
 

Development of Gel-based Panel 

Loudspeakers 

 

 

 
 
 
 

Jordi Munoz 
 
 
 
 
 
 
 
 
 

A thesis submitted in partial fulfiment of Edinburgh Napier University 
for the degree of Doctor of Philosophy 

 
 
 
 
 
 
 

School of Engineering & the Built Environment 
 
 
 
 
 
 
 
 
 
 
 
 
 

January 2012 



 
 

2 
 

  



 
 

3 
 

Declaration 
 
 
I hereby declare that the work presented in this thesis was solely carried out by myself at 

Edinburgh Napier University, except where due acknowledgement is made, and that it has 

not been submitted for any other degree. 

 

 

 

 

Jordi Munoz 

 

 

Date 

25/05/2012 

 

 

 

 

 

 

 

 
 

 

 



 
 

4 
 

Abstract 

Loudspeaker research has been carried out for many years and some of the latest 

developments involve a panel to produce the sound. Using panels to produce sound offers 

many possible advantages – for example, it is possible to create sound using a window or a 

house wall. However, to make these new sound devices feasible, it is necessary to 

investigate further the exact frequency response of these drivers, how they compare with 

traditional technologies and how efficient they are.  

 

This research has been focussed on the optimisation of gel-type panel drivers and their 

performance under different conditions. Gel-based drivers have their structure based on soft 

rubber type materials (gel), and that same gel transfers the vibrations from the driver to the 

panel. In addition, this thesis covers the development of design tools necessary to predict 

and improve the gel-based drivers performance. Consequently, a Finite Element Analysis 

package was employed to enable the simulation of the gel-based drivers. Laser Doppler 

vibrometer measurements to validate the process were also carried out. 

 

Other factors investigated included gel hardness, driver position on the panel, panel material 

and overall frequency response compared to conventional loudspeaker technology. 
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Chapter 1   Aims and Objectives 
 

The main aim of the research is to investigate the performance of gel-based loudspeaker 

drivers and involved researching the following specific areas: 

  

(i) The transfer of vibrations from several types of gel-based drivers to different 

types of surfaces to produce sound. 

(ii) The design of gel-based drivers that incorporate flexible materials to create 

transverse waves into a panel using transducers with pistonic movement. 

(iii) Testing of materials with different properties and geometries as a medium of 

wave transmission and wave da1mping. 

(iv) Comparing simulated and actual performance of gel-based drivers. 

(v) Determining a design which exhibits a wide frequency spectrum of sound 

reproduction, within the accepted standards of efficiency and using a broad range 

of materials. 

 

Chapter 2 discusses some theoretical considerations of sound production and propagation 

including the constituent parts of traditional and modern speakers, magnetic issues, power 

handling and heat dissipation. It also discusses some of the literature underpinning its 

principles.  

 

Chapter 3 describes the experimental work involving sound pressure tests in an anechoic 

chamber. The sound performance over appropriate frequency ranges is investigated  against 

a number of variables including gel-based driver size, gel type, speaker position and panel 

material.  
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Chapter 4 examines the structure and mechanical behaviour of gel-based drivers using finite 

element analysis simulations. It compares simulation results from the COMSOL software 

package with results obtained experimentally in Chapter 3. 

 

Chapter 5 includes some accurate measurements made using the Laser Doppler Vibrometer 

(LDV) technique to validate the finite element process and addresses the mechanical 

dynamic performance of the gel-based driver and panel system. 

 

Chapter 6 contains a general discussion of the results of the research work, conclusions 

from the work as well as contribution to knowledge . 

 

Chapter 7 makes recommendations for future work. 
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Chapter 2   Theoretical Considerations 

2.1   Introduction 

This chapter will give a brief overview of the basics of sound propagation and reception as 

well as an in-depth treatment of loudspeaker design and performance. 

2.1.1   Sound Waves 

What we perceive as sound is a longitudinal wave that propagates through gases, liquids 

and solids. It is a periodic sinusoidal change of pressure and human ears perceive sound 

when the periodic change of pressure occurs between 20 and 20,000 times per second (Hz). 

The time between the differences of the pressure is perceived as the tone, while the 

difference between the maximum and the minimum pressure is responsible for the volume 

level.  

2.1.2   Acoustic Wave Propagation 

There are different ways to describe the mechanism involved in the propagation of acoustic 

waves. Conventional loudspeakers use the movement of the cone or diaphragm1 (Figure 

2.3) as the source of sound.  

 

 

Figure 2.1    Figure 2.2    Figure 2.31 

 

 

 

Diaphragm Diaphragm Pressure uniform Pressure non uniform 

Pressure non uniform 

Distance Distance 
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Figures 2.1 and 2.2 show the process of sound propagation. Before the diaphragm mounted 

at the end of a uniform pipe moves (Figure 2.1), the pressure in the pipe is the same 

everywhere and equal to the atmospheric pressure. The movement of the diaphragm (Figure 

2.2) compresses the air adjacent to it and locally increases the air pressure. The difference 

between the two pressures into the pipe gives rise to a force, which causes the air to move 

from the high pressure region to the atmospheric one. This process continues through the 

pipe at the speed of sound (343.8 m/s at 20 °C and 30% humidity).     

2.1.3   Sound Pressure Level  

As explained in the previous section, the sound phenomenon is a periodic change in 

pressure. In air, the quietest audible sounds are around 20µPa, whereas those that are due 

to sounds on the threshold of ear-pain are of the order of 20 Pa (one million times more 

powerful). Therefore the measurement of sound pressure level using linear numbers is 

inefficient. The most common way to measure the sound pressure level is using a logarithm 

of the ratio of two powers2 called the Bel, and the decibel i.e. one tenth of a Bel. The 

acoustic pressure is measured in Pascals (N/m²). The measurement of the acoustic 

pressure in dB is made as follows: 

 
 

Equation 2.4 
 
P – Actual acoustic pressure (taken during measurements) 

Po – The reference static pressure of 20µ Pa (0dB) 

20 – factor used because dB originates from power ratios where acoustic power is 

proportional to the square of the pressure and a factor of 2 has therefore been taken outside 

the logarithm 

2.1.4   Harmonics 

Harmonics are a series of subsidiary vibrations that accompany a primary or fundamental 

wave-motion vibration. Harmonics result when the vibrating body vibrates simultaneously as 

Decibels = 10 x log   
10 10

2

2

O O
{  } {  }P P

P P
 = 20 x log
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a whole and in equal parts (halves, thirds, fourths, and so on), producing wave frequencies 

that are in simple ratios with the fundamental frequency. 

 

The fundamental frequency, (f), and higher harmonics (2f, 3f, 4f,...) are integer multiples of 

(f) and the resultant pressure fluctuation, (PR), is the sum of the fundamental, (P1), and the 

following harmonics, (P2, P3, P4).  

2.2   Coil Drive Transducer Mechanisms 

The first patent related to a transducer goes as far back as 1876 3 with Alexander Graham 

Bell’s telephone receiver. Bell produced a magnetic field by applying an input signal to a 

solenoid located around a field coil. The field attracted a thin soft iron diaphragm and the 

changes in the magnetic field produced vibrations to the diaphragm, which generated the 

analogue sound waves.  Further developments of the described transducer were the basis 

for the moving-coil loudspeaker. In the 1920s, Rice and Kellog4 described the essential 

principles of the direct radiating moving coil loudspeaker as is known today. Further 

developments in magnet technology5 in the 1930s replaced the field coil by a permanent 

magnet. Since then very little changes had been made, and most of the loudspeakers used 

nowadays have the same structure as the ones in the 1930s. 

2.2.1   Moving Coil Loudspeaker  

Loudspeakers6,7 are electro acoustic transducers that generate sound in response to an 

electrical input signal. Most of these transducers generate sound waves by vibrating a cone 

or diaphragm converting the electronic signal in to a mechanical movement through a voice 

coil between the two poles of a magnet. As a result, the mechanical movement generates a 

change in pressure, which creates sound waves. 
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There are several transducer types that create sound waves. Electrostatic, piezoelectric8 

and moving coil loudspeakers are examples of it. This research has been made using 

moving coil loudspeakers drives.  

 

The moving coil loudspeakers consist of a diaphragm attached to a cylindrical coil of wire 

called the voice coil VC (Figure 2.5). The VC is suspended into a constant magnetic field B. 

When alternating current9 I is supplied to the coil, the interaction of the current and the 

magnetic field induces a force on the coil. The diaphragm has a pistonic movement, which 

creates sound waves of the same frequency as the alternating current. This transduction is 

not equally efficient at all the frequencies. The electric and acoustic impedance constrain the 

efficiency of the transduction differently through the frequencies. Thus a different drive 

design is needed for each frequency. Most of the systems designed to produce waves to 

cover the full human audio range consist of three drives: 

 

 

Subwoofer10: To produce frequencies from 20 to 400 Hz 

Mid-range driver: To produce frequencies from 300 to 1000 Hz 

Tweeter:  To produce frequencies from 800 to 20.000 Hz or above. 

 

A cross-over network is used to split the original signal from an amplifier to the three drives. 

Figure 2.5 shows a ferrite permanent magnet that produces a magnetic field where the coil is 

Figure 2.51            Section of Moving coil Loudspeaker 
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located (the magnetic gap). The voice coil is attached to the diaphragm or cone and 

subjected by the spider, which allows axial movement, and constrains the radial one. 

2.2.1.1   Moving Coil Loudspeakers Performance Characteristics 

Efficiency and sensitivity 

Loudspeakers efficiency is defined as the ratio of the acoustic power coming out to the 

electrical power going in. On direct radiator moving coil loudspeakers, the received electric 

power is used in three ways: the heating of the coil, the mechanical damping of the system 

(enclosure and drive), and finally the acoustic energy transferred which is less than 1%.  

Moving coil loudspeakers are usually rated according their SPL performance given a defined 

input. This is defined as the loudspeaker sensitivity. In most cases the input is 1 watt of 

power which will be the result of the voltage applied versus the loudspeaker impedance. 8 

Ohms loudspeaker drivers will be required to be driven by 2.83Vrms to match the 1 watt 

input. Furthermore the measurement from the microphone is typically carried out at 1m. 

Typical home loudspeakers have a sensitivity of 85 to 90 dB for 1W at 1m. 

Directivity 

The directivity of loudspeaker studies how effective its sound radiation is around all axes and 

distances.  

Moving coil loudspeaker sound radiation is calculated using the multiple combination of the 

simplest source of sound, the point source. A point source theoretically consists of an 

infinitesimal sphere that increase and decrease its diameter, which consequently produces a 

wave. If this wave is produced at the right frequency it will make sound. Moving coil 

loudspeakers radiation pattern can normally be simplified to two point sources commonly 
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named dipole. However this will vary on the loudspeaker size, the distance and the 

frequency that the directivity is being measured. 

2.2.2.   The Voice Coil 

The coil develops the driving force of the transducer. The movement of the voice coil occurs 

when there is a magnetic flux perpendicular to the current that is going through it. For 

example, if the coil is on the X axis and the magnetic flux is in the Y axis, the movement of 

the coil will be on the Z axis. The way that the coil will move will depend on the orientation of 

the north and south of the magnet and the positive and negative side of the coil. In general 

terms, the driving force is desired to be linear. Although it is simple to keep the current of a 

coil linear, the magnetic field reduces proportionally to the distance between the two poles. 

Therefore when the VC moves, the magnetic flux fluctuates and as a result, the strength of 

the transducer varies, even when the current received from the amplifier is constant. This 

effect will be different depending on the frequency that the transducer is subjected to. The 

lower the frequency, the longer will be the time in which the current will be constant. For this 

reason, the amplitude of the VC movement will then be higher.  

Voice Coil Parts 

The Coil 
The function of the coil is to transfer electric current through a determinate path. 

Consequently, heat dissipation, weight, resistance, and reliability need to be taken into 

account. Coils are usually made of copper or aluminum wire.  Copper has a higher density 

but lower resistivity. Therefore, to achieve a specific resistance the copper will have to be 

longer and heavier than the aluminum coil. On the other hand, aluminum will melt sooner 

and as a result will not be suitable for high power applications. 

Coil Form 

The coil is usually wound around a tube or bobbin and both parts are kept together to give 

structure to the set-up. The form used for the bobbin needs to be light, heat resistant and 
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strong. The most common materials used are: Kraft (wood pulp), bond (cloth) paper tubes, 

paper based materials, aluminium and Kapton (DuPont trademark). 

 

In some applications, the coil is wound on a cylindrical metal tool using copper wire 

surrounded by an adhesive. The process is carried out at a relatively high temperature and 

when the adhesive dries, the coil is ejected from the tool and a coil without a centre is 

achieved. This coil - now called an air coil - can be bonded to a bobbin. 

2.2.3   The Diaphragm or Cone 

The diaphragm shape is commonly a cone (Figure 4) and is responsible for the sound 

radiation. It approximates to the pistonic movement of a surface with the aim of creating 

changes in pressure in its surrounding area and which will be perceived as sound. To 

achieve control of these waves of air, the cone has to be as rigid as possible. As a cone 

operates, a complete pistonic movement is never achieved and the movement of the coil is 

transmitted to the extremes of the cone a few milliseconds later. Because of this, a 

completely flat surface will produce a wave different at the centre of the drive compared with 

their extremes. The angle will place the cone surround in a further-away position therefore 

the centre of the drive will move on phase with the extremes. Unfortunately that will only 

happen at frequencies where the time that the wave takes to travel from the coil to the cone 

surrounding is less than the frequency that the coil is reproducing, otherwise the cone will 

bend11 and the following effect will occur. 

 



 
 

10 
 

 

Figure 2.61         Bell modes of a loudspeakers cone 
 

Figure 2.6 shows the “bell modes” which are exhibited at high frequencies. Bell Modes occur 

when the circumference, or the distance from the coils to the surround and back, is an 

integral number of wavelengths. 

 

The negative and positive signs show the direction of the movement in each section of the 

cone. This behaviour will result in the cancellation and superposition of waves; therefore the 

final sound pressure level will be artificially increased or decreased from the original source. 

To avoid this distortion happening, loudspeaker manufactures usually use different cone 

designs for different frequencies.  

2.2.4   Magnetic Issues 

In early loudspeakers, a magnetic field12 was created by passing a current through a coil of 

wire, so when the current finished the magnetic field disappeared. To simplify the structure 

of the drives, nowadays permanent magnets are used instead.  Until a few years ago most 

of the driver’s manufacturers used Ferrite magnets but recently, developments have brought 

Neodymium Iron Boron and Samarium Cobalt magnets at an affordable cost, being up to 10 

times more powerful than the original ferrite ones. Neodymium Iron Boron and Samarium 

Cobalt magnets are now the preferred choices for driver designers. 
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The magnetic power is measured in Tesla13 (1 Tesla = 10,000 Gauss) and the magnitude of 

magnetic strength will be proportionally increased to the final strength of the transducer. The 

objective of the magnet is to produce a magnetic field in the gap in which the coil will move.  

 

To concentrate the magnetic field, it is required to minimize the gap and the area where the 

field is located. The most common way to provide a circuit able to transfer the magnetic field 

from the magnet to the required points is by using steel plates. If the area or gap is 

increased, a bigger or more powerful magnet will be required to maintain the same final field. 

Therefore a circuit capable of transferring more magnetic field will be required and 

consequently, the cost, weight and volume of the drive will have been increased. As a result 

one of the cheapest and more practical ways of having an efficient drive design is to reduce 

the gap and the area where the coil will be moving. 

2.2.5   The Suspension 

The drive suspension usually consists of two parts: the spider and the surround. 

The Spider 

The spider is attached to the coil and its objective is to allow axial movement of the coil and 

constrain the lateral one. The spider stiffness will determine part of the total mechanical 

damping factor of the drive. The spider mass is usually very low so for the calculation of the 

final mass of the driver’s moving parts, it is frequently ignored. 

The Surround 

The surround is typically an extension of the cone attached to the drive structure. PVC, 

Neoprene, textile or fibrous materials are commonly used for the manufacture of the 

surround. Its function is similar of the one described for the spider, but the surround has the 

added purpose to end the vibrations that come from the cone. As described in section 2.2 

the total cancelling of the wave never happens, but a damping factor occurs instead and 

consequently the surround will damp the vibrations. However, the damping factor will vary 

according to the frequency. 
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2.2.6   The Chassis 

As a main function, the chassis will provide the structure to keep all parts together and also 

support the enclosure of the system. A deeper look into the driver normal behaviour shows 

that the movement of the cone will create a reaction of the opposite direction to the rest of 

the drive components. This force has to be absorbed by the chassis, otherwise the system 

will start to vibrate and/or break. It has to be taken into account that the magnetic assemblies 

could be quite heavy and the design also has to consider the magnet compatibility of 

materials as the magnetic field could damage them.  

2.2.7   Power Handling and Heat Dissipation 

The mechanical damping of the system is particularly low above the system resonance. 

Therefore, the heating of the coil is where most of the energy is used. The coil resistance will 

increase with temperature and this will have a negative effect on the driver performance; 

hence the driver design will have to dissipate as much of this energy as possible. A common 

way to help conduction of the heat from the coil to the magnetic circuit is the use of 

Ferrofluid. This magnetic fluid fills the gap where the coil is and has a higher heat 

conductivity than air. 

2.3   Horn Loudspeakers  

Horn Loudspeakers14 are very efficient, using 10% of the energy of a Standard Loudspeaker 

to get the same sound pressure level. Therefore they are used when high sound power is 

required. As shown in Figure 2.7, the moving-coil principle is used to drive a Horn 

loudspeaker but is optimised to work in a narrow throat of a low mass. This results in high 

efficiency around its resonance frequency. Some Horn drives use piezoelectric drives based 

on materials that have dimensional changes when an electric potential is applied across 

them. Examples of piezoelectric materials are: Rochelle salt, barium titanate, and some 
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high-polymers15.  Those drives are even more efficient, but their excursion is smaller than 

moving-coil ones, making them suitable for high frequencies only. 

 

Figure 2.71 

2.4   Electrostatic Loudspeakers 

The electrostatic loudspeaker can be modelled as a pair of capacitors plates as illustrated at 

Figure  2.8. One is stationary, while the other moves in response to an electrical current 

going through. The moving one, the diaphragm (B in Figure 2.8), needs to be very light and 

flexible so most of the electric forces developed between the two plates act effectively to 

create sound waves. Complex vibrational modes in the diaphragm are almost eliminated16 

making the performance very predictable. High voltages are involved in the process and to 

radiate enough sound pressure level, large diaphragms are needed. 

    

Figure 2.81     Figure 2.91 
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2.5.   The Distributed Mode Loudspeakers (DML) 

2.5.1   Introduction16, 17 

 
In 1994 Dr. Ken Heron from Defence Evaluation and Research Agency (DERA) applied for a 

patent for a DML. This invention essentially was a high stiffness aluminium honeycomb 

panel that was possible to use as a loudspeaker. It had a limited range of frequency range. 

The concept occurred because at the time, heavy panels of aircraft structures where 

substituted by lighter panel materials based on composite materials. The research 

discovered an unexpected increase in sound radiation from the new panels; therefore it was 

studied to use the technology as substitute loudspeakers.  After this research, DERA sold 

the license to Verity Laboratories to develop the technology and bring it to 

commercialisation. 

2.5.2   Theory 
The DML can be represented as a flat plate with boundary conditions defined by the frame 

that supports it. The panel mode shapes and frequencies can be calculated as follows 

(Crighton 1992, p589): 

 

ᶲnm(x,y) = sin [n 𝜋𝜋 x / Lx ] sin [m 𝜋𝜋 y / Ly ] 

ω2
nm = [D /ρh ] x [(n 𝜋𝜋 / Lx) + (m 𝜋𝜋 / Ly)] 

The planar dimensions of the plate are defined by Lx and Ly. The thickness is h, ρ is the 

density of the plate material, and D the bending stiffness. 

