analysis.  Ions are separated by MS via the presence of a magnetic 

or electric field affecting the movement depending on the mass-to-charge ratio.  In 

tandem MS (MS/MS) the first MS separates according to a single mass of the precursor 

ion then further fragmentation via collision with an inert gas produces fragment ions 

termed as daughter ions.  These daughter ions are then separated by a second MS 

according to the mass.  This is ideal for sequencing peptides because it provides higher 

sensitivity, by reducing interference from the large volume of peptides. 

 

At the end of LC-ESI MS/MS a peptide mass fingerprint is detected and this was 

compared to sequences within the C..beijerinckii proteome database, using MASCOT. 
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MASCOT produced a score, reflecting a statistical significance. In line with published 

guidelines, protein identification was subject to the presence of two or more peptides, 

complete with four consecutive b or y ions (peptide fragments have a charge on the N-

terminal or the C terminal, respectively), with a Mowse score of >25 and therefore 

significant to p<0.05.  

 

 

 

1D SDS PAGE

Gel Lane Extraction & 

Trypsin Digestion

HPLC 
(reverse phase)

ESI

Tandem MS

Peptide Spectra

MASCOT
 

Figure 5-1: Proteomic analysis via LC-ESI MS/MS of whole cell protein extracts of 

C..beijerinckii grown on pentose sugars 

C..beijerinckii was grown overnight into log phase and proteins were extracted, 

separated by SDS PAGE. The whole-cell protein sample was then cut from gel lane, 

washed, digested with trypsin, and then LC-ESI-MS/MS was conducted on the digested 

sample. 
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The next step after establishing what genes were expressed by C..beijerinckii cells 

grown on xylose and arabinose, candidates of  , key genes associated with pentose sugar 

utilisation, xylAB and araABD, were amplified by PCR and cloned separately on 

pCR2.1-TOPO cloning vector which was then used to transform E..coli TOP10 cells 

(Invitrogen). Aliquots of the E..coli TOP10 used in the transformation reaction were 

spread on screening plates.  The screening involved media containing ampicillin, 

because ampicillin resistance is carried on the plasmid, so only successful transformants 

can grow.  Secondly, X-GAL was added to the plates for blue-white colony screening.  

pCR2.1-TOPO vector carries the lacZα gene, a truncated form of the lacZ gene 

encoding β-galactosidase (this gene is made fully functional by the host cell providing 

the other part of the gene lacZΩ). β-galactosidase catabolises lactose into its 

constituents, glucose and galactose. X-GAL is a chromogenic analogue of lactose which 

can be catabolised by β-galactosidase to produce galactose and a blue precipitate, 4-

chloro-3-brom-indigo and hence colonies containing this gene will appear blue 

(Fermentas, 2010).  However if the lacZ gene sequence is interrupted by a cloned gene 

(by an inserted sequence within the lacZα gene of the cloning vector) then no fully 

functional β-galactosidase can be produced and therefore the colonies will appear a 

white colour.  Thus recombinants and non-recombinants can be distinguished 

colormetrically.   

 

Recombinants were then harvested and the pCR2.1-TOPO vector carrying the cloned 

gene was then extracted and inserted into E. coli mutants that lacked the functional gene 

being investigated (they are unable to metabolise either xylose or arabinose depending 

on the deficiency). Recombinants were then screened in vivo for functional 

complementation, using MacConkey medium.  MacConkey medium has three main 

components that made it a suitable screening method for this purpose; pentose sugar as 

a carbon source, peptone as an alternative carbon source and neutral red pH indicator.  

Neutral red changes colour dependent upon the pH of the medium, at pH<6.8 it is a red 

colour and at pH>6.8 a yellow colour.  So in the natural state a mutant unable to utilise 

the pentose sugar has to utilise the alternative carbon source, peptone, in order to grow.  

The metabolism of peptone produces ammonia and thus the pH of the medium rises and 

the pH indicator and the medium appears a yellow colour. If the mutant acquires the 

lacked gene for pentose sugar utilisation, then the pentose sugar is utilised, producing 

acids therefore the pH of the medium falls below pH6.8 and neutral red turns the 
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medium red. If the gene acquired by the mutant does not encode the missing function, 

then the appearance of the medium will be of that of the mutant in the natural state, still 

unable to metabolise the pentose sugar.  Furthermore, as the plasmid vector carried 

genes for antibiotic resistance, the addition of ampicillin to the MacConkey medium 

assured that only recombinants could grow on the medium, as each of the mutants used 

were sensitive and hence unable to grow on media containing ampicillin.  Such a 

technique has been used successfully previously (Bird, 2011). 

 

The plasmid vector used in this study, pCR2.1-TOPO, is a bidirectional vector and 

therefore has two different promoters for the purpose of expressing the cloned gene 

whatever the orientation the gene is cloned.  pCR2.1-TOPO possesses a lactose (lac) 

promoter, subject to being cloned under this promoter the expression of the gene 

required the addition of Isopropyl β-D-1-thiogalactopyranoside (IPTG) to the 

MacConkey medium. IPTG is an analogue of lactose and induces the expression of the 

genes downstream of the lac promoter (the cloned gene).  The other promoter T7 

functions in the opposite direction and requires the host E. coli mutant to possess T7 

RNA polymerase, for the expression of the cloned gene 

 

 

5.2 Proteomics 

 

C..beijerinckii cultures were grown on minimal medium (CBM) supplemented with 1% 

(w/v) either arabinose or xylose.  Cells were harvested, washed and broken using a 

French pressure cell, to recover the whole-cell proteins. The concentration of the 

recovered proteins was determined by a BCA assay standard curve (Appendix section 

7.2). Then SDS-PAGE was then carried out using five different amounts of the extract 

from C..beijerinckii (Figure 5-2).  The 20µg lane was then excised and used for LC-

ESI-MS/MS analysis. 
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Figure 5-2: SDS-PAGE of C..beijerinckii crude extract 

C..beijerinckii cultures grown on (A) arabinose (B) xylose.  Cells were harvested, 

washed and broken with a French pressure cell and whole-cell proteins recovered.  

Five quantities of the extract were then separated by SDS-PAGE. 20µg lane was then 

excised and used for LC-ESI-MS/MS analysis. 

 

After LC-EMI-MS/MS analysis was carried out the peptide spectra were analysed using 

MASCOT.  This gives qualitative rather than quantitative results of the whole-cell 

protein composition of C..beijerinckii grown on arabinose or xylose a as single carbon 

sources.  The identification of proteins from peptide spectra presented are significant to 

p<0.05 (with a Mowse score of >25).  That is there is a 5% chance that a false-positive 

match will occur between the MASCOT database with C..beijerinckii proteins and the 

peptides from the LC-ESI-MS/MS results. A full list of the proteins identified and the 

MOWSE scores can be found in Appendix sections 7.4 and 7.5.  

 

A number putative genes were identified via bioinformatic analyses as having roles in 

arabinose and xylose utilisation (as presented in Chapter 4) and these were found to be 

expressed in cultures of C..beijerinckii grown on arabinose ( 

 

Table 5-1) and xylose (Table 5-2).  Gene products of two candidates for arabinose 

utilisation, the putative AraH (CBEI4448) and AraR (CBEI4456) and three potential 

proteins involved in xylose utilisation, two putative ABC transporter components 
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(CBEI2381 and CBEI2382) and the putative XylR (CBEI2385) a identified in Chapter 4 

however were not observed.  Of the 5020 proteins C..beijerinckii possesses, 267 

proteins (5.3 %) and 243 proteins (4.8 %) were present in the proteomics analysis of 

arabinose and xylose grown cultures. 

 

 

 

Table 5-1:  Expression of the putative arabinose utilisation gene system 

ORF Putative function Mass 

(Mr) 

Mowse 

Score 

Sequence 

coverage (%)* 

CBEI4449 AraG (ABC transporter) 56239 223 32 

CBEI4450 AraF (ABC transporter) 41113 626 61 

CBEI4452 L-ribulokinase 58827 684 43 

CBEI4453 Transketolase 72572 1365 69 

CBEI4454 Transaldolase 23178 1490 74 

CBEI4455 L-ribulose-5-phosphate 4-

epimerase 

25411 371 69 

CBEI4457 L-arabinose isomerase 54563 306 49 

This shows the presence of protein encoded by the proposed arabinose utilisation gene system in 

C..beijerinckii identified in Chapter 4.  The sequence coverage shows the percentage of the amino acid 

sequence of the protein observed from LC-ESI MS/MS analysis of whole cell proteins of C..beijerinckii 

grown on arabinose.  All Mowse scores are the equivalent of a significance of p<0.05. * this is the 

percentage of peptide fragments covering the protein sequence observed in the spectral results. 

 

 

Table 5-2: Expression of putative xylose utilisation gene system 

ORF Putative function Mass 

(Mr) 

Mowse 

Score 

Sequence 

coverage (%)* 

CBEI2380 XylF (ABC transporter) 38942 165 19 

CBEI2383 D-xylose isomerase 50455 177 47 

CBEI2384 D-xylulokinase 55260 889 78 

CBEI2386 Transaldolase 23164 1651 68 

CBEI2387 Transketolase 72544 1044 29 
This shows the presence of proteins encoded by the proposed xylose utilisation gene system in 

C..beijerinckii identified in Chapter 4.  The sequence coverage shows the percentage of the amino acid 

sequence of the protein observed from LC-ESI MS/MS analysis of whole cell proteins of C..beijerinckii 

grown on xylose.  All Mowse scores are the equivalent of a significance of p<0.05. * this is the 

percentage of peptide fragments covering the protein sequence observed in the spectral results.



Chapter 5: Characterisation and Expression of Pentose Utilisation Genes 

145 

 

 

5.3 Genes involved in xylose utilisation 

5.3.1 Xylose isomerase 

5.3.1.1 PCR amplification and pDNA purification 

Genomic DNA (gDNA) was isolated from C..beijerinckii as described in Materials and 

Methods and used as a template for the PCR amplification of the putative xylA. Primers 

were designed up- and downstream of the target ORF CBEI2383 and are listed in 

Materials and Methods.  A ~1500 base pair (bp) product was obtained (Figure 5-3), the 

expected size for CBEI2383 amplification was 1509bp. The band was then excised from 

the agarose gel and purified as described in Materials and Methods. 

 

 

 

 

 

Figure 5-3: PCR amplification of CBEI2383 

ORF CBEI2383 was amplified by PCR and ran on a 1% agarose gel alongside 

Hyperladder II (HII) (Bioline) was used as a size standard 
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5.3.2 Cloning and restriction analysis 

The purified CBEI2383 DNA was cloned into the pCR2.1 TOPO cloning vector and the 

recombinant plasmid was then used to transform E. coli TOP10 cells. Colonies of the 

transformed E. coli TOP10 cells were screened using X-GAL to identify colonies 

carrying CBEI2383.  Nine transformants were harvested and grown overnight and two 

were randomly selected for pDNA extraction.  The pDNA (pJW1 and pJW3) was then 

subjected to digestion by the restriction enzyme HindIII, to determine the orientation of 

CBEI2383.  The two possible orientations the gene could have been cloned in are 

shown in Figure 5-4.  Cloning under control of the lac promoter would result in two 

fragments of 1338 and 4102bp after digestion with HindIII and under control of the T7 

promoter would result in fragments of 287 and 5153bp.   

 

 

 

 

 

Figure 5-4: Possible orientations of the cloned CBEI2383 

This diagram shows the possible orientations of CBEI2383(▬) cloned into pCR2.1-

TOPO vector (▬).  On the left is the orientation with expression under the control of 

the lac promoter (▬), HindIII (▬) restriction digest would produce 2 fragments of 

1338bp and 4102bp.  On the right is the orientation with expression under the control of 

the T7 promoter (▬), HindIII (▬) restriction digest would produce 2 fragments of  

287bp and 5153bp  
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Figure 5-5: HindIII restriction digest of pJW1 and pJW3 
Lane 1- pJW1 undigested, 2- pJW1 HindIII treated, NEB- NEB 1kb ladder (NEB), HII-

Hyperladder II (Bioline), 5- pJW3 undigested, 6- pJW3 HindIII treated.  HindIII 

digestion has produced two fragments for both pJW1 and 3 of sizes <300bp and 

~5000bp as indicated by the red arrows. 

 

Restriction digestion of pJW1 and pJW3 with HindIII resulted in 2 fragments of <300bp 

and ~5000bp (Figure 5-5) consistent with CBEI2383 being cloned in the direction of 

expression under control of the T7 promoter (Figure 5-4). 

