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Abstract

This paper outlines a novel information sharing method using Binary Decision
Diagrams (BBDs). It is inspired by the work of Al-Shaer and Hamed, who applied
BDDs into the modelling of network firewalls. This is applied into an informa-
tion sharing policy system which optimizes the search of redundancy, shadowing,
generalisation and correlation within information sharing rules.




1 Introduction

1.1 Context

NFORMATION sharing between police and community partners forms the corner-

stone of effective Intelligence-Led Policing (ILP). ILP has its origins in the Kent

Policing Model (KPM) [1] of the early 1990s amid an environment of economic

uncertainty, constraints on policing resources and on public spending in general
[2]. However, even in such an adversarial environment, the KPM acted as a catalyst in
creating a culture of enhanced and integrated public services.

Today, economic constraints present an environment reminiscent to that of the early
1990s, again requiring further efficiencies in the use of limited resources. Although
advancements in cloud-computing, the increased prevalence of service-oriented archi-
tectures and evolving governance standards offer possible solutions, they also present
new challenges. These include concerns over the security of sensitive and confidential
information; the integrity of this information; and the effective control over who has
access to this information.

A core issue concerning many information sharing architectures is the management
and control of information within and between organisational boundaries. Typically,
the sharing of information is defined in security policies, which determine how infor-
mation is managed within an organisation. However, with increasing inter-organisational
information sharing and the growing need for collaborative working, the task of man-
aging the number of possible ways that information can be shared and aggregated is
becoming increasingly complex. A Trust Framework and Governance Engine are two
fundamental components in resolving the issue of effective information sharing.

The Trust Framework, within the scope of this paper, refers to the contract between
partners that formalises the abstracted principles of any sharing of information, for
example, in line with statutory and legal directives. This contract includes the roles,
services and relationships that are involved in the sharing of information. The Gover-
nance Engine forms a complementary component to the Trust Framework. It has the
task of interpreting the abstracted principles defined by the Trust Framework and apply-
ing these to a specific instance of information sharing. Hence, the Trusted Framework
defines the environment for any sharing of information, while the Governance Engine
inspects the specifics of an instance of information sharing to verify that they comply
with the principles stipulated in the Trust Framework.
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2 Novel Policy Definition and Modelling

2.1 Introduction

HIS chapter introduces the concept of information sharing as a rule-based

system. It proposes a framework used to formalise information sharing poli-

cies into a structure similar to that of firewall and access-control list rules.

Comparisons are drawn between firewall access control lists, a traditional
rule-based system, and the proposed framework for information sharing, highlighting
the advantages and potential issues encountered in formalising information sharing
policies. Major advantages of this approach are that the evaluation techniques used to
model access-control lists can be applied to information sharing policies, and formal
methods can be used to analyse these policies for errors and anomalies. This approach,
however, presents the challenge that while a formal structure is enforced for informa-
tion sharing policies, often the meaning and intent of the original policy is obscured or
lost. The approach presented in this chapter preserves the linguistic intent of the rule,
while allowing for a structure that is sufficiently rigid so as to be applicable for formal
analysis. The concept of Binary Decision Diagrams (BDDs) is introduced and their
ability to model Boolean functions is described. The goal is to illustrate the ability
of BDDs to represent Boolean functions with canonicity, and the exploitation of this
ability to represent packet-filtering access lists. The latter part of the chapter demon-
strates how techniques used to model access-lists can effectively be extended to model
information sharing policies. It should also be noted that this chapter forms part of a
patent application and should be considered commercially sensitive.

2.2 Information sharing as a Rule-Based System

A fundamental difficulty with rule-based systems including governance, legal-reasoning
and firewall systems, is that as the number and complexity of the policies which govern

system behaviour increases, so too do the numbers of errors occurring within the rule-

base, as illustrated by Avishai Wool in [3], Figure 1. Hence, with increasingly complex

systems, which are gradually becoming more interconnected, the task of managing, au-

diting and deterministically predicting the effects of elaborate, inter-dependent policies

becomes all the more demanding.

This paper focuses on inherent similarities between policy-based systems, especially
concentrating on policy-based information sharing as analogous to rule-based packet-
filtering network firewall configuration, is illustrated in Figure 2. In this analogy, the
packet is equated to a request for information to be shared, and the firewall is equated
to a request-filtering agent. The agent’s function is to either permit or deny requests
based on specified policies, just as a network firewall would permit or deny a packet
based on its rules configuration.

This paper views mechanisms for sharing-information as policy-driven systems, where
the sharing of information is driven by well-defined policies. This allows judgements
to be made about the behaviour of the system based on the analysis of its policies, as the
system’s behaviour will be deterministic. Further, where a system has a large corpus
of policies governing its behaviour, the use of a well-defined policy structure allows
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Figure 1: Number of errors as a function of rule-base complexity [3].
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such a corpus to be managed efficiently. This view also allows the use of Morris Slo-
man’s well-known definition in [4] regarding policies as the principles governing the
decisions undertaken within a system which affect the behaviour of the system. Hence,
policies can be said to play a central role in governing the behaviour of a system. How-
ever, there is an essential need to separate high-level policy definitions from low-level
policy implementations. This separation process presents two fundamental challenges:

1. The high-level policy should be human-readable so that it is able to effectively
capture the intention of the policy originator.

2. The translation of high-level definitions to low-level implementations must be
explicit, unambiguous and deterministic.

A number of approaches seeking to address these challenges have been proposed over
time. However, a fundamental difficulty with these approaches is that they are not de-
signed from the perspective of the policy originator, but that of the lower-level policy
implementer. Hence, these approaches invariably require significant proficiency and
expertise of the lower-level policy implementation mechanisms before they can be used
effectively. This presents a further challenge from an information sharing perspective.
Practitioners such as law-enforcement officers, social-workers and health profession-
als, usually do not readily possess this expertise. Yet their roles involve responsibilities
that are subject to, and require everyday interaction with, such policies. Therefore,
this paper seeks to address these challenges by approaching high-level policy syntax
from a restricted natural-language perspective. By using natural-language for high-
level definitions, the task of interpreting the aim of policy statements becomes intuitive
and accessible to practitioners. This approach is necessary in order to effectively cap-
ture the goals of the policy, as intended by the policy originator. A natural-language
approach essentially allows a high-level policy statement to be human-understandable
and allows non-experts to read a policy statement and easily understand the intent of the
policy originator. One considerable obstacle with the use of free-form natural-language
is that a statement can have different meanings and interpretations which make it un-
suitable for strict policy definition. As illustrated by Meyer [5], even carefully written
natural language specifications are ambiguous and open to interpretation. Therefore,
in order to address this obstacle, this paper uses a restricted natural-language syntax,
developed specifically for information sharing scenarios, which allows clear, explicit
and human-readable policy definitions, while avoiding any ambiguity in policy inter-
pretation or translation.