2.5.3 DML Coupling to the air 
 
Using the Rayleigh integral it is possible to calculate the power radiated and describe the 

pressure created on the air as a result of a vibrating plate. 

2 
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X expresses the location of the pressure, W(x) its complex displacement, ρa is the air 

density, Ka is the acoustic wave number and w is the vibration frequency. 

2.5.4   Sound Radiation from a DML17,18,19 

 
The best way to understand the radiation from a DML is using a mathematical model; this 

can be achieved using a finite element analysis package such as Ansys. The variety of 

materials, shapes and transducers that relate to the DML performance is almost endless. In  

Figure  2.10 

 

1998 Panzer and Harris20 defined a modelling method to measure and describe the DML, 

but such a method is designed for specific transducers and technology. There is not a single 

study that records all the possibilities around DML, although most of the parts have been 
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studied separately. E. Kinsler21 investigated forced vibrations of membranes and the 

correspondent normal modes. In an infinite or finite panel with a single frequency, it is 

possible to mathematically define the nodes, and consequently the movement of each point 

of the panel. Although the interface between the transducer and the panel and how it affects 

the sound radiation has not been fully defined, it is clear that the behaviour of the panel is 

completely different to the behaviour of a diaphragm. In DML, the different areas of the panel 

oscillate in a diverse phase, and the movement of the transducer (coil, plate, membrane…) 

could be completely different from the movement of the panel within the contact area. Azima 

and Harris22 define the DML as uniformly distributed bending modes to produce sound but 

applied only on light and stiff panels. Their study defines the mechanical impedance of the 

DML as being independent of the frequency and only being related to the panel stiffness and 

density. 

2.5.5   Measurement of DML 
 
In order to evaluate different DML performances, it is necessary define the test procedures 

that will be used to test them. The first consideration is the fact that there is a panel and a 

driver. The panel will radiate sound on both sides but the radiation may be different on each 

side - in particular in the high frequency range. In this thesis, all tests have been carried out 

with the microphone located on the driver side of the panel.  

 

As described by Sheila Flanagan and Neil Harris23 DMLs are perceived louder than standard 

cone loudspeakers. However, when measured with a microphone, they may register less dB 

sound pressure level. This may have to be taken in to account once the drivers are 

compared with standard cone loudspeakers. 

2.5.6   DML Polar Pattern 
 
In 1999 Angus et al24, looked at the polar pattern of DML and discovered that it varies for 

every frequency, as traditional loudspeakers will do, although DMLs have a clear point 
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where their pattern changes. At low frequencies and under the fundamental frequency of the 

system, the DML pattern will have a decrease in its dB sound pressure level linked with an 

increase of the angle. However above its fundamental frequency, the panel will radiate the 

sound from several points, making the polar pattern move up and down with the angle. Even 

though this may seem that some areas will not radiate any sound, the reality is that the 

system gets evenly balanced with the distance and boundary reflexions.  

 

2.6.   Multi-channel Electromechanical Film Panel Loudspeaker  

2.6.1   Introduction 
 
Electromechanical film panel loudspeakers25 (EMFi) are based on the electrostatic principle 

(described in section 2.5). One of the advantages of these loudspeakers is the possibility of 

having the same panel as the source of sound and a surface to project video.   

2.6.2   Description 
 
A polypropylene film is used in between two panels on which the charge is held. On the 

Antila19 et al study, 9 panels were used in a 500 by 600 mm array structure making an 

overall 1500 x 1800 mm panel. Since each of the small panels is connected independently, 

different signals can be applied to different sections. High frequency signals were produced 

simultaneously on each panel with the target to make the polar pattern less directional. On 

their subjective test, it was noted that the high frequencies were produced evenly when 

compared with standard loudspeakers. On the low frequency range, the system produced 

very small vibrations and so a subwoofer had to be used. 
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2.7   Multi-actuator Panels 

2.7.1   Introduction 
 
Standard electrodynamics loudspeakers are commonly used within an array to achieve full 

range reproduction, and wider polar pattern. Based on that, an array of actuators attached 

within two panels has been studied by Kuster et al26. 

2.7.2   Description 
 
On the Multi Actuator Panels (MAP) several actuators are vibrating the same panel 

simultaneously. According to the Kuster study, the overall performance is related to the 

actuator itself and does not get affected by the panel boundaries. The sound energy comes 

mainly from the area of the panel nearby the actuator. The damping is usually very high 

making the rest of the area of the panel as not effective in reproducing sound.  This enables 

the possibility of having different signals reproduced on the same panel. This feature may be 

used for a Stereo signal, for instance. This approach differs from the DML studied in section 

3.1 in that with MAP, the panel boundaries in relation to the actuator do not seem to be so 

critical therefore the actuators position can be changed without much effect.  

2.8   Finite Element Analysis (FEA) for Audio Devices 

2.8.1   Introduction 
 
Several Finite Element Analysis packages have been used to predict the performance of 

audio devices. The following section looks at a specific use of Comsol27 and Ansys28 

packages for the prediction of the performance of horn loudspeakers. The Horn loudspeaker 

principle has been described previously in Section 2.4. 

2.8.2   Description  
 
The work by Murphy29 et al studies the coupling of the vibrations from the horn to the air. It is 

considered critical to use a mesh of the right size and this is partially why the use of the FEA 
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package is so important. Initial models with Ansys illustrated the sound pressure level 

around the horn, and the effects of modifying the horn shape.  

 

With the use of Ansys, some programming was required, in particular to relate the vibrations 

to the power driven by the horn. It was noted that the version used of Ansys was from 1999 

and therefore not as user-friendly as newer versions. The Ansys drawing aid package was 

just good enough for simple 2D structures but a different package of Ansys would have been 

needed for the study of more complex shapes.  

 

The Comsol package - linked with a Solid Works30 drawing aid package - allowed the 

drawing and definition part of the simulation to be simple and powerful. The Comsol version 

used was able to link the vibrations to the power driven by the horn. Comsol simulations 

allowed rapid calculations to be made and to be capable for complex structure analyses. 

Both packages were contrasted with real measurements and shown to be very accurate. 

2.9   Traditional Loudspeakers Radiation 

2.9.1   Point Monopole 
 
The simplest acoustic source to analyze is a sphere whose radius varies sinusoidally with 

time and is referred to as the point monopole. The sound radiated by a point monopole is 

omni-directional and under ideal free-field acoustic conditions consists of spherical waves 

propagating away from the source. As it propagates, the acoustic pressure is spread over 

the area and decreases following the inverse square law: 

 

The sound intensity is proportional to the square of pressure and reduces as the square of 

the distance from the source. 
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2.9.2   Sound Radiation from a Loudspeaker Diaphragm 
 
The point monopole source of sound is a useful approximation to a real sound source such 

as a standard loudspeaker, due the source of sound being physically small compared to the 

sound wavelength radiated, and all the parts radiating usually operate in the same phase. 

 

2.10   The Gel-based Driver 31,32,33,34 

2.10.1   Introduction  

DML systems have the voice coil attached to a panel instead of a diaphragm as in traditional 

loudspeakers. The mechanical energy is then transferred to the panel where bending waves 

are distributed homogeneously and create standing waves in the air. This results in spatial 

diffusivity, broad frequency range and wide directivity. 

 

However, to achieve high fidelity sound from a panel, it is important to create bending waves 

without constraining the panel itself. In other words, the driver has to produce vibrations 

through the panel, but at the same time has to minimize the damping of the previously 

transferred vibrations. This could partially be achieved by placing the driver in between 

modes of movement on the positions where less movement will occur and avoiding low 

frequencies were the movement of the panel is greater.  

 

The gel driver technology differs from essentially previous DML technology in the way that 

the transducer is attached to the panel. Silicone or similar developed materials are added 

between the voice coil and the panel. 

2.10.2   Structure 

The coil is mounted on a rigid drive-plate, which in turn floats on the panel above a layer of 

gel. This allows the driver and coil to transfer the vibrations in the panel. The unit is also self-
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damping. The gel surround, at the same time, keeps the coil centred against the magnetic 

assembly. 

 

 
 

Figure  2.11       Gel-based driver structure 
 
 
Figure 2.11 shows how the gel-based material surrounds the magnet, coil and drive plate 

replacing the spider/suspension of traditional cone and DML drivers. Note that the 

dimensions are just to give an idea of the proportions in this particular example. The magnet 

assembly will include steel plates and magnets. The surrounding gel may be covered by an 

external structure or external structure. 

2.10.3   Mechanical considerations  

The interaction of the magnetic field with the voice coil under an electrical force generates 

Fe. Equation 2.12 expresses the Fe as a result of the magnetic flux and current going 

through the coil of a gel-based driver. 

ƒ e ( t ) = Fe  eiwt 

Equation 2.12 

 

Figure 2.13 represents the mechanical interaction of the gel base driver components and the 

force generated by the coil and magnet interaction.  
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The driver mass is represented by the magnet assembly (Mm, Mcdp) and coil drive plate Zp.   

Xm, Xcdp and Xp represent the displacement of the magnet, coil drive plate and panel, 

respectively. The resistance and stiffness between the magnetic assembly, the coil drive 

plate and panel is represented by r1, r2, r3, k1, k2 and k3. 

 

 

Figure   2.13        Mechanical element of the based gel driver 
 

The Fe operates between 2 masses, the magnet Mm and the mass of the drive plate and 

coil Mcdp. On the Mm side, the mass will be constant, however on the Mcdp side, the type of 

panel used and its corresponding resistance will influence the overall mechanical behaviour, 

in particular the movement of the coil (excursion). The design of the gel-based driver will 
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have to take into account the excursion of the coil, which will ultimately relate to the panel 

type used. 

 

In terms of the overall displacement of the coil, it is important to note that the gel 

compression behaviour is only linear up to a certain point, where the gel won’t compress any 

more, even if the force applied is increased. The following graph illustrates the behaviour of 

the gel once it is subjected to compression. 

 

 
Figure  2.14,        Gel-based driver displacement versus force 

 

Once the gel-based driver is placed on to a panel, it will mostly have the same behaviour. 

Indeed the compliance of the material lowers with compression or expansion and there is a 

maximum reached where the material starts to behave in a non-linear way as represented in 

Figure 2.14. Therefore it is possible to design the gel of the driver so as to optimise the 

movement of the driver with the movement of the panel and consequently maximise 

efficiency and reduce distortion.  

 

Figure 2.15 represents the impedance analogue of the gel-based driver - force and velocity 

have been substituted by voltage and current. Consequently the mass, resistance and 

compliance become inductance, electrical resistance and capacitance. 

 

 



 
 

24 
 

 

Figure 2.15        Illustrates the impedance analogue for a gel-based driver 

 

2.10.4   Magnet and Drive Plate Movement 
 
Figure 2.16 shows the behaviour of the magnet and coil once the driver is vibrating. Note 

that there are 3 main bodies moving - the panel, the drive plate and the magnet. These 3 

parts do not move simultaneously -  there are differences in the phase of each of them. 

 

 

Figure. 2.16,        Magnet and drive plate movement 
 
 

Initially the magnet moves away from panel with an acceleration depending on amplitude. 

Shortly after, the magnet is then caught or held by the silicone gel at limits of 

Drive Plate 

Magnet 
Gel 
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compression/stretch. The driver inertia is then transferred to the panel, through the gel, by 

stretching until the coil pulls back and then the magnet reverses direction, with a following 

movement of the panel occurring through compression of the gel. 

  



 
 

26 
 

Chapter 3   Gel-based Driver Measurements 
 
The following chapter describes work that measured and studied the frequency response of 

several gel-based drivers using an anechoic chamber. 

3.1   Measurements Set-up 

The equipment required for the experimental work and its general set up is shown as 

follows: 

- CLIO35 Interface (2 channels audio output, 1 Channel input) 

- Digital Signal Processed by a PC 

- Measurement Microphone (omnidirectional – flat response) 

- Aluminium frame for panels (to fix panel boundaries) 

- ABS, Wood (MDF) and aluminium panel 420 x 320 x 2 mm  

 

Figure  3.1        Measurement set up 
 
A frame with the capacity to fix the panel boundaries was used. The background noise in 

dBA was less than 35dB inside the anechoic room. The panel in question was placed in the 

centre of the room, as close as possible to the floor (which was considered totally 

absorptive), in order to avoid immediate cancellation due to destructive interference of the 

generated wave in the surrounding air.  
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The RMS power driven to the drivers was either 1W or 10W at 25cm or 1m. These details 

are shown in each graph. 

 

 
                   Figure 3.2        Panel set-up                                    Figure 3.3          Anechoic chamber 

ABS Panel: 
  
- Dimension: 420 x 320 x 2mm 
 
- Density: 1040 kg/m3 
 
- Young’s Modulus: 6.67E+08 Pa 
 
- Poisson ratio: 0.42  

- Damping factor: 0.015
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3.2   Background Noise Level 
 
Figure 3.4 shows the background noise levels of the anechoic chamber. The test was 

carried out with the drivers disconnected but with the microphone on. Some of the spectrum 

is under 30dB with the exception of the low end, which is 48dB. In any case it is well below 

what is expected from the driver’s average performance above 70 dB.  

 

 

Figure 3.4        Background noise 
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3.3   Gel-based Driver A Measurements 

3.3.1   Gel-based Driver A specification 

Electrical and acoustical characteristics 
 
Sound Pressure Level 98 +- 3 dB at 1W/10cm, 100 to 1000 Hz    

Impedance   8 Ohms  

Frequency Range  100-10000 Hz (related to surface being driven)  

Power Handling  10 W (R.M.S.) 

Magnet   N48 

Overall Dimensions  See Figure 3.5 

 
 

Figure  3.5        Gel-based driver A general dimensions 
 

 
Figure  3.6        Gel-based driver A cross section 

 



 
 

30 
 

 

Figure  3.7        Gel-based driver A without structure  

 
 
Materials Properties 
 

Part Material Young’s 
Modulus (Pa) 

Poisson 
Ratio 
(NA) 

Density 
(kg/m3) 

Damping factor 
(NA) 

Magnet Neodymium 
48 grade, 2.00E+11 0.33 7100 0.001 

Plate Steel 2.00E+11 0.27 7700 0.001 
PCB (Drive 

Plate) FR4 9.00E+08 0.42 1010 0.015 
Coil Copper 1.10E+11 0.35 8700 - 

Former Polymide 7.00E+10 0.33 2300 - 
Bracket (holder) ABS 6.67E+08 0.42 1040 0.015 

Silicone Gel 
Silicone 

(Elastosil 
625 Wacker) 5.00E+05 0.45 920 0.3 

 
 
Additional Silicone properties  
 
Shore hardness:   A 8 
Densityy:    1.2 g/cm3 
Shrinkage (Flow direction):  3.5% 
Compression Set   at 23 °C:  21%  
Elongation at break:   30kN/m 
Tear strength:    30k  
Tensile strength:   6500kPa 
Working temperature:   250°C 
Manufacturer/Product name:  ELASTOSIL® RT 62532   (WACKER)   
  

 

Silicone 
Magnet 

Drive Plate Coil/Former 

Bottom Plate 

Inner Plate 



 
 

31 
 

3.3.2   Sound Power Test  
 
 
This first section is related to the driver structure and its performance at low and high power 

as well as at different distances - 100 cm and 25 cm. All drivers were tested with and without 

the external structure to quantify its effects on the overall system performance. 

This reference test was carried out using the ABS Panel as described in Figure 3.2. 

3.3.2.1   Gel-based Driver A with External Structure 1 W 1 m ABS Panel  
 

 

Figure 3.8       Gel-based driver A with external structure 1W 1m ABS panel 
 

In Figure 3.8, the average performance is 82 dB sound pressure level between 300 Hz and 7 

kHz; however, there are two drops of sound pressure level: 500 Hz, and 3.5 kHz.  
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3.3.2.2   Gel-based Driver A with External Structure 10 W 1 m ABS Panel 
 
 

 

Figure 3.9 Red: Gel-based driver A with external structure 10W 1m ABS panel.  
Black: Gel-based driver A with external structure 1W 1m ABS panel 

 
  
On most loudspeaker systems, it is expected that when the power from the amplifier is 

doubled, an extra 3 dB sound pressure level should be received. Consequently the 

difference in power from the test on Figure 3.8 (black) and Figure 3.9 (red) should add an 

extra 10 dB on the 10W test. This is not the case at the low frequency range up to around 1 

kHz, where the sound pressure level difference is around 7 dB. Above 2 kHz, the difference 

in sound pressure level increases from 10dB up to 20dB which makes the driver more 

efficient on the high end once powered at 10W. Therefore, in these two-compared tests, the 

difference in dB against the power is not linear across the frequency range and differs from 

standard loudspeaker systems. 
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3.3.2.3   Gel-based Driver A with External Structure 1 W 25 cm ABS Panel 

 

 

  
Figure 3.10 Red: Gel-based driver A with external structure 1W 25cm ABS panel.  

Black: Gel-based driver A with external structure 1W 1m ABS panel 
 

 

Figure 3.10 (red) illustrates test results with the microphone positioned at 25 cm from the 

panel and when compared with the test at 1 m (black), shows an overall higher sound 

pressure level. This is expected since the average loss of dB per distance is 6 dB for every 

time the distance is doubled; therefore, the test at 25 cm should be an average of 12 dB 

louder. It is important to point out that around 1 kHz, the sound pressure level on both tests 

show the same level. This result is unexpected and may be related to Figure 3.9 at 1m 10W 

where the extra power was not making the system as loud as expected between 1 kHz and 

2 kHz. 

 

 

1K Similar SPL level 



 
 

34 
 

3.3.2.4 Gel-based Driver A without External Structure 1 W 1 m ABS Panel 
 

  
Figure 3.11 Red: Gel-based driver A without external structure 1W 1m ABS Panel 

Black: Gel-based driver A with external structure 1W 1m ABS panel 
 

The purpose of this test was to measure the effects that any external structure holding the 

gel-based driver had on performance (described in Figure 3.11). When the gel-based driver 

A without external structure (red) is compared with a test with the added external structure 

(black) it becomes clear that this external structure has a clear damping effect on the low 

frequency range, while the driver without the external structure is an average 8 dB louder 

from 20Hz to 150 Hz. On the other hand, the driver with the external structure becomes 

more efficient in the middle frequency range - being 7-8 dB louder between 500 Hz and 2 

kHz. 
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3.3.2.5   Gel-based Driver A without External Structure 10 W 1 m ABS   
     Panel 
 
 

 

Figure 3.12      Gel-based driver A without external structure 10W 1m ABS panel 
 
 

When the effects of the external structure were analysed at 10W, the results differed from 

those tested at 1 W. As seen in Figure 3.12, the test at 10W without the external structure - 

when compared with Figure  3.10 with the external structure – resulted in a gain in dB only at 

the low end frequency range, less than 70 Hz. Therefore at higher power, the external 

structure does not affect the range from 70 Hz to 150 Hz. Looking at the high frequency 

range, the structure makes the system more efficient only above 3 kHz. Once again, this 

differs from the test at 1 Watt, where the gain in dB as a result of adding the structure was 

only between 500 and 2 kHz. 
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3.3.2.6 Gel-based Driver A without External Structure 1 W 25 cm ABS    
   Panel 
 
 

  
 

Figure 3.13      Gel-based driver without external structure 1W 25cm ABS panel 
 
 

Figure 3.13 shows the effects of the external structure effects at 25 cm. It becomes clear that 

using the structure improves the efficiency at the high frequency range. In this case, only in 

the range above 3 kHz is the response louder. There is no major sound pressure level 

performance difference at the low frequency range. 
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3.4   Gel-based Driver B Measurements 

3.4.1   Gel-based Driver B Specification – Softer Elastomer 
 
The previous section showed the effects of the external structure on the overall gel based 

driver performance. The following section will show the effects of changing the gel hardness 

used on the driver itself. The driver is named gel-based driver B. This has the same structure 

as gel-based driver A with the exception of the thermoplastic elastomer part, where a new 

compound of a softer hardness has been used on the gel based driver B structure. The 

thermoplastic elastomer material properties are listed below. 