5.3.3 Complementation screening in vivo 

 

pJW1 and pJW3 were then used to transform a xylA
-
 E. coli host (also an araB

- 
mutant), 

via electroporation.  For the expression of CBEI2383 it was required that the host strain 

produces T7 polymerase for T7 expression.  The host strain used, E. coli DS941, lacked 

T7 polymerase.  However a sizeable amount of upstream sequence (114bp) was also 

cloned within the PCR product and therefore a potential native promoter may have also 

been cloned, allowing the expression of CBEI2383.  A putative Pribnow box and a -35 

sequence were identified (Figure 5-6).  Indeed, there must have been such a sequence 

present as the insertion of pJW1 and pJW3 into E. coli DS941 yielded a positive 

fermentation phenotype on xylose like the positive control, the cloned xylA gene of T. 

thermosaccharolyticum (Meaden et al., 1994).  The negative control (pUC19) produced 

a negative phenotype on xylose (Figure 5-7A).  All strains gave a positive fermentation 

phenotype on glucose as expected (Figure 5-7B).  

 

so in conclusion the in vivo activity of the gene encoding ORF CBEI2383 has been 

demonstrated here as a xylose isomerase.  
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Figure 5-6: Putative Pribnow box, -35 and Shine-Dalgarno sequences upstream of 

CBEI2383 

CBEI2383 is shown in black text, the intergenic region is shown in blue text, a putative 

Pribnow box and -35 sequence are highlighted in green, putative Shine-Dalgarno 

sequence is highlighted in blue. 

 

 

 

 

 

 

Figure 5-7: Screening of pJW1 and pJW3 on MacConkey medium 

(A) MacConkey medium supplemented with xylose and ampicillin was used to screen 

for any complementation of the E. coli DS941 xylA
-
 mutant strain, naturally unable to 

utilise xylose, when transformed with either pJW1, pJW3 (containing CBEI2383), pJA1 

(positive control carrying the xylA gene of T..thermosaccharolyticum) and the negative 

control pUC19 (carrying no genes associated with xylose use). (B) MacConkey medium 

supplemented with glucose (as a screening control) and ampicillin Transformation of E. 

coli DS941 with pJW1, pJW3 and pJA1 is observed as giving a positive fermentation 

phenotype on both sugars and with pUC19 only a positive phenotype on glucose but 

still a negative fermentation phenotype on xylose. 

 

  

 (A) (B) 

pUC19 

pUC19 

pJA1 pJA1 

pJW1 pJW1 

pJW3 pJW3 

GGGCTAGTTATTACTAACGTTGGCTTTTATAAATAGATAAATGGCTTAATAAGTTATTACGCTATTTACT

AGAAATAATTTATATCCAATATAGAAAAATGAGGAGGGTATCATATGAGAGAATACTTTGAAAATGTTTC 
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5.3.4 Xylulokinase 

5.3.4.1 PCR amplification and pDNA purification 

 

The putative xylB gene was amplified and purified in the same manner as the xylA gene 

using the conditions and primers described in Materials and Methods. The PCR 

produced a ~2000bp product, the expected size was 1998bp (Figure 5-8).   

 

 

 

Figure 5-8: PCR amplification of CBEI2384 

ORF CBEI2384 was amplified by PCR and ran on a1% agarose gel alongside Generuler 

1Kb ladder (G1) (Fermentas) was used as a size standard 

 

 

5.3.4.2 Cloning and restriction analysis 

 

CBEI2384 DNA was purified and cloned into the pCR2.1-TOPO cloning vector and 

used to transform E..coli TOP10 cells  Screening and harvesting of the transformed E. 

coli TOP10 cells was performed as previously described. Four transformants were 

harvested, grown overnight and two transformants were randomly selected for pDNA 

extraction.  The orientation of the cloned gene (CBEI2384) was ascertained using the 

restriction enzyme HindIII. The possible orientations that CBEI2384 could have been 

cloned in are shown in Figure 5-9.  Cloning under control of the lac promoter would 

result in two fragments of 680 and 5249bp after digestion with HindIII, and cloning 

under control of the T7 promoter would result in fragments of 1434 and 4495bp.  
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Figure 5-9: Possible orientations of the cloned CBEI2384 

This diagram shows the possible orientations of CBEI2384 (▬) cloned into pCR2.1-

TOPO vector (▬).  On the left is the orientation with expression under the control of 

the lac promoter (▬), HindIII (▬) restriction digest would produce 2 fragments of 

680bp and 5249bp.  On the right is the orientation with expression under the control of 

the T7 promoter (▬), HindIII (▬) restriction digest would produce 2 fragments of 

1434bp and 4495bp 

 

 

  

Figure 5-10: HindIII restriction digest of pJW19 and 20 

Lane HII- Hyperladder II (Bioline), HI- Hyperladder I (Bioline), 3-pJW19 undigested, 

4- pJW19 HindIII treated, 5- pJW20 undigested, 6- pJW20 HindIII treated.  HindIII 

digestion has produced two fragments for both pJW19 and 20 of sizes ~1400bp, 

~4500bp and ~5000bp, ~700bp, respectively.  As indicated by the red arrows. 
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Restriction digestion of pJW19 with HindIII resulted in 2 fragments of ~1400bp and 

~4500bp while pJW20 gave fragments of >5000bp and ~700bp (Figure 5-10), 

consistent with CBEI2384 being cloned in the direction of expression under control of 

the T7 promoter and lac promoter, respectively (Figure 5-9). 

5.3.4.3 Complementation screening in vivo 

 

The xylB
-
 E..coli XK100 host was transformed with pJW19 and pJW20 using 

electroporation.  Like the xylA
-
 host, E..coli XK100 lacks the T7 polymerase gene 

required for expression under control of the T7 promoter.  However, following previous 

success with CBEI2383 the host strain was transformed with pJW19 and pJW20. 

Putative sequences of a Pribnow box and -35 and Shine-Dalgarno sequences were also 

identified upstream of CBEI2384, like that of CBEI2383 (Figure 5-11).  Therefore the 

possibility of a native promoter being present within the 417bp upstream of CBEI2384 

also amplified, was strong.  The insertion of pJW19 and pJW20 into E..coli XK100 

yielded a positive fermentation phenotype on xylose.  The negative control transformed 

with pUC19 gene gave a negative phenotype on xylose (Figure 5-12A).  All produced a 

positive fermentation phenotype on glucose as expected (Figure 5-12B).  

 

So in conclusion the in vivo activity of the gene encoding ORF CBEI2384 has been 

demonstrated here as a xylulose kinase.  

 

 

 

 
 

Figure 5-11: Putative Pribnow box, -35 and Shine-Dalgarno sequences upstream of 

CBEI2384 

CBEI2384 is shown in black text, the intergenic region is shown in blue text, a putative 

Pribnow box and -35 sequence are highlighted in green, putative Shine-Dalgarno 

sequence is highlighted in blue. 

 

CATGCTTTTATCCCGACTTGTACGGGATTTTATGGATGATCCTAAGATTAGAAGTTGTACCCAAAGGCTA

GCCTTAAAGGTAAGATCTAAGTAAATACATTTGAAAAAACTTCTAACTTGTAAATTTATAGTTAAAAGGA

CTTCTTGTAATATTTTTCAGTATTATTATTGCAAGAAGTTCCTTTTTATTTAGGACTCTATTTTGGTAGA

TATTTTATAATAAGTGCAACATCCTAAATACAAAAAATAACTAGTAAAATAAAAAATGAAAATGTATCCA

AAAAACTATTGACCGCAAAGAAAAAGGGAAGTATAATAAACTTATTAAAATACATTTAAAAAGTTATTTA

AAAAATTAAGTAAAAAGTTTGTAATTATGTTAATTTAGAAAAGATATATAACTTAGGAGGTTTATTAATG 
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Figure 5-12: Screening of pJW19 and pJW20 on MacConkey medium 

(A) MacConkey medium supplemented with xylose, ampicillin and 40mM IPTG was 

used to screen for any complementation in E..coli XK100 xylB
-
 mutant strain, naturally 

unable to utilise xylose, when transformed with either pJW19, pJW20 or the negative 

control pUC19 (carrying no genes associated with xylose use). (B) MacConkey medium 

supplemented with glucose (as a screening control), ampicillin and 40mM IPTG 

Transformation of E..coli XK100 with pJW19 and pJW20 resulted in a positive 

fermentation phenotype on both sugars and with pUC19 only a positive phenotype on 

glucose but still a negative fermentation phenotype on xylose.  
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5.4 Genes involved in arabinose utilisation 

5.4.1 Arabinose isomerase 

5.4.1.1 PCR amplification and pDNA purification 

 

gDNA was isolated as previously described and used as a template for the PCR 

amplification of the putative araA, CBEI4457. Primers were designed up- and 

downstream of the target ORF CBEI4457 and are listed in Materials and Methods.  A 

~2000bp product was obtained, the expected size was 1937bp (Figure 5-13). The band 

was excised from the agarose gel and purified as previously described.   

 

 

 

Figure 5-13: PCR amplification of CBEI4457 

ORF CBEI4457 was amplified by PCR and ran on a 1% agarose gel alongside 

Hyperladder II (HII) (Bioline) was used as a size standard 

 

5.4.1.2 Cloning and restriction analysis 

The purified CBEI4457 DNA was cloned into the pCR2.1-TOPO cloning vector and E. 

coli TOP10 cells were then transformed with the ligated plasmid.  As previously carried 

out two  randomly selected colonies from over 300 transformed E. coli Top10 cells 

were screened for the successful cloning of CBEI4457 using X-GAL, then harvested, 

grown overnight and pDNA extracted.  As previously described TOPO-TA cloning is 
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non-directional and therefore to ascertain the orientation of the cloned gene, digestion 

with HindIII restriction enzyme was carried out.  The two possible orientations of the 

cloned gene are shown in Figure 5-14.  Cloning under control of the lac promoter would 

result in three fragments of 4746, 947 or 174bp.  Cloning in the opposite orientation 

under control of the T7 promoter would result in three fragments of 3989, 931 and 

947bp, which on a gel would appear as two fragments.   

 

 

 

 

 

 

 

 

 

Figure 5-14: Possible orientations of the cloned CBEI4457 

This diagram shows the possible orientations of CBEI4457 (▬) cloned into pCR2.1-

TOPO vector (▬).  On the left is the orientation with expression under lac promoter 

(▬), HindIII (▬) restriction digest would produce 3 fragments 174bp, 947bp, 4746bp.  

On the right is the orientation with expression under T7 promoter (▬), HindIII (▬) 

restriction digest would produce 3 fragments 931bp, 947bp, 3989bp, and would 

probably appear as two fragments of ~900bp and 3989bp.   
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Figure 5-15: HindIII restriction digest of pJW6 and pJW7 

Lane 1- pJW6 undigested, 2- pJW6 HindIII treated, NEB-NEB 1Kb ladder (NEB), 

HII-Hyperladder II (Bioline), 4- pJW7 undigested, 5- pJW7 HindIII treated.  HindIII 

digestion has produced two fragments for both pJW6 and 7 of sizes <1000bp and 

~4000bp as indicated by the red arrows. 

 

Restriction digestion using HindIII produced two fragments of <1000bp and ~4000bp, 

from both pJW6 and pJW7 (Figure 5-15).  This suggested with reference to Figure 5-14, 

that in both plasmids the CBEI4457 gene was cloned under the control of the T7 

promoter. 

 

5.4.2 Complementation screening in vivo 

pJW6 and pJW7 were then used to transform an araA
-
 E. coli host using 

electroporation. The orientation of the cloned gene was such that it is required the host 

strain produces T7 polymerase for expression.  The host strain used, E. coli UP1091, 

lacks T7 polymerase, however the CBEI4457 gene was amplified together with 340 bp 

upstream of the open reading frame.  This meant that potentially a native promoter may 

have also been cloned, allowing the expression of CBEI4457.  A putative Pribnow box 

and -35 sequence have been identified in this upstream region (Figure 5-16). Based on 

the results of the complementation screening (Figure 5-17) it is likely that such a native 

sequence was present allowing the expression of CBEI4457.   The insertion of pJW6 

and pJW7 into E. coli UP1091 produced a positive phenotype on arabinose-containing 

medium (Figure 5-17A) whereas the insertion of pUC19, carrying no genes associated 

with arabinose utilisation had a negative phenotype on arabinose.  All pDNA produced 

a positive phenotype on glucose in the control screen (Figure 5-17B). 
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Therefore the in vivo activity of the gene encoding ORF CBEI4457 has been 

demonstrated here as an arabinose isomerase.  

 

 

 
 

Figure 5-16: Putative Pribnow box, -35 and Shine-Dalgarno sequences upstream of 

CBEI4457 

CBEI4457 is shown in black text, the intergenic region is shown in blue text, a putative 

Pribnow box and -35 sequence are highlighted in green, putative Shine-Dalgarno 

sequence is highlighted in blue. 