2.2.1 Firewall Rules Syntax

Firewall rules can be thought of as the lower-level implementation of higher-level net-
work security policies which define which packets should be permitted or denied by
the network. Firewall rules are used to implement these policies and usually include a
number of essential components based on packet header fields, such as protocol-type,
source IP address, source port, destination IP address, and destination port, in order to
classify packets. When a packet matches a rule, the decision to permit or deny it is
defined by the action component of the rule. Usually, a number of firewall rules, struc-
tured in sets called access control lists (ACLs) [6], are needed to effectively implement
security policies. If no matching rules are found, the firewall will use a default, usually
deny, action. For simplicity, this paper only considers the following fields:
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e Protocol: This identifies the protocol of the packet. For simplicity, this paper
only considers the Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP).

e Source IP address: This is made up of the standard IP address segments, each
segment consisting of a binary octet represented in decimal by a number in the
range 0 to 255.

e Source Port: This defines a port number in Internet Protocol (IP) suite, ranging
from O to 65,535.

e Destination IP address: This follows the same format as the Source IP address.
e Destination Port: This follows the same format as the Source Port number.

e Action: This defines the action that the firewall must take, accept or reject, when
a packet matches the defined rule.

Hazelhurst et al. demonstrate in [7] how integers from these firewall rule fields can
be represented as bit vectors and, hence, as variables of Binary Decision Diagrams
(BDDs). For example, a firewall rule which denies TCP packets from source port 80 of
the IP address 140.192.37.20, destined for port 21 of IP address 192.168.21.20, could
be of the form illustrated in Listing 1:

Listing 1: Example of a firewall rule.
TCP 140.192.37.20 80 192.168.21.20 21 Deny

2.2.2 Information Sharing Policy Syntax

A restricted natural-language syntax has been developed as part of this paper specifi-
cally for police and community partner information sharing scenarios, as outlined by
Uthmani et al. in [8]. This syntax is loosely inspired from firewall policy rules, as
detailed by Al-Shaer and Hamed in [9] and outlined in Listing 2.

Listing 2: Firewall rule syntax as defined in [9].

<rule order> <protocol> <source ip> <source port> <
destination ip> <destination port> <permission>

Al-Shaer and Hamed describe this syntax as consisting of five tuples, where each tuple
is a required field in the header of a packet and is used by a packet-filtering firewall to
determine how the packet should be handled. Similarly, using the analogy illustrated
in Figure 2 where a packet is compared to a request for information and a firewall
is compared to a request filtering agent, a generic information sharing rule syntax is
developed based on fields outlined in Listing 3.

Listing 3: information sharing rule syntax as defined in [8].

<permission> <requester> <relationship> <action> <
attribute> <object> <context> <owner> <
compliance> <risk-level>

A simple information sharing rule can, therefore, be reduced to a ten field syntax where
the contents of these fields are defined as:
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e <permission> is part of the rule syntax which indicates the action of the rule.
This defines whether a request matching the rule criteria will be permitted or
denied access.

e <requester> identifies the source of a request as a specific individual or the mem-
bership of a certain role.

e <relationship> defines the relationship which exists between a requester and an
owner with respect to an object.

e <action> defines the action a requester is permitted to perform on an object at-
tribute, such as create, read, update or delete (CRUD).

e <attribute> is a unit of information describing an object.
e <object> refers to any entity about which information is held.

e <context> identifies the reason why the information is being shared. The context
also governs the level of access and permissions associated with information
exchange and, hence, impacts the priority accorded to information requests.

e <owner> species a role with sufficient privileges to manage all aspects of an
information element. The owner has the authority to allow or deny access to an
information element, as required by legislation and defined responsibilities.

e <compliance> refers to legislative requirements that affect the exchange of in-
formation, as well as data anonymisation and sanitisation requirements.

e <risk-level>, within a crime context, refers to the crime risk-level associated
with the information sharing rule. The crime risk-level is calculated using the
methodology described in Chapter ??.

information sharing policies can, therefore, be generalised and reduced to be defined
using a ten-field syntax, as outlined in Listing 3. Each rule represented using this
syntax may be thought of as a higher-level information sharing policy. Hazelhurst et
al. demonstrate in [7] how integers from a specific field can be represented as bit
vectors and, hence, as variables in Binary Decision Diagrams (BDDs). As outlined
earlier, a policy in a rule-based system such as a firewall which denies TCP packets
from source port 80 of the IP address 140.192.37.20, destined for port 21 of IP address
192.168.21.20, could be of the form illustrated in Listing 4:

Listing 4: Example of a firewall rule.
TCP 140.192.37.20 80 192.168.21.20 21 Deny

Similarly, in an information sharing scenario, a policy could exist between the Domes-
tic Violence Unit of Police Force A and the Records Unit of Child Protection Agency
B. In this example, the policy permits the chief-investigator of a child-protection in-
vestigation to read the health history record of a child. The health history record is
maintained by the Records Unit of Child Protection Agency B and needs the approval
of that unit’s Records Admin before it can be shared. Further, the policy additionally
stipulates that the investigator must be of the rank of Sergeant within the Domestic Vi-
olence Unit of Police Force A, that the request for information must be in compliance
with the Data Protection Act and that the crime risk-level is 3. The risk-level is then
calculated using the methodology described in Chapter ??. As illustrated in Table ??,
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the crime severity score of a physical injury to a child is 3894. This score correlates to
crime risk-level 3, as shown in Table ??.

The described policy initially appears complex but can be effectively modelled us-
ing the syntax outlined in Listing 3. The result is illustrated in Listing 5 where the‘<’
and ‘>’ symbols denote the beginning and end, respectively, of a relevant field in the
policy:

Listing 5: Example of an information sharing policy.

This policy <permits> a <Sergeant> from the <
Domestic Violence Unit> of <Police Force A>,
with a <Chief Investigator> relation in a <Child

Protection Investigation>, to request to <read
> a <child> <Health History Record> from the

<Records Admin> of the <Records Unit> of <Child
Protection Agency B> under compliance of the <
Data Protection Act> with risk-level <3>

2.3 Binary Decision Diagrams (BDDs)
2.3.1 Boolean Expressions

The examples which follow in this chapter refer to the classical calculus definitions for
Boolean expressions. These consist of Boolean variables (x, v, ...), constants, true (1)
and false (0), and operators negation (—), conjunction (N\), disjunction (\), implication
(=) and bi-implication (<). Henrik Andersen provides an abstract syntax to Boolean
expressions in [10], and provides details on the formal grammar used to generate the
above expressions. Truth tables for the Boolean operators negation, conjunction, dis-
junction, implication and bi-implication are given in Tables 1, 2, 3, 4 and 5 respectively.

Table 1: Truth table for the Table 2: Truth table for the
negation (—) Boolean operator. conjunction (A) Boolean operator.
Input  Output Input Input Output
p -p b q PAgq
0 1 0 0 0
1 0 0 1 0
1 0 0
1 1 1

It should be noted that the expression (p = ¢), as denoted in Table 4, is logically
equivalent to the expression (—p V ¢). This relationship is formalised in Equation 1.
Further, it should also be noted that the expression (p < ¢), as denoted in Table 5,
is logically equivalent to the expression ((p A q) V (=p A —¢q)). This relationship is
formalised in Equation 2.

p=qg=-pVgq (1)
peqg=(@AqV(—pA-q) (2)
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Table 3: Truth table for the Table 4: Truth table for the

disjunction (V) Boolean operator. implication (=) Boolean operator.
Input Input Output Input Input Output
p q pVgq b q p=4q
0 0 0 0 0 1
0 1 1 0 1 1
1 0 1 1 0 0
1 1 1 1 1 1

Table 5: Truth table for the bi-implication (<) Boolean operator.