Gel-based Driver B Components Material Properties 
 

Part Material Young’s 
Modulus (Pa) 

Poisson 
Ratio  

Density 
(kg/m3) 

Damping 
Factor 

Magnet Neodymium 48 
grade, 2.00E+11 0.33 7100 0.001 

Plate Steel 2.00E+11 0.27 7700 0.001 
PCB (Drive 

Plate) FR4 9.00E+08 0.42 1010 0.015 
Coil Copper 1.10E+11 0.35 8700 - 

Former Polymide 7.00E+10 0.33 2300 - 
Bracket (holder) ABS 6.67E+08 0.42 1040 0.015 
Thermoplastic 

elastomer 
Thermoplastic 

elastomer 1.30E+05 0.45 850 0.7 
 
 
Additional thermoplastic elastomer properties  
 
Shore hardness:   30 shore 00 (0 or under 0 shore A) 

Density:    0.86 g/cm3 

Shrinkage (Flow direction):  0.049 - 0.053 mm/mm 

Compression Set   at 23 °C:  21%  

Elongation at break:   1290% 

Tear strength:    40PLI   /7kN/m 

Tensile strength:   280psi/   1931kPa 

Working temperature:   70°C  

Manufacturer/Product name:  Versaflex® CL2003X33   (GLS)  
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3.4.2.1   Gel-based Driver B with External Structure 1 W 1 m ABS Panel 
 
 
 
 

 
 

Figure 3.14 Red: Gel-based driver B with external structure 1W 1m ABS panel  
Black: Gel-based driver A with external structure 1W 1m ABS panel 

 
 
The results (Figure 3.14) of Gel-based driver B (red) in contrast with Gel-based driver A 

(black) indicate that changing the gel hardness to a softer one has a significant effect on the 

frequency range. In the first instance, it seems that the actual bandwidth is flatter, in 

particular at the low end, between 50 and 200 Hz. If the graph is compared with Figure 3.9 at 

10W, it becomes clear that the softer material has an effect on the system efficiency. Overall 

this driver is 2-4 dB sound pressure level louder between 300 Hz and 2 kHz and 10 dB 

louder under 200 Hz. In the previous section, Figure 2.14 shows the relationship between 

the displacement and the force. If subjected to the same force, the gel-based driver B will 

have a higher acceleration, and consequently displacement, at low frequencies when 

compared with gel-based driver A. It is expected that the linear region versus force of gel-

based driver B will be longer than that of gel-based driver A. 

Increase SPL low frequency range  
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3.4.2.2  Gel-based Driver B with External Structure 10 W 1 m Panel 
 

 
 

Figure 3.15  Red: Gel-based driver B with external structure 10W 1m panel  
Black: Gel-based driver B with external structure 1W 1m panel 

 
 
The gel-based driver played at 10W (red) should be 10 dB louder if compared to one played 

at 1W (Black). The average difference between both measured tests is 8-10 dB sound 

pressure level, so it is largely as expected. In this case the increase in dB is linear across the 

frequency range. This differs from the previous tests (Figures 3.8 and 3.9) where a harder 

silicone gel was being used. In those cases the increase in dB was more evident at the high 

frequency range. This may mean that the hard gel absorbs some of the energy at high 

frequencies. 
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3.4.2.3  Gel-based Driver B with External Structure 1 W 25 cm ABS Panel 
 

 
 

Figure 3.16 Red : Gel-based driver B with external structure 1W 25 CM ABS panel  
Black: Gel-based driver B with external structure 1W 1m panel 

 
 

Figure 3.16 shows the based driver 7 tested at 25 cm (red) and compared to one tested at 1 

m (black) - the difference in the distance should give around 12 dB sound pressure level 

extra to the closer test and it can be seen that the test results are as expected. Note that not 

only the average is the same on both tests, but the peaks and troughs related to 

cancellations and couplings of the signals are almost identical. This is a sign that this has 

been tested in a proper anechoic environment; otherwise the reflections from walls could 

interfere differently at different distances. 
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3.4.2.4   Gel-based Driver B without External Structure 1 W 1 m ABS  
     Panel 
 
 

  
 

Figure 3.17 Red: Gel-based driver B without external structure 1W 1m ABS panel  
Black: Gel-based driver B with external structure 1W 1m ABS panel 

 
 
Figure 3.17 shows that the gel-based driver B is more efficient if used without the external 

structure - particularly at the low frequency range, under 600Hz. Note that in this region, it is 

flatter too. The presence of the structure not only has an effect on the system efficiency, it 

changes the patterns of cancellations and couplings. From 600 Hz to 20 kHz, both tests, with 

external structure (Figure 3.14) and without external structure (Figure 3.17), have a similar 

performance. This effect is quite similar to the test using the harder gel (Figures 3.8 and 3.9) 

- although the system with the external structure was slightly more efficient at high 

frequencies.   
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3.4.2.5   Gel-based Driver B without External Structure 10 W 1 m ABS  
     Panel 
 
 

 
 

Figure 3.18 Red: Gel-based driver B without external structure 10W 1m ABS panel  
Black: Gel-based driver B without external structure 1W 1m ABS panel 

 
 
 

Figure 3.18 shows that the gel-based driver B played at 10W (red) did not show the 

expected extra 10 dB sound pressure level on the whole frequency range compared with the 

1W test (black). The extra power is not reflected in particular at the low frequency range - 

under 500Hz. 

 

Above 500 Hz there is a significant increase of around 6-8 dB sound pressure level. It seems 

that the extra energy applied to this system is not transformed into acoustic energy in the low 

frequency range. This could be because the excursion of the driver has reached its limit and 

the extra power does not add any more movement.   
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3.4.2.6   Gel-based Driver B without External Structure 1 W 25 cm ABS 
     Panel 
 

 

Figure 3.19        Gel-based driver B without external structure 1W 25cm ABS panel 
 

Figure 3.19 shows the gel-based B driver without an external structure and tested at 25 cm. 

In this case the lack of the structure added to the soft gel and the proximity of the 

measurement, makes the response louder in the low frequency range. Looking at the graph 

alone, this could be quite similar to a response expected from a traditional moving coil 

loudspeaker subwoofer. On a subwoofer the cone of the driver is proportionally large (if 

compared with standard moving coil loudspeakers) in order to move enough air to produce 

low frequencies. With this gel B driver, the ABS panel manages to displace a large volume of 

air and achieves a similar effect, but the gel-based B driver is considerably smaller than an 

average subwoofer. 
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3.5   Gel-based Driver C Measurements 

3.5.1   Gel-based Driver C Specification – Corner Only Attachment 
 

Electrical and Acoustical Characteristics 
 

Sound Pressure Level 90 +- 3 dB at 1W/25cm, 100 to 1000 Hz    

Impedance   6 Ohms  

Frequency Range  80-8000 Hz (Related to surface being driven)  

Power Handling  5 W (R.M.S) 

Magnet   N48 

Overall Dimensions with external structure 
 

 
 
 

Figure 3.20      Gel-based driver C overall dimensions  
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Overall Dimensions without external structure  
 

 
 

Figure 3.21      Gel-based driver C overall dimensions without external structure 
 
 

Figure 3.22  

 
 
 

Magnet 

Drive Plate 

Gel Coil 

ABS Holder 

Steel plate 
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Gel-based Driver C Components Material Properties  
 

Part Material Young’s 
Modulus (Pa) 

Poisson 
Ratio 

Density 
(kg/m3) 

Damping 
Factor 

Magnet Neodymium 48 
grade, 2.00E+11 0.33 7100 0.001 

Plate Steel 2.00E+11 0.27 7700 0.001 
PCB (Drive 

Plate) FR4 9.00E+08 0.42 1010 0.015 
Coil Copper 1.10E+11 0.35 8700 - 

Former Polymide 7.00E+10 0.33 2300 - 
Bracket (holder) ABS 6.67E+08 0.42 1040 0.015 
Thermoplastic 

elastomer 
Thermoplastic 

elastomer 1.30E+05 0.45 850 0.7 
 
Additional thermoplastic elastomer properties  
 

Shore hardness:   30 shore 00 (0 or under 0 shore A) 

Density:    0.86 g/cm3 

Shrinkage (Flow direction):  0.049 - 0.053 mm/mm 

Compression Set   at 23 °C:  21%  

Elongation at break:   1290% 

Tear strength:    40PLI   /7kN/m 

Tensile strength:   280psi/   1931kPa 

Working temperature:   70°C  

Manufacturer/Product name:  Versaflex® CL2003X33   (GLS) 

 

Note that in previous tests, the importance of the structure of the driver on frequency 

performance has been observed – particularly at low frequencies. This gel-based driver C 

has been designed so the corners only hold the magnetic assembly and this will reduce the 

stiffness between the magnetic assembly and the drive plate. It is believed that this will have 

an effect on the low frequency range and enable a more efficient way of transferring the 

waves from the driver to the panel.  
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3.5.2 Gel-based Driver C Results 
 

3.5.2.2   Gel-based Driver C with External Structure 1 W 1 m ABS Panel 
 
 

 
 

 
Figure 3.23 Red: Gel-based driver C with external structure 1W 1m ABS panel  

Black: Gel-based driver B with external structure 1W 1m ABS panel 
 
 
 
The gel-based driver C uses the same type of thermoplastic elastomer as the gel-based 

driver B but with a smaller magnet and this has an effect on its efficiency. Figure 3.23 shows 

that the dB level below 200 Hz is around 5 dB less while above this frequency, the 

performance of both drivers is quite similar. Taking into account that the gel-based B driver 

is twice the size of the gel-based C one, this latest structure is overall more efficient and its 

performance more balanced. The only area where it is not performing well is above 3 kHz. 

This is probably due the size of the coil - its inductance having an effect on the impedance at 

high frequencies.   



 
 

48 
 

3.5.2.3   Gel-based Driver C with External Structure 5 W 1 m ABS Panel 
 
 

 
 

Figure 3.24 Red: Gel-based driver C with external structure 5W 1m ABS panel  
Black: Gel-based driver C with external structure 1W 1m ABS panel 

 
 
 
 
This gel-based C is rated at 5 W instead of the previous sections power test carried out at 1 

W. The extra power should give 6 dB extra sound pressure level and as can be seen from 

Figures 3.24 and 3.23, both have the same shape and there is a 6 dB difference. For this 

reason, we assume that the driver performs linearly against the power.   
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3.5.2.4   Gel-based Driver C with External Structure 1 W 25 cm ABS Panel 
 
 

 
 

Figure 3.25 Red: Gel-based driver C with external structure 1W 25cm ABS panel  
Black: Gel-based driver C with external structure 1W 1m ABS panel 

 

Figure 3.25 shows the Gel-based driver C tested at 25 cm. The overall frequency response 

is very similar to the test made at 1 m and shown in Figure 3.23. The two main differences 

are the 12 dB sound pressure level increase because of the proximity at 25 cm and the low 

frequency range being relatively louder at high frequencies. Note that the sound pressure 

level descents seen at 100, 200 and 500 Hz are present at both 1 m and 25 cm positions 

and even when the gel-based driver B is being used. It is clear that these descents are 

related to the panel size and material and will always be present regardless of which driver is 

being used. 
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3.5.2.5   Gel-based Driver C without External Structure 1 W 1 m ABS  
     Panel 
 

 
 
 

Figure 3.26 Red: Gel-based driver C without external structure 1W 1m ABS panel  
Black: Gel-based driver C with external structure 1W 1m ABS panel 

 
 

The gel-based driver C does not seem to be as affected by the structure compared to gel-

based driver B; Figure 3.26 shows a very similar response to Figure 3.23 - in particular 

below 700 Hz. This may be due the design of the gel-based driver C structure where the gel 

is held only at the corners. Once the external structure is applied, this does not compress the 

corners, hence the gel structure is unmodified. This differs from gel-based drivers A and B 

where the structure had a clear impact on the driver performance in all frequency ranges and 

in particular below 600 Hz. Therefore the structure used on gel-based driver C will be more 

suitable for low frequency range applications since it does not restrain the driver movement 

and adversely affect performance. However, the gel-based driver C structure still has an 

effect at the mid- and high-frequency range. It will be interesting to look at the adhesive pads 

used to see if these have an impact on the high frequency performance. 
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3.5.2.6   Gel-based Driver C without External Structure 5 W 1 m ABS  
     Panel 
 

 
 

Figure 3.27 Red: Gel-based driver C without external structure 5W 1m ABS panel  
Black: Gel-based driver C without external structure 1W 1m ABS panel 

 

Figure 3.27 shows the gel-based driver C without the external structure and powered at 5W. 

The average increase of loudness is only around 3 dB sound pressure – less than that 

expected with such an increase in power. Around 6 dB extra is expected - compared to the 

1W test – but this only happens above 3000 Hz. Below this frequency, the extra energy is 

not fully transformed into acoustic energy. 
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3.5.2.6   Gel-based Driver C without External structure 1 W 25 cm ABS 
     Panel  

 

Figure 3.28 Red: Gel-based driver C with no external structure 1W 25cm ABS pane                                        

Black: Gel-based driver C with no external structure 1W 1m ABS panel 

 

Figure 3.28 shows the test result from the microphone being at 25 cm and using the gel-

based driver C without the external structure. It performs around 12 dB sound pressure level 

higher on most of the frequency range when compared with the same test at 1 m (Figure   

3.23). This is as expected in accordance with a 6 dB sound pressure level decrease as the 

distance from the source to the microphone is doubled. However, it seems that between 600 

and 1000 Hz the difference in dB is less and at 900 Hz there is little or no difference. 
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3.6   Gel-based Driver D Measurements 

3.6.1   Gel-based Driver D Specification – ¼ Size 

Electrical and Acoustical Characteristics 
 

Sound Pressure Level 90 +- 3 dB at 1W/10cm    

Impedance   4 Ohms  

Frequency Range  300-10000 Hz (Related to surface being driven)  

Power Handling  4 W (R.M.S) 

Magnet   N48 

Overall Dimensions with External Structure 

 
 
 

Figure 3.29      Gel-based driver D overall dimensions   



 
 

54 
 

Overall Dimensions without External Structure 
 
 

 

Figure 3.30      Gel-based driver D overall dimensions without external structure 
 
 
 

 

 

Magnet 

Drive Plate 

Gel Coil 

ABS Holder 

Steel plate 

Figure 3.31      Gel-based driver D components 
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Gel based Driver D description 

This section looks at the relationship between the size of the driver and its frequency 

response. Previously, it has been possible to achieve a reasonably efficient low frequency 

response with a relatively small driver. This gel-based driver D is ¼ of the size when 

compared to gel-based driver C and it is important to analyse whether with smaller drivers 

the bass will still be present. Note that in the following section, a 10 W power test has not 

been carried out since this gel-based driver is only rated up to 4W. Note also that gel-based 

drivers C and D share the same structure so in most cases, the two will be compared. 

Gel-based Driver D Component Material Properties  

Part Material Young’s 
Modulus (Pa) 

Poisson 
Ratio 

Density 
(kg/m3) 

Damping 
Factor 

Magnet Neodymium 48 
grade, 2.00E+11 0.33 7100 0.001 

Plate Steel 2.00E+11 0.27 7700 0.001 
PCB (Drive 

Plate) FR4 9.00E+08 0.42 1010 0.015 
Coil Copper 1.10E+11 0.35 8700 - 

Former Polymide 7.00E+10 0.33 2300 - 
Bracket (holder) ABS 6.67E+08 0.42 1040 0.015 
Thermoplastic 

elastomer 
Thermoplastic 

elastomer 1.30E+05 0.45 850 0.7 
 

Additional thermoplastic elastomer properties  
Shore hardness:   30 shore 00 (0 or under 0 shore A) 

Density :   0.86 g/cm3 

Shrinkage (Flow direction):  0.049 - 0.053 mm/mm 

Compression Set   at 23 °C:  21%  

Elongation at break:   1290% 

Tear strength:    40PLI   /7kN/m 

Tensile strength:   280psi/   1931kPa 

Working temperature:   70°C  

Manufacturer/Product name:  Versaflex® CL2003X33   (GLS) 
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3.6.2   Gel-based Driver D Test Results 

This section looks at the relationship between the size of the driver and its frequency 

response. It is clear that by using gel-based drivers, it is possible to have a good low 

frequency response with a relatively small driver. The gel-based driver D is ¼ of the size 

when compared to the Gel-based driver C and it is interesting to analyse whether with 

smaller drivers the bass is still present. Note that in the following section, a 10 W power test 

has not been carried out since the gel-based driver is only rated up to 4W. Note also that the 

gel-based drivers D and C share the same structure so in most cases, gel-based driver D 

will be compared with gel-based driver C. 
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3.6.2.1   Gel-based Driver D with External Structure 1 W 1 m ABS Panel 
 

 
 

Figure 3.32 Red: Gel-based driver D with external structure 1W 1m ABS panel  
Black: Gel-based driver C with external structure 1W 1m ABS panel 

 

 
The reference test of the gel-based D (red) shows a similar frequency response to the 

reference test of the gel-based C (grey). Taking into account that the size of the gel-based 

driver D is ¼ of the gel bas driver C, the ratio of performance against size is very interesting. 