 

 

 

Figure 5-17: screening of pJW6 and pJW7 on MacConkey medium 

(A) MacConkey medium supplemented with arabinose and ampicillin was used to 

screen for any complementation of the E. coli UP1091 araA
-
 mutant strain (naturally 

unable to utilise arabinose), when transformed with either pJW6, pJW7 and the negative 

control pUC19 (carrying no genes associated with arabinose use) (B) MacConkey 

medium supplemented with glucose (as a screening control) and ampicillin. 

Transformation of E. coli UP1091 with pJW6 and pJW7 was observed as having a 

positive fermentation phenotype on both sugars. pUC19 had a positive phenotype on 

glucose and a negative fermentation phenotype on arabinose. 

ACCGCAAGGCTGTCTTTACCTAATTTAAACCATAATAATGTTTATCTGGAAAGTTAATATTTTTTATTT

TTTTGATTTTACATCTTGTATGTACAACATTATTGTATTATAATAAGCTTGTACATACATCAAAAACTT

GTTTGTACTCATGAAAAGGTATACTAAATTTAGATAAGCATTTTTATTTATCCAATAGCTAGCATCCGT

AGTACTCCATCTTCTTAAGTGAGAGATAACGGCCGCAAGCTCCTGGACTAGGTGCCCCTTAAGGGTATA

AATCCAAGGTGGAGTTAAAATCCCACTTAAAAAGTTTCACTTTATATATTAGGAGGAATGTTAAATGTT 

 

pUC19 pUC19 

pJW6 pJW7 pJW6 pJW7 

(A) (B) 
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5.4.3 L-ribulokinase (Putative) 

5.4.3.1 PCR amplification and pDNA purification 

The putative araB gene (CBEI4452) was amplified and purified in the same manner as 

the araA gene, producing a ~2000bp product shown in Figure 5-18 (the expected size 

was 1995bp). 

 

 

 

Figure 5-18: PCR amplification of CBEI4452 

ORF CBEI4452 was amplified by PCR and ran on a1% agarose gel alongside Generuler 

1kb DNA ladder (G1) (Fermentas) was used as a size standard. This shows a PCR 

product of ~2000bp. 

 

 

5.4.4 Cloning and restriction analysis 

E. coli TOP10 cells were transformed with CBEI4452 DNA which was purified and 

cloned into the pCR2.1-TOPO plasmid vector as previously described.  Screening and 

harvesting of two randomly selected transformed E. coli TOP10 cells out of eight was 

performed as previously described and pDNA extracted. The orientation of the gene 

was ascertained using the restriction enzyme SpeI. The possible orientations are shown 

in Figure 5-19.  Cloning under control of the lac promoter would result in two 

fragments of 1801 and 4122bp following digestion with SpeI and under control of the 

T7 promoter would result in fragments of 262 and 5661bp.  
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Figure 5-19: Possible orientations of the cloned CBEI4452 

This diagram shows the possible orientations of CBEI4452(▬) cloned into pCR2.1-

TOPO vector (▬).  On the left is the orientation with expression under control of the 

lac promoter (▬), SpeI (▬) restriction digest would produce 2 fragments of 1801bp 

and 4122bp.  On the right is the orientation with expression under T7 promoter (▬), 

SpeI (▬) restriction digest would produce 2 fragments of 262bp and 5661bp  

 

 

 

 

 

 

Figure 5-20: SpeI restriction digest of pJW24 and pJW25 

HII-Hyperladder II (Bioline), HI-Hyperladder I (Bioline), 1-pJW24 undigested, 2-

pJW24 SpeI treated, 3-pJW25 SpeI treated, 4-pJW25 undigested 

 HI   HII    1      2         3      4     HI  HII 
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Restriction digestion of pJW24 and pJW25 with SpeI resulted in 2 fragments of 

~1800bp and >4000bp (Figure 5-20). With reference to Figure 5-19 is consistent with 

CBEI4452 being cloned in the orientation with its expression under control of the lac 

promoter.  

 

5.4.5 Complementation screening in vivo 

The araB
-
 E. coli DS941 host was transformed with pJW24 and pJW25 using 

electroporation.  The insertion of pJW24 and pJW25 into E. coli DS941 yielded a 

negative fermentation phenotype on arabinose as did the negative control (Figure 

5-21A), despite the addition of IPTG.  But all strains produced a positive fermentation 

phenotype on glucose as expected (Figure 5-21B). The other six E. coli TOP10 

transformants had their pDNA extracted in order to ascertain their orientation in the 

hope that the orientation was under the expression of the T7 promoter, as previous 

success with the expression of the gene under control of the T7 promoter has been 

observed. Unfortunately these were all cloned in the orientation under control of the lac 

promoter. 

 

Therefore in conclusion, no evidence has been obtained here to show the in vivo activity 

of the gene encoding ORF CBEI4452 demonstrates a ribulokinase function. Reasons 

were then sought, given the high level of similarity CBEI4452 AA sequence had with 

AraB of C. glutamicum (Chapter 4) and its presence in whole-cell protein extracts from 

C..beijerinckii cells grown on arabinose (proteomic analysis).  

 

E..coli DS941 has an ara14 genotype, carries a point mutation in araB gene and is 

shown to accumulate large quantities of ribulose sugar and is inhibited by arabinose.  It 

has been observed that araB mutations have a dual effect in that different araB mutants 

producing varying levels of AraA activity. The ara14 mutant used in this study has been 

found to have lowest level of AraA activity in comparison to other araB mutants and 

the wild type (Englesberg, 1960). This might explain why there was no 

complementation observed.  Had a positive control been available this would have 

highlighted this.  Therefore the experiment would need to be repeated with a more 

appropriate araB- strain which does not affect the AraA activity and a positive control 

would need to be obtained. 
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pJW24 and pJW25 was also inserted into E..coli XK100 (xylB- mutant) to check for 

xylB complementation alongside a positive control pJW19 the xylB gene of 

C..beijerinckii (Figure 5-22). Like that of the insertion of pUC19, a negative 

fermentation phenotype was observed with insertion of pJW6 and pJW7 into E. coli 

XK100 on xylose-containing medium.  Whereas the insertion of pJW19 into E..coli 

XK100 yielded a positive phenotype.   

 

 

 

 

 

 

 
 

Figure 5-21: Screening of pJW24 and pJW25 MacConkey medium 

(A) MacConkey media supplemented with arabinose, ampicillin and 40mM IPTG was 

used to screen for any complementation in E. coli DS941 araB
-
 mutant strain, naturally 

unable to utilise arabinose, when transformed with either pJW24, pJW25 and the 

negative control pUC19 (carrying no genes associated with arabinose use). (B) 

MacConkey media supplemented with glucose (as a screening control), ampicillin and 

40mM IPTG. Transformation of E. coli DS941 with pJW24, pJW25 and pUC19 are all 

observed as having a negative fermentation phenotype on arabinose and positive on 

glucose  

 

pUC19 pUC19 

pJW24 pJW24 pJW25 pJW25 

(A) (B)  
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Figure 5-22: Screening of pJW24 and pJW25 MacConkey medium supplemented with 

xylose 

MacConkey media supplemented with xylose, ampicillin and 40mg/ml IPTG was used 

to screen for complementation in E.coli XK100 xylB
-
 mutant strain, naturally unable to 

utilise xylose, when transformed with pJW24, pJW25 and pJW19 a positive control 

(xylB of C. beijerinckii) the negative control pUC19 (carrying no genes associated with 

xylose use) a negative fermentation phenotype was observed with pJW24, pJW25 and 

pUC19 and a positive phenotype with pJW19. 
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5.4.6 L-ribulose 5-Phosphate 4-Epimerase (Putative) 

5.4.6.1 PCR amplification and pDNA purification 

The putative araD gene was amplified and purified in the same manner as the araA and 

the putative araB genes. This produced a <1500bp product, (the expected size was 

1349bp) as shown in Figure 5-23.   

 

 

 

Figure 5-23: PCR amplification of CBEI4455 

ORF CBEI4455 was amplified by PCR and ran on a 1% agarose gel alongside 

Generuler 1kb DNA ladder (G1) (Fermentas) was used as a size standard.  This showed 

a PCR product between 1000-1500bp in size. 

 

 

5.4.7 Cloning and restriction analysis 

E. coli TOP10 cells were transformed with CBEI4455 DNA which was purified and 

cloned into the pCR2.1-TOPO cloning vector. Screening and harvesting of the 

transformed E. coli TOP10 cells was performed as previously described and pDNA was 

extracted.  The orientation of the cloned gene was ascertained using the restriction 

enzyme XbaI.  The possible orientations of the gene are shown in Figure 5-24.  Cloning 

under control of the lac promoter would result in two fragments of 1353 or 3927bp 

following digestion with XbaI and under control of the T7 promoter would result in 

fragments of 104 and 5176bp.  

 

 

G1  

1500bp 

1000bp 
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Figure 5-24: Possible orientations of the cloned CBEI4455 

This diagram shows the possible orientations of CBEI4455() cloned into pCR2.1-

TOPO vector ().  On the left is the orientation with expression under control of the 

lac promoter (), XbaI () restriction digest would produce 2 fragments of 1353bp 

and 3927bp.  On the right is the orientation with expression under control of the T7 

promoter (), XbaI () restriction digest would produce 2 fragments of 104bp and 

5176bp 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

Figure 5-25: XbaI restriction digest of pJW21 and pJW22 

HII-Hyperladder II (Bioline), HI-Hyperladder I (Bioline), 1-pJW22 undigested, 2- 

pJW23 XbaI treated, 3- pJW23 XbaI treated, 4-pJW23 untreated 
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Restriction digestion of pJW22 and pJW23 with XbaI resulted in 2 fragments of 

~4000bp and ~1500bp (Figure 5-25) consistent with CBEI4455 being cloned in the 

direction of expression under control of the lac promoter (Figure 5-24). 

 

5.4.8 Complementation screening in vivo 

Unfortunately the strain procured thought to contain an araD
-
 mutation was found to 

also have mutations in araABR genes as well.  Unfortunately another araD mutant 

could not be obtained within the time remit of this research and thus the clones are still 

to undergo complementation screening to characterise them.  
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5.5 Discussion 

LC-ESI-MS/MS was used to qualitatively observe the genes expressed by 

C..beijerinckii when grown on the pentose sugar xylose.  In silico studies (Chapter 4) 

had identified potential candidates involved in xylose utilisation and most of these 

candidates were present in the analyses.  Although LC-ESI-MS/MS is a powerful 

technique for providing a picture of proteins required for all aspects of pentose sugar 

use, there are a number of drawbacks which could explain the low (~5 %) coverage of 

the proteome being present in the analysis.  Proteins may have been subject to 

degradation on a number of fronts, such as from the freeze-thawing of samples and 

natural proteolytic compounds in the environment.  The analysis itself produces large 

volumes of peptide spectra, and it may be that some of these spectra ‘mask’ other 

peptide spectra, additionally some of the data may not have been significant at p<0.05.  

It is beneficial to carry out such analyses out in triplicate.  The data presented here are 

from a single analysis, and therefore further analyses may reveal more proteins. 

Additionally, it would have been of interest to do a proteomic analysis of whole-cell 

protein extracts of C..beijerinckii cultures grown on glucose to investigate if the 

proteins characterised and putatively involved in arabinose and xylose use are present. 

However, unfortunately this is an expensive technique and thus out of the remit of this 

project.  The technique does not provide quantitative data so does not provide a clear cut 

picture that the genes putatively involved in xylose utilisation are definitely involved in 

xylose utilisation, but rather the genes are expressed on this sugar.  However, if taken 

together with the two genes characterised here and the in silico studies, it seems very 

likely that the xylose utilisation gene system proposed in Chapter 4 is indeed involved 

in xylose utilisation in C..beijerinckii. 

 

Candidates for xylAB in C..beijerinckii were previously identified by in silico studies 

(Chapter 4) and observed here in the proteomic analysis.  These candidates were cloned 

and screened for complementation in vivo using MacConkey agar as a screening tool 

and both complemented the absent xylA or xylB activity in the E. coli hosts used.   

 

Candidates for araABD in C..beijerinckii were previously identified by in silico studies 

(Chapter 4) and from the proteomic analysis (this chapter). araAB candidates were also 

cloned and screened for complementation in vivo using MacConkey agar as a screening 

tool.  However, only the insertion of CBEI4457 complemented the absence of araA 

activity in the E. coli host used.  It is not possible to say whether the araB candidate, 



Chapter 5: Characterisation and Expression of Pentose Utilisation Genes 

166 

 

CBEI4452, does or does not encode AraB, here because of the nature of the araB
-
 

mutant used and therefore an appropriate araB- mutant would need to be obtained 

which has a fully-functional araA gene. Based on the very high level of sequence 

homology of the AA sequence of CBEI4452 had with C. glutamicum AraB (Figure 4-

10) and the characterisation of an adjacent gene araA, as well as the results from the 

proteomic analysis of C..beijerinckii grown on arabinose, it is quite likely C. 

glutamicum AraB shares a similar function with CBEI4452. Work began on the putative 

araD gene, CBEI4455, however the mutant strain that was to be used for screening was 

discovered to carry other deletions of other ara utilisation genes and time restraints 

meant this could not be completed.  In the future a more suitable araD
-
 mutant could be 

obtained and the experiment completed.  