Input Input Output

p q P<=4q
0 0 1
0 1 0
1 0 0
1 1 1

2.3.2 Binary Decision Diagrams (BDDs) and Canonicity

Binary Decision Diagrams (BDDs) are rooted, directed, acyclic graphs originally pro-
posed by Lee [11] in 1959 and Akers [12] in 1978 to graphically represent Boolean
functions. BDDs originate from binary decision trees which are rooted, directed trees
that can be used to represent Boolean functions. For example, the decision tree illus-
trated in Figure 3 represents the Boolean function f(x,y) = (« V y). The concept
behind this form of representation is that each non-terminal node (circle) in the deci-
sion tree denotes a variable. In the example illustrated in Figure 3, the variables are x
and y. The node refers to a test of the variable’s binary value, 0 or 1, with the edges of
the node representing the paths taken by either possible value. The path represented by
the dashed (low) edge corresponds to the case where the variable is assigned a 0, and
the path represented by the solid (high) edge corresponds to the case where the variable
is assigned a 1. The bottom (square) terminal-nodes of the tree represent the Boolean
constants 0 and 1. Hence, the value of any Boolean function may be evaluated for any
given number of variables by starting at the root (top) of the tree and following the path
at each node, as determined from the value of the variable that the node represents.
This process is repeated until a terminal-node (bottom) is reached. The value of the
Boolean function, either a 0 or a 1, is represented by the value of the terminal node.

A difficulty with representing Boolean functions with decision trees is that if the
function contains a large number of variables, then the decision tree representing that
function will also be very large. Figure 4, for example, represents the binary decision
tree for the function f(x,y,2) = (z Vy V z). A comparison of Figure 3, which repre-
sents a Boolean function with two variables, x and y, with Figure 4, which represents
a Boolean function with three variables, x, y, and z, illustrates that there is an expo-
nential relationship between the number of variables in a function and the number of
nodes in the decision tree which represents that function. With increasing numbers of
variables, therefore, the size of the decision trees used to represent functions increases
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exponentially. As can be expected, the decision trees of complex Boolean functions
can quickly become very large and difficult to use.

0 1 1 1 1 1 1 1

Figure 4: Binary decision diagram for the function
f(,y,2) = (xVyVz)

2.3.3 Reduced Ordered Binary Decision Diagrams (ROBDDs)

In 1986, Randal Bryant proposed a solution to this problem in [13] by introducing
algorithms for reducing binary trees and ordering the variables in a function. The pro-
cess of reduction consists of merging any isomorphic sub-graphs for the decision tree.
Any parent node which has child-nodes that are isomorphic is considered redundant
and is removed. Applying this process to the decision tree for the Boolean function
f(z,y) = (z Vy), as illustrated in Figure 3, it is evident that if the first node, z, is
1, then the value of the second node, y, has no effect on the terminal node value of
the Boolean function: whether ¥ is O or 1, the value of the terminal nodes is 1. This
means that where the node z is 1, child-nodes of y are isomorphic. Node y can then
be considered redundant here and removed. The result is the reduced decision tree as
illustrated in Figure 5. Similarly, applying the reduction process to the decision tree
for the Boolean function f(x,y,z) = (x V y V z), illustrated in Figure 4, yields the
reduced decision tree shown in Figure 6. Reduced decision trees allow a more compact
representation of Boolean expressions than non-reduced decision trees.

Bryant also highlighted in [13] that the size of a decision tree for a given function
is dependent on the ordering of the variables in that decision tree. For example, the
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Figure 5: Reduced Binary Decision Diagram for the function
f(z,y) = (@ Vy).

Figure 6: Reduced Binary Decision Diagram for the function
flz,y,2) = (xVyVz)
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decision tree for the Boolean function f(w,z,y,2) = (w A x) V (y A z), given a
variable ordering of w, z,y, z, is illustrated in Figure 7. If the variable ordering for
the same function was now changed to w, z, y, x, the resultant decision tree will be
more complicated, as illustrated in Figure 8. Hence, an optimal variable ordering will
produce the simplest, and therefore smallest, decision tree for a given function, while
sub-optimal orderings will produce larger and more complex decision trees for the
same function. However, as shown by Bollig and Wegener in [14], determining the
optimal variable ordering for a Boolean function is an NP-complete problem that often
requires trial and error or expert knowledge of domain-specific ordering strategies.

0 X
'I
'l' O»’"
\ 1 1
\
A3
0
\
\ 4
\ O
\2
0 1

Figure 7: Reduced Binary Decision Diagram for the function
flw,z,y,2) = (wAz)V (y A z) with variable ordering of w, z, y, z.

Figure 8: Reduced Binary Decision Diagram for the function
fw,z,y,2z) = (wAz)V (y A z) with variable ordering of w, z, y, z.

Decision trees which have been reduced and ordered are referred to as Reduced
Ordered Binary Decision Diagrams (ROBDDs), or commonly shortened to just Binary
Decision Diagrams (BDDs). A key property of the reduction and ordering restrictions
introduced by Bryant is that the resulting BDDs are canonical [15]. This means that
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the BDD for any Boolean function, for a defined variable ordering, will always be iso-
morphic. This property has made BDDs ideal for use in formal equivalence checking.
In the electronic design automation process, for example, BDDs are frequently used to
formally prove that two circuit design representations exhibit the same behaviour.

2.4 Modelling Sets of Rules and Policies Using BDDs

A novelty of this paper is to exploit the unique properties of Binary Decision Diagrams
(BDD) to model complex sets of policies, in a form that is readily machine-executable,
and to extend these to the information sharing domain. The work of Hazelhurst et
al. [7] with firewalls identified key constituent fields in access-list rules and translated
these into bit vectors representing BDD variables. This paper applies a similar method-
ology to information sharing where a set of information sharing policies can be mod-
elled as a decision diagram, once a specific variable ordering scheme has been selected.
The modelling of a set of policies as a BDD provides a number of significant advan-
tages, including providing an efficient lookup mechanism for an information sharing
request, as well as providing a graphical representation of the overall policy set. As
rule sets become larger and more complex, they become difficult to interpret and main-
tain [16]. Modification of the rule set, by either adding new rules or removing existing
ones, or even changing the order of rules has a significant impact on the behaviour of
the policy-based system. Hence, analysis and validation of large, complex rule sets
is essential in ensuring that high-level directives are enforced. Further, exploiting the
formal equivalence checking ability of BDDs, and the fact that they can canonically
represent Boolean functions, multiple sets of policies can be compared to ensure that
they have the same behaviour or identify areas where they behave differently. Large
and complex rule sets, represented as BDDs, can, therefore, be efficiently modelled,
analysed and validated.

2.4.1 Translation of Firewall Rules

Each field in the firewall rule is first translated into a bit sequence in order to be repre-
sented as a BDD. The following list describes how firewall rule fields for the example
in Listing 1 are translated into bit sequences:

e Protocol: Only one Boolean variable is needed to represent this field since it can
only be either TCP or UDP. TCP will be denoted by 1 and UDP by 0.

e Source IP address: The source IP address field consists of four binary octets
represented in decimal by a number in the range O to 255 and, hence, requires 32
Boolean variables to translate to bit sequence. The four octets of the source IP
address in the example, 140.192.37.20, are translated as follows:

140: 1000 1100
192: 1100 0000
37: 0010 0101
20: 0001 0100
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e Source port: The source port field represents ports ranging from 0 to 65535,
hence, 16 Boolean variables are required to translate this field. The source port
field in the example, port 80, is translated as 0000 0000 0101 0000.

e Destination IP address: The destination IP address field has the same format as
the Source IP address field and also requires 32 Boolean variables. The four
octets of the destination IP address in the example, 192.168.21.20, are translated
as follows:

192: 1100 0000
168: 1010 1000
21: 0001 0101
20: 0001 0100

e Destination port: The destination port field has the same format as the source
port field and also requires 16 Boolean variables. The destination port field in
the example, port 21, is translated as 0000 0000 0001 0101.

e Action: The action field can either be ‘Permit’, denoted by 1, or ‘Deny’, denoted
by 0.