It needs to be taken in to account that gel-based D has a smaller bi than gel-based C due its 

magnet and coil size and this has a direct effect on the driver force. Yet looking at the graph, 

this difference in force seems only to be present between 100 Hz and 400 Hz, which is 

under the system resonance frequency.  
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3.6.2.2   Gel-based Driver D with External Structure 1 W 25 cm ABS Panel 
 

 
 

Figure 3.33 Red: Gel-based driver D with external structure 1W 25cm ABS panel  
Black: Gel-based driver D with external structure 1W 1m ABS panel 

 

 

The test (Figure 3.33) of gel-based driver D at 25 cm shows – over a wide frequency range - 

12 dB sound pressure level higher than the same test (Figure 3.32) at 1 m. This differs from 

gel-based driver C where the test at 25 cm was not linearly 12 dB sound pressure level 

louder as expected. Taking into account that the above test and the gel-based driver C test 

were both carried out with the same panel, it seems that the differences may be due the 

resonance of the gel-based driver itself. 
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3.6.2.3   Gel-based Driver D without External Structure 1W 1m ABS Panel 
 
 

 
 

Figure 3.34 Red: Gel-based driver D without external structure 1W 1m ABS panel  
Black: Gel-based driver D with external structure 1W 1m ABS panel 

 
 
 
Gel-based driver D (without external structure) shows an overall performance increase in 

contrast (Figure 3.34) with the measurements with the external structure (grey). This is 

particularly clear at the low end - around 80 Hz. Consequently, the external structure must 

be constraining the movement of the driver and this becomes more evident at the low end of 

the frequency range when the driver reaches its maximum excursion.  
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3.6.2.4   Gel-based Driver D without External Structure 1 W 25 cm ABS 
     Panel  
 

 

Figure 3.35 Red: Gel-based driver D without external structure 1W 25cm ABS panel  
Black: Gel-based driver D without external structure 1W 1m ABS panel 

 

The test of gel-based driver D at 25 cm and without the external structure shows the 

increase in dB at 30 Hz evident in Figure 3.34 but more apparent in Figure 3.35. This reflects 

the effect that the structure has in particular at the low frequencies. The gel-based driver 

should be designed to allow a greater degree of flexibility and it will then be able to 

reproduce lower frequencies. 
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3.7   Materials Performance Research 

3.7.1   Materials Specifications 

Aluminium Panel: 
 

 -Dimension: 420x320x2mm 

- Density: 2700 kg/m3 

- Young’s Modulus: 70e9 Pa 

- Poisson ratio: 0.33 

- Critical Coincidence Frequency: 6261Hz 

 

Wood Panel:  

- Dimension: 420x320x2mm 

- Density: 770 kg/m3 

- Young’s Modulus: 11.2e9 Pa 

- Position ratio: 0.15 

- Critical Coincidence Frequency: 8359Hz 
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3.7.1   Gel-based Driver A with External Structure 1 W 1 m Aluminum  
  Panel 
 
 

 
 
 

Figure 3.36        Gel-based driver A with external structure 1W 1m Aluminum panel 
 

 

The test of gel-based driver A in Figure 3.36 using an aluminium panel shows a very flat 

response between 100 Hz and 10 kHz. This is the flattest response of the entire test 

programme. Therefore aluminium could be one of the preferred materials with which to use 

gel-based drivers. Once this test is compared with the reference test on an ABS panel in 

Figure 3.8, it can be appreciated that the resonance of aluminium is slightly higher and as a 

consequence, there is no response under 100 Hz. This is the only range where ABS 

outperforms aluminium.    
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3.7.2   Gel-based Driver A with External Structure 1 W 25 cm Aluminium 
  Panel 
 
 

 
 

Figure 3.37 Red: Gel-based driver A with external structure 1W 25 cm aluminium panel 
Black: Gel-based driver A with external structure 1W 1m aluminium panel 

 
 
 

The test of the gel-based driver at 25 cm (Figure 3.37) with aluminium compared with the 

results at 1m has an expected 12 dB increase in the low frequency range but an unexpected 

increase in dB sound pressure level above 1.5 kHz - being around 16 dB louder. This 

frequency range is where the human ear sensibility is higher and will make the perception 

very loud. The shape of the graph in Figure 3.38 follows the same path as in Figure 3.36 so  

the distance does not affect the descents.   
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3.7.3   Gel-based Driver B with External Structure 1 W 1 m Aluminium   
  Panel 
 
 

 
 

Figure 3.38 Red:Gel-based B with external structure 1W 1m aluminium panel 
Black: Gel-based driver A with external structure 1W 1m aluminium panel 

 
 

Gel-based driver B response has been particularly efficient at the low frequency range. 

There is a difference of 10 dB sound pressure level below 200 Hz between gel-based drivers 

A and B. The peak at 90 Hz is the resonance frequency of the system. Once more, this test 

with aluminium has more bass response than the equivalent one carried out with ABS. Due 

the nature of the gel-based driver B, the performance above 2 kHz falls significantly.    
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3.7.4   Gel-based Driver C with External Structure 1 W 1 m Aluminium   
  Panel 
 
 

 
 

Figure 3.39 Red:Gel-based driver C with external structure 1W 1m aluminium panel 
Black: Gel-based driver A with external structure 1W 1m aluminium panel 

 

The test of the gel-based driver C with aluminium is 6 dB louder than the equivalent test 

using an ABS panel as shown in Figure 3.8. Like the other previous tests on aluminium, the 

system has its resonance at 100 Hz, where it becomes more efficient. The average 

performance response is around 84 dB sound pressure level from 100 Hz up to 2 kHz. 
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3.7.5   Gel-based Driver D with External Structure 1 W 1 m Aluminium   
  Panel 
 
 

 
 

Figure 3.40 Red: Gel-based driver D with external structure 1W 1m aluminium panel 
 Black: Gel-based driver A with external structure 1W 1m aluminium panel 

 

The gel-based driver D, as with the gel-based driver A, has two resonances - one at 150 - 

200 Hz and a greater one at 400 Hz. In this case, the overall performance is quite flat up to 

10 kHz, although slightly less efficient than the tests with gel-based drivers C and B. In this 

test it becomes clear that the driver has not only an effect on the efficiency of the system, but 

also on its frequency shape. This probably is related to the stiffness of the gel and the weight 

of the magnet. 
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3.7.6   Gel-based Driver A with External Structure 1 W 1 m Wood Panel 
 

 
 

Figure 3.41 Red: Gel-based driver A with external structure 1W 1m wood panel  
Black: Gel-based driver A with external structure 1W 1m aluminium panel 

 

 

The wood reference test with the gel-based driver A, has a resonance at 200Hz but the 

system starts to perform more efficiently at 2 kHz and up to 5 kHz. This differs from the 

previous test using aluminium. In this case, the change from aluminium to wood of the panel 

material has a strong impact on the frequency response of the system in terms of dB sound 

pressure level and shape of the graph.  
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3.7.7   Gel-based Driver B with External Structure 1 W 1 m Wood Panel 

 

 
 

Figure 3.42        Gel-based driver B with external structure 1W 1m wood panel 
 
 

Previous tests using an ABS panel have illustrated the difference in performance between 

the softer gel of driver B and the harder gel of driver A with an increase of around 6 – 9 dB 

on the low frequency range being measured. A similar dB sound pressure level increase 

effect happens on the wood panel but in this case with a greater magnitude. The results in 

Figure 3.42 show an increase of around 20 dB compared to Figure 3.41. It needs to be taken 

into account that that this wood panel resonance is at a higher frequency and this may 

explain such an extra increase of dB sound pressure level.   
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3.7.8   Gel-based Driver C with External Structure 1 W 1 m Wood Panel 
 
 

 
 
 

Figure 3.43 Red: Gel-based driver C with external structure 1W 1m wood panel  
Black: Gel-based driver B with external structure 1W 1m wood panel 

 
 

The test of gel-based driver C (Figure 3.43) performed in wood revealed results almost 

identical to those in Figure 3.42 for gel-based driver B. Both drivers have one important 

factor in common - the softness of the gel. The drivers have a different structure, different 

weight, size, etc. Once gel-based drivers C or B are compared with gel-based driver A 

(Figure 3.41), the differences in performance are substantial at low and high frequencies. 

Although the gel-based drivers A and B are almost identical in terms of their structure, the 

significant difference is the softness of the gel used. 
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3.7.9   Gel-based Driver D with External Structure 1 W 1 m Wood Panel 
 

 

Figure 3.44        Gel-based driver D with external structure 1W 1m wood panel 

 

Gel-based driver D is considerably smaller than gel-based drivers A, B and C. Consequently, 

its magnetic flux is also smaller and this will explain the 3-5 dB sound pressure level 

decrease. In terms of performance, there is little difference observed with the wood panel. In 

particular, the shape and the first resonant frequency of the system is not affected by the 

gel-based driver type. Once again, the only exception on the frequency for the first 

resonance is the gel-based driver A - using a harder gel. 
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3.8   Gel-based Driver C on an ABS Panel using Several  Positions 

The following section looks at the effects of placing the gel-based driver on different 

locations on the panel. As in the previous chapter, the tests were carried out in an anechoic 

chamber – in particular, with an ABS panel at 1 W and 1m. These results will be contrasted 

in C hapter 7 with laser measurements of the actual movements. Figure 3.45 shows five test 

positions – note that position 1 has already been tested and the results shown in Figure 

3.23. 

 

 

 

Figure 3.45        Gel driver positions 
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3.8.1   Gel-based Driver C - Position 2 
 
 

 

Figure 3.45        Gel driver C Position 2 
 

Position 2 shows a very similar response to position 1 (Figure 3.23) in terms of the shape of 

the graph, although the position 2 performance average is slightly less efficient - around 3 

dB sound pressure level lower. The graph in position 2 is as smooth as position 1 and there 

are no clear descents of dB within the spectrum. The slight off-centre position of this test 

does not seem to affect the overall performance. 
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3.8.2   Gel-based Driver C - Position 3 

 

 

Figure 3.46        Gel driver C Position 3 
 

 

Position 3 also reveals a similar performance when compared to positions 1 (Figure 3.23) 

and 2 (Figure 3.45) in the mid and high frequency response. However, below 200 Hz, 

position 3 is less efficient - it seems that getting the driver closer to the edge of the panel has 

a bad effect on the low frequency response. This may be due to the position being closer to 

the boundary of the panel and consequently it will be more difficult to bend - particularly at 

low frequencies where the greater movement occurs.   
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3.8.3   Gel-based Driver C - Position 4 
 
 

 

Figure 3.47        Gel driver C Position 4 
 

Position 4 performance is again similar to that of position 1 (Figure 3.23) and 2 (Figure 3.45) 

- being close to the centre of the panel is probably the reason why its system resonance 

frequency is almost identical to position 1. In this case the overall performance is slightly 

more efficient at the high frequency response above 2 kHz. 
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3.8.4   Gel-based Driver C - Position 5 

 
 

Figure 3.48        Gel driver C Position 5 
 

Position 5 (Figure 3.48) is clearly the least efficient one compared to any of the other 

positions. The first resonance is at a higher frequency - around 250Hz – and this must be 

due the driver being at the corner of the panel, very close to the clamping points, and 

therefore to vibrate the panel, more energy is required - particularly at the low frequencies. In 

terms of efficiency and wide frequency response, placing the drivers close to the boundaries 

should be avoided.  
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3.9   Gel-based Driver Measurements - Conclusions 

3.9.1   Power  
All drivers have been tested at 1 W and at their rated power, 10 W or 5 W. The conclusion is 

that overall, the gel-based drivers’ performance varies with the power at a similar rate to a 

traditional driver - an increase of 3dB sound pressure level each time the power is doubled. 

However, there are some frequencies were the dB increase is higher, in particular at the 

high frequency range. This suggests that the frequency response shape is related to the 

power. Therefore this is another factor that needs to be taken into consideration at the driver 

design stage.  

 

These differences in performance can be due, in some cases, to the gel deformation 

absorbing most of the energy before it gets to the panel. This effect will be particularly 

accentuated at high frequencies. Once the power is increased, the driver excursion is higher 

and the gel gets to a point where it has already been compressed a lot and cannot absorb 

the vibrations from the driver at the same level. Therefore more vibrations are transferred to 

the panel. If this is the case the following driver design rule will apply: 

 

To improve high frequency response, the thickness of the gel between the driver and the 

panel needs to be reduced. 

 

3.9.2   Driver Type 

3.9.2.1   Introduction 

In Chapter 3, four types of drivers were tested and they were different in terms of size, 

weight, structure and gel hardness. Therefore, the following section looks at the 

consequences of those differences. 



 
 

77 
 

3.9.2.1   Gel-based Driver Size/Weight 

Gel-based drivers A and B are the same size; gel-based driver C is half their size; gel-based 

driver D is ¼ the size of gel-based driver C. In terms of force (BL), it can be said that, in 

general, the larger the driver, the larger the magnet and the more metres of wire on its coil. 

Therefore, it is expected that larger drivers will be more efficient. However, with the gel-

based drivers this is not always the case, and the following has been observed: 

 

• The smaller the driver, the higher the first frequency resonance. This rule has some 

exceptions like the wood panel test and the gel-based driver A.  

• The size of the driver does not have much influence on its performance in terms of 

the panel resonance frequency point. 

• There is a relationship between the driver size and the average dB sound pressure 

level - this is louder if the driver gets bigger. 

• Regardless of the driver size, the low frequency responses of all tests have clear dB 

sound pressure level descents at very similar frequencies. 

3.9.2.2   Gel-based Driver Structure 

Two types of structure have been tested. The gel-based drivers A and B are cylindrical while 

drivers C and D are square, and are the second type. Gel-based driver C is half the size of 

the gel-based driver B however gel-based driver C is more efficient over almost the entire 

frequency range. Once the structure is analysed, it can be observed than the gel-based 

driver C has only gel in the corners between the magnet and the drive plate. Gel-based 

driver B has gel all around between the magnet and the drive plate. Both drivers have gel 

surrounding them. Having gel on the corners eases the driver movement while still 

maintaining a good enough level of stiffness and structure to the driver. Therefore the square 

structure has the following advantages: 
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• More efficient 

• Flatter response 

• Square geometry is easy to be implemented into products, such as laptops, TVs, etc. 

although in terms of manufacturing, the square shape is slightly more expensive. 

 

3.9.2.3   Gel-based Driver Gel Type 

This research is based on having gel as the main body of a driver and it is expected that the 

softness of this gel will have an impact on its frequency response. Still the results show even 

more substantial changes. Gel-based   A and B share the same structure, with the difference 

that the gel driver B is made of a softer gel. The bass response of the gel-based driver B 

outperforms - by 15-20 dB – the sound pressure level of gel-based driver A. This of 

particular interest for consumer electronics applications since these drivers are quite small 

and having such a high level of bass response is currently not possible with traditional 

loudspeakers. Gel driver B uses the softest gel available in the market for injection moulders 

and it would be very interesting to test even softer gels. Gel-based driver A is more efficient 

at the high frequency response; therefore the following conclusions have been made: 

• The hardness of the gel has an impact on the driver frequency response. 

• It is expected that the softer gel will be more suitable for large excursion scenarios as 

per low frequencies, however the softer gel the may not be good enough to keep the 

alignment of the coil. The results have shown that low hardness gels are more 

efficient at the low frequency range and still manage to maintain the coil alignment.  

• The harder (Shore A 8) gels are more efficient at the high frequency range.  

3.9.2.4   Gel Driver Location 

The gel-based drivers have been designed to be used within consumer electronic products 

(Laptops, radios...). Consequently, it will not always be possible to locate these drivers at the 

centre of the device. Section 3.6 looked at the driver performance when located (i) at the 
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centre, (ii) near the centre and (iii) at the corners. Note that the corner of the panel is where 

the clamping points were located. The following conclusions were made: 

• The performance of the driver is not affected if the driver is located at the centre or 

near the centre of the panel. 

• If the driver is located at a corner, the bass frequency response decreases.  

 

3.9.3   Panel Material 

The following section analyses the difference on the system performance due to the panel 

material with aluminium, ABS and wood having been tested.  

 

 

Figure 3.49        Gel-based driver B (red), C (green) and D (yellow) on wood panel 
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Figure 3.50        Gel-based driver B (red), C (green) and D (yellow) on ABS panel  

 

 
Figure 3.51        Gel-based driver B (red), C (green) and D (yellow) on aluminium panel  

 
 
 
 

The first conclusion is that each panel material will have a direct effect on the system 

performance. 
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Figure 3.49 shows that the performance of the driver is very similar regardless of its size with 

the panel material being the main reason for the peaks and descents of dB sound pressure 

level. The main difference between the drivers is only on the average dB. In this case it looks 

that the material is then responsible for the shape of the graph. This contrasts with Figure 

3.50 and Figure 3.51 where the performance of each driver was different even with the same 

panel. This difference in performance between drivers is particularly acute in the low 

frequency range. Looking at Figures 3.50 and 3.51, it is possible to see that above 400 Hz 

the three tested drivers have similar performances. 

  

Therefore it is possible to summarize some guidelines to follow for designing a driver to 

perform in a particular way for a particular panel. 

• The performance of the system will be affected by the panel material. 

• The driver choice will not affect the performance of the panel at its resonance, and 

above this resonance the variations will be relatively small. 

• The driver choice will affect the system response below the panel resonance 

frequency at the low frequency range. 

 

Chapter 3 results have given an indication of some parameters that will affect the 

performance of the system. The panel material has a clear effect on frequencies response 

above the system resonance. The many drivers tested have shown a greater impact on the 

frequency response below resonance frequencies. Therefore the panel behaviour should 

change below and above frequency response. To explore this further the following chapter 

will look at finite element analysis simulations of the panel and driver. 
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Chapter 4   Finite Element (FE) Work  
 
The influence of the gel-based driver structure on its performance has been tested and 

described in Chapter 3. The following chapter looks at the structure, design and optimisation 

of the gel-based driver using Finite Element Analysis. The main aim of this chapter is to 

predict the gel-based driver performance and enable changing of the driver design to 

accommodate particular requirements. This research has been carried out using two 

software packages: Comsol21 and Ansys22. 

4.1   Gel-based Driver Simulation 

The first stage of the driver design is the modelling of the magnetic circuit and coil 

characteristics. The magnet coil interaction will give the initial force which will then be 

transferred to the panel surface through the gel structure. 

4.1.1   Electromagnetic Model 

All studied gel-based drivers have an asymmetric design; consequently it is possible to use 

the 2D section of the driver only - 2D sections are quicker for the software to process. The 

initial step is to extract the force factor BL, the blocked coil impedance and the blocked coil 

inductance, in order to define the total electrical force as a function of frequency.  

 

Figure 4.1 is the software representation of the time harmonic voltage applied to the voice 

coil. 

V = V0exp(iωt)  

Figure 4.1 

 

F = B L I  

Figure 4.2 
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In the calculation, the F = force, the L = wire length, B = magnetic flux and I = current. Since 

the coil consists on a number of turns (N) of a cross sectional area (A) the total force will 

then be represented as: 

 

Figure 4.3 

The voice coil current will depend on the applied voltage as per Figure 4.4. 

  

Figure 4.4 

Zb is the electric impedance of the voice coil measured while the speaker’s moving parts are 

stationary (blocked electric impedance) and the voltage induced in the coil sue its motion in 

though the magnetic gap is −Vbe 

 

To calculate the EMF the following parameters are used (Figure 4.5) 

 

Figure 4.5 

  

Figure 4.6 

The blocked coil current travels through the driver when all of its parts are blocked (or 

stationary). This value should not significantly change along the frequency response, since 

there is ideally no motion. The only considerable change should be at high frequencies, 

when the current decreases - less energy is used for small waves lengths. COMSOL 

simulation showed results as expected: 
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Figure 4.7        Real blocked coil density as function of frequency 
 

Knowing the blocked current and voltage applied (4V peak equivalent to 2.82V RMS), the 

blocked coil impedance is easily defined as a complex number using Ohms law, and the 

blocked inductance can be obtained as an imaginary function. 

 

 

 

Figures 4.8 and 4.9        Blocked coil impedance and inductance  
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The blocked coil inductance is the most important value, since it is through the force that is 

applied to the drive plate through the coil that sound is created. This force is defined as the 

product of the factor BL (that was already found) and the total current (Fe=BL*I), which is 

defined as function of the blocked impedance and the velocity of the coil.  

 

The total current can be defined by Ohms law (I=V/Z) but the total voltage is the difference 

between the initial voltage (4V) and the voltage induced in the coil due to its motion through 

the magnetic field in the gap. The total current should behave like a harmonic function and 

changes along the frequency domain as a result of the possible resonances of the driver.  

 

 

Figure 4.10        Variation of total current with frequency 
 

It is seen that the level of current going through the coil changes considerably across the 

frequency range. There is a considerable peak at 47Hz, where the driver moves with little 

current. Above 47 Hz, the current going through the coil oscillates several times, however 

the variance decreases as the frequency goes up and from 2 KHz and becomes stable at 5 

Amps. Having found the current, it is then possible to plot the BL factor and the total force is 

then obtained: 
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Figure 4.11        Total electrical force aginst frequency 
 

It is clear that different forces are obtained at different frequencies, but as per the previous 

current graph, the system becomes stable above 2 kHz - the blocked coil impedance 

behaves as a linear function of frequency – perhaps because small wavelengths are 

produced. 