 



 

167 

 

 

 

 

Chapter 6:  

Summary and Future Research 

 



Chapter 6: Summary and Future Research 

168 

 

6 Summary and Future Research 

6.1 Summary  

In the light of oil reserves reaching exhaustion in the near future coupled with the 

greenhouse gas emissions associated with its combustion it is necessary to seek 

alternative and sustainable fuel sources in order to secure future fuel sources as well as 

meeting legislative targets of greenhouse gas reduction and mitigation of nations around 

the World (United_Nations, 1998).  One way of addressing this is through the use of 

alcohols as fuels.  In particular butanol, which can be produced from the ABE 

fermentation process, has superior fuel qualities to one of the most current widely used 

alcohol fuels ethanol.   

 

Lignocellulose is found in plant-based material and is a constituent of plant cell walls.  

It is a cheap, abundant and sustainable as a substrate for ABE fermentation.  

Lignocellulosic waste can come from a plethora of sources, such as, municipal, forestry, 

agricultural and industrial (Zaldivar et al., 2001).  Recently an industrial waste stream in 

the form of spent grains and pot ale from the Scottish whisky industry has been 

employed and demonstrated as a viable substrate for the ABE production here at the 

Biofuel Research Centre.  This is a waste stream which has low value, is a disposal 

nuisance and cost to the industry can made valuable by conversion to biofuel.  The 

reason that spent grains are useable after yeast fermentation is because yeast is unable to 

utilise pentose sugars and as such leaves a glucose depleted and pentose-rich substrate 

which can be fermented further (Hahn-Hagerdal et al., 2006).   

 

The purpose of this study was to investigate if C..beijerinckii could utilise the pentose 

sugars arabinose and xylose.  Strains of clostridia are known to be capable of pentose 

sugar fermentation and C. .beijerinckii has been observed here as being able to grow on 

both pentose sugars as a sole carbon source and to produce similar yields of total 

solvents to each other but lower than on glucose (Chapter 3). However what was 

evident was not much difference in the butanol yields between glucose, xylose and 

arabinose, despite more pentose sugar being present at the end of 72 hour fermentation.  

Differences in the ratios of acetone to butanol were apparent dependent upon the sugar 

C..beijerinckii was grown on, a finding also observed in C..acetobutylicum (Mes-

Hartree, 1982, Ounine et al., 1983), whereby the acetone: butanol ratio produced was 

higher on pentose sugars in comparison to glucose.  The levels of both butyric and 
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acetic acids at the fermentation end-point were higher for cultures grown on pentose 

sugars in comparison to cultures grown on glucose.   

 

When grown on mixed sugar media (glucose with a pentose sugar) at 1% (w/v) sugar 

concentration, C..beijerinckii was observed as utilising glucose in preference to both 

pentose sugars in media, regardless of what sugars the cultures were established on 

prior to the experiment.  Conversely, on high sugar concentrations (6% w/v), regardless 

of the sugar cultures were established on, pentose sugars were used at a quicker rate 

than glucose, in media containing a higher concentration of pentose sugars.  This 

finding suggests although there is a repression in the presence of glucose (based on the 

findings of utilisation preferences on low sugar fermentations), it may be that the 

mechanism of repression is influenced in a concentration dependent manner.  This 

knowledge is invaluable to future biofuel production using lignocellulose-based waste 

streams, which are made up of multiple carbohydrates.  If the pentose sugars are in 

excess they will be utilised alongside glucose.  This is of benefit as it avoids the 

preferred carbon source being depleted and pentose sugar wastage, when cultures 

maybe reaching the fermentation end-point.  

 

It would be valuable to gain insight into whether any other sugars prevalent in 

lignocellulosic wastes also have an effect on the utilisation.  It has been noted in several 

solventogenic strains of clostridia although sugars are used simultaneously, when in 

high concentration, some more rapidly or preferentially to others and this is strain 

dependent.  C..beijerinckii BA101 and C..beijerinckii NCP260 have both been observed 

as using cellobiose and glucose in preference to pentose sugars.  C..beijerinckii BA101 

used pentose sugars in preference over mannose and galactose, whereas C..beijerinckii 

NCP260 uses mannose in preference over arabinose, arabinose is used in preference 

over galactose (Ezeji et al., 2007, Ezeji and Blaschek, 2008). In previous studies of 

C..beijerinckii NCIMB8052, glucose has exerted a strong inhibition on the utilisation or 

expression of gene systems involved in glucitol, galactose and mannitol (Mitchell et al., 

1995, Behrens et al., 2001).  However fructose was observed as being simultaneously 

utilised alongside glucose. Additionally in the presence of excess mannose, the 

phosphorylation of glucose has been observed as prevented by the glucose PTS 

(Mitchell et al., 1995, Mitchell et al., 1991).  
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For the future of the biofuel industry it is necessary to increase the efficiency and 

therefore make the process more economically viable, therefore it is necessary to use a 

cheap and plentiful substrate.  To obtain the most value out of the substrate, it needs to 

be as wholly used as possible, therefore it is of an advantage for the solventogenic 

organism to be able to use the polymer (cellulose and hemicellulose) directly to reduce 

costs incurred by resources such as enzymes required to breakdown the substrate into a 

form where it is directly useable by the organism.  C..beijerinckii cannot utilise 

cellulose directly without the aid of the addition of cellulases to the culture medium 

(Lopez-Contreras et al., 2001).  Therefore enzymes, co-cultures (with C..thermocellum 

or C..cellulolyticum) or genetic modification would be necessary for C..beijerinckii to 

be able to utilise the cellulose fraction.  In this study C..beijerinckii was capable of 

utilising xylan and xylan hydrolysates directly and was aided by the addition of Ca2CO3 

as a buffer (Chapter 3).  However the solvent production by C..beijerinckii cultures 

grown on xylan was observed as poor.   

 

Investigating further into xylanase activity of C..beijerinckii could provide the 

necessary information to improve utilisation of xylan.  It was observed in 

C..acetobutylicum that both XynA and XynB had optimum activities at pH 5.0 and 

60°C for XynA and 70°C for XynB.  Also of interest XynB was found to be partly 

inhibited by 1mM FeCl2, CuSO4 and CdCl2 and strongly inhibited by HgCl2 (Ali et al., 

2004, 2005).  Such information could be highly useful in order to achieve the best 

conditions for xylan breakdown in order to achieve as much product from the substrate 

as possible.  However, it is probably expected that on mixed sugar fermentations 

C..beijerinckii will utilise the smaller carbohydrate units in preference, especially if 

there is an excess of glucose thus xylan is likely to be wasted before the fermentation 

endpoint.  Therefore a more fruitful line of research would be to look at ways to 

breakdown xylan into smaller constituent units in the most economically viable way, 

perhaps by using co-cultures or by genetic modification.   

 

Based on the results of Chapter 3, work had begun to provide evidence of the 

possession of xylanases in C..beijerinckii.  A zymogram using whole cell protein 

extracts of C..beijerinckii grown on minimal medium supplemented with xylan were 

made in view of using the supernatant and cell debris being used for native PAGE.  

Using gels supplemented with xylan and looking for the presence of clearing zones via  

employing congo red staining and destaining using a NaCl solution (Geib et al., 2010).  
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Unfortunately due to time constraints this work could not be completed.  An alternative 

route would be to clone the putative xylanase genes and over-express the putative genes 

and purify the protein for measuring the activity of the protein and its activity under 

different conditions such as temperature and pH, using the methodology of (Jalal et al., 

2009).  

 

The extent of resources on the planet that can be used for biofuel production is vast. 

Kim and Dale (2006) estimated there is 73.9 teragrams annually of waste crops that 

could be used to make 49.1 gigalitres of fuel.  The specific resource that could be 

utilised by a particular region of the World would depend upon the native species grown 

or consumed.  Resources for fermentations can come from forestry, agricultural, 

municipal and industrial sectors.  

 

Agricultural resources can be by-products of grain, oil-seed, fruit and vegetable 

harvesting, such as stalks, seeds, shells, husks, straw, sludge, wastewater and juice. 

Forestry and paper-pulp mills, including wood, bark, leaves, sawdust, fibre and black 

liquor. Municipal and industrial wastes such as food waste, paper, paper-pulp wastes, 

card and wood (Howard et al., 2003). Resources abundant for solventogenesis are 

dependent upon the area of the World. For example in North America an estimated 60-

80 million dry tonnes of corn stover available in the USA for fermentations.  Whereas 

waste paper, plant residues, sawdust and fruit and vegetable waste encompasses a 

considerable amount of the solid-based wastes in Tanzania (Mtui and Nakamura, 2005).  

Therefore it would be necessary for nations to identify and test the suitability of a 

potential feedstock. 

 

Although there are countless waste streams that have been investigated and could be 

used for clostridial fermentations, research is required into the best methods to release 

the carbon source, if required, in terms of the economics, the effect on the fermentation 

equipment and the organism and limiting the loss of sugars, by the chemical or physical 

methods used (Galbe and Zacchi, 2002).  The more the costs associated with this can be 

reduced and the more wholly a resource can be used, the more biobutanol and economic 

benefit can be derived.  Indeed in this study the use of DDGS as a fermentation 

substrate was investigated (Chapter 3).  The total solvent yields obtained on acid and 

enzymatically treated DDGS was less in comparison to soluble sugars, suggesting that 

inhibitor compounds may be present from the treatment of DDGS.   Therefore ways of 
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reducing or preventing the effect of inhibitory compounds would have been highly 

beneficial here.  XAD-4 resin has been used successfully to remove cell growth 

inhibition of C..beijerinckii BA101 attributed to acid-hydrolysed corn fibre (Qureshi et 

al., 2008). 

 

Lignocelluloses are not exhaustive of the resources that could be used and have been 

investigated for biofuel production in clostridia. Industrial wastes such as glycerol, a 

product of the transesterification process of oil (Andrade and Vasconcelos, 2003), dairy 

wastes, including caseins and whey which a protein-rich, lactose and fat (Audic et al., 

2003) could also be used as a feedstock for biofuel production. Indeed, 

C..acetobutylicum strains ATCC824 and ATCC 4259 when grown on glucose-glycerol 

mixtures had an ABE yield of 0.32 g/g and 0.41 g/g, despite the glycerol being of low-

grade.  Continuous cultures were also stable for 70 days grown on this media, which 

was thought to provide a selective pressure for plasmid maintenance, thus preventing 

strain degeneration which often comes with continuous fermentations (Andrade and 

Vasconcelos, 2003).  Such resources and others should be investigated as biofuel 

production in the future. 

 

  

 

Based on the finding C..beijerinckii can utilise both arabinose and xylose (Chapter 3) it 

was then expected that a gene system would be present responsible for the use of both 

of the pentose sugars.  Using a number of bioinformatics analyses (using programmes, 

BLAST, MrBayes, CLUSTALW2, THMHH, TMRPres2D, TreeView and GeneDoc) 

and knowledge of the enzymes involved in pentose sugar utilisation in other bacteria, 

two separate candidate gene systems, one for arabinose (CBEI4448-4457) and one for 

xylose (CBEI2380-2387) were identified within the genome of C..beijerinckii (Chapter 

4).  In order to firmly establish the candidate systems roles in xylose and arabinose use 

it was necessary to carry out further studies to confirm their role.  Several candidates 

were targeted for cloning (Chapter 5).  The ensuing in vivo studies confirmed xylAB 

(CBEI2383 and CBEI2384) and araA (CBEI4457) by a positive fermentation 

phenotype on MacConkey screening medium.  The candidate araBD genes were also 

cloned however unsuitable mutants were only available and so these experiments would 

have to be repeated with host cell mutants carrying a fully-functional arabinose 

utilisation gene system with only a single gene mutation, in araB or araD.  Both araB 
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and araD candidates had a high level of similarity with published characterised araBD 

genes.  Because of the level of similarity with other characterised araBD genes, and the 

araA gene being in close proximity, it would be expected that these two are likely 

candidate araBD genes. In E..coli, B..subtilis, S..enterica and C..glutamicum all 

arabinose utilisation genes are adjacent within the arabinose gene system (Lee et al., 

1986, Sa-Nogueira and de Lencastre, 1989, Lin et al., 1985b, Kawaguchi et al., 2009) 

Whereas the candidate arabinose gene system of C..beijerinckii there are genes between 

araA and the putative araB and araD genes (Figure 6-1). The order of the putative 

arabinose utilisation genes in C..beijerinckii is the same as C..glutamicum araBDA but 

different to E..coli, S..enterica (araBAD) and B..subtilis araDBA.   