The firewall rule shown in Listing 1 can, hence, be translated into a Boolean vector of
97 variables and, therefore, be represented as a BDD. Similarly, as Hazelhurst et al.
describe in [17], the process used to convert a single firewall rule into a Boolean func-
tion, shown above, can be recursively applied to all the rules in a rule set. The resulting
Boolean functions corresponding to each individual rule can then be linked together
using a logical disjunction operator (V) for permit rules or a logical conjunction (A)
operator for deny rules, yielding a single Boolean function which represents the entire
firewall rule set. This function can then be represented as a BDD which models the
complete rule set. A firewall can then classify and filter packets using the BDD by
simply extracting relevant fields in the packet header and checking if they satisfy the
BDD.

2.4.2 Translation of Information Sharing Policies

Each field in an information sharing policy is first translated into a bit sequence in
order to be represented as a BDD. The following list describes how policy fields for the
example in Listing 5 are translated into bit sequences:

e Permission: A single Boolean variable is needed to represent this field since it
can either be permit and denoted by 1, or deny and denoted by 0.

e Requester, Owner: The Requester field, similar to the Owner field, comprises a
hierarchical, X.500-inspired form. It can be tailored to any organisational hierar-
chy but, for the purposes of illustration, represents a Domain. Organisation. Unit.Role
structure in this example, representing the respective fields for the Requester and
Owner. Since this simplified example has a single Requester, and a single Owner,
two binary variables are needed to represent the domain, organisation, unit and
roles of each:

— Requester Domain: 01
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Requester Organisation: 01

Requester Unit: 01

Requester Role: 01

Owner Domain: 10

Owner Organisation: 10
Owner Unit: 10
Owner Role: 10

e Relation: The relation field is represented as flat in this example, solely for illus-
tration. Since this example contains only one relation, it is simply represented
by a single 1. In a ‘live’ system, this field will usually be hierarchically defined
to reflect the desired granularity. The structure and specific hierarchy used for
the definition of this field is entirely flexible, and can be tailored to the needs of
the organisation.

e Context: Similar to the relation field described above, the context field is also
represented as flat in this example, solely for illustration. Since this example
contains only one context, it is simply represented by a single 1. In a live sys-
tem, this field will also be defined in a hierarchical fashion to reflect desired
granularity. The structure and specific hierarchy used for the definition of this
field is entirely flexible and can be tailored to the needs of the organisation.

e Action: The action field is used to differentiate between possible actions, such
as create, read, update and delete, which a requester may be allowed to perform.
Since this example contains the Read action, it is simply represented by a single
1.

e Object: Similar to the relation field described above, the object field is also repre-
sented as flat in this example, solely for illustration. Since this example contains
only one object, it is simply represented by a single 1. In a live system, this
field will also be defined in a hierarchical fashion to reflect desired granularity.
The structure and specific hierarchy used for the definition of this field is entirely
flexible and can be tailored to the needs of the organisation.

e Attribute: Similar to the relation field described above, the attribute field is also
represented as flat in this example, solely for illustration. Since this example
contains only one attribute, it is simply represented by a single 1. In a live sys-
tem, this field will also be defined in a hierarchical fashion to reflect desired
granularity. The structure and specific hierarchy used for the definition of this
field is entirely flexible and can be tailored to the needs of the organisation.

The information sharing policy shown in Listing 5 can, hence, be translated into a
Boolean vector of 97 variables, as shown in Listing 6.

Listing 6: information sharing policy from Listing 5 translated into
Boolean vector.
<permission=1> <requester=01010101> <relationship
=1> <action=1> <attribute=1> <object=1> <context
=1> <owner=10101010> <compliance=1>
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Since the policy is now in a Boolean vector form, it can be represented as a BDD. Sim-
ilarly, as Hazelhurst et al. describe in [17] regarding firewall rules, the process used
to convert a single information sharing rule into a Boolean function, shown above, can
be recursively applied to all the rules in a rule set. The resulting Boolean functions
corresponding to each individual rule can then be linked together using a logical dis-
junction operator (V) for permit rules or a logical conjunction (A) operator for deny
rules, yielding a single Boolean function which represents the entire set of policies.
This function can then be represented as a BDD which then models the entire policy
set. The policy-filtering agent can then classify and filter information using the BDD
by simply extracting relevant fields described above and checking if they satisfy the
BDD.

2.5 Rule and Policy Translation Examples
2.5.1 Firewall Rule Set Translation Example

This example describes in detail the steps needed to translate an access list into a BDD.
Table 6 shows a portion of a sample access list, adapted from [18]. A ‘*” or ‘Any’ is
used in the access list to denote redundant fields, or redundant portions of fields, for IP
address octets and ports, respectively. Redundant fields are not translated into binary
as they represent variables that are not evaluated by the BDD and, hence, do not form
part of the Boolean function. Where an entire field is redundant, it is entirely excluded
from binary representation and where only a portion of a field is redundant, only the
relevant portion is translated while the redundant portions are shown using Xs. If no
matching rule is found, the firewall defaults to a deny policy.

In this example, the access list rules shown in Table 6 are initially translated into
their binary form and then expressed as logical conjunctions of their relevant fields.
Each rule is also expressed as an if-then statement to clearly define how it will be pro-
cessed. Finally, each rule is represented as a BDD. It must be noted that the motivation
in expressing each rule as a BDD is simply to illustrate the relatively linear form that
the diagram takes, indicating that each field in the rule is processed in a sequential
fashion. This is contrasted by the final BDD representing the access list as a whole.
This BDD is not linear and, hence, illustrates how some fields are logically prioritised
over others.

Table 6: Portion of access list adapted from [18]

Rule Protocol Source Source Destination Destination  Action
Address Port Address Port
1 TCP * kK Gk Any 161.120.33.41 25 Permit
2 TCP 140.192.37.30 Any * Kk 21 Deny
3 TCP * kK Ok Any 161.120.33.* 21 Deny
4 TCP 140.192.37.*  Any ® Kk k 21 Permit

Default Policy: Deny

Rulel
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Protocol (TCP) : 1

Source IP (*.*.%.%) :  not checked by BDD
Source Port (Any) :  not checked by BDD

Destination IP (161.120.33.41) 161 : 1010 0001
: 120: 0111 1000

33: 0010 0001

: 41:0010 1001

Destination Port (25) : 11001
Action (Permit) : 1

The Boolean function corresponding to Rulel, ignoring redundant fields, is a logi-
cal conjunction of all of the above fields in the format shown in Listing 7. Listing 8
represents Rulel expressed logically as an if-then conditional statement and Figure 9
illustrates Rulel represented as a BDD.

Listing 7: Logical format of Rulel.