 

Simulation Results Introduction 

The following Figures (4.12 and 4.13) represent the magnetic flux across the section of the 

gel bass driver. It is necessary to first introduce the type of material as well as the 

permeability of each component, the magnet strength and the N and S polar location. Once 

all the parameters and drawings of the driver have been introduced to Comsol, the 

simulation is processed and represented. The legend on the right side of the graph 

symbolizes the Tesla level by colour range. This gives a clear overview of the areas of the 

gel-based driver where the magnetic flux is stronger. The arrows indicate the direction of the 

flux given by the N and S location of the poles. If this is reversed, the arrows will rotate 180 

degrees. 
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Figure 4.12 shows that the gel-based driver B magnetic circuit has a lower magnetic field 

value than the gel-based driver C shown in Figure 4.13. Even though gel-based driver B has 

Figure 4.12        Gel-based B Magnetic circuit Comsol simulation 

Figure 4.13        Gel-based C Magnetic circuit Comsol simulation 
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a larger magnet, gel-based driver C is more efficiently designed. This is due to the 

optimisation of the magnetic structure design. The gel-based driver C average magnetic field 

around the coil is 1.7T while the gel-based driver B average magnetic field around the coil is 

1.4T. The magnetic flux is perpendicular to the coil, so when a current is running through the 

coil, the resulting electromagnetic force is applied directly to the drive plate through the 

former. Notice also, that the maximum magnetic density is in the air gap (red colour) and this 

makes the circuit effective. 

 

Once the force factor and the magnetic flux is known, the blocked coil impedance and the 

blocked coil inductance can be found. This is achieved by applying a voltage to the coil, and 

then obtaining the blocked coil current as a function of frequency. The total force factor, Fe, 

is just the BL multiplied by the current (at each frequency).  

4.1.2   Mechanical Model 

When the total electrical force (as a function of frequency) applied to the driver is known, the 

next step is to find the mechanical consequences on the panel, taking into account material 

properties such as Young’s modulus, Poisson ratio, loss damping factor and density. The 

reaction force of the magnet is also an important value to take into account. 

 
 
 
 
  

Figure 4.14        Materials parameters screen on Comsol Package 
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4.1.3   Acoustic Model 

 

Figure 4.15        Input variables 

 

In addition of the previously defined parameters it has been required to define the density of 

the air, temperature and boundary conditions. The gel-based driver was positioned on the 

centre of the panel,   

The AC/DC module and Structure - Stress simulation module in Comsol Multiphysics were 

used to calculate the electrical force as a function of frequency and simulate the dynamic 

response of the panel. The Acoustic - Structure interaction module was used to simulate the 

sound pressure level and directivity of the sound radiation at 25 cm from the panel. 

Frequencies in the range 20 to 20,000 Hz were investigated and the driving voltage was an 

RMS level of 2.83V which equals 1 W of power on an 8 Ohms driver. The boundary 

condition along the edge of the panel was fixed. 
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The final step was to analyse the structural acceleration set-up of the perfect matched layers 

and obtain the total sound pressure level. The driver was modelled in a circular panel to 

minimise the processing need and therefore the simulation time. 

 

An initial simulation was carried out to validate the system. A few frequencies were modelled 

with the intention of having an initial view of the results. The frequencies were chosen to 

follow octave bands. 

 

COMSOL sound radiation revealed results to be expected. At low frequencies, the directivity 

factor was omnidirectional, as expected, on rectangular and circular modes of vibration, and 

as the frequency went up, the directivity became higher, and so the sound pressure level 

was sharper in the higher frequencies range.  

 

 

Figure 4.16         2D 25cm Gel-based driver B 100Hz, units dB SPL 
 

Figure 4.16 shows the simulation of the performance in 2D around the gel-based driver at 

100 Hz. The distance from the driver to the boundary of the simulation was 25 cm. It is 

possible to observe that the frequency response is spread evenly and decreased quite 

linearly with the perpendicular panel distance of the driver. There is one cancellation point 
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between the driver and the edge of the panel, which indicates that a resonance of the 

system is lower than 100 Hz. 

 

Figure 4.17        2D 25cm Gel-based driver B 334Hz, units dB sound pressure level 
 

Figure 4.17 illustrates behaviour at 334Hz. The yellow areas are where the sound pressure 

level is higher. There are 4 areas between the driver and the panel edge, which equals three 

nodes of movement (half panel). Note that the areas with more energy are at the centre 

where the driver is located and at the panel edge. Both sides of the panel show a similar 

frequency response.  

 

 

Figure 4.18        2D 25cm Gel-based driver B 1000Hz.units dB SPL 
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In Figure 4.18 (at 1000 Hz), the nodes are only clear near the panel, but the sound pressure 

level becomes evenly distributed the further it gets from the panel. Another interesting 

observation is that the sound pressure level is higher on the side where the driver is 

positioned. At lower frequencies, the sound pressure level was similar at both sides of the 

panel.  

 

 

Figure 4.19        2D 25cm Gel-based driver B 5011Hz, units dB SPL 
 

In Figure 4.19 (tested at 5011 Hz), the sound cancellations become much clearer - there is a 

drop of 25 dB sound pressure level in between the SPL peaks. At 25 cm, it is difficult to 

identify if the sound becomes evenly distributed as it gets further from the panel, but in any 

case the difference in dB is certainly less at the boundary of the test dropping to around 10 

dB sound pressure level. 
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Figure 4.20       2D 25cm Gel-based driver B 10592Hz, units dB SPL 
 

 

 

Figure 4.20 illustrates the result at a high frequency (10592 Hz). Here, the sound pressure 

level cancellations are very close to one another and eventually these cancellations 

dissipate. At the same time, it is possible to see that there is a clear difference of sound 

pressure level from the centre to the boundary of the panel. This is greater than 20 dB sound 

pressure level and is due to another angular cancellation that starts at the driver and moves 

at around 30 degrees towards the edge of the panel. 
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Figure 4.21       2D 25cm Gel-based driver B 16787Hz, units dB SPL 
 

 

The simulation at 16787 Hz (Figure 4.21) shows, very clearly, the effects of the 

cancellations. In this case, the centre sound pressure level is clearly greater than that at the 

boundaries of the panel. This system will be very directional, which is a common feature of 

loudspeakers at high frequencies. It becomes very clear that most of the sound energy is 

going through the back of the driver. 

 

4.2  Comparing Simulation Results with Frequency Response Tests 

Here, the geometry used for real and simulated tests was kept as similar as possible. The 

only difference was that the simulated panel had a different shape (circular) so the 

resonances and modes may be slightly different. The COMSOL simulation results were 

similar to the reality test at almost all frequencies.  

 

The following results show the real data and the COMSOL simulation when using the 

thermoplastic elastomer gel properties for gel-based driver B and gel-based driver C: 
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Figure 4.22        Gel-based driver B total sound presure level simulation (green).  

Real data measurements at 25cm (blue) 
 
  

 

Figure 4.23               Gel-based driver C total sound presure level simulation (Red).  
Real data measurements at 25cm (blue) 

 

At low frequencies (below 100 Hz), a considerable difference can be seen - the simulation 

has an oscillating curve while the real data is almost constant (+/- 5 dB). In this case, the 

COMSOL results are closer to the measured data since the 80 dB of sound pressure level of 

the gel-based driver C at those low frequencies is distortion of the system.  

 

An interesting result was obtained when investigating the material properties of the silicone. 

In reality, the thermoplastic elastomer gel has a better low frequency response than the 

silicone, because of its softness. The COMSOL simulation showed results as expected: 
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Figure 4.24        Gel-based driver A (purple) with silicone and gel-based driver B (green) 
 

It’s clear that the gel-based driver B with the thermoplastic elastomer gel has a more efficient 

frequency response than the gel-based driver B with silicone. In reality, the average 

difference between the gels is about 12 dB sound pressure level; in the COMSOL 

simulation, that difference is about 9 dB.  

 

Another interesting result was obtained when 40V RMS (i.e. 100W @ 8 ohms) was applied 

to the driver. The results are logical in terms of peaks and general sound pressure level 

through the frequency range if compared with the early simulations at 2.8V. Note that at 40V 

RMS, heat will have an impact on performance and this simulation set-up does not take it 

into account. It is a limitation of the simulation software that is not a problem in previous tests 

where heat at 2.83V (1W) is low. 

 

Figure 4.25        Gel-based driver B at 100W 
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4.3   Finite Element Analysis Conclusions 

4.3.1   Introduction 

Two different packages have been used to simulate the mechanical behaviour of the gel-

based drivers. Although the Ansys package is well known as the standard for FEA, for this 

research it has only been used to visualize some of the internal movement of the driver. The 

Ansys package has proven to be quite complex to define and limited in terms of acoustics. 

The alternative package used, COMSOL, has been extremely useful, and in the author’s 

opinion better suited for this type of research. Future work on gel-based drivers is likely to be 

carried out using the COMSOL package. 

4.3.2   Acoustic Model 

  
Using the COMSOL package, it has been possible to visualize how the sound waves are 

distributed around the panel. The following has been observed: 

 

• The simulation package has proved to be quite accurate when contrasted with real 

measurement - in particular the overall shapes and levels of the graphs.  

• At low frequencies, the system performance is the same on both sides of the panel. 

• At high frequencies, there is much more dB sound pressure level on the driver side of 

the panel. 

• The nodes of the panel vibrations can be visualized clearly at high frequencies and 

their consequent cancellations. These nodes correspond to descents of dB sound 

pressure level. 

• The acoustic model is particularly useful to see how the sound propagates around 

the panel and enables a much more precise visualisation of its polar distribution in 

both sides of the panel. Section 3 measurements had the limitation of all 
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measurements being made in front of the panel, with no angle, and only at 25 and 

100 cm.  

• The good correlation of the acoustic model provides the opportunity to visualise the 

gel-based driver’s performance without the need for building prototypes. This will 

reduce considerably the timescales and cost of the future development of gel-based 

drivers.  
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Chapter 5   Laser Doppler Vibrometer Measurements 

5.1   Introduction 

A laser Doppler vibrometer (LDV) is used to make non-contact vibration measurements of a 

surface. The laser beam from the LDV is directed at the surface of interest, and the vibration 

amplitude and frequency are extracted from the Doppler shift of the laser beam frequency 

due to the motion of the surface. The output of an LDV is a continuous analogue voltage that 

is directly proportional to the target velocity component along the direction of the laser beam. 

 

Some advantages of an LDV over similar measurement devices - such as an accelerometer 

- are that the LDV can be directed at targets that are difficult to access, or that may be too 

small or too hot to attach a physical transducer. Also, the LDV makes the vibration 

measurement without mass-loading the target, which is especially important to ensure that 

the measurements did not affect the panel performance. The beam from the laser, which has 

a frequency fo, is divided into a reference beam and a test beam with a beam splitter. The 

test beam then passes through the Bragg cell, which adds a frequency shift fb. This 

frequency shifted beam then is directed to the target. The motion of the target adds a 

Doppler shift to the beam given by fd = 2*v(t)*cos(α)/λ, where v(t) is the velocity of the target 

as a function of time, α is the angle between the laser beam and the velocity vector, and λ is 

the wavelength of the light. 

 

Figure 5.1        Laser Vibrometer   
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5.2   Equipment Used  

Polytec PSV-400 Scanning Vibrometer34 

The PSV-400 Scanning Vibrometer comprises both hardware and software. It includes a 

compact sensor head with an integrated scanning unit, a vibrometer controller and a data 

acquisition and management system. These components are complimented by software that 

controls the scanners, data processing, and visualization of the measurement results. 

 

Carrying Out a Measurement from Start to Finish 

To setup the system, the panel geometry is first defined. It is then scanned by several points 

that follow a virtual grid across the surface of the panel and distance is measured. The 

vibrometer automatically moves to each point on the scan grid, measures the response and 

validates the measurement by checking the signal-to-noise. When the scan is complete, 

several frequencies are chosen and then displayed and animated the deflection shape in 2-

D and 3-D. presentation modes. These on-screen displays are extremely effective tools for 

understanding the details of the panel vibration. 

 

The measurements have been carried out with a gel-based driver C on a 420x320x2 mm 

ABS and a 420x320x2mm wood panel using 1 W of power. The distance of the 

measurement is not relevant, since this is being chosen just to accommodate the optics 

presents at the moment of the measurement. For comparison purposes, the laser 

measurements will be contrasted with the sound pressure level measurements at 1 m.  
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5.3.1   ABS Panel Movement Measurements 

 

 
 

Figure 5.2. Left Displacement vs. Frequency (KHz) of Gel-based driver C Micro millimeters,  
Right Gel driver C test at 1W 1 m 

 
 

Figure 5.2 shows the real values of panel movement - in this case, the maximum movement 

of the panel. It becomes clear that there is not a direct relationship between the panel 

movement and the sound pressure level measured on the right.  

 

The higher movements occur in the low frequency range. This is expected, since the lower 

the frequency, the higher the movement, although because of the resonance of the system, 

this does not happen linearly, and the maximum movement appears at 120 Hz. Note that 

above 1 kHz, the movement of the panel reduces notably. To illustrate the high frequencies, 

the following graphs show them on a higher scale and enable the visualization of the panel 

behaviour. 
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Figure 5.3        High frequency displacement of Gel-based driver C 
 
 

Note the Figure 5.3 graph scale is in nm. The graph shows, as expected, a decrease of 

panel movement at higher frequencies.  

5.4   ABS Panel Acceleration  
 
According to Rayleigh Integral and the general wave equation, the velocity is proportional to 

the sound pressure level, so the acceleration vs. frequency graph should be taken into 

account: 

 

 
 
 

Figure 5.4.        Velocity vs. Frequency of Gel-based driver C 
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Figure 5.4 illustrates the panel acceleration versus frequency. When compared with sound 

pressure level measurements as per Figure 3.24, the results are similar. At 100 Hz there is 

the fundamental frequency, and this is equally visible at the measured sound pressure level 

test. Between 200 and 2 kHz, both tests show high levels, in this case of acceleration, and 

on the other of sound pressure level. Above 2 kHz there is a clear drop in the acceleration - 

the same drop can be seen on the sound pressure level test, although this is at a slightly 

higher frequency. This may be due to some phase or cancellation measured by the 

microphone. 

5.5   Behaviour of Gel-based Driver C in Several Positions 

This section looks at the effects, in terms of movement and velocity, on the positioning of the 

gel-based driver at several points on the panel. The positions of the drivers have already 

been defined and illustrated (Figure 3.46) and in Section 3.6, it was clear that the position of 

the driver did not have a great effect on the overall system performance, the exception being 

if the driver was placed near the corners, where the clamping points were located.  

 

 
 
 
 
Position 1 represents the centre of the panel and in this case, five resonance points can be 

seen. Although the magnitude of the movement changes substantially at these resonance 

Figure 5.7        Gel-based driver position 1 
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points, they were not as clear in terms of dB sound pressure level (Figure 3.24) when the 

same panel and position was measured using a microphone.  

 
 

 

 
 

 
 

 

Figure 5.8 shows measurements when the gel-based driver C was positioned off-centre. 

This has an effect on the resonance points when compared with Figure 5.7. However, as 

described in section 5.6, this does not change the frequency response significantly. 

 
Moving the Gel-based driver C further to the corner of the panel has the effect of reducing 

the maximum movement of the panel; at the same time, it seems that the resonances move 

left on the graph, to lower frequencies. 

Figure 5.8        Gel-based driver position 2 
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It is possible to see that at position 4 (Figure 5.10), the panel behaviour is similar to positions 

1, 2 and 3 (Figures 5.7, 5.8 and 5.9). As a result, locating the driver close to the centre of the 

panel brings the maximum movements. 

 

 
 

 

 

 

 

Figure 5.9        Gel-based driver position 3 
 

Figure 5.10        Gel-based driver position 4 
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The driver tested at position 5 (Figure 5.11) was located right at the corner of the panel 

where the clamping points were located. Even though there are quite high levels of panel 

movement displayed, the same measurements with a microphone seen in section 3.5 

showed a significant reduction on the dB sound pressure level.  

 

5.6   Gel-based Drivers A and B - Measurements and Comparison 

Previous research has shown the relationship between the gel hardness and the frequency 

response on sound pressure level test and on simulations. The next section shows if 

vibration measurements can be used to identify some divergences. 

 

The first test consisted of a gel-based driver B with Silicone HF30 (30 Shore A) being 

compared with a thermoplastic elastomer 2003X (0 Shore A). The drivers were tested in the 

centre of a 420x320x2mm ABS panel, and the goal was to find the effect of gel hardness. 

Figure 5.11        Gel-based driver position 5 
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HF30 Gel is harder than the TEP 2003X Gel (almost 20 times more). For the testing, 1 W of 

power has been used. 

 

The following graphs show the result of displacement vs. frequency of both devices: 

 

 
 
 

Figure 5.12      Displacement vs. Frequency of gel-based A with HF30 (left) and gel-based B with thermo plastic 
elastomer 2003X (right 

 
 
 

Clearly, when using the thermoplastic elastomer 2003X gel, the displacement is much higher 

especially at frequencies below 1 kHz. The density of peaks in both testing is similar, so their 

response should be equally flat and smooth. When taking a look at the shape of the panel 

from the profile it becomes clear the increased movement occurs once the softer elastomer 

2003X is used. 

 

 
 

Figure 5.13        Profile of gel-based A with HF30 Gel (left) and gel-based B with  
thermoplastic elastomer 2003X (right) 
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The following pictures show the displacement of both devices in the Polytec Scan View 

software: 

 

 
 

Figure 5.14       Displacement in 3D view at 125 Hz. thermoplastic elastomer 2003X (left) and HF30 (right) 
 

 

In Figure 5.14, both pictures are in the same scale in the same view in the same instant 

time. It is clear to see that the gel-based driver B with thermoplastic elastomer 2003X has a 

greater displacement than the HF30. The same picture in bottom view is as follows: 

 

 
 

Figure 5.15         Displacement in bottom view at 125Hz. 2003X Gel (left) and HF30 (right) 
 

The acoustic pressure is proportional to the acceleration of particle according to Rayleigh 

Integral (which is based on the wave equation). So, in order to find out if the displacement of 

the gel-based driver B with thermoplastic elastomer 2003X when producing sound pressure 

level, the acceleration vs. frequency graph should be taking into account: 
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Figure 5.16        Acceleration vs. Frequency of Gel-based driver A with HF30 (left) and Gel-based driver B 
thermoplastic elastomer 2003X (right). 

 
 

As expected, the gel-based driver B with thermoplastic elastomer 2003X has a greater 

acceleration at almost all frequencies when compared with the gel-based driver A (except 

around 5 kHz, where they show similar behaviour). 

 

Previous testing in Chapter 3 (Figure 3.15) have proved that the softer gel is almost 20 dB 

higher at the low frequency range when compared with gel-based A. The vibration 

measurement test corroborates this and although the panel deformation pattern is similar 

with both elastomers, the magnitude of the movement is higher when the elastomer 2003X is 

being used.  
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5.7   Panel Behaviour Visualisation 

The following graphs show real panel movements - a gel-based driver B on an ABS panel as 

described in section 5 was used. Please refer to the figure legend for the real scale of the 

movements. These graphs are not to scale - they have been maximised substantially to help 

the visualisation of the effects. 