 

 

araD araBaraA

araBaraAaraD

araB araAaraD

araB araAaraD

araRtalBtktBaraB araAaraD

E. coli

S. enterica

B. subtilis

C. glutamican

C. beijerinckii

 

Figure 6-1: Comparison of the arabinose operons 

Published characterised arabinose operons in comparison to the putative arabinose gene 

system of C..beijerinckii. The putative arabinose utilisation genes in C..beijerinckii are 

interrupted by other genes.  Whereas other organisms arabinose utilisation genes are 

adjacent to one and another. B. subtilis (Sa-Nogueira and de Lencastre, 1989); C. 

glutamican (Kawaguchi et al., 2009) E. coli (Lee et al., 1986); S. enterica (Lin et al., 

1985b) 

 

Cloning experiments do not always work and this can be due to the differences between 

the host and the nature of the organism that the cloned gene comes from.  C..beijerinckii 
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is a Gram positive organism with a low G/C content and therefore it is possible this 

produces a defective protein in a Gram negative host with a high G/C content, such as 

E..coli.  The expression of non-native proteins can be a stress to the host cell (Lesley et 

al., 2002). Although E..coli is often a popular host choice for gene cloning, genes of 

Gram positive organisms can produce unstable clones (Graves and Rabinowitz, 1986) 

and AT-rich inserts can be unstable in circular vectors (Godiska et al., 2009).  

Additionally some genes cannot be expressed efficiently in E..coli because of particular 

or unique features of the gene being cloned. Codons that are used more rarely in E. coli 

have been demonstrated to produce a low copy number and thus a low gene expression 

(Konigsberg and Godson, 1983), so particular genes highly expressed in one organism 

may not be expressed to the same extent in another simply because of the codon usage 

differences between species (Sharp et al., 1988). It maybe that mRNA stability or the 

translational efficiency is different, or the folding of the protein differs and thus is prone 

to degradation by the host cell’s proteases (Makrides, 1996).  Proteins which are not 

properly folded have a tendency to aggregate which may cause inclusion body 

formation (Fink, 1999) and therefore can be toxic to the host cell.  Alternative methods 

could be employed to characterise the candidate araBD genes. Producing knockouts of 

these genes in C..beijerinckii and analysing the ability of the strain to grow on arabinose 

in minimal medium in comparison to the parent strain. A knockout could be produced 

by transposon mutagenesis. Tn1545 and Tn916 conjugative transposons have been 

successfully transferred into C..beijerinckii previously (Woolley et al., 1989).  

However, such a method is very time consuming and laborious. Commercially available 

knockout kits are available, which are simple to use and rapid.  TargeTron (Sigma) has 

been used successfully in Clostridium perfringens and works by inserting a permanent, 

stable intron to disrupt a specific targeted gene (Sigma-Aldrich, 2008).  Obtaining a 

Gram positive host with araB and araD mutations and then cloning C..beijerinckii araB 

and araD candidates may have success.   

 

Additionally positive controls would be beneficial to check that the screening medium 

here was not the reason for the negative phenotype observed.  A positive control could 

be made by cloning characterised araB or araD genes from either E..coli, B..subtilis, 

S..enterica and C..glutamicum ((Sa-Nogueira and de Lencastre, 1989) (Lee et al., 1986) 

(Lin et al., 1985b); (Kawaguchi et al., 2009) into the araB
-
 and araD

-
 mutant host cells 

used in this study. 
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Proteomic analysis (Chapter 5) revealed the expression of the candidate araBD and 

araA genes when C..beijerinckii was grown on arabinose, adding further evidence that 

these genes have a role in arabinose utilisation. xylAB was expressed when 

C..beijerinckii was grown on medium containing xylose. There was also expression of 

the other candidate genes in both of the gene systems. The candidates araFG, talB, tktB 

(CBEI4449, 4450, 4453 and 4454) and xylF, talB, tktB (CBEI2380, 2386, 2387) and 

were also expressed. However evidence of candidate araH, araR and xylGH and xylR 

expression was not observed.  It is recommended to get proteomic analyses carried out 

in triplicate.   The analysis itself produces large volumes of peptide spectra, and it may 

be that some of these spectra ‘mask’ other peptide spectra (Higdon and Kolker, 2007) or 

some of the data is not significant at p<0.05.  Although this method provides a whole-

cell protein snap shot of C..beijerinckii when grown on arabinose or xylose it does not 

provide a quantitative result, which could have provided further evidence implicating 

the role of the candidate genes.  Real-time PCR is another tool for analysing gene 

expression of genes associated with the utilisation of arabinose and xylose. It is a very 

sensitive method of quantifying mRNA.  mRNA could be extracted from cells of 

C..beijerinckii grown on minimal medium containing the pentose sugar as the sole 

carbon source.  Probes could be designed for each individual gene involved in arabinose 

utilisation.  Using a different reporter dye, each gene could be quantified in one reaction 

(Nolan et al., 2006).  The effect of the presence of glucose on the expression of the 

candidate genes associated with both arabinose and xylose utilisation could be 

investigated.  Looking at the transcripts on both high and low sugar concentrations 

would provide evidence at the gene level to the effect observed in Chapter 3.  Real-time 

PCR is reliant on a number of factors such as the quality of the mRNA template, which 

is very vulnerable to degradation by environmental RNases; prevention of 

contamination to prevent false-positive amplification and degradation; careful design of 

primers to prevent mis-priming and primer dimers (Udvardi et al., 2008, Nolan et al., 

2006, Bustin, 2002).    
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6.2 Future Research 

A three-pronged approach for future research is thus proposed and summarised: firstly, 

further characterisation of xylose, arabinose and xylan utilisation genes; secondly, 

further fermentations in relation to the use of these carbohydrates; and finally strain 

development. 

1. Further Characterisation of Genes Involved in Pentose Sugar Utilisation 

There are many other avenues which could be explored with regards to pentose sugar 

utilisation.  Of particular value would be to explore the regulation mechanism of 

arabinose and xylose use, for fermentations with mixed sugar feedstocks.  Although 

simultaneous utilisation of both arabinose and xylose was observed alongside glucose in 

this study, it would be of benefit to characterise the mechanism for improving pentose 

sugar use, to provide knowledge for strain development, for the benefit of potential 

feedstocks where the ratios of pentose sugars are not in excess to glucose.   

 

The expression of genes involved in pentose sugar utilisation in the presence of glucose 

on low and high concentrations of sugar could be investigated via the use of real-time 

PCR using mRNA extracted from cultures at different time points on a growth curve.  

The expression of the putative transporter, repressor as well as utilisation genes could 

be investigated.  Further characterisation of genes that have not been characterised in 

this study could be carried out using similar methods.  Target genes could be amplified, 

cloned and characterised in vivo using strains with single gene mutations.  The use of 

Gram positive hosts, such as bacilli, if available could reduce the likelihood of problems 

that can be observed when using E. coli.  

 

As well as the use of pentose sugars by C. beijerinckii, the use of the pentose-polymer 

xylan, and the use arabinan could also be investigated.  Zymogram experiments could 

be completed to establish the ability of C. beijerinckii to utilise xylan before any 

candidate genes were cloned and characterised using the methodology for genes 

involved in pentose sugar utilisation. Alternatively, genes involved in xylan utilisation 

could be cloned and the protein over-expressed then purified and characterised for 

activity under a range of different conditions to establish the optimum conditions for 

xylan utilisation by C..beijerinckii.  These conditions could then be used to manipulate 

culture conditions and improve xylan utilisation. 
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2. Utilisation of Carbohydrates 

This would encompass the effect other sugars present in lignocellulosic waste have on 

the utilisation of pentose sugars, by conducting fermentations on the pure-form of the 

sugars at high and low sugar concentrations.  Additionally, the effect other sugars have 

on the utilisation of pentose polymers, such as xylan could also be investigated in a 

similar manner.  Further lignocellulosic waste streams which are abundant on the planet 

could be investigated as a feedstock for biobutanol production, perhaps waste streams 

indigenous to different regions of the World.  This could incorporate studies into best 

ways to degrade the feedstock prior to fermentation, this may use of co-cultures, for 

example using xylanolytic and cellulolytic clostridia, such as C..cellulolyticum or 

C..cellulovorans with C..beijerinckii, as the former two do not produce biobutanol.   

 

3. Strain Development 

Ultimately a strain which is not subject to any repression of genes associated with sugar 

utilisation would be of high value so as to negate the wastage of any sugars whatever 

the nature of the constituents making up a feedstock are. Such a strain was produced in 

B. subtilis.  A mutation in the ‘global regulator’ CcpA prevented catabolite repression 

exerted by several sugars, including glucose, fructose and mannitol (Hueck and Hillen, 

1995). CcpA has been identified in several in Gram positive bacteria with a low G/C 

content, including B. megaterium and Lactobacillus casei (Hueck et al., 1995, 

Monedero et al., 1997) and is responsible for carbon catabolite repression, whereby 

CcpA binds to catabolite-responsive elements found in the operons involved in the 

utilisation of the less preferred carbon sources and thus prevents the expression of the 

genes comprising the operon (Muscariello et al., 2001).  Indeed, CcpA homologues 

have been identified in C..beijerinckii (Reid et al., 1999). 
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6.3 Final conclusions 

This research has provided fundamental and important knowledge of the ability of 

C..beijerinckii NCIMB8052 ability to utilise pentose sugars.  This is of importance in 

the light of utilising lignocellulose, a highly abundant and ubiquitous feedstock found 

on the planet.  The ability of the organism to utilise pentose sugars, which are often 

prevalent in the hemicellulose fraction of lignocelluloses is of importance because the 

uptake and utilisation of a carbon source is directly related to solvent production and 

economics of biofuel production.  Having a fundamental knowledge of how a carbon 

source is utilised, opens doors to strain improvement, what sorts of feedstocks are 

usable and the effect of CCR sugar (such as glucose) has on the utilisation of the 

feedstock.  The techniques used in this study could be applied to other sugars and 

carbon sources as well as other solventogenic strains of clostridia.  Further avenues of 

research into pentose sugars have been eluded to here as well as highlighting an 

important a requirement for research for the best and economically viable release of 

carbon sources in terms of minimising the destruction of the carbon source and the 

release of inhibitors of high value to biofuel industry in the future. 
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7 Appendices 

7.1 Size standards for gel electrophoresis used in this study 

 

Hyperladder I       Hyperladder II     Generuler 1KB ladder NEB 1KB ladder

 

Figure 7-1: Hyperladder I and II and Generuler size standards 

Hyperladder I and II and Generuler were used as DNA size standards during 

electrophoresis 

 

 

 

Figure 7-2: Protein Marker 

Colourburst electrophoresis marker (Sigma) was ran alongside samples during SDS-

PAGE 
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7.2 Bicinchoninic Acid Protein Concentration Assay Standard Curve 

 

 

 

 

Figure 7-3: Bicinchoninic Acid Protein Concentration Assay Standard Curve 

BCA assay standard curve was carried out using BSA of known concentrations 
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7.3  pCR2.1 vector 

Map 
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pCR2.1 Sequence 

AGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATCCATTAATGCAGCTGGCACGACAGGTT

TCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAG

GCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAA

ACAGCTATGACCATGATTACGCCAAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGC

TGGAATCCGGCTTAAGCCGAATCCTGCAGATATCCATCACACTGGCGGCCGCTCGAGCATGCATCTAGAG

GGCCCAATCCGCCCTATAGTGAGTCGTATTACAATCCACTGGCCGTCGTTTTACAACGTCGTGACTGGGA

AAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAA

GAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGACGCGCCCTGTAGCGG

CGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCC

GCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGG

GGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATAGGGTGATGGT

TCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATA

GTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATCCTTTTGATTTATAAGGGAT

TTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAA

ATCCAGGGCGCAAGGGCTGCTAAAGGAAGCGGAACACGTAGAAAGCCAGTCCGCGAAACGGTGCTGACCC

CGGATGAATGTCAGCTACTGGGCTATCTGGACAAGGGAAAACGCAAGCGCAAAGAGAAAGCAGGTAGCTT

GCAGTGGGCTTACATGGCGATAGCTAGACTGGGCGGTTTTATGGACAGCAAGCGAACCGGAATTGCCAGC

TGGGGCGCCCTCTGGTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTTCTTGCCGCCAAGGATC

TGATGGCGCAGGGGATCAAGATCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAACAAGATG

GATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATCCGGCTATGACTGGGCACAACAGACAAT

CGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGAC

CTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTC

CTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGAAGTGCCGGG

GCAGGATCTCCTGTCATCCCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGG

CTGCATACGCTTGATCCGGCTACCTGCCCATCCGACCACCAAGCGAAACATCGCATCGAGCGAGCACGTA

CTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGA

ACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGC

TTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATCCATCGACTGTGGCCGGCTGGGTGTGGCGG

ACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCG

CTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATCCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAG

TTCTTCTGAATTGAAAAAGGAAGAGTATGAGTATCCAACATTTCCGTGTCGCCCTTATCCCCTTTTTTGC

GGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTG

GGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAG

AACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGG

GCAAGAGCAACTCGGTCGCCGCATACACTATCCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAA

AAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTG

CGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGA

TCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACC

ACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCC

GGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGC

TGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGG

CCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAA

ATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATA

TATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAAT

CTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAG

GATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGC

GGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAG

ATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTA

CATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTT

GGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCC

AGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTC

CCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCT

TCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTT

TTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGG

CCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATCCTGTGGATAACCGTATTAC

CGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAA

GCGGAAG 

 

Cloning site 
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7.4 Proteomic Analysis of C..beijerinckii Grown on Arabinose 

GI # Gene label 

Mass 

(Mr) 

Mowse 

score 

 gi|150014899 DNA gyrase subunit A 92723 182 

 gi|150014913 ABC transporter related 59727 296 

 gi|150014925 peptidylprolyl isomerase 19103 180 

 gi|150014967 phosphoserine aminotransferase 40121 491 

 gi|150014980 AbrB family transcriptional regulator 20286 114 

 gi|150014983 histone family protein DNA-binding protein 10127 170 

 gi|150014991 hypoxanthine phosphoribosyltransferase 20166 236 

 gi|150014993 formate--tetrahydrofolate ligase 60745 367 

 gi|150014996 transcription elongation factor GreA 17769 89 

 gi|150014997 lysyl-tRNA synthetase 57333 105 

 gi|150015006 hypothetical protein Cbei_0114 12071 100 

 gi|150015028 elongation factor Tu 43653 745 

 gi|150015032 ribosomal protein L11 14988 549 

 gi|150015033 50S ribosomal protein L1 24623 712 

 gi|150015034 50S ribosomal protein L10 18275 657 

 gi|150015035 ribosomal protein L7/L12 12592 143 

 gi|150015036 DNA-directed RNA polymerase subunit beta 139257 591 

 gi|150015037 DNA-directed RNA polymerase subunit beta' 132490 175 

 gi|150015038 30S ribosomal protein S12 13758 88 

 gi|150015039 30S ribosomal protein S7 17661 1313 

 gi|150015040 elongation factor G 76160 1130 

 gi|150015042 30S ribosomal protein S10 11502 58 

 gi|150015043 50S ribosomal protein L3 22768 811 

 gi|150015044 50S ribosomal protein L4 22863 742 

 gi|150015046 50S ribosomal protein L2 30397 490 

 gi|150015049 30S ribosomal protein S3 24581 541 

 gi|150015050 50S ribosomal protein L16 16342 176 

 gi|150015051 50S ribosomal protein L29 8116 113 

 gi|150015053 50S ribosomal protein L14 13212 353 

 gi|150015055 50S ribosomal protein L5 20424 1017 

 gi|150015057 30S ribosomal protein S8 14756 419 

 gi|150015058 50S ribosomal protein L6 19874 570 

 gi|150015059 50S ribosomal protein L18 13196 109 

 gi|150015060 30S ribosomal protein S5 17312 947 

 gi|150015061 50S ribosomal protein L30 6610 396 

 gi|150015062 50S ribosomal protein L15 15648 458 

 gi|150015069 30S ribosomal protein S13 13847 667 

 gi|150015070 30S ribosomal protein S11 14080 258 

 gi|150015071 30S ribosomal protein S4 24032 403 

 gi|150015072 DNA-directed RNA polymerase subunit alpha 35215 178 

 gi|150015073 50S ribosomal protein L17 12814 291 

 gi|150015078 50S ribosomal protein L13 16340 603 

 gi|150015079 30S ribosomal protein S9 14476 412 

 gi|150015088 phosphoenolpyruvate-protein phosphotransferase 59644 571 

 gi|150015095 phosphate butyryltransferase 32592 1196 

 gi|150015096 butyrate kinase 38524 546 

 gi|150015137 mannitol dehydrogenase domain-containing protein 42461 43 

 gi|150015138 glucosamine--fructose-6-phosphate aminotransferase, isomerising 66893 611 

 gi|150015152 RND family efflux transporter MFP subunit 52841 187 

 gi|150015178 rubrerythrin 22497 123 

 gi|150015211 3-hydroxybutyryl-CoA dehydratase 28449 1316 

 gi|150015212 acyl-CoA dehydrogenase domain-containing protein 41307 2121 

 gi|150015213 electron transfer flavoprotein, alpha/beta-subunit-like protein 27918 1242 

 gi|150015214 electron transfer flavoprotein, alpha/beta-subunit-like protein 35994 1372 

 gi|150015215 3-hydroxybutyryl-CoA dehydrogenase 30618 2641 

 gi|150015218 co-chaperonin GroES 10149 340 
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 gi|150015219 chaperonin GroEL 57575 4717 

 gi|150015221 inosine 5'-monophosphate dehydrogenase 52586 145 

 gi|150015222 GMP synthase 57592 87 

 gi|150015279 glutathione peroxidase 20334 104 

 gi|150015281 peptidoglycan-binding LysM 59124 974 

 gi|150015297 RpiB/LacA/LacB family sugar-phosphate isomerase 18060 128 

 gi|150015301 acetyl-CoA acetyltransferase 41327 3761 

 gi|150015304 F0F1 ATP synthase subunit B 18305 129 

 gi|150015305 F0F1 ATP synthase subunit delta 21314 132 

 gi|150015306 F0F1 ATP synthase subunit alpha 55366 486 

 gi|150015313 peptidase M23B 27546 233 

 gi|150015318 S-adenosylmethionine synthetase 43543 122 

 gi|150015323 pre-protein translocase subunit SecA 96025 220 

 gi|150015334 glutamine synthetase, catalytic region 77489 292 

 gi|150015376 aminoacyl-histidine dipeptidase 53996 294 

 gi|150015398 50S ribosomal protein L21 11301 598 

 gi|150015422 transketolase 72429 748 

 gi|150015455 putative serine protein kinase, PrkA 73669 1019 

 gi|150015466 cysteine synthase 31988 532 

 gi|150015486 glyceraldehyde-3-phosphate dehydrogenase, type I 35775 1659 

 gi|150015487 phosphoglycerate kinase 42136 482 

 gi|150015488 triosephosphate isomerase 27162 1089 

 gi|150015489 phosphoglyceromutase 56514 320 

 gi|150015491 phosphopyruvate hydratase 47201 1578 

 gi|150015524 5'-nucleotidase domain-containing protein 119048 104 

 gi|150015527 YaeC family lipoprotein 29814 114 

 gi|150015546 methyltransferase type 11 21713 220 

 gi|150015568 O-methyltransferase family protein 23751 126 

 gi|150015570 hypothetical protein Cbei_0682 10093 135 

 gi|150015571 radical SAM domain-containing protein 50434 644 

 gi|150015577 hypothetical protein Cbei_0689 11485 123 

 gi|150015644 

phosphotransferase system, lactose/cellobiose-specific IIB 

subunit 11293 465 

 gi|150015651 

alkyl hydroperoxide reductase/ Thiol specific antioxidant/ Mal 

allergen 17828 89 

 gi|150015652 O-acetylhomoserine/O-acetylserine sulfhydrylase 46363 128 

 gi|150015659 pepF/M3 family oligoendopeptidase 68210 137 

 gi|150015682 UspA domain-containing protein 16476 270 

 gi|150015712 hypothetical protein Cbei_0826 16769 377 

 gi|150015716 molecular chaperone DnaK 65416 1087 

 gi|150015725 GatB/Yqey domain-containing protein 16935 119 

 gi|150015735 pyruvate phosphate dikinase 97049 786 

 gi|150015751 glycogen/starch/alpha-glucan phosphorylase 91707 84 

 gi|150015868 ribosomal 5S rRNA E-loop binding protein Ctc/L25/TL5 20762 139 

 gi|150015869 phosphoglucomutase/phosphomannomutase alpha/beta/subunit 64725 424 

 gi|150015885 beta-lactamase, putative 41307 114 

 gi|150015895 formate acetyltransferase 83631 1492 

 gi|150015897 formate acetyltransferase 83456 2316 

 gi|150015921 hypothetical protein Cbei_1035 11843 95 

 gi|150015929 branched-chain amino acid aminotransferase 38271 232 

 gi|150015932 band 7 protein 34759 192 

 gi|150015939 phosphoribosylformylglycinamidine synthase 137920 198 

 gi|150015945 

bifunctional phosphoribosylaminoimidazolecarboxamide 

formyltransferase/IMP cyclohydrolase 56438 218 

 gi|150016048 phosphotransacetylase 36053 71 

 gi|150016060 30S ribosomal protein S16 9229 303 

 gi|150016064 50S ribosomal protein L19 13359 139 

 gi|150016072 30S ribosomal protein S2 26356 198 

 gi|150016073 elongation factor Ts 34123 252 

 gi|150016083 transcription elongation factor NusA 44957 103 
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 gi|150016086 translation initiation factor IF-2 76480 271 

 gi|150016091 30S ribosomal protein S15 10189 203 

 gi|150016092 polynucleotide phosphorylase/polyadenylase 77276 216 

 gi|150016111 6,7-dimethyl-8-ribityllumazine synthase 16396 326 

 gi|150016121 S-ribosylhomocysteinase 18301 95 

 gi|150016208 trigger factor 48472 747 

 gi|150016209 ATP-dependent Clp protease, proteolytic subunit ClpP 22056 300 

 gi|150016219 hypothetical protein Cbei_1337 12591 573 

 gi|150016286 hypothetical protein Cbei_1406 15725 211 

 gi|150016296 rubrerythrin 20007 348 

 gi|150016307 glutamyl-tRNA synthetase 63942 119 

 gi|150016309 glutaminyl-tRNA synthetase 64207 87 

 gi|150016338 

pyruvate flavodoxin/ferredoxin oxidoreductase domain-

containing protein 130496 358 

 gi|150016362 hypothetical protein Cbei_1482 35086 162 

 gi|150016373 hypothetical protein Cbei_1494 24923 777 

 gi|150016374 hypothetical protein Cbei_1495 35782 567 

 gi|150016385 superoxide dismutase 23152 378 

 gi|150016417 adenine phosphoribosyltransferase 18747 200 

 gi|150016423 aspartyl-tRNA synthetase 68424 136 

 gi|150016445 translation initiation factor IF-3 21563 200 

 gi|150016447 50S ribosomal protein L20 13621 272 

 gi|150016456 

UDP-N-acetylmuramoylalanyl-D-glutamate--2,6-

diaminopimelate ligase B 55243 112 

 gi|150016464 alanine racemase domain-containing protein 25848 223 

 gi|150016564 elongation factor P 22075 274 

 gi|150016573 stage III sporulation protein AH 19180 233 

 gi|150016574 hypothetical protein Cbei_1700 13826 154 

 gi|150016586 response regulator receiver protein 30721 405 

 gi|150016596 iron-containing alcohol dehydrogenase 43043 552 

 gi|150016611 NAD(P)H dehydrogenase (quinone) 22331 199 

 gi|150016623 anthranilate synthase component I 53456 258 

 gi|150016624 glutamine amidotransferase of anthranilate synthase 21769 243 

 gi|150016625 anthranilate phosphoribosyltransferase 36466 178 

 gi|150016626 indole-3-glycerol-phosphate synthase 31355 77 

 gi|150016628 tryptophan synthase subunit beta 43014 1367 

 gi|150016629 tryptophan synthase, alpha subunit 28702 180 

 gi|150016663 single-stranded DNA-binding protein 24874 112 

 gi|150016668 dihydrodipicolinate reductase 27720 80 

 gi|150016673 Hsp33-like chaperonin 32229 60 

 gi|150016698 heat shock protein DnaJ domain-containing protein 18975 64 

 gi|150016741 serine hydroxymethyltransferase 45243 52 

 gi|150016743 hypothetical protein Cbei_1870 9608 103 

 gi|150016747 Serine-type D-Ala-D-Ala carboxypeptidase 44299 163 

 gi|150016776 fructose-1,6-bisphosphate aldolase, class II 30931 769 

 gi|150016781 membrane -like protein 21839 86 

 gi|150016830 hypothetical protein Cbei_1958 19522 216 

 gi|150016840 aspartate/ornithine carbamoyltransferase family protein 45081 137 

 gi|150016904 3-hydroxybutyryl-CoA dehydratase 28556 108 

 gi|150016905 acyl-CoA dehydrogenase domain-containing protein 41391 1758 

 gi|150016907 electron transfer flavoprotein, alpha/beta-subunit-like protein 36021 130 