Permit: Protocol A Destination IP A Destination
Port

Listing 8: Rulel expressed as an if-then conditional statement.

if (Protocol = 1) A
(Destination IP =
10100001011110000010000100101001) A
(Destination Port = 11001),

then (Action = Permit)
Rule2

Protocol (TCP) : 1

Source IP (140.192.37.30) 140 : 1000 1100

: 192 : 1100 0000

37:0010 0101

: 30: 0001 1110

Source Port (Any) : not checked by BDD
Destination IP (.* * *) :  not checked by BDD
Destination Port (21) : 10101

Action (Deny) : 0

The Boolean function corresponding to Rule2, ignoring redundant fields, is a logical
conjunction of all of the above fields, in the format shown in Listing 9. Listing 10
represents Rule2 expressed logically as an if-then conditional statement and Figure 10
illustrates Rule2 represented as a BDD.

Listing 9: Logical format of Rule2.

Deny: Protocol A Source IP A Destination Port

Listing 10: Rule2 expressed as an if-then conditional statement.

if (Protocol = 1) A
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(Source IP =
10001100110000000010010100011110) A
(Destination Port = 10101),
then (Action = Deny)
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Rule3

Protocol (TCP) : 1
Source IP (*.*.* *) : not checked by BDD
Source Port (Any) : not checked by BDD

Destination IP (161.120.33.%) 161 : 1010 0001
: 120 : 0111 1000

33: 0010 0001

: * o XXXX XXXX

Destination Port (21) : 10101
Action (Deny) : 0

The Boolean function corresponding to Rule3, ignoring redundant fields, is a logical
conjunction of all of the above fields, in the format shown in Listing 11. Listing 12
represents Rule3 expressed logically as an if-then conditional statement and Figure 11
illustrates Rule3 represented as a BDD.

Listing 11: Logical format of Rule3.

Deny: Protocol A Destination IP A Destination Port

Listing 12: Rule3 expressed as an if-then conditional statement.
if (Protocol = 1) A
(Destination IP = 101000010111100000100001
XXXXXXXX) A
(Destination Port = 10101),

then (Action = Deny)
Rule4

Protocol (TCP) : 1

Source 1P (140.192.37.30) : 140 : 1000 1100

: 192 : 1100 0000

37:0010 0101

: * o XXXX XXXX

Source Port (Any) :  not checked by BDD
Destination IP (*.* * *) : not checked by BDD
Destination Port (21) : 10101

Action (Permit) : 1

The Boolean function corresponding to Rule4, ignoring redundant fields, is a logical
conjunction of all of the above fields, in the format shown in Listing 13. Listing 14
represents Rule4 expressed logically as an if-then conditional statement and Figure 12
illustrates Rule4 represented as a BDD.

Listing 13: Logical format of Rule4.

Deny: Protocol A Source IP A Destination Port

Listing 14: Rule4 expressed as an if-then conditional statement.

if (Protocol = 1) A
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(Source IP = 100011001100000000100101
XXXXXKXXX) A
(Destination Port = 10101),
then (Action = Permit)

Figure 9: BDD representing Rulel. Figure 10: BDD representing Rule?2.

2.5.2 Modelling the Complete Firewall Rule Set

The security policy modelled by the example access list shown in Table 6 is enforced
through a combination of Rulel, Rule2, Rule3 and Rule4. Listing 15 illustrates the
logical sequence in which the rules are enforced.

Listing 15: Logical sequence of enforced rules.

if Rulel V (—Rule2 A —-Rule3 A Ruled)
then Permit
else Deny

As shown, a packet is permitted if its header fields match Rulel. If Rulel is not
matched, the packet can only be permitted if Rule2 and Rule3 are not matched and
Rule4 is matched. If no rules are matched, the default policy is applied and the packet
is denied. Since Rule2 and Rule3 are Deny rules, they are prefixed with a ‘=’ to show
that these rules must not be matched in order for the packet to be accepted. The BDD of
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Figure 12: BDD representing Rule4.

Figure 11: BDD representing Rule3.
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the combined rules is illustrated in Figure 13. Since this BDD is not linear, it illustrates
how some fields are prioritised over others and where alternate paths can be taken to
arrive at the same decision.

2.5.3 information sharing Policy Set Translation Example

This example describes in detail the steps needed to translate a set of information shar-
ing policies to a BDD. List 16 shows a sample list of policies. A “*’ or ‘Any’ is used to
denote redundant fields, or redundant portions of fields. Redundant fields are not trans-
lated into binary as they represent variables that are not evaluated by the BDD and,
hence, do not form part of the Boolean function. Where an entire field is redundant, it
is entirely excluded from the binary representation and where only a portion of a field
is redundant, only the relevant portion is translated while the redundant portions are
shown using ‘Xs’.
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Listing 16: Sample list of information sharing policies.

Policy 1: This policy <permits> <ANY> requester,
with <ANY> relation in <ANY> context, to request
to <read> a <child> <Health History Record>
from the <Records Admin> of the <Records Unit
> of <Child Protection Agency B> under
compliance of the <Data Protection Act>

Policy 2: This policy <denies> a <Sergeant> from
the <Domestic Violence Unit> of <Police Force A
>, with <ANY> relation in <ANY> context, to
request to <read> a <child> <Case File Record>
from <ANY> owner under compliance of the <Data
Protection Act>

Policy 3: This policy <denies> <ANY> requester,
with <ANY> relation in <ANY> context, to request
to <read> a <child> <Case File Record> from <
ANY> role of the <Records Unit> of <Child
Protection Agency B> under compliance of the <
Data Protection Act>

Policy 4: This policy <permits> <ANY> role from the
<Domestic Violence Unit> of <Police Force A>,
with <ANY> relation in <ANY> context, to request
to <read> a <childs> <Case File Record> from <
ANY> owner under compliance of the <Data
Protection Act>

Policyl

Compliance (DPA) : 1
Requester (Any) . not checked by BDD
Relation (Any) . not checked by BDD
Context (Any) :  not checked by BDD
Object (Child) : 1
Attribute (Health History Record) : 01
Owner (SocCare.CPA-B.RecUnit.RecAdmin) : SocCare : 10
: CPA-B: 10

RecUnit: 10

: RecAdmin : 10

Action (Permit) : 1

The Boolean function corresponding to Policy1, ignoring redundant fields, is a logical
conjunction of all of the above fields in the format shown in Listing 17. Listing 18
represents Policyl expressed logically as an if-then conditional statement and Figure
14 illustrates Policyl as a BDD. Figure 15 represents a simplification of Figure 14,
highlighting the effective constituent parts of Policyl.
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Listing 17: Logical format of Policy]1.
Permit: Compliance A Owner A Object A Attribute

Listing 18: Rulel expressed as an if-then conditional statement.

if (Compliance = 1) A
(Owner = 10101010) A
(Object = 1) A
(Attribute = 01),
then (Action = Permit)
Policy2
Compliance (DPA) : 1
Requester (Police.Force-A.DVU.Sergeant) : Police : 01
: Force-A : 01
DVU : 01
: Sergeant : 01
Relation (Any) . not checked by BDD
Context (Any) :  not checked by BDD
Object (Child) : 1
Attribute (Case File Record) : 10
Owner (Any) . not checked by BDD
Action (Deny) : 0

The Boolean function corresponding to Policy2, ignoring redundant fields, is a logical
conjunction of all of the above fields, in the format shown in Listing 19. Listing 20
represents Policy2 expressed logically as an if-then conditional statement and Figure
16 illustrates Policy2 as a BDD. Figure 17 represents a simplification of Figure 16,
highlighting the effective constituent parts of Policy2.