 

5.7.1   100 Hz Measurement Graph  

  

 

 

 

 

 

Figure 5.17 shows the panel movement at 100 Hz. This simulation frequency is very close to 

the resonance of the system therefore close to the maximum movement. The shape is 

sinusoidal, and almost identical at both sides of the panel. The centre of the panel where the 

driver is located is where the greater displacement occurs. Figure 5.17 demonstrate the 3-

dimensional shape of the movement, hence the need for a driver with a gel that can be 

deformed to the shape of the panel 

 

5.7.2   500 Hz Measurement Graph 

 

 

 

 

Figure 5.17        ½ panel/driver section (bottom) and panel side measurement at 100Hz 

Figure 5.18        Section (top) and side measurement at 500 Hz 
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The vibrometer result at 500 Hz shows the whole panel resonating and producing acoustic 

waves. The waves are sinusoidal, and although the corners are clamped, most of the panel 

is moving. The maximum movement occurs on the area where the driver is in connection 

with the panel.  

 

The illustrated section of Figure 5.18 shows the waves of a similar size all over the panel.  It 

is clear that the acoustic energy will be spread across the panel concentrated at nodes. Note 

that the waves are the same on both sides of the panel, which is the same that was seen on 

simulations at the frequency in Figure 5.17. 

5.7.3   2 kHz Measurement Graph 

 

 

 

 

 

 

Figure 5.19 (2 kHz) shows that most of the movement occurs around the area where the 

driver is located. The rest of the panel is almost flat. This gives evidence that it may be 

possible to have two drivers on the same panel playing different signals simultaneously. This 

will be particular effective at high frequencies where it may be interesting if a stereo effect is 

required.  

  

 

 

 

Figure 5.19        Section (top) and side measurement at 2 kHz 
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5.8   LDV Measurements Conclusions 

5.8.1   ABS Panel Measurements 
 
Section 5.3 provides the physical movement and acceleration of gel-based driver C on a 

420x420x2mm ABS panel. It becomes clear that in terms of resonances and frequency 

response the acceleration shows a similar pattern than the measured testing in Chapter 3.   

5.8.2   Driver Positions on Panel  

In section 5.5, several panel positions of the gel-based driver C have been tested. Section 4 

did not show major changes on sound pressure level levels if the drivers were located near 

the centre of the panel. The LDV measurements do not show a clear difference between the 

values of the peaks (maximum and minimum displacement or velocity), but there is a 

difference between the densities of the peaks. The test on position 1 has a flatter and 

smoother displacement curve; this was expected since previous acoustic testing showed a 

flatter frequency response. Tests on position 3 and 4 have lots of sharp peaks, which mean 

possible destructive interference of the sound field and non-effective movement of the panel. 

The ideal displacement-frequency curve should be exponential and smooth. Even the 

measured performance of the drivers is similar on most positions; further tests should be 

carried out to measure the polar pattern. The LDV difference on the movement of the panel 

indicates that some areas of the panel may behave differently once the driver position is 

changed. In terms of driver design this research has indicated the following rules: 

 
 

• The best frequency response is when the driver is located at the centre of the panel, 

because in that position it can move the whole panel and is not limited to the stiffness 

of the frame.  

 

• For high frequencies, the panel displacement at the centre is the same as the 

displacement at the corner.  
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• At high frequencies the driver is only vibrating a small area of the panel so sound 

does not depend on the stiffness caused by the frame. 

 

• The panel should have different modes throughout the frequency domain. The 

Polytec vibrometer results illustrated that at low frequencies, the modes are clear and 

the displacement is higher than at high frequencies.     
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Chapter 6   General Discussion and Conclusions 
 

6.1   Introduction 

The following chapter discusses the findings from the anechoic chamber testing (Chapter 3), 

finite element analysis simulations (Chapter 4) and laser vibrometer measurements (Chapter 

5). It also addresses the contribution to knowledge as well as recommending areas of future 

work. 

 

6.2   Effect of Gel Type Elastomer Hardness  

Chapter 3 investigated the results of several panel types and driver types as well as the 

effect of the gel type used. Figure 6.1 shows the results from gel-based drivers A and B -

both had the same structure and test conditions with the exception of the hardness of the 

elastomer used for making the gel. It is clear that the choice of the gel hardness affects the 

frequency response of the system. The harder elastomer used on the gel-based diver A 

transferred the mid- and high-frequencies more efficiently, while the softer elastomer used 

on gel-based driver B made the system more efficient at the low frequency range. This effect 

is due the nature of the softer gel and the lower Young’s Modulus of gel-based driver B 

allowing a greater degree of movement on both the magnetic circuit parts, and on the coil 

and the drive plate, when subjected to the same force. 
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Figure 6.1 Gel-based drivers A (grey) and B (red)  

 

The same combination of gel-based drivesr A and B with two elastomer hardness levels 

were simulated using the Comsol package and described in Chapter 4. The results are 

shown in Figure 6.2 and the pattern of both drivers is similar to the measurements shown in 

Figure 6.1. This is especially the case at the low frequency end of the spectrum -over the 

high frequency range, the differences between both drivers are difficult to appreciate. This 

may be because of the directivity of the high frequencies where the simulated test does not 

take into account accurately enough all the effects due cancellation and reflection of the 

sound waves. 
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Figure 6.2 Simulation results from gel-based drivers A (purple) and B (green) 

 

Fig 6.3 shows the laser Doppler physical measurements differences between gel-based 

drivers A and B. This confirms the observations from Chapters 3 and 4 – namely that the 

softer elastomer used on gel based driver B is more efficient at the low frequency range. The 

magnitude of the movement at high frequencies is of the order of nm. The package used for 

this test was not precise enough to be able to contrast both gel type drivers at high 

frequencies. 

 

 

 

Figure 6.3 Displacement in 3D view at 125Hz for gel-based driver B (left) and A (right) 
 

To better contrast the measurements described in Chapter 3 against the ones made in 

Chapter 5, it is important that the drivers compared were placed at exactly the same position 

on the panel. This is the case – as described in section 5.6 and section 3.3.3.1 where gel-

based driver A and B are contrasted. 
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As already seen in Figure 6.1, gel-based driver B is more efficient than gel-based driver A 

under 200Hz. In Figure 6.7, laser Doppler measurements confirm this observation showing 

an increased movement of gel-based driver B below 200Hz; above this frequency, the panel 

movement of both set-ups is very similar. It is at the low frequency range - where the greater 

movement of the panel takes place – that laser Doppler measurements are particular useful.  

 

 

 
 

Figure 6.7 Laser Doppler measurements from gel-based drivers A (left) and B (right) 

 
 

6.3   Effect of Driver Position on Panel  
 

Chapter 6.3 studied the differences in frequency response of gel-based driver C on an ABS 

panel in relation the driver position on the panel. On the measurements made at 1W and 1m 

no major differences in the panel position were appreciated. The only area where it seemed 

to have an effect was at the low frequency range where position 4, which is off-centre, had a 

slightly lower initial resonance frequency. The laser Doppler measurements of the positions 

discussed above showed different results - in particular under 100Hz where position 2 was 

the one that moved the most. However at this low frequency range, the tests in Figure 6.4 

were not accurate enough because of the anechoic chamber dimensions.  
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Figure 6.4 Results from positions 2 (blue), 3 (grey) and 4 (red) 

 

 

 

Figure shows the equivalent positions tested using the laser Doppler technique. The 

resulting measurements were very useful in observing the panel behaviour and 

understanding better the movement that is going through the system; however it is difficult to 

predict the system performance from these measurements. This is due to the fact that on the 

laser Doppler measurements, only the movement of the panel surface points were taken into 

account, while in Chapter 3 the microphone measured the response at 1 m.  Once the 

waves get to the microphone, constructive and destructive interference has taken place and 

this will change the frequency response graph considerably. However it is possible to 

observe that the magnitude of the panel movement was similar on all the positions tested.  
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Figure 6.5 Laser Doppler measurements for positions 2 (black), 3 (red) and 4 (blue) 

 

6.4 Gel-base Driver - Effects of Panel Materials 

Chapter 3.9.3 has revealed the results of gel-based drivers, using several types of panel 

materials. It has been observed that the panel material affects the overall system 

performance in a similar way to the gel-based driver properties. The resonance of the gel 

based driver/panel system will be dependent on the properties of the panel. Below the 

system resonance frequency range, the panel will move pistonically; it will not have any 

nodes of movement and the efficiency of the system will mainly depend on the driver 

characteristics. Above the resonance frequency, some nodes of movement will be present. 

The panel nodal map will be a consequence of the frequency that the driver is being 

subjected to and the physical properties of the panel.   

 

In terms of panel material, the wood panel has a clear resonance around 200Hz - this gives 

a good overall bass sound. On the other hand the wood is not very efficient in the high 

frequency range, above 3 kHz. ABS as a panel material is more efficient at the mid 

frequency range, while aluminum has the flattest frequency response of all the three panel 

materials tested. This makes aluminum the best material if we measure it by fidelity, 
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however due the extra bass performance of the wood panel, this latter one may be 

considered to sound better. 

 

6.5 Contribution to Knowledge 

i. It has been shown that gel-based drivers are very effective in driving several types of 

panel materials and achieving (a) a wide frequency response and (b) efficient levels of 

dB sound pressure level. 

 

ii. It has been possible to drive a panel from several positions while maintaining 

considerable similar frequency response. 

 

iii. The gel hardness used has an impact on performance with the use of a low hardness 

gel improving the overall system at the low frequency range. 

 

iv. Gel-based drivers handled relatively higher levels of power and transferred it to a panel 

efficiently at the low frequency range. Taking into account the size of these gel base 

drivers, similar sized drivers of an alternative technology capable of delivering a similar 

level of efficiency at the low frequency range, have not been found. 

 

v. Gel-based drivers are scalable in size, and their behaviour is proportionally maintained. 

 

vi. Using the Comsol package, it is possible to fully design gel-based drivers and simulate 

their performance very accurately. 
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Chapter 7   Future Work 
 

The development of the gel-based audio drivers described in this thesis forms a foundation 

for future work in this area. The nature of the gel structure is mechanically completely 

different to any other loudspeaker device manufactured or investigated before. Consequently 

it has only been possible to define the main elements of the technology. This research 

describes only the early stage of the gel-based driver technology - there are many other 

areas that can be studied further, such as a wider range of panel materials, driver structure, 

gel-based microphone, gel piezoelectric drivers, the miniaturization of the drivers and gel 

audio driver arrays.   

 

In addition it is suggested that further research is carried out on (i) downscaling the gel-

based drivers to fit ultra-portable devices such as mobile phones, (ii) developing flatter 

structures, (iii) improving the efficiency of these drivers at the high frequency range and (iv) 

developing gel-based driver arrays to fit on flat electronic devices such as LCD TVs 

 

In addition to those areas, it will be necessary to study further the effects of the vibrations 

created on the panels by gel audio drivers. This is to ensure that these vibrations do not 

create any problems to the other components fitted around those drivers. Any such 

unwanted effects would then need to be addressed by closer control of the vibrations. 
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ABSTRACT 
 

Unlike standard DML transducers, the gel type inertia driven transducer (or simply called the 

gel transducer in this paper) designed as a mini woofer DML type transducer transfers its 

pistonic movement to the transverse wave of the panel through the gel surround. This 

mechanism allows an inertia of magnet assembly to the maximum during the pistonic 

movement. This maximum inertia boosts the force of moving voice coil so that sound 

pressure level increases as the acceleration of the panel increases proportionally to sound 

pressure level at low and medium frequency range from 50Hz to 1000 Hz. In addition it is 

found that the gel surround prevents reflected transverse wave of the panel from interfering 

the pistonic waves coming from the transducer. Results from mechanical testing for stiffness 

of the gel surround and the measurement of the laser scanning vibrometer for the 

displacement and acceleration of the panel with the gel transducer attached are presented, 

and these are compared to acoustical outputs.  

 

 

1. INTRODUCTION 
 

A distributed mode loudspeaker (DML) is an emerging alternative to standard conventional 

cone speaker designs. It is a flat, rigid and light panel that radiates acoustic energy by 

sustaining bending waves, rather than by pistonic motion. This class of loudspeaker 

produces radiation that is temporally and spatially diffuse with a wide directivity that is 

substantially independent of frequency [1].  

 

A DML-type drive unit used for the present research is a gel-type inertia driven transducer, 

comprising a magnetic assembly, coil and drive plate (Fig.1). An important difference in 

mechanical construction is the incorporation of the gel surround in-between the drive plate 
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and the panel, which gives two separate analogues for the standard DML and the gel type 

inertia driven transducer (Fig.2).  

 

 

                                             
 

 
                                                Fig.1 Gel type inertia driven transducer 

 

This transducer is in permanent contact with the panel, without being bonded to it. The 

waves are transferred from the pistonic movement of the transducer, to the transverse wave 

of the panel through the gel surround. This gel surround acts as a suspension and does not 

constrain the panel.  

The gel surround also enables to localize the force of the moving coil over the drive plate 

area. In addition the gel surround allows the magnet assembly to move at the greatest 

displacement. Hence the gel type inertia driven transducer is capable of radiating sound over 

the wide frequency range from 50 Hz to 15000 Hz. 

 

 

                                             
                                                       (a)                                             (b)  

    
              Fig. 2 Impedance analogue model of a standard DML (a) and the gel type inertia driven transducer (b) 

 

The mechanical properties of the gel surround (i.e. hardness) are directly related to its ability 

to radiate the sound at low and medium frequency range from 50 Hz to 1000 Hz. The results 

Magnet assembly Voice coil 

Panel 

Drive plate 
Gel surround 
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of the theoretical investigation and experimental testing of the gel type inertia driven 

transducer with the different hardness of silicone elastomers are presented in this article.      

 
2. TEST METHODOLOGY 
 

2.1 Sample preparation 

 

Poly addition silicones - Platsil® 71-20 (20 shore A) and Platsil® Gel 10 (10 shore A) - were 

used to make dumbbell shaped samples according to ASTM D412 and gel surrounds for 

mechanical and acoustical testing respectively. These silicone rubbers are two-component 

(organic material and catalyst) mixed in the ratio of 1 to 1 by volume and cures at room 

temperature. The softener was used to modify the hardness of original silicones to achieve 

the various range of the hardness from 0 shore A to 20 shore A.     

 

                               
                  
                                    Fig.3 Dumbbell specimen and gel surrounds of silicone elastomer  
 

     Dumbbell specimen (Fig.3) is required for tensile testing that measure the force required 

to break a specimen and the extent to which the specimen stretches or elongates to that 

breaking point. For acoustic measurement, the gel surrounds (Fig.3) which is compatible 

with the existing magnet assembly of GA6 (one of  Gel Audio® transducer designed by SFX 

Technologies Ltd)  is also moulded.     

 

2.2 Mechanical testing  

 

JJ Lloyd single column tensile tester (100N load cell) was used for testing the samples to 

obtain stiffness in tension - stiffness in compression is also an important parameter in 

designing the gel surround. However it is not directly related to this paper. Hence stiffness in 

compression is not presented here. Rubber dumbbell specimens (ASTMD412) prepared 
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were tested at test speed of 8.33mm/s. Unlike the materials that obey Hooke's law, 

elastomer such as silicones is regarded as a non-Hooken materials beyond 100% elongation 

(stress is proportional to strain up to 100% elongation that elasticity is stress dependent and 

sensitive to temperature and loading rate), tensile E modulus was measured at 100% 

elongation.  

                                 

2.3 Acoustic testing 

 

The magnet assembly and the voice coil (8Ω) used for this testing was used the same as a 

magnet assembly of GA6 (Gel Audio® designed by SFX Technologies Ltd). The gel 

transducer was positioned on the clamped ABS panel (420mm x 320mm x 2mm) and a 

sinusoidal pink noise was fed into it at 1w (r.m.s) at a range of 20Hz to 20kHz. A microphone 

was set up at 10 cm away from the sound source in the semi-anechoic chamber (2m x 1m x 

0.5m).  

 

 

                                                        
                      
                    Fig. 4 Gel type inertia driven transducer positioned in the centre of the panel for the acoustic testing 
 

  

2.4 Laser scanning vibrometer  

 

Polytec laser scanning vibrometer (PSV_400_B) was used to measure the mechanical 

vibration of the ABS panel with the gel transducer attached in the centre. This vibrometer 

operates on the Doppler principle, measuring the frequency shift of backscattered laser light 

from a vibrating structure to determine its instantaneous velocity, displacement and 

acceleration. A periodic chirp signal (20Hz to 20kHz) at 1w(r.m.s) with a resolution of 5 Hz 

was fed into the transducer attached on the ABS panel. 200 points on the panel for laser 

scanning were set up. Following equations were used to calculate panel's displacement, 

velocity and acceleration.  

 

Gel transducer 

Clamped ABS panel 

Microphone Semi anechoic chamber 
(2m x 1m x 0.5m) 



 
 

130 
 

Displacement: D =   ( Vf + Vi) t = V0t +  At2 

 

Velocity:         V = V0 + At  

 

                                                  
 
                                                  Fig. 5 Laser scanning vibrometer  measurement 

                           

3. RESULTS and DISCUSSION 
 

3.1 Stiffness of silicone elastomers in tension 

 

The graph below shows stiffness silicone elastomers with the hardness of 0 shore A to 20 

shore A.    

 

         
                                         
                                                    Fig.6 Stiffness of silicone elastomer in tension 

 

Stiffness of gel surround is an important parameter since the gel surround acts as a cushion 

between a magnet assembly, a drive-plate and a panel. It serves to lower the resonant 

frequency of the gel transducer that enables to extend low frequency range which can be 

generated by the gel transducer. 

 

Fs =        [2]    

PSV_400_B 

PSV Software 8 5 
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where Cg = 1/stiffness of the gel surround, Mg = mass of the magnet assembly 

 

According to Helmholtz Resonance [2], the higher Cg of the gel surround - the lower stiffness 

leads to the lower Fs. As a result, the gel surround that has the low stiffness can deliver the 

lower bass sound when compared to the harder gel surround.  

 

3.2 Analysis of vibrating panel's characterisation  

 

Throughout the measurement of the laser scanning vibrometer, the displacement and the 

acceleration of the panel with the transducer attached to on the centre were measured.   

 

             
          
                Fig.7 Average displacement of the panel ( 20 shore A (left) and 0 shore A (right) )- 20Hz to 20kHz  

Fig.7 shows that the transducer with 0 shore A gel surround creates higher average 

displacement than the one with 20 shore A.  

 

 

             
 
                       Fig.8 Displacement of the panel(20 shore A (left), 0 shore A (right)) at 100 Hz  

 

According to Fig.8, it is more obvious that a magnitude of displacement of 0 shore A 

transducer is 2 times higher than 20 shore A transducer at 100Hz. It is because firstly, as the 
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displacement of a magnet assembly is proportional to the force of the voice coil sit on the 

drive-plate, softer gel surround enables a magnet assembly to make greater inertia that 

leads to bigger displacement and also softer gel cushion contributes sinusoidal pistonic 

movement of a magnet assembly. Secondly, unlike standard DML transducers, the gel 

surround in contact with the panel allows the transducer to transfer the pistonic movement to 

the transverse wave of the panel with minor wave cancellations (Fig.9). 

 

                      
 
                                                       Fig. 9 The function of the gel surround on the panel 

 

 

Sound pressure level can be predicted with a simple monopole approximation in the 

Rayleigh equation with respect to the mechanical vibration [3]. Hence sound pressure is 

proportional to the acceleration at low-mid frequency band.  

Fig.10 shows that 0 shore A transducer exhibits higher acceleration than 20 shore A 

transducer over low-mid frequency band.  

 

            
 
              Fig. 10 Average acceleration of the panel (20 shore A (left), 0 shore A (right)) - 20Hz to 20kHz 

 

 

3.3 Acoustic measurement  
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Acoustic efficiency of transducers with different hardness was measured and calculated 

according to equations as follows.  