 gi|150016983 inosine 5-monophosphate dehydrogenase 55868 197 

 gi|150017050 iron-containing alcohol dehydrogenase 42947 123 

 gi|150017058 nitroreductase 20612 138 

 gi|150017147 hydroxylamine reductase 60892 554 

 gi|150017192 methionine synthase, vitamin-B12 independent 43641 231 

 gi|150017213 hypothetical protein Cbei_2351 10018 185 

 gi|150017248 putative transaldolase 23164 1401 

 gi|150017249 transketolase 72544 1005 

 gi|150017281 iron-containing alcohol dehydrogenase 43050 113 
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 gi|150017287 xanthine phosphoribosyltransferase 21248 160 

 gi|150017311 electron transport complex, RnfABCDGE type, G subunit 20254 62 

 gi|150017349 rubrerythrin 20009 349 

 gi|150017371 extracellular solute-binding protein 31572 401 

 gi|150017403 

4-hydroxy-3-methylbut-2-enyl diphosphate reductase/S1 RNA-

binding domain protein 71710 230 

 gi|150017407 Ferritin, Dps family protein 20036 136 

 gi|150017452 hypothetical protein Cbei_2594 25673 260 

 gi|150017453 hypothetical protein Cbei_2595 29611 95 

 gi|150017459 dTDP-4-dehydrorhamnose 3,5-epimerase 22223 119 

 gi|150017467 pantoate--beta-alanine ligase 31367 222 

 gi|150017468 3-methyl-2-oxobutanoate hydroxymethyltransferase 29773 735 

 gi|150017508 3-oxoacid CoA-transferase, B subunit 22977 416 

 gi|150017509 3-oxoacid CoA-transferase, A subunit 25671 321 

 gi|150017530 coagulation factor 5/8 type domain-containing protein 80810 471 

 gi|150017535 redoxin domain-containing protein 18083 307 

 gi|150017593 

phosphotransferase system, lactose/cellobiose-specific IIB 

subunit 10742 88 

 gi|150017595 putative translaldolase 26780 65 

 gi|150017661 hypothetical protein Cbei_2809 19517 120 

 gi|150017731 acyl-CoA dehydrogenase domain-containing protein 41968 110 

 gi|150017734 electron transfer flavoprotein, alpha subunit-like protein 32922 70 

 gi|150017861 carbon-monoxide dehydrogenase, catalytic subunit 70862 73 

 gi|150017880 fructose-1,6-bisphosphate aldolase 33328 277 

 gi|150017884 hypothetical protein Cbei_3043 22683 185 

 gi|150018108 class II aldolase/adducin family protein 24899 370 

 gi|150018109 coenzyme A transferase 56285 1244 

 gi|150018155 hypothetical protein Cbei_3326 23887 62 

 gi|150018543 2,5-didehydrogluconate reductase 31986 191 

 gi|150018622 molybdenum cofactor synthesis domain-containing protein 17547 99 

 gi|150018649 aldehyde dehydrogenase 51867 149 

 gi|150018652 acetoacetate decarboxylase 27532 216 

 gi|150018793 extracellular solute-binding protein 62390 223 

 gi|150018806 hypothetical protein Cbei_3994 17665 67 

 gi|150018853 2-oxoglutarate ferredoxin oxidoreductase subunit beta 31494 86 

 gi|150018854 

pyruvate flavodoxin/ferredoxin oxidoreductase domain-

containing protein 62543 481 

 gi|150018878 hypothetical protein Cbei_4066 24056 95 

 gi|150018959 basic membrane lipoprotein 37308 167 

 gi|150018972 heat shock protein 90 75068 131 

 gi|150019016 glutamate synthase (ferredoxin) 171247 63 

 gi|150019040 hypoxanthine phosphoribosyltransferase 19883 158 

 gi|150019044 nucleoside-diphosphate kinase 15405 156 

 gi|150019054 hypothetical protein Cbei_4242 16701 82 

 gi|150019101 flagellin domain-containing protein 29021 178 

 gi|150019116 putative CheW protein 14865 226 

 gi|150019119 CheA signal transduction histidine kinase 76215 385 

 gi|150019128 aminotransferase, class I and II 43945 233 

 gi|150019130 

pyruvate flavodoxin/ferredoxin oxidoreductase domain-

containing protein 128281 3447 

 gi|150019139 oligoendopeptidase F 68788 371 

 gi|150019140 hypothetical protein Cbei_4328 15671 377 

 gi|150019149 thiamine pyrophosphate binding domain-containing protein 42357 46 

 gi|150019168 cysteine synthase A 32640 1931 

 gi|150019169 nitroreductase 19702 381 

 gi|150019216 hypothetical protein Cbei_4405 15493 1820 

 gi|150019217 hypothetical protein Cbei_4406 15519 1871 

 gi|150019218 hypothetical protein Cbei_4407 83020 58 

 gi|150019220 saccharopine dehydrogenase 45459 57 

 gi|150019260 ABC transporter related 56239 223 
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 gi|150019261 monosaccharide-transporting ATPase 41113 626 

 gi|150019263 carbohydrate kinase, FGGY 58827 684 

 gi|150019264 transketolase 72572 1365 

 gi|150019265 putative transaldolase 23178 1490 

 gi|150019266 L-ribulose-5-phosphate 4-epimerase 25411 371 

 gi|150019268 L-arabinose isomerase 54563 306 

 gi|150019273 periplasmic binding protein/LacI transcriptional regulator 36287 413 

 gi|150019276 aldose 1-epimerase 39131 292 

 gi|150019414 methyl-accepting chemotaxis sensory transducer 33969 92 

 gi|150019445 

phosphotransferase system, lactose/cellobiose-specific IIB 

subunit 11135 85 

 gi|150019454 transketolase 72473 856 

 gi|150019505 choline/ethanolamine kinase 71972 176 

 gi|150019527 cell wall binding repeat-containing protein 69478 1094 

 gi|150019569 cell wall binding repeat-containing protein 63700 2099 

 gi|150019585 dihydrodipicolinate synthase 32461 182 

 gi|150019597 enzyme with TIM-barrel fold 24119 74 

 gi|150019643 catalase 26132 102 

 gi|150019659 pyruvate kinase 50903 551 

 gi|150019660 6-phosphofructokinase 34271 610 

 gi|150019662 stress responsive alpha-beta barrel domain-containing protein 10959 92 

 gi|150019666 UDP-N-acetylenolpyruvoylglucosamine reductase 27428 99 

 gi|150019713 glucose-1-phosphate adenylyltransferase 43189 67 

 gi|150019725 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase 25537 127 

 gi|150019735 D-isomer specific 2-hydroxyacid dehydrogenase, NAD-binding 32469 368 

 gi|150019736 extracellular solute-binding protein 61171 137 

 gi|150019767 response regulator receiver protein 34454 100 

 gi|150019848 pyridoxal biosynthesis lyase PdxS 31410 290 

 gi|150019863 beta-lactamase domain-containing protein 46047 311 

 gi|150019864 acyl-CoA dehydrogenase domain-containing protein 69341 401 

 gi|150019868 hypothetical protein Cbei_5060 19627 264 

 gi|150019882 adenylosuccinate synthetase 47519 75 

 gi|150019894 30S ribosomal protein S6 10989 335 

gi|150015036  DNA-directed RNA polymerase subunit beta 139257 220 

gi|150015308  F0F1 ATP synthase subunit beta 50258 123 

gi|150015375  pyruvate kinase 52122 141 

gi|150016020  sporulation stage IV, protein A 56351 131 

gi|150016296  rubrerythrin 20007 56 

gi|150016423  aspartyl-tRNA synthetase 68424 49 

gi|150016625 anthranilate phosphoribosyltransferase 36466 94 

gi|150016726  

pyruvate flavodoxin/ferredoxin oxidoreductase domain-

containing protein 131577 171 
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7.5 Proteomic Analysis of C..beijerinckii Grown on Xylose 

GI # Gene label Mass score 

 gi|150014899 DNA gyrase subunit A 92723 92 

 gi|150014913 ABC transporter related 59727 151 

 gi|150014925 peptidylprolyl isomerase 19103 76 

 gi|150014945 peptidase M24 47840 123 

 gi|150014967 phosphoserine aminotransferase 40121 338 

 gi|150014972 SpoVG family protein 10169 135 

 gi|150014974 ribose-phosphate pyrophosphokinase 34994 97 

 gi|150014983 histone family protein DNA-binding protein 10127 216 

 gi|150014993 formate--tetrahydrofolate ligase 60745 545 

 gi|150014996 transcription elongation factor GreA 17769 43 

 gi|150015028 elongation factor Tu 43653 1288 

 gi|150015032 ribosomal protein L11 14988 518 

 gi|150015033 50S ribosomal protein L1 24623 873 

 gi|150015034 50S ribosomal protein L10 18275 710 

 gi|150015035 ribosomal protein L7/L12 12592 788 

 gi|150015036 DNA-directed RNA polymerase subunit beta 139257 800 

 gi|150015037 DNA-directed RNA polymerase subunit beta' 132490 149 

 gi|150015038 30S ribosomal protein S12 13758 101 

 gi|150015039 30S ribosomal protein S7 17661 1123 

 gi|150015040 elongation factor G 76160 1476 

 gi|150015042 30S ribosomal protein S10 11502 332 

 gi|150015043 50S ribosomal protein L3 22768 689 

 gi|150015044 50S ribosomal protein L4 22863 857 

 gi|150015045 50S ribosomal protein L23 11108 691 

 gi|150015046 50S ribosomal protein L2 30397 494 

 gi|150015047 30S ribosomal protein S19 10278 141 

 gi|150015048 50S ribosomal protein L22 12337 321 

 gi|150015049 30S ribosomal protein S3 24581 578 

 gi|150015053 50S ribosomal protein L14 13212 432 

 gi|150015054 50S ribosomal protein L24 11651 240 

 gi|150015055 50S ribosomal protein L5 20424 980 

 gi|150015057 30S ribosomal protein S8 14756 502 

 gi|150015058 50S ribosomal protein L6 19874 903 

 gi|150015059 50S ribosomal protein L18 13196 331 

 gi|150015060 30S ribosomal protein S5 17312 808 

 gi|150015061 50S ribosomal protein L30 6610 508 

 gi|150015062 50S ribosomal protein L15 15648 482 

 gi|150015064 adenylate kinase 24232 59 

 gi|150015069 30S ribosomal protein S13 13847 564 

 gi|150015070 30S ribosomal protein S11 14080 217 

 gi|150015071 30S ribosomal protein S4 24032 343 

 gi|150015072 DNA-directed RNA polymerase subunit alpha 35215 121 

 gi|150015073 50S ribosomal protein L17 12814 318 

 gi|150015078 50S ribosomal protein L13 16340 633 

 gi|150015079 30S ribosomal protein S9 14476 458 

 gi|150015088 phosphoenolpyruvate-protein phosphotransferase 59644 408 

 gi|150015095 phosphate butyryltransferase 32592 1387 

 gi|150015096 butyrate kinase 38524 541 

 gi|150015136 

phosphoenolpyruvate-dependent sugar phosphotransferase 

system, EIIA 2 16181 128 

 gi|150015138 

glucosamine--fructose-6-phosphate aminotransferase, 

isomerising 66893 245 

 gi|150015152 RND family efflux transporter MFP subunit 52841 290 

 gi|150015207 transaldolase 24704 209 

 gi|150015211 3-hydroxybutyryl-CoA dehydratase 28449 702 

 gi|150015212 acyl-CoA dehydrogenase domain-containing protein 41307 1851 

 gi|150015213 electron transfer flavoprotein, alpha/beta-subunit-like 27918 1106 
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protein 