Listing 19: Logical format of Policy2.
Deny: Compliance A Requester A Object A Attribute

Listing 20: Policy2 expressed as an if-then conditional statement.

if (Compliance = 1) A
(Requester = 01010101) A
(Object = 1) A
(Attribute = 10),

then (Action = Deny)
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Policy3

Compliance (DPA) 1
Requester (Any) not checked by BDD
Relation (Any) not checked by BDD
Context (Any) not checked by BDD
Object (Child) 1
Attribute (Case File Record) 10
Owner (SocCare.CPA-B.RecUnit.Any) SocCare : 10
CPA-B: 10

RecUnit : 10

Any : X

Action (Deny) 0

The Boolean function corresponding to Policy3, ignoring redundant fields, is a logical
conjunction of all of the above fields, in the format shown in Listing 21. Listing 22
represents Policy3 expressed logically as an if-then conditional statement and Figure
18 illustrates Policy3 represented as a BDD. Figure 19 represents a simplification of
Figure 18, highlighting the effective constituent parts of Policy3.

Listing 21: Logical format of Policy3.
Deny: Compliance A Owner A Object A Attribute

Listing 22: Policy3 expressed as an if-then conditional statement.

if (Compliance = 1) A
(Owner = 101010X) A
(Object= 1) A
(Attribute = 1),
then (Action = Deny)
Policy4
Compliance (DPA) : 1
Requester (Police.Force-A.DVU.Any) : Police : 01
Force-A : 01
DVU : 01
Any : X
Relation (Any) not checked by BDD
Context (Any) not checked by BDD
Object (Child) 1
Attribute (Case File Record) 10
Owner (Any) not checked by BDD

Action (Permit)

1

The Boolean function corresponding to Policy4, ignoring redundant fields, is a logical
conjunction of all of the above fields, in the format shown in Listing 23. Listing 24
represents Policy4 expressed logically as an if-then conditional statement and Figure
20 illustrates Policy4 represented as a BDD. Figure 21 represents a simplification of
Figure 20, highlighting the effective constituent parts of Policy4.
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Listing 23: Logical format of Policy4.
Permit: Compliance A Requester A Object A Attribute

Listing 24: Rule4 expressed as an if-then conditional statement.

if (Compliance = 1) A
(Requester = 010101X) A
(Object = 1) A
(Attribute = 10),
then (Action = Deny)
“Acel
.
Acc2

;E‘

Figure 14: BDD representing Policy1. Figure 15: Simplification of Policyl BDD.

2.54 Modelling the Complete information sharing Policy Set

The information sharing policy modelled by the sample list shown in List 16 is enforced
through a combination of Policyl, Policy2, Policy3 and Policy4. Listing 25 illustrates
the logical sequence in which the rules are enforced.

Listing 25: Logical sequence of enforced rules.

if Policyl V (= Policy2 A — Policy3 A Policy4
)

then Permit

else Deny
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Req:
P.PFA .DVU.
Sgt

Figure 16: BDD representing Policy2. Figure 17: Simplification of Policy2 BDD.
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Figure 18: BDD representing Policy3. Figure 19: Simplification of Policy3 BDD.
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Figure 20: BDD representing Policy4. Figure 21: Simplification of Policy4 BDD.
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As shown, information can be shared if a request matches Policyl. If Policyl is not
matched, the request can only be permitted if Policy2 and Policy3 are not matched
and Policy4 is matched. If no matches are found, the default policy is applied and no
information is shared. Since Policy2 and Policy3 have ‘deny’ actions, they are prefixed
with a ‘=’ to show that these policies must not be matched in order for information
sharing to take place. The BDD of the combined policies is illustrated in Figure 22.
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3 Framework Implementation

3.1 Introduction

HIS chapter builds upon the information sharing policy verification frame-

work, as outlined in Chapter 2, and describes the details of its implementa-

tion. Specifically, it extends the work of Al-Shaer et al. in [19] and that of

Hamed and Al-Shaer in [20]. In these, the authors concentrated on devel-
oping formal definitions of possible anomalies between rules in a network firewall rule
set. This chapter focuses on extending the principles of formal anomaly definitions
to the area of information sharing policies. It outlines a structured approach for the
detection of possible anomalies in sets of information sharing policies, and defines the
details of each step required for this approach.

3.2 Policy Verification Process

This section describes the mode of operation of the policy verification framework as
illustrated in Figure 23. The process used to verify a proposed policy against possible
anomalies uses:

e Definition of policy syntax structure and declaration of policy field elements.
e Syntactic verification of the proposed policy.
e Ontological verification of the proposed policy.

e Functional verification of the proposed policy.

3.2.1 Definition

The definition stage comprises a two-step process where the first step requires the defi-
nition of the syntax to be used to describe information sharing policies, and the second
step requires a declaration of all possible elements which can occur as part of the fields
of a policy. Thus, the definition stage defines the universe of all possible policy fields,
as well as the possible elements of each field, and forms the basis of any subsequent
policy verification processes. The following example illustrates the definition process.

Policy Definition Example This example assumes the scenario that two organisa-
tions, Police Force A and Child Protection Agency B, have initiated an information
sharing agreement, a policy from which is shown in Listing 26.

Listing 26: Example of a policy in an information sharing agreement.

The Records Admin from the Records Unit of
Child Protection Agency B permits a Sergeant
from the Domestic Violence Unit of
Police Force A to read the Unique Identifier of
a Child, whilst complying with the
Human Rights Act, 1998, as long as it is for an
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Definition

!

Input new policy

!

New policy syntax
verification

1

New policy ontology
verification

!

New policy functional
verification

Figure 23: Mode of operation of the policy verification framework.

abuse investigation and the Sergeant is the
Investigating Officer.

The first step of the definition stage requires the specification of the information shar-
ing policy syntax. For the purposes of this example, information sharing policies are
defined as having a nine-field syntax, where each field is enclosed within square brack-
ets, ‘[” and ‘]’, as illustrated in Listing 27. Detailed explanation of the structure of this
syntax is given in Section 2.2.2.
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Listing 27: Nine-field syntax used to define information sharing
policies.
[permission] [requester] [relationship] [action] [
attribute] [object] [context] [owner] [
compliance]

Once the information sharing policy syntax has been specified, it can be used to repre-
sent polices from the information sharing agreement. For the purposes of this example,
the requester and owner fields are defined as hierarchical, while the remainder
of the fields are non-hierarchical. The requester and owner fields are, both, sub-
divided into domain, organisation, unit and role, with a full stop (*.”) used
to delineate between each field sub-division. Listing 28 shows the example information
sharing policy from Listing 26 using the syntax from Listing 27.

Listing 28: Information sharing policy from 26 espressed in syntax
from 27.

[Permit] [Police.Police_Force_A.
Domestic_Violence_Unit.Sergeant] with [
Investigating_Officer] relationship [R] [
Unique_TIdentifier] of [Child] with [
Abuse_Investigation] context from [Social_Care.
Child_Protection_Agency_B.Records_Unit.
Records_Admin] with Compliance [
Human_Rights_Act_1998]

The second step of the definition stage requires a declaration of all possible elements
which can occur within the fields of a policy. Table 7 illustrates all possible elements
from an example information sharing agreement. In fact, elements used to define the
example policy shown in Listing 28 have all been selected from Table 7. It should be
noted that a policy field can also be defined using the ‘*’ wildcard, which symbolises
that an element has not been declared for a specific field in a policy. Further, as illus-
trated in Table 7, the elements of the hierarchical requester and owner fields are
declared with respect to their specific higher-level fields. This means that the elements
of the highest-level field, domain, would be declared by themselves. For example, in
Table 7, the domains Police and Social_Care would be declared by themselves.
The elements of the organisation field, however, are declared in relation to their
respective domains. For example, the organisation Police_Force_A is declared
in relation to its specific domain, as Police.Police_Force_A. Similarly, the or-
ganisation Child_Protection_Agency_B is declared in relation to its specific
domain, as Social_Care.Child_Protection_Agency_B. The same princi-
ple applies to the subsequent lower-level fields of unit and role.

