

EUROPE & SCOTLAND European Regional Development Func Investing in your Future

Strategic Integrated Research in Timber

Acoustic assessment of timber from 16th Century painted timber ceilings in Scotland Dan Ridley-Ellis

Carmen-Mihaela Popescu

www.napier.ac.uk/fpri

Scottish painted ceilings

Image: Kim Traynor (via Wikimedia Commons)

Image: Historic Scotland(?)

Scottish painted ceilings

Image: Historic Scotland(?)

Properties of interest

- Strength
- Stiffness
- Density
- Thermal movement
- Moisture movement
- Distortion
- Creep

Non-destructive methods

- Visual
- Acoustic
- Mechanical
- X-ray
- Cores
- Spectroscopy?

Impulse excitation

Impulse excitation

Mechanical loading

But it's not that simple

- Static properties vary
 - With direction and within a piece
 - With moisture content
- The relationships between dynamic and static properties varies
 - By origin
 - Because of degradation
 - Biological, environmental, mechanical

How to interpret results?

- Growth region
- The way it was processed
- What happened to it since
 - Time
 - Light
 - Moisture
 - Biological

Dynamic stiffness

Scots pine (Gradewood data, bending) (Sweden, Poland, Germany, Finland, Russia)

EUROPE & SCOTLAND European Regional Development Fund Investing in your Future

23/05/2015 www.napier.ac.uk/fpri

Density (kg/m³)

The Prestongrange ceiling

Image: MOW (via Canmore)

EUROPE & SCOTLAND European Regional Development Fund Investing in your Future

23/05/2015 www.napier.ac.uk/fpri

Image: Crown (via Canmore)

Image: RCAHMS

SIRT Ultrasonic

Forest Products Research Institute

Original location

SIRT Offcuts

Stiffness of the pine offcuts

Stiffness of the pine off-cuts

Stiffness 54kHz (kN/mm²)

Stiffness of the pine off-cuts

Stiffness of the oak beams

4.62 km/s ~ 16 kN/mm²

4.26 km/s ~ 14 kN/mm²

4.34 km/s ~ 14 kN/mm²

3.75 km/s ~ 11 kN/mm²

Beam 2 Etrans/Elo ng = 0.21

Beam 3 Etrans/Elo ng = 0.24

Oak Etan/Elong ≈ 0.08 Erad/Elong ≈ 0.16

Concluding remarks

- 54 kHz transducers most easiest to use
- Waveforms need inspection for correct time
- Are local measurements
- Cannot really work with assumed density
- Need to know how dynamic and static properties are correlated
- ...depends on the origin of the timber
- Need to understand wave propagation better

Acknowledgements

We would like to thank Historic Scotland and Forestry Commission Scotland for their research funding.

This presentation was supported by the project PERFORM-ERA "Postdoctoral Performance for Integration in the European Research Area" (ID-57649), financed by the European Social Fund and the Romanian Government.

EUROPE & SCOTLAND European Regional Development Fund Investing in your Future

23/05/2015 www.napier.ac.uk/fpri

Image: RCAHMS (via Canmore)

Reason for research

- Inspection and repair
- Understand wood aging
- Knowledge of historic timber trade
- Painted ceilings in particular
 - Cannot see wood features
 - Elements in storage

Factors affecting softwood quality

- Position within the tree
 - Radially & vertically
- Silviculture

- Spacing, thinning, rotation length etc
- Site
 - Exposure, temperature, rainfall, soil type etc
- Genetics
 - Species, variety and individual

Wood structure

Wood structure

	Tree		Building
m	Log		Assembly
		Sawn timber	
cm		Clear wood	
mm		Growth layer	
		Wood anatomy	
		Cell	
μm		Cell wall	
		Cell wall layers	
		Microfibril clusters	
nm		Molecular	

Harrington, J. J. (2002). Hierarchical Modelling of Softwood Hygro-Elastic Properties. PhD thesis, University of Canterbury.

Earlywood

Ray

Intercellular

Cell lumen

Middle lamella & primary cell wall

Secondary _ cell wall

Latewood

1 0

0

100 µm

30 µm

Image: RCAHMS