 

Average SPL = 10× log× [  ] 

THD% = 100×[  ] 

Efficiency (SPL + THD%) = 20×log×[( [4]. 

 

Fig.11 indicates that efficiency increases as the hardness of gel surrounding decreases.   

 

                                                            

  
 
                 Fig. 11 Acoustic efficiency (high SPL and low THD%) of different hardness of gel surrounds 

 

 

Sound pressure level and THD of 20 shore A transducer against 0 shore A transducer is 

compared with each other in Fig.12. (frequency band only up to 1000 Hz is displayed as gel 

type inertia driven transducer was initially developed to enhance bass sound)   
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            Fig. 12 Sound pressure level and THD of 20 shore A against 0 shore A on ABS panel (420mm x 320mm x 2mm) 

 

It is obvious that 0 shore A transducer that brings up the higher displacement and 

acceleration than 20 shore A transducer, creates higher SPL especially between 50 Hz and 

200 Hz in which greater inertia of movement of a magnet assembly is required. THD graph 

shows that 0 shore A transducer which has higher damping factor than 20 shore A prevents 

the transducer from being damaged and interfered by reflected transverse waves 

propagating toward the transducer.  

 

It was found that the hardness of gel surround affects acoustic output of the transducer. The 

softer gel surround is more efficiency than the harder gel surround in terms of sound 

pressure level and THD at low-mid frequency range. However  as Tan δ (damping factor) of 

the gel surround goes up, its E' (storage modulus - stiffness) will drop down proportionally [5]. 

It means that if hardness of the gel surround becomes too soft below 0 shore A (35 shore 

00), the gel surround would end up having the negligible value of E'. And it may result in 

dampening the most of the pistonic force of the moving voice coil that is transferred to the 

panel. Thus those issues need to be dealt with as the future work.    

  

4. CONCLUSION 
 

In this paper it has been shown that the gel type inertia driven transducer transfers the 

pistonic wave to the transverse wave of the panel through the gel surround and the hardness 

of the gel surround is directly related to the movement of the panel greatly with respect to the 

displacement and the acceleration.   

 

The softer gel surround in terms of its hardness enhances acoustic efficiency (high SPL and 

low THD) at low and mid frequency range from 50Hz to 1000 Hz since the higher 

displacement and acceleration of the panel are driven by softer gel surround. It is also 

proved that the soft gel surround not only dampens unnecessary transverse waves 
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propagating toward the transducer but also contributes constructive interference instead of 

destructive interference causing physical distortions.        

 

This paper results in the question that damping factor of the gel surround may not contribute 

proportionally to acoustic efficiency  in the system of  the gel type inertia driven transducer 

when the hardness of the gel surround goes too low. This issue needs to be answered.   
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ABSTRACT 
 

The gel-type DML transducer (referred to as the gel transducer in this paper) excites a panel 

to radiate sound waves through the gel surround. The panel breaks into different 

characteristic modes of vibration as frequency increases. At high frequencies above 1,600Hz, 

the extent of the moving area of the panel begins to reduce and becomes localised on the 

position of the gel transducer. This results in both the sound radiating area and volume 

velocity being reduced so that the directivity of the sound field narrows. As a result, a single 

panel with the two gel transducers attached can radiate independent sound sources with 

minimal acoustic cancellations at high frequencies. The current paper reports on this effect 

using theoretical and practical approaches.  
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1. INTRODUCTION 
 

A distributed mode loudspeaker (DML) is an acoustic transducer who’s electrical, 

mechanical and acoustical properties differ from traditional moving coil types. The sound 

is produced by generating uniformly distributed, free vibration in a stiff panel created by 

an exciter. The DML is identified with temporal and spatial diffusivity, radiation over a 

broad frequency range and a wide directivity spectrum [1].  

 

Unlike standard DML transducers, the gel-type DML transducer radiates sound by 

transferring pistonic movement of a driver to a panel through a gel surround. The gel 

surround between the transducer and the panel allows more transverse waves 

propagating through the panel with minimal interference. This effect contributes to a 

higher sound pressure response radiated from the panel at low and medium frequencies 

in the range 50Hz to 1.5 kHz. Among various parameters of the speaker system, the 

location of the gel transducer on the panel has least influence on the quality of its 

acoustic performance, which allows more freedom in the design of the loudspeaker.  

 

The longitudinal and transverse waves occur in the panel excited by the gel transducer 

and form the vibrating mode. The vibrating modes vary from frequency to frequency.  

For low and mid frequencies, the peaks related to the vibrating modes are distributed 

along the surface of the panel. For high frequencies, the highest peaks are localised 

around the position of the transducer, whilst the rest of the panel is less affected. As a 

result, it is possible to "project" multiple independent sound sources from a solid panel 

excited by several gel transducers. The effect from the usage multiple transducers is 

most noticeable at higher frequencies.   

 

 

2. THEORY 
 
2.1 Gel transducer 
 
The drive unit used for the current investigation is shown in Figure  1. The transducer 

consists of a magnet assembly, voice coil and drive plate. A thin layer of soft gel 

elastomer is placed between the drive plate and the radiating panel to create additional 

damping between the moving parts of the speaker construction.  
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Figure 1: The gel transducer assembly 

 
Figure 2 shows the impedance analogue models of a standard DML driver and the gel 

transducer to demonstrate the difference between the two systems [2].  

 
           (a) standard DML         (b) gel transducer 

 
Figure 2: Impedance analogue models of drivers 

Unlike a standard DML, the gel transducer is connected to the panel via the gel layer so 

there is no physical bond between the transducer and the panel. The wave generated by 

the pistonic movement of the transducer is transferred to the panel through the gel layer. 

The gel layer also prevents the transverse wave travelling along the panel from causing 

cancellations, especially for low frequency  wave when the displacement of panel is 

relatively high. In standard DML driver, the magnet assembly has rigid connection to the 

voice coil, which reduces its freedom of movement. In the proposed driver, the gel 

surround allows the magnet assembly to move with higher magnitude and create more 

energy transmitted to the panel.   

 

It was investigated experimentally [2] that the stiffness of the gel surround greatly affects 

the acoustic performance of the gel transducer system.         
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2.2 Assumptions 
 

The panel used for the problem is 2mm thick ABS (Acrylonitrile-Butadiene-Styrene) 

plastic. It was observed during the experiments that many conventional panels (including 

those manufactured from glass, wood and metal) also exhibit similar dynamic behaviour.   

   

It is assumed that the drive plate of gel transducer behaves like a rigid piston at low 

frequencies, but as the frequency is increased to the mid-range, the movement of the 

panel  becomes more complex, involving a combination of direct pistonic movement and 

circumferential deformation. These complex series of the vibrations are subsequently 

transferred to the panel which deforms in a random and unpredictable manner.   
 

It is also assumed that all energy supplied to the panel is converted to acoustic radiation.  

 

At high frequencies, the panel does not move as a rigid piston, and the system's 

behaviour becomes unpredictable, so it is difficult to establish how much energy goes to 

acoustic radiation.  
 

    

2.3 Sound-pressure-related vibration modes 
 

At the low frequencies, the panel moves as a rigid body. In first vibrating mode, the 

entire surface of the panel vibrates in phase due to high bending stiffness across the 

panel and long period of input signal. At higher frequencies, the panel changes the 

nature of its vibration modes. Following the rigid body mode, the bending mode breaks 

up over the panel proportionally. As frequency increases further, bending and 

longitudinal modes occur at the same time and the real moving area of the panel 

reduces [3].   

 

These modes can be divided into three groups: in-phase region, anti-phase region and 

quadrature region which are the related to the phase as shown in Figure  3. In the 

quadrature region, the total volume velocity is always zero as in-phase and anti-phase 

regions occur at the same time. This effect is described in greater detail in [4]. 
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Figure 3: In-phase and anti-phase region on the panel 
 

The in-phase region generates the sound and the anti-phase region offsets overall 

sound pressure by generating out-of-phase sound. The quadrature region generates no 

sound. As a result, if the in-phase region is dominant with a minimal anti-phase region, 

the sound pressure level will be the highest. If the in-phase region is equivalent to the 

anti-phase region, there will be a dip in the total sound pressure level response of the 

panel [5][6]. 

 

P(jω,ra) =                      (1) 
  

SPL(ω,ra) = []                                  (2) 

 

where P is the sound pressure at the point ra in air and SPL is the sound pressure level 

at point ra. P0 (equals to 2 x 10-5 Pa) is the atmospheric pressure, ρ0 is density of the air. 

The integration is taken at each point on the panel, rp, over the sound radiating area Sp.  

 
In equation (3) below, the accumulated acceleration, aa shows that the displacement of 

the panel is converted into the acceleration by a frequency dependent factor, . Equation 

(4) shows the accumulated acceleration level (AAL).  

 

aa(jω,ra) =                                             (3) 

  

AAL(ω,ra) = []                                       (4) 

where aa is the accumulated acceleration at point ra.   
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It can be demonstrated that equation (3) is identical to equation (1) for sound pressure, 

P except for the phase information, . At the same time, the sound pressure level (SPL) 

calculated by equation (2) is comparable to the AAL shown in equation (4), as long as 

the panel moves in phase like a rigid piston. Although the accuracy of the AAL 

decreases at high frequencies where the panel no longer moves as a rigid body, it 

shows correlation between the displacement of the panel and the SPL. 

 

At high frequencies, the effective moving mass of the panel decreases, and the effective 

mass load on the assembly of the drive plate and voice coil also reduces. The ratio of 

the mass of the assembly of the drive plate and voice coil to the effective moving mass 

of the panel increases when the frequency rises. This phenomenon reduces the moving 

area of the panel. Since the sound pressure level is proportional to the in-phase region 

of the total deformation, the effective sound radiating area decreases at high frequencies 

[7].  

 

 

2.4 Effective sound radiating area 
 

Since the shape of the drive plate is circular, equations (5)(6)(7) below demonstrate that 

the radius of the effective sound radiating area (rra) decreases by the reciprocal of the 

frequency, whilst the sound radiating area (Sra) and moving mass (m) of the panel both 

decrease by 1/f2. 
 

rra =                                                   (5) 
 

Sra = πrra
2                                   (6) 

 

m = Sra
2ρpd                                                      (7) 

 

where the E is the Young's modulus and ρp is density of the panel [7]. 

 

 

2.5 Directivity pattern  
 



 
 

142 
 

The directivity pattern of sound radiated from the panel depends on its modes [8].  

 

R =  =                                          (8) 

 

where R is the real part of the acoustic radiation impedance and ρ0 is the density of  air. 

According to equation (8), the real part of the acoustic radiation impedance increases as 

frequency goes up and the effective radiating decreases. The impedance enhancement 

compensates the effect of the volume velocity reduction. As the result, the directivity 

remains narrow due to the reduced effective sound radiating area and volume velocity 

[9][10][11].    

 

Like conventional loudspeakers, two sound fields radiated from the panel excited by two 

gel transducers interfere and a standing wave pattern is established. Depending on the 

phase of the path lengths from each sound source to any point, the intensity of two 

sound fields tends to add to or subtract from each other.  

 

3. TEST METHODOLOGY 
 
3.1 Finite element analysis 
 

The performance of the complete speaker system was investigated using finite element 

analysis software. Comsol Multiphysics was used to simulate structural performance and 

acoustic behaviour of the panel radiating the sound.  

 

The dimensions of the ABS panel used for the simulation are 420mm x 320mm x 2mm 

and the size of the gel transducer is 44mmØ and 18mm thick. The 8Ω gel transducer is 

positioned on the centre of the panel as shown in Figure  4.  
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Figure 4: The quarter of the geometry of the panel  
 

The AC/DC module and Structure - Stress simulation module in Comsol Multiphysics 

were used to calculate the electrical force as a function of frequency and simulate the 

dynamic response of the panel. The Acoustic - Structure interaction module was used to 

simulate the sound pressure level and directivity of the sound radiation at 25cm from the 

panel. Frequencies in the range 20Hz to 20,000Hz were investigated and the peak 

driving voltage is an RMS level of 2.83V. The boundary condition along the edge of the 

panel is fixed.  In order to reduce the time required for analysis, the simulation was 

limited to only one quarter of the model.  

 

 

3.2 Laser scanning 
The shape of vibration pattern was observed by a Polytec laser scanning vibrometer 

(PSV_400_B).  The two gel transducers were positioned on the panel with the distance 

of 200 mm as shown in Figure 5.    

 

 

 
 

Figure 5: Laser scanning vibrometer measurement set up 
 

This vibrometer operates on the Doppler principle, measuring the frequency shift of 

backscattered laser light from a vibrating structure to determine its instantaneous 

displacement [2]. A periodic chirp signal (20Hz to 20,000Hz) at 0.5W (r.m.s) with a 

resolution of 5 Hz was fed into the two gel transducers attached to the ABS panel 

respectively at the same time so that the total input power is 1W. The measurement was 

conducted for 200 points spread over the panel.    

 

 

3.3 Acoustic testing 

Gel transducer 
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The two gel transducers were positioned on the both end of the panel. The ABS panel 

(size: 420mm x 320mm x 2mm) was clamped and placed 3cm high from the floor in the 

semi anechoic chamber. A microphone was set up at 25cm above the centre of the 

panel on axis as shown in Figure  6. An identical  sinusoidal pink noise was fed into the 

two gel transducers at 0.5W (RMS) each at the same time at frequencies in the range 

20Hz to 20,000Hz.  

The one gel transducer was also tested at 1W (RMS) on the same panel as a 

comparison with the same testing set-up including the testing signal except for the input 

power.  

 

 
 

Figure 6: Acoustic testing set up 
 

4. RESULTS 
 

4.1 Finite element analysis 
 

Figure  7 shows the total displacement of the panel computed in finite element analysis 

at 100Hz, 2,000Hz and 5,000Hz.  
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(a) 100Hz 

 

 
(b) 2,000Hz 

 

 
(c) 5,000Hz 

 

Figure 7: Structural simulation results 
 

The panel at 100Hz behaves like a rigid piston as shown in Figure 7(a). It is because the 

period of the signal at low frequency is long compared to the speed of propagation. So 

the entire panel moves in essentially the same phase as if it were a rigid piston. As 

frequency rises, the period of signal becomes shorter than the speed of propagation. It 

results in phase shifts so that the panel breaks up into several modes. As frequency 
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increases further, the moving area is limited to the region immediately surrounding the 

gel transducer as shown in Figure 7(b). This phenomenon is even more clearly shown at 

5,000Hz as indicated at Figure 7(c).  

 

Figure 8 shows the directivity of the sound radiation at 100Hz, 2,000Hz and 5,000Hz.   

 

 
(a) 100Hz 

 

 
(b) 2,000Hz 

 

 
(c) 5,000Hz 
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Figure 8: Acoustic simulation results - the directivity pattern of the sound projected from 

the panel 
 

Figure 8(a) indicates that at 100Hz the whole panel moves as a rigid piston that results 

in sound radiation from the entire panel. As frequency increases higher, the moving area 

on the panel becomes localised shown in Figure 8(b) and (c). Therefore the directivity of 

the sound radiation is sharp and narrow over the moving area of the panel.  

 

 

4.2 Laser scanning analysis 
 

The displacement of the profile of the panel at different frequencies is shown in Figure 9. 

Y-axes is µm and x-axes is the profile of the panel. 

 

 
(a) 100Hz 

 

 
(b) 2,000Hz 
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(c) 10,000Hz 

 

Figure 9: Maximum displacement of the profile of the panel excited by the two gel 

transducers 
 

Figure 9(a) and (b) demonstrate that the moving area of the panel reduces and becomes 

localised on the position of the gel transducer as frequency increases. This effect 

became apparent at around 1,600Hz. 

 

The amplitude of displacement of the panel from 100Hz to 2,000Hz also reduces from 

5µm to 15nm. This is due to a decreasing electrical force generated by the gel 

transducer with increasing frequency, as well as the damping effect of the gel surround.   

 

Figure 9(c) demonstrates that the positions of the in-phase and anti-phase regions occur 

randomly above 10,000Hz due to intermodulation distortions. The possible reason for 

this effect is random variations in the dynamic behaviour of the panel and gel surround.   

 

 

4.3 Acoustic testing results 
 

Figure 10 shows the SPL radiated by one gel transducer compared with two gel 

transducers.  
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Figure 10: Sound pressure level of one gel transducer versus two gel transducers 
 

The dotted and solid lines are the SPL of the one and two gel transducers measured at 

1W and 0.5W of input power respectively. It was observed that the panel excited by the 

two gel transducers radiates higher SPL in comparison with the one gel transducer 

system proportionally at high frequency. It was also found that the panel excited by the 

two gel transducer projects higher SPL at low frequencies below 1,000Hz, although 

destructive wave cancellations expected at this frequency band. It is because the gel 

surround allows bending waves to travel through the panel with minimal wave 

cancellations.  

 

It was also discovered that amplitude of displacement of the panel excited by the gel 

transducer at 0.5W and 1W above 1,000Hz is almost identical. This may explain that the 

overall acoustic intensity of the panel excited by the two gel transducer at 0.5W each is 

higher than the acoustic intensity of the panel excited by the one gel transducer at 1W.           

 

5. DISCUSSION 
 

It was predicted by the finite element analysis that the vibration mode of the panel, 

excited by the gel transducer, changes at different frequencies. Figure 7 shows that the 

moving area of the panel decreases as frequency increases as shown in Figure 7(b). In 

particular, this is clearly demonstrated at 5,000Hz (Figure 7(c)), where the sound 

radiating area has become localised within the immediate vicinity of the gel transducer. 

These simulation results were proved by the laser scanning vibrometer as shown in 

Figure 9. Furthermore the localisation of the moving area around the gel transducer was 

observed at 2,000Hz in the simulation analysis and above about 1,600Hz in laser 

scanning tests, whereas the bending mode occurs along the entire panel at low 

frequencies.   

 

As a result, the effective sound radiating area on the panel decreases at high 

frequencies and causes a decrease in volume velocity so the directivity of the sound 

field becomes narrow as indicated in Figure 8. Additionally, as the frequency of the 

pistonic force that is applied to the panel from the drive unit increases at higher 

frequencies, the stiffness of the panel also increases. Therefore the anti-phase region of 
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the panel is consequently minimised so the displacement of the panel at high 

frequencies, comprises mainly of the in-phase regions as shown in Figure 9(b). This 

contributes to minimal acoustic cancellations. 

 

Therefore the panel with two gel transducers starts to radiate with two independent 

sound sources above about 1,600Hz. According to the previous paper [2], it was 

demonstrated that the acoustic performance of the single gel transducer covers the low 

and medium frequencies in the range 50Hz to 1,500Hz with good sound pressure level 

response. As a result, it is possible to set up a sound system with 2.1 channel 

configuration by utilizing a combination of multiple gel transducers. For example, the 

front screen of a TV with two gel transducers can radiate a stereo sound while a single 

gel transducer attached to the back panel of the TV covers low and medium frequencies 

in the range 50Hz to 1,600Hz.    

 

However, Figure 9(c) indicates that due to the harmonics and intermodulation distortions 

resulting from random variations of the dynamic behaviour of the panel and gel surround 

at high frequencies, anti-phase regions occur above 10,000Hz.  
 

As Figure  9(a) shows, at low frequencies, the single panel vibrates as a rigid body, so 

that it causes the phase interference between the two gel transducers. The acoustical 

cancellations occur within a lower frequency band (see Figure 10), and the constructive 

acoustical interference occurs within higher frequency bands.  

 

In the present study, identical sinusoidal pink noise was fed into the two gel transducers 

at the same time. This may have provided more opportunities for mechanical and 

acoustical cancellations on the test panel. Therefore it is predicted that less destructive 

interference may be possible if a different signal is fed into the gel transducers 

separately at high frequencies.         