3.2.2 Syntax Verification

Syntax verification is the initial stage of the policy verification process. During this
stage, a proposed policy is checked to verify that it satisfies the defined syntax crite-
ria for information sharing policies, as specified previously during the definition stage,
illustrated in Listing 27. The following example illustrates the syntax verification pro-
cess. If the proposed policy does not comply with this syntax structure, the testing
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Table 7: Possible elements of example information sharing policy.

Policy Field Declared Elements
Permission Permit
Deny
Domain Social_Care
Police
Oreanisation (Social_Care) + Child_Protection_Agency_B
g (Police) + Police_Force_A
Unit (Social_Care.Child_Protection_Agency_B) + Records_Unit
(Police.Police_Force_A) + Domestic_Violence_Unit
Role (Social_Care.Child_Protection_Agency_B.Records_Unit) + Records_Admin
(Police.Police_Force_A.Domestic_Violence_Unit) + Sergeant
g
Relationship Investigating_Officer
Action Read
. Health_Record
Attribute Unique_Identifier
Object Child
Context Abuse_Investigation
Compliance Data_Protection_Act

process is terminated, as other tests only need to be carried out if a policy meets the
required syntax criteria.

Syntax Verification Example This example assumes an information sharing policy,
shown in Listing 29, is proposed to be added to an existing set of policies.

Listing 29: Example policy used for syntax verification example.

[Permit] [Police.Police_Force_A.x.Sergeant] with
[*] relationship [R] [Unique_Identifier] of [
Child] with [Abuse_Investigation] context
from [Social_Care.Child_Protection_Agency_B.
Records_Unit.Records_Admin] with Compliance [
Human_Rights_Act_1998]

The syntax verification stage checks that the number of fields specified in the proposed
policy, as well as the syntax structure of the proposed policy, correspond with the
syntax and number of fields defined earlier in the definition stage, as shown in Listing
27. In this example, the policy shown in Listing 29 is parsed to extract its constituent
fields, as enclosed within square brackets, ‘[’ and ‘]’. This process checks that the
number of fields in the proposed policy corresponds correctly with the number of fields
defined earlier in the definition stage. Further, the requester and owner fields
from the proposed policy, that is fields two and eight, respectively, are checked to
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ensure that they correspond correctly with the hierarchical structure defined for these
fields. This entails ensuring that fields two and eight contain four sub-divisions which
are delineated using full stops, (°.’). Since the example policy shown in Listing 29
is expressed correctly using the defined syntax, the syntax verification is successful
and the next stage of policy verification commences. If the proposed policy had not
complied with the defined syntax structure, the testing process would be terminated, as
other tests only need to be carried out if a policy meets the required syntax criteria.

3.2.3 Ontology Verification

Ontology verification is the second stage of the policy verification process, following
syntax verification. During this stage, a proposed policy is checked to verify that each
field of the policy statement comprises valid elements. An element is designated as
valid if it has been previously declared in the definition stage. The following example
illustrates this process.

Ontology Verification Example This example assumes a scenario where policy field
elements, as shown in Table 8, are specified as part of the definition stage in an infor-
mation sharing agreement.

Table 8: Defined policy field elements for Ontology Verification

Example.

Policy Field Declared Elements
Permission Permit

Deny
Domain Social_Care

Police
Oreanisation (Social_Care) + Child_Protection_Agency_B

& (Police) + Police_Force_A
Unit (Social_Care.Child_Protection_Agency_B) + Records_Unit
(Police.Police_Force_A) + Domestic_Violence_Unit
Role (Social_Care.Child_Protection_Agency_B.Records_Unit) + Records_Admin
(Police.Police_Force_A.Domestic_Violence_Unit) + Sergeant
Relationship Investigating Officer
Read (R)
. Create (C)
Action Update (U)
Delete (D)
. Health_Record

Altribute Unique_Identifier
Object Child
Context Abuse_Investigation
Compliance Data_Protection_Act
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Four information sharing policies, R.,, I?., R, and R, are proposed to be added to an
existing set of policies. Listings 30, 31, 32 and 33 show policies R,,, I?;, Ry and R,
respectively.
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Listing 30: Policy R., used for ontology verification example.

[Permit] [Police.Police_Force_A.
Domestic_violence_Unit.Sergeant] with [«*]
relationship [R] [Unique_Identifier] of [Child]
with [Abuse_Investigation] context from

[Social_Care.Child_Protection_Agency_B.
Records_Unit.Records_Admin] with Compliance [
Human_Rights_Act_1998]

Listing 31: Policy R, used for ontology verification example.

[Permit] [Police.Police_Force_A.
Domestic_violence_Unit.x] with [*] relationship
[R] [Unique_TIdentifier] of [Child] with [
Abuse_Investigation] context from [Social_Care.
Child Protection_Agency_B.Records_Unit.
Records_Admin] with Compliance [
Human_Rights_Act_1998]

Listing 32: Policy R, used for ontology verification example.

[Permit] [Police.Police_Force_A.
Domestic_violence_Unit.Constable] with [*]
relationship [R] [Unique_Identifier] of [Child]
with [Abuse_Investigation] context from

[Social_Care.Child_Protection_Agency_B.
Records_Unit.Records_Admin] with Compliance [
Human_Rights_Act_1998]

Listing 33: Policy R. used for ontology verification example.

[Permit] [Police.Police_Force_A.
Domestic_violence_Unit.Records_Admin] with [x]
relationship [R] [
Unique_TIdentifier] of [Child] with [
Abuse_Investigation] context from [Social_Care.
Child_Protection_Agency_B.Records_Unit.
Records_Admin] with Compliance [
Human_Rights_Act_1998]

The initial step of the ontology verification stage comprises parsing of the proposed
policies in order to extract their constituent field elements, as enclosed within square
brackets, ‘[* and ‘]’. Table 9 shows field elements extracted from the example proposed
policies.

It must be noted here that where the “*’ wildcard is used instead of a field element,
the corresponding field is not checked for against an entry in the definition. Compari-
son between elements of the proposed policies, as shown in Table 9, and the declared
elements shown in Table 8, illustrates that each element in the proposed policy, R,,,
exists as a valid declared element, in its respective declared field. Therefore, for policy
R,,, the ontology verification process is successful, and the next stage of verification
can commence. Similar to policy R,,, each element in the proposed policy, R,, also

Paper



Table 9: Field elements of proposed information sharing policies R,
R., Ry, and R, for Ontology Verification Example 3.2.3.