 gi|150015214 

electron transfer flavoprotein, alpha/beta-subunit-like 

protein 35994 1140 

 gi|150015215 3-hydroxybutyryl-CoA dehydrogenase 30618 2777 

 gi|150015218 co-chaperonin GroES 10149 265 

 gi|150015219 chaperonin GroEL 57575 62 

 gi|150015221 inosine 5'-monophosphate dehydrogenase 52586 574 

 gi|150015222 GMP synthase 35775 174 

 gi|150015231 glucose-6-phosphate isomerase 49829 731 

 gi|150015297 RpiB/LacA/LacB family sugar-phosphate isomerase 18060 124 

 gi|150015301 acetyl-CoA acetyltransferase 41327 4628 

 gi|150015304 F0F1 ATP synthase subunit B 18305 90 

 gi|150015305 F0F1 ATP synthase subunit delta 21314 148 

 gi|150015306 F0F1 ATP synthase subunit alpha 55366 1248 

 gi|150015308 F0F1 ATP synthase subunit beta 50258 861 

 gi|150015318 S-adenosylmethionine synthetase 43543 479 

 gi|150015323 preprotein translocase subunit SecA 96025 176 

 gi|150015334 glutamine synthetase, catalytic region 77489 128 

 gi|150015353 hemerythrin-like metal-binding protein 15797 77 

 gi|150015375 pyruvate kinase 52122 106 

 gi|150015376 aminoacyl-histidine dipeptidase 53996 338 

 gi|150015398 50S ribosomal protein L21 11301 780 

 gi|150015455 putative serine protein kinase, PrkA 73669 47 

 gi|150015466 cysteine synthase 31988 374 

 gi|150015486 glyceraldehyde-3-phosphate dehydrogenase, type I 35775 1349 

 gi|150015487 phosphoglycerate kinase 42136 549 

 gi|150015488 triosephosphate isomerase 27162 978 

 gi|150015489 phosphoglyceromutase 56514 141 

 gi|150015491 phosphopyruvate hydratase 47201 296 

 gi|150015527 YaeC family lipoprotein 29814 84 

 gi|150015546 methyltransferase type 11 21713 273 

 gi|150015551 putative oxidoreductase 50621 109 

 gi|150015568 O-methyltransferase family protein 23751 136 

 gi|150015570 hypothetical protein Cbei_0682 10093 88 

 gi|150015571 radical SAM domain-containing protein 50434 554 

 gi|150015577 hypothetical protein Cbei_0689 11485 177 

 gi|150015641 putative CheW protein 33591 182 

 gi|150015644 

phosphotransferase system, lactose/cellobiose-specific IIB 

subunit 11293 166 

 gi|150015645 Serine--pyruvate transaminase 42965 134 

 gi|150015652 O-acetylhomoserine/O-acetylserine sulfhydrylase 46363 488 

 gi|150015682 UspA domain-containing protein 16476 186 

 gi|150015690 methyl-accepting chemotaxis sensory transducer 62657 77 

 gi|150015712 hypothetical protein Cbei_0826 16769 281 

 gi|150015716 molecular chaperone DnaK 65416 769 

 gi|150015868 ribosomal 5S rRNA E-loop binding protein Ctc/L25/TL5 20762 220 

 gi|150015869 

phosphoglucomutase/phosphomannomutase 

alpha/beta/subunit 64725 350 

 gi|150015892 orotate phosphoribosyltransferase 25225 105 

 gi|150015895 formate acetyltransferase 83631 952 

 gi|150015897 formate acetyltransferase 83456 3018 

 gi|150015914 AsnC family transcriptional regulator 17964 105 

 gi|150015921 hypothetical protein Cbei_1035 11843 189 

 gi|150015929 branched-chain amino acid aminotransferase 38271 277 

 gi|150015932 band 7 protein 34759 58 

 gi|150015939 phosphoribosylformylglycinamidine synthase 137920 643 

 gi|150015940 

phosphoribosylaminoimidazole carboxylase, catalytic 

subunit 17102 210 

 gi|150015941 

phosphoribosylaminoimidazole-succinocarboxamide 

synthase 26763 486 
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 gi|150015945 

bifunctional phosphoribosylaminoimidazolecarboxamide 

formyltransferase/IMP cyclohydrolase 56438 536 

 gi|150015994 GTP-binding protein TypA 68060 69 

 gi|150016002 cell division protein FtsZ 40622 417 

 gi|150016040 hypothetical protein Cbei_1156 12883 265 

 gi|150016049 acetate kinase 43774 286 

 gi|150016054 ribonuclease III 26714 80 

 gi|150016064 50S ribosomal protein L19 13359 304 

 gi|150016072 30S ribosomal protein S2 26356 104 

 gi|150016073 elongation factor Ts 34123 340 

 gi|150016082 hypothetical protein Cbei_1198 14563 119 

 gi|150016083 transcription elongation factor NusA 44957 96 

 gi|150016086 translation initiation factor IF-2 76480 351 

 gi|150016087 ribosome-binding factor A 13620 95 

 gi|150016091 30S ribosomal protein S15 10189 294 

 gi|150016092 polynucleotide phosphorylase/polyadenylase 77276 200 

 gi|150016103 phosphotransferase system, phosphocarrier protein HPr 9077 545 

 gi|150016105 adenylosuccinate lyase 54084 491 

 gi|150016121 S-ribosylhomocysteinase 18301 209 

 gi|150016175 threonine synthase 54816 121 

 gi|150016208 trigger factor 48472 735 

 gi|150016209 ATP-dependent Clp protease, proteolytic subunit ClpP 22056 201 

 gi|150016219 hypothetical protein Cbei_1337 12591 515 

 gi|150016220 nicotinate phosphoribosyltransferase 56957 86 

 gi|150016260 hypothetical protein Cbei_1378 21832 182 

 gi|150016296 rubrerythrin 20007 328 

 gi|150016307 glutamyl-tRNA synthetase 63942 195 

 gi|150016309 glutaminyl-tRNA synthetase 64207 67 

 gi|150016311 seryl-tRNA synthetase 48555 266 

 gi|150016338 

pyruvate flavodoxin/ferredoxin oxidoreductase domain-

containing protein 130496 167 

 gi|150016373 hypothetical protein Cbei_1494 24923 848 

 gi|150016374 hypothetical protein Cbei_1495 35782 791 

 gi|150016423 aspartyl-tRNA synthetase 68424 52 

 gi|150016445 translation initiation factor IF-3 21563 84 

 gi|150016446 50S ribosomal protein L35 7506 51 

 gi|150016447 50S ribosomal protein L20 13621 289 

 gi|150016564 elongation factor P 22075 205 

 gi|150016586 response regulator receiver protein 30721 312 

 gi|150016596 iron-containing alcohol dehydrogenase 43043 472 

 gi|150016623 anthranilate synthase component I 53456 215 

 gi|150016624 glutamine amidotransferase of anthranilate synthase 21769 198 

 gi|150016625 anthranilate phosphoribosyltransferase 36466 117 

 gi|150016626 indole-3-glycerol-phosphate synthase 31355 144 

 gi|150016628 tryptophan synthase subunit beta 43014 731 

 gi|150016629 tryptophan synthase, alpha subunit 28702 204 

 gi|150016648 hypothetical protein Cbei_1774 24133 174 

 gi|150016655 valyl-tRNA synthetase 101354 55 

 gi|150016661 hypothetical protein Cbei_1788 20099 76 

 gi|150016664 

tetrahydrodipicolinate succinyltransferase domain-

containing protein 25184 190 

 gi|150016726 

pyruvate flavodoxin/ferredoxin oxidoreductase domain-

containing protein 131577 171 

 gi|150016741 serine hydroxymethyltransferase 45243 428 

 gi|150016776 fructose-1,6-bisphosphate aldolase, class II 30931 716 

 gi|150016830 hypothetical protein Cbei_1958 19522 293 

 gi|150016905 acyl-CoA dehydrogenase domain-containing protein 41391 1473 

 gi|150016995 aspartyl-tRNA synthetase 50162 121 

 gi|150017050 iron-containing alcohol dehydrogenase 42947 122 

 gi|150017051 ferredoxin-NADP(+) reductase subunit alpha 32747 105 
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 gi|150017147 hydroxylamine reductase 60892 625 

 gi|150017213 hypothetical protein Cbei_2351 10018 336 

 gi|150017242 

D-xylose ABC transporter, periplasmic substrate-binding 

protein 38942 165 

 gi|150017245 xylose isomerase 50455 177 

 gi|150017246 xylulokinase 55260 889 

 gi|150017248 putative transaldolase 23164 1651 

 gi|150017249 transketolase 72544 1044 

 gi|150017250 hypothetical protein Cbei_2388 23555 80 

 gi|150017251 L-fucose isomerase related protein 54503 904 

 gi|150017287 xanthine phosphoribosyltransferase 21248 218 

 gi|150017349 rubrerythrin 20009 304 

 gi|150017371 extracellular solute-binding protein 31572 337 

 gi|150017403 

4-hydroxy-3-methylbut-2-enyl diphosphate reductase/S1 

RNA-binding domain protein 71710 200 

 gi|150017407 Ferritin, Dps family protein 20036 295 

 gi|150017466 aspartate alpha-decarboxylase 13792 349 

 gi|150017467 pantoate--beta-alanine ligase 31367 661 

 gi|150017468 3-methyl-2-oxobutanoate hydroxymethyltransferase 29773 1525 

 gi|150017606 glycerol dehydrogenase 39532 77 

 gi|150017652 M protein-like MukB domain-containing protein 126228 37 

 gi|150017661 hypothetical protein Cbei_2809 19517 173 

 gi|150017675 NERD domain-containing protein 50337 61 

 gi|150017732 FAD linked oxidase domain-containing protein 51693 79 

 gi|150017855 hydroxylamine reductase 61608 253 

 gi|150017874 hypothetical protein Cbei_3033 26571 109 

 gi|150017884 hypothetical protein Cbei_3043 22683 114 

 gi|150018108 class II aldolase/adducin family protein 24899 118 

 gi|150018109 coenzyme A transferase 56285 533 

 gi|150018161 

aliphatic sulfonate ABC transporter periplasmic ligand-

binding protein 36930 223 

 gi|150018387 flavodoxin 16717 68 

 gi|150018543 2,5-didehydrogluconate reductase 31986 53 

 gi|150018652 acetoacetate decarboxylase 27532 116 

 gi|150018959 basic membrane lipoprotein 37308 216 

 gi|150018972 heat shock protein 90 75068 212 

 gi|150018998 sulphate adenylyltransferase, large subunit 63575 103 

 gi|150019101 flagellin domain-containing protein 29021 148 

 gi|150019114 flagellar motor switch protein 43264 245 

 gi|150019116 putative CheW protein 14865 137 

 gi|150019119 CheA signal transduction histidine kinase 76215 286 

 gi|150019123 putative CheW protein 17077 114 

 gi|150019128 aminotransferase, class I and II 43945 199 

 gi|150019130 

pyruvate flavodoxin/ferredoxin oxidoreductase domain-

containing protein 128281 3650 

 gi|150019139 oligoendopeptidase F 68788 150 

 gi|150019140 hypothetical protein Cbei_4328 15671 369 

 gi|150019149 thiamine pyrophosphate binding domain-containing protein 42357 45 

 gi|150019168 cysteine synthase A 32640 1749 

 gi|150019169 nitroreductase 19702 257 

 gi|150019216 hypothetical protein Cbei_4405 15493 1545 

 gi|150019217 hypothetical protein Cbei_4406 15519 1492 

 gi|150019218 hypothetical protein Cbei_4407 83020 95 

 gi|150019264 transketolase 72572 760 

 gi|150019273 periplasmic binding protein/LacI transcriptional regulator 36287 77 

 gi|150019278 Cof-like hydrolase 32693 86 

 gi|150019407 HesB-related (seleno)protein 12035 124 

 gi|150019454 transketolase 72473 678 

 gi|150019491 L-fucose isomerase related protein 54604 887 

 gi|150019499 hypothetical protein Cbei_4689 9915 108 
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 gi|150019500 membrane spanning protein 38915 34 

 gi|150019505 choline/ethanolamine kinase 71972 253 

 gi|150019527 cell wall binding repeat-containing protein 69478 261 

 gi|150019569 cell wall binding repeat-containing protein 63700 1365 

 gi|150019583 putative aminopeptidase 2 49843 46 

 gi|150019585 dihydrodipicolinate synthase 32461 174 

 gi|150019621 hypothetical protein Cbei_4812 13089 73 

 gi|150019659 pyruvate kinase 50903 913 

 gi|150019660 6-phosphofructokinase 34271 518 

 gi|150019725 

5'-methylthioadenosine/S-adenosylhomocysteine 

nucleosidase 25537 136 

 gi|150019734 hypothetical protein Cbei_4926 48142 75 

 gi|150019735 

D-isomer specific 2-hydroxyacid dehydrogenase, NAD-

binding 32469 413 

 gi|150019736 extracellular solute-binding protein 61171 87 

 gi|150019758 hypothetical protein Cbei_4950 13298 82 

 gi|150019767 response regulator receiver protein 34454 143 

 gi|150019848 pyridoxal biosynthesis lyase PdxS 31410 104 

 gi|150019864 acyl-CoA dehydrogenase domain-containing protein 69341 115 

 gi|150019868 hypothetical protein Cbei_5060 19627 250 

 gi|150019882 adenylosuccinate synthetase 47519 398 

 gi|150019889 50S ribosomal protein L9 16731 102 

 gi|150019892 30S ribosomal protein S18 10148 87 

 gi|150019894 30S ribosomal protein S6 10989 194 
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