 

6. CONCLUSION 
 

The finite element analysis, the laser scanning and acoustic testing have been used to 

demonstrate that the effective sound radiating area of the panel reduces and becomes 

localised on the position of the gel transducer as frequency increases. Furthermore, due 

to this localisation, the volume velocity also decreases. It causes the directivity of the 
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sound field to remain narrow. As a result, it is possible to radiate multiple independent 

sound sources from the single panel excited by an equal number of gel transducers. In 

this paper, only the two gel transducers were used to demonstrate two independent 

sound sources with minimal acoustic cancellations. However, random variations in the 

dynamic behaviour of the coupled panel and gel surround, resulted in intermodulation 

distortions above 10,000Hz.  

 

Therefore it has been shown that a single panel, excited by two gel transducers, radiates 

two independent sound sources at high frequencies.        

7. FUTURE WORK 
 

It has been shown that the vibration modes of the panel change according to the 

frequency band. Those modes are also affected by the thickness and shape of the panel 

due to changes in stiffness. This implies that the size of the effective sound radiating 

region can be controlled. Therefore it might be possible for a single panel to radiate 

across the full audible frequency range from 50Hz to 15,000Hz.  

 

The mechanical properties such as damping and stiffness of the gel surround also 

changes as a function of the temperature. It means that as the temperature changes, the 

dynamic behaviour of the gel transducer also changes. It will result in different acoustic 

behaviour. The research on this will be suitable for future work.       
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This paper describes the design and implementation of a low cost portable speaker system with digital signal 

processing (DSP) enhanced performance. The cost of incorporating DSP into a low cost consumer audio 

product is typically prohibitive. Latest transducer developments in conjunction with recent advances in low 

cost audio digital signal processors have made it possible to consider a commercial board level 

implementation of a small portable speaker system with significant audio quality enhancement. 

mailto:anthony.mcmahon@sli-institute.ac.uk
mailto:iain@steepestascent.com
mailto:rod@sfxtechnologies.com
mailto:jordi@sfxtechnologies.com
mailto:eugen@eee.strath.ac.uk


A McMahon, I Stirling, R Habeshaw, J Munoz, E Pfann        Design and implementation of a DSP enhanced PLS 

AES 32nd International Conference, Hillerød, Denmark, 2007 September 21–23  154 

INTRODUCTION 

Miniature speaker systems are in abundant use in consumer devices. These may include mobile 

phones, personal digital assistants, portable music players, notebook PCs and display devices. 

They may also be found as dedicated accessories, for instance portable speaker units for use with 

portable music players that only have a limited loud speaker output or headphone output only. 

 

Present portable speaker systems used as an accessory to a music playing device are typically 

low-cost lightweight units with an external power supply or internal batteries, analogue audio 

input, and possible rudimentary controls (for instance: on/off, volume). 

 

These systems are now demanding a higher level of perceived audio quality. This can be achieved 

by improving component quality and performance or compensating for non-ideal performance 

using signal processing. 

 

The following chapters describe design issues associated with low cost portable speaker systems 

relating to audio quality and cost, followed by digital signal processing techniques that can be 

used to enhance the audio quality, and finally an example of a commercial, cost sensitive 

implementation. 

DESIGN ISSUES 

Small Speakers 

By their nature small speakers tend to have limited response at the low end of the audio frequency 

range, and have limited output power over the full audio spectrum resulting in non-linear 

distortions when driven to their limits. Different speaker technologies and designs may have more 

significant distortions at different frequencies.  

 

In this case ‘Gel Audio’ (GA) [7] transducers from SFX Technologies Ltd [2] were used. These 

are inertia driven DML type drivers, with a magnetic assembly, coil and drive plate suspended 

within a hydro gel. The hydro gel also serves to couple the vibration of the assembly and drive 

plate to the panel.   

 

When a signal is present, the coil/drive-plate moves with respect to the magnetic assembly, the 

inertial force is transmitted through the hydro gel to set up vibrations in the coupled panel. A low 
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frequency limit is imposed for small mass Gel Audio drivers where the force on the panel can be 

no greater than the reactive force from the mass of the free floating magnetic assembly.  

 

In this way, the transducers can be used to drive surfaces that can be external to the system 

enclosure. Therefore the overall system performance depends on the system itself as well as the 

surface it is in contact with. This feature is described in more detail in [6] 

 

One beneficial aspect of using DML drivers over traditional cone drivers is the ability of the 

DML to act more omni-directionally over higher frequencies. In the unit discussed here, which is 

intended to be used as a table top device, the omni-directivity is a desirable trait. 

Low cost enclosures 

Low cost plastic enclosures typical of mass produced consumer devices can introduce resonances 

at particular frequencies. Multiple speakers within a single enclosure may also produce an 

interference effect creating resonances and regions of poor frequency reproduction. 

 

In the discussed portable speaker system, both drivers are attached to opposite faces of the same 

rigid unit; in addition to the cancellation of inertia from two moving magnets in anti-phase, 

vibrations will also travel around the sides of the box and affect the opposite driver through 

interference. This interference is unavoidable in such a small stereo distributed mode loudspeaker 

(DML) system. 

DSP Hardware 

Like most consumer devices, mass-produced portable speaker systems have very aggressive cost 

expectations. Typical electronic hardware target production costs for a stereo unit without DSP 

and only rudimentary control are below $20/unit and sometimes below $10/unit.  

Simple analogue filtering could be considered to make limited improvements to the audio 

response with marginal cost increase but also marginal increase in performance. 

Traditionally the inclusion of digital audio processing would have a dramatic effect on the unit 

cost. The system would have required an often bulky and power-hungry DSP device, memory, 

accurate power regulation, analogue-to-digital conversion (ADC), digital to analogue conversion 

(DAC), and other ancillary devices like quartz crystals. All of these had a prohibitive impact on 

the cost of the electronic assembly. 

More recent integrations (for instance [8], [9]) have resulted in smaller, lower power, lower cost 

devices that incorporate ADC, DSP   and DAC into a single device, often with limited or fixed-
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function DSP facilities, but sometimes with highly programmable DSP functionality. With the 

reduction of ancillary components required, this has resulted in board level solutions that are of 

small enough size, power and cost to be commercially competitive. 

TARGET SYSTEM 

The following study and implementation is based on a unit comprising two Gel Audio transducers 

from SFX Technologies Ltd [2] with the electronic hardware and DSP software designed by 

Steepest Ascent Ltd [5]. The two transducers were mounted in a simple plastic enclosure (Box 

size: 100 x 50 x 20mm, 2mm ABS, Transducers: 25 x 9mm) one facing upwards, and one facing 

downwards.  

 

Each transducer creates an individual distributed mode loudspeaker area, the upper facing driver 

exciting the top panel of the unit, the lower driver using the Gel-audio effect whereby the table or 

panel beneath the box unit is excited to perform as a larger area DML. Both drivers act to move 

the panel through inertia of their respective magnetic assemblies. 

 

These two areas of panel movement are suited to different frequency bands, the small top panel of 

the box having a better response over the higher frequencies and the table top achieving greater 

bass response due to the larger surface area and lower resonance of the table top. This is shown in 

Figure 1.  

 

Figure 1 Transducer Orientation Performance 

 

There is an inherent non-linear effect present in the mechanics of the driven panel loudspeakers 

which detracts from obtaining a flat frequency response. A driven panel has multiple resonances 

associated with it, due to the material and dimensions, the air coupling with the panel and the 
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mechanical reaction between the moving mass and the panel. The frequency response is related to 

this accordingly with the standard response for an inertial driven panel being a series of peaks and 

troughs; it is the lower frequency range that suffers the greatest non-linearity from this effect. An 

extended and mostly flat frequency response is created only over areas where the 

modal/resonance density is high.  

 

Figure 2 shows a close up view of the response of a driven panel from 700Hz to 1000Hz. The 

graph illustrates the large variations that can occur in dB level with frequency. It also illustrates 

an unexpected behaviour of the driven panel; that voltage input (dBu) is directly related to dB 

SPL for all frequencies, even if the output is not linear with frequency.  

 

On Figure 2, it can be seen that the difference between the lines is a constant 3dB and occurs 

throughout the troughs and peaks. This shows that it is possible to raise the SPL even over areas 

of low response, such as the large trough shown below, due to the difficulty of exciting the driven 

panel at a position incompatible with the mode shape assumed at that frequency.  

 
Figure 2: SPL Response of DML 

 

There are no limitations imposed for reducing the peak levels in the frequency response, as a 

proportional cut in digital signal level over these areas will be achievable with any size of 

amplifier. However, the increase in signal level required to bring a large trough up to the average 

level of output will be greater than the range of a small amplifier.  

 

For instance, for the 1W output plot on Figure 2, a band pass filter centered on the trough would 

need to supply a gain of around 20dB to bring the level up to the average of 85dB. As the output 

from the amplifier is already at 1W, the amplifier would then need to have extra headroom of 

100W to raise the trough up to the average. 
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This will create problems with distortion in any small amplifier. Even if the filtered signal exists 

has sufficient headroom in the 1 bit digital domain, it can still be output at a level no greater than 

the maximum output set by the amplifier. It will always prove more efficient to reduce the gain of 

the peaks of the response, rather than to greatly over specify the gain of the amplifier in order to 

bring up the very low areas of frequency response.  

CHARACTERISATION 

The speaker system was characterised in terms of its frequency response by exciting the speaker 

system with a test tone and recording the power of the tone as measured by a microphone in a 

position considered to be a typical listening position relative to the speaker.  

 

In order to provide a comparison, a good-quality set of desktop computer speakers and a 

competitive portable speaker unit (utilising conventional speakers) were also measured in this 

way. 

 

In addition to the limited low frequency efficiency of a small, low mass inertia based driver 

acting on a thick panel such as a table top, are the effects of the cancellation of the sound between 

two drivers mounted back to back in a small box, (briefly covered in section 1.2) and the general 

response of a driven panel. (Covered in section 2)  

 

Figure 3: Response of various speakers to tones 

 

Notable features of Figure 3 are the very weak response of the speaker system in the 100-200Hz 

range and the strong broad peak at around 1 kHz. The resulting sound of this response is very 
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"tinny" and unpleasant to listen to. One positive feature of the speaker system in comparison to 

the comparison portable speakers is the good response beyond 5 kHz. 

DSP SYSTEM PROPOSAL 

As part of the investigation into improving the audio response via DSP, connecting the two 

transducers in anti-phase made a noticeable difference, but in subjective-listening the bass 

response was improved further by simply disconnecting one transducer entirely. This lead to the 

idea of applying a cross-over at a few hundred Hz, sending the low frequencies to one transducer 

and the high frequencies to the other. Of course, this means that stereo audio would not have been 

possible, should it have been desired, but due to the very small physical separation between 

speakers and with the typical orientation being one transducer "face down", one transducer "face 

up", good stereo reproduction cannot be expected anyway. The most beneficial arrangement was 

to send the low frequencies to the "face down" transducer and the high frequencies to the "face 

up" transducer. With such a crossover in place, the response was as shown in Figure 4, with the 

response without the crossover shown for reference. 

 

 

Figure 4: Response of SFX speakers with cross-over 

The resulting response has a greatly improved level of bass frequency response, and the 

resonance around 1kHz has been greatly reduced.  

 

Based on these findings and a perceived need for equalization in the mid to high frequencies, the 

overall DSP processing was designed as shown in Figure 5. 
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Figure 5: DSP system design 

The 100Hz high pass filter was introduced to remove any very low frequencies where the 

speaker's response was poor, in order to prevent wasted energy and hence help extend battery life. 

The equalizer component has been introduced with the goal of flattening the frequency response 

in frequencies beyond 400Hz. The 400Hz high pass filter and 365Hz low pass filter are both 8-

pole Butterworth IIR filters, selected to give as close to a flat overall magnitude response as 

possible.  

EQUALISATION 

As stated in the previous section, an equalizer was proposed to flatten the overall response of the 

speaker system at mid to high frequencies.  

 

In order to design the equalization filter, white noise was driven through the speaker system and 

recorded using a microphone. The frequency response of the signal received by the microphone 

was then computed via an FFT and an FIR filter was designed that matched this frequency 

response. This FIR filter was then adaptively equalized using the architecture shown in Figure 6.  
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Figure 6: Equalization architecture 

In Figure 7, H(z) is the measured frequency response of the microphone, obtained by playing 

white noise through a very good quality set of reference speakers and assuming all non-whiteness 

in the response was due to the microphone. Placing such a response in this adaptive architecture 

avoids the equalizer trying to compensate for any non-whiteness caused by the microphone's 

response. G(z) is the measured response of the un-equalized system, obtained by playing a pair 

white noise sources into the L and R inputs of Figure , with the equalization component omitted, 

and recording the output from the speakers with a microphone.  

A second point of note is the use of high pass and low pass filters to split the band to equalize into 

two sub-bands, 0 to 11 kHz and 11 kHz to 24 kHz and equalizing each sub-band independently. 

Although this is not a true sub-band approach, the lack of stimulus in one half of the band for 

each equalizer means each equalizer will only adapt in that half of the band. This makes it easier 

for each equalizer to adapt, as the frequency response it is attempting to adapt to is less 

complicated. The adaptive algorithm used in each case is the Least Mean Squares (LMS) 

algorithm [4]. The final adapted responses of the equalizer are E1(z) and E2(z).   

 

The overall FIR equalization filter indicated in Figure  was obtained by the process illustrated in 

Figure . The final filter weights were obtained by taking the impulse response of this structure.  

white 
noise 
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Figure 7: Final equalization filter construction 

The final impulse response and magnitude response of the equalizer is shown in Figure . 

 

Figure 8: Equalization filter impulse and magnitude responses 

FIR FILTER AS A SET OF BIQUADS 

When considering the hardware implementation options for this DSP processing, it initially 

appeared that such a large FIR equalization filter as presented in the previous section may be 

prohibitively expensive to implement. Therefore a strategy of fitting a relatively small set of 

second order IIR filters (biquads) in parallel to match the approximate frequency response of the 

FIR filter was used. The set of biquads was of size 20, and the optimization was via a "brute-

force" approach, choosing the best-fit parameters (coefficients) of each biquad in turn whilst 

assuming thus-far unoptimised biquads had a transfer function of simply 1/20. The resulting fit is 

shown in Figure . Note that this fitting was done solely on magnitude response and therefore the 
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phase response of the set of biquads differs considerably from that for the FIR filter. In any case, 

the group delay deviation from the optimum never exceeded 4ms and in subjective listening tests 

this approach sounded not as good as the FIR in terms of equalization, but considerably better 

than the speakers without equalization, and therefore was considered an acceptable alternative 

should the large FIR equalizer prove overly expensive to implement.  

 

 

Figure 9: Biquad fitting 

In Figure , the dashed line is the original FIR equalizer magnitude response, the solid line is the 

overall response of the 20 biquads, and the dotted lines represent the individual responses of each 

of the 20 biquads. 

RESULTS 

 

Figure 10 shows the overall frequency response before and after the equalization, with the upper 

subplot showing frequencies from 0 to 10 kHz and the lower subplot showing frequencies from 0 

to 500Hz. This Figure  was produced by driving a pair of white noises into the L and R inputs in 

Figure  and recording the output from the speakers with a microphone. It can be seen that the 

equalization results in a much flatter overall response compared to the original series of high 

peaks and troughs associated with the original modal behaviour of the unit, and subjective 

listening confirms that the sound of the equalized system is greatly improved.   
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Figure 10: Response before and after equalization 

HARDWARE IMPLEMENTATION 

Digital Signal Processor 

The selected processor is the ADAU1701 [3] processor from Analog Devices. The device 

consists of a programmable DSP core running at 50 MHz with options to run at 28bit or 56 bit 

precision, two sigma-delta ADCs and four sigma delta DACs. The development environment, 

SigmaStudio, is through a graphical interface where the signal flow is built from functional 

blocks.  

 

The ADAV1701 has the ability to self-boot from an inexpensive serial eeprom. It has very few 

ancillary components and is physically small (48 Lead LQFP package) and inexpensive in 

volume. It runs off a 3.3V power supply, and with the aid of an external transistor, self regulates a 

1.8V supply for its core. 
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System Architecture 

The system architecture is shown in Figure 2. The goals of low cost and low component count are 

achieved through the use of the highly integrated DSP, passive filters, and highly integrated 

miniaturised amplifier. 

 

Figure 2 System Architecture 

Simple Anti-aliasing and Reconstruction Filters 

Simple passive filters afford a good enough performance for audio systems at this level of 

fidelity. The following simulations show the filters used for input anti-aliasing and output 

reconstruction. 

 

The anti-aliasing filter circuit and response are shown in Figure 3 and Figure 4 respectively. 

 

 

Figure 3 Anti-aliasing filter (spice) 
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Figure 4 Anti-aliasing filter response 

  

The reconstruction filter circuit and response are shown in Figure 5 and Figure 6.  

 
 

Figure 5 Reconstruction filter spice simulation 

 

 

 

Figure 6 Reconstruction filter response 
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No system input gain required 

An extra active gain stage to match the expected input audio level to the digital system dynamic 

range would be an unwanted addition to board area and component cost. The ADAU1701 ADC 

has a current mode input, so a single voltage-to-current resistor per channel allows the desired full 

scale output to be matched to a chosen max input level. 

Amplifier Considerations 

Standard implementations of Class AB and Class D amplifiers were implemented during product 

development. The desired output is approximately 1 Watt per channel, and there are a number of 

devices available to achieve this in a single package with very few addition components. Class 

AB amplifiers are less efficient and dissipate more heat, needing particular care with cooling. The 

surface mount packages typically have a cooling pad under the body of the device, which is 

designed to dissipate the heat through a matching contact on the board. 

Class D amplifiers produced a louder output and, due to much improved efficiency, consumed 

less power. As the amplifier is the main power consuming device in the system, this has a 

significant impact on battery life. 

Note that the presently available devices dictate that the link between the DSP and a Class D 

amplifier is still analogue. It is expected that a future improvement would be to have direct digital 

transfer to the amplifier, and possibly the amplifier integrated into the DSP device.  

Layout Considerations  

To support the addition of advanced digital processing to simple small amplifier designs, a more 

considered approach to PCB design for power and ground is required [1]. The PCB comprises 4 

layers as shown in Figure 7. This enabled adequate signal routing and power plane positioning to 

achieve high quality audio reproduction. 

 

Layer Function 

1 Components and routing 

2 Ground 

3 Split power plane 

4 Routing and ground flooding 

Figure 7 PCB Layers 
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In order to avoid interference between analogue audio signals, digital processor switching and 

ADC references, the power plane was split into the 3 regions, 5V-analogue, 3.3V-digital and 

3.3V-ADC, as indicated in Figure 8. The components were positioned such that return current 

paths could be as short and straight as possible. 

 

 

Figure 8 Split Power Plane 

The assembled system is shown in Figure 9 measuring approximately 53mm x 40mm. 

 

 

 

Figure 9 Assembled PCB 
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CONCLUSIONS 

Digital signal processing devices and audio amplification devices are now available with 

sufficient integration and low enough volume pricing to allow a board level solution for a 

portable speaker system with advanced DSP correction algorithms. 

 

Advanced adaptive techniques and careful filter design can provide significant improvement to 

perceived audio quality in a system where the speaker response and surrounding mechanical 

effects are not desirable. 

 

In the respect of a DML system, DSP processing can be used to significantly even out the 

inherent non-linear response of a driven panel. However, the ability to raise low troughs in the 

frequency response will be limited by the maximum gain of the amplifier used. 
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