Policy Field

Elements of Policy

Elements of Policy

Elements of Policy

Elements of Policy

R, R, R, R,
Permission Permit Permit Permit Permit
RD Police Police Police Police
RO (Police)+ (Police) + (Police) + (Police) +
PFA PFA PFA PFA
(Police)+ (Police)+ (Police)+ (Police)+
RU (PFA)+ (PFA)+ (PFA)+ (PFA)+
DVU DVU DVU DVU
(Police)+ (Police)+ (Police)+ (Police)+
RR (PFA)+ (PFA)+ (PFA)+ (PFA)+
(DVU)+ (DVU)+ (DVU)+ (DVU)+
Sergeant * Constable RA
Relationship  * * * *
Action R R R R
Attribute Unique Identifier Unique Identifier Unique Identifier Unique Identifier
Object Child Child Child Child
Context Abuse Investigation ~ Abuse Investigation ~ Abuse Investigation  Abuse Investigation
OD SC SC SC SC
00 (SO)+ SO+ SO+ (SO)+
CPAB CPAB CPAB CPAB
(SO)+ (SC)+ SO+ (SO)+
ou (CPAB)+ (CPAB)+ (CPAB)+ (CPAB)+
RU RU RU RU
(SO)+ SO+ SO+ (SO)+
OR (CPAB)+ (CPAB)+ (CPAB)+ (CPAB)+
(RU)+ (RU)+ (RU)+ (RU)+
RA RA RA RA
Compliance  Data Protection Act Data Protection Act Data Protection Act Data Protection Act

Field or Element

Requester/Owner Domain
Requester/Owner Organisation
Requester/Owner Unit
Requester/Owner Role

Police_Force A

Domestic_Violence_Unit

Social_Care

Child_Protection_Agency_B

Records_Unit
Records_Admin
Data_Protection_Act

Abbreviation
RD/OD
RO/O0
RU/OU
RR/OR
PFA
DVU
SC
CPAB
RU

RA
DPA
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exists as a valid declared element, in its respective declared field. Since R, shows
the Requester_Role element as the wildcard ‘*’, this field is not checked against
the respective field in the definition, and, hence, the ontology verification process for
policy R, is also successful.

In the case of policy R,, however, the element for the Requester_Role field is
shown as Constable. Since Constable is not a defined element for the Requester_Role
field, and, hence, does not appear as a defined element in the column in Table 8, pol-
icy R, will fail the ontology verification stage. In the case of policy R, although the
Requester_Role field, shown as Records_Admin, exists as a declared element
in the definitions in Table 8, it does not belong tothe Police.Police_Force_ A.Domestic_violence_Unit
hierarchy. Therefore, policy R, will also fail the ontology verification stage. In the case
where a policy fails the ontology verification stage, the testing process would be termi-
nated as other tests only need to be carried out if a policy meets the required ontology
criteria.

3.2.4 Functional Verification

The functional verification stage is the final stage of the policy verification process
and identifies any potential anomalies which may exist between a proposed policy and
those present in an existing set of policies. This stage uses the anomaly definitions
of redundancy, shadowing, generalisation and correlation, as detailed in Section 2?.
Therefore, functional verification is split into four stages, each to check for a specific
category of anomaly. The logical state diagram for anomaly classification is based on
the work of Al-Shaer and Hamed in [9], illustrated in Figure 24.
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Figure 24: Anomaly state diagram from [9] for rules R, and R,,
where R, precedes R, in the rules list.
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A simplified version of the anomaly classification method, derived from the work of
Al-Shaer and Hamed in [9], is shown in Figure 25. As indicated, anomalies are detected
by logically comparing the permissions, P, and P, and conditions, C, and C, for any
two policies, R, and Iz,,.

Test1
Compare Permissions

Py, Py:
(P &>Py)
______ 0_-—.——-—- 1\
Test2 Test2
Compare Conditions Compare Conditions
oGy x Gyt
(¢,>C) €~>¢)
0 \1\ L0 \1\
Test3
Compare Conditions Shadow No Anomaly Redundancy
G, Cy
(G>G)
o \1\
Test 4
Compare Conditions Generalisation
GGyt
GV Q)
0" \1 \
No Anomaly Correlation

Figure 25: Simplified anomaly classification method for functional
verification.

The comparison process, with respect to anomaly detection, entails identification of a
subset, superset or equivalence relation between respective fields of the policies, R,
and IR, which is achieved by carrying out bitwise logical operations between compar-
ative fields. When operating on non-hierarchical fields, the operation simply involves
using the entire field in the comparison. For hierarchical fields, however, this involves
the definition of the fields as logical conjunctions (A), of all of their sub-fields. The
logical operation is then performed for the entire hierarchical field. For example, the
Requester and Owner fields can both be defined as logical conjunctions of their
constituent Domain, Organisation, Unit and Role sub-fields:

Requester,, Owner, : Domain, A Organisation, A Unit, A Role,
Requestery, Ownery : Domain, A Organisation, A Unit, A Role,

In practice, the logical comparisons are carried out using Binary Decision Diagrams
(BDDs), as implemented for firewall rules by Hazelhurst et al. in [17] and access list
modelling by Hazelhurst in [16]. However, the logical ‘AND’ operation, or conjunction
(N), is used here to identify subset, superset or equivalence relations. This allows a
generic method of illustrating logical relationships, which is independent of the internal
computations of any specific Binary Decision Diagram (BDD) software package.

Since BDDs perform bitwise logical operations, the permissions, P, and P, and
conditions, C;; and C,, of policies R, and R, must first be represented in binary bits.
However, unlike modelling firewall rules and access lists, information sharing policies
can have fields of varying lengths. This is due to the fact that there is no limit on the
number of possible elements which may be declared as part of a field in an information
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sharing agreement. Hence, since the number of possible elements in a field can vary,
where each field must be adjusted for the number of bits before any bitwise operations
can be performed on it. The adjustment process involves assigning an element identi-
fier, Element ID, to each element in a field and then representing the element identifier
in binary form. Hence, the total number of binary variables needed to represent a field
element is dependent on the total number of possible field elements declared during the
definition stage. Table 10 illustrates the assignment of Element IDs to elements from
Table 8, from the Ontology Verification Example, and their binary representations.

Table 10: Assignment of Element IDs to elements from Table 8 and
their binary representation.

Policy Field  Elements from Definition Element ID  Binary Representation

Permission Deny 0 0

Permit 1 1

D . Social Care 1 01
omam Police 2 10
Oreanisation Child Protection Agency B 1 01
ganisatio Police Force A 2 10
Unit Records Unit 1 01
Domestic Violence Unit 2 10

Role Records Admin 1 01
Sergeant 2 10

Relationship  Investigating Officer 1 1
Read (R) 1 001
. Create (C) 2 010
Action Update (U) 3 011
Delete (D) 4 100

Attribute Health Record 1 01
Unique Identifier 2 10

Object Child 1 1

Context Abuse Investigation 1 1

Compliance  Data Protection Act 1 1

Listing 34 shows an example information sharing policy with field elements populated
from elements defined in Table 10. Listing 35 illustrates the example policy from
Listing 34 in its binary representation.
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Listing 34: Example information sharing policy with field elements
populated from elements defined in Table 10.

R,:

[Permit] [Police.Police_Force_A.
Domestic_Violence_Unit.Sergeant] with [
Investigating_Officer] relationship [R] [
Health_ Record] of [Child] with [
Abuse_Investigation] context from [Social_Care.
Child_Protection_Agency_B.Records_Unit.
Records_Admin] with Compliance [
Data_Protection_Act]
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Listing 35: Example information sharing policy from Listing 34 in
binary representation.
R,:
(1] [10.10.10.10] [1] [001] [O1] [1] [1]
[01.01.01.01] [1]

The binary representation in Listing 35 shows that an information sharing policy pop-
ulated from elements defined in Table 10 will consist of 26 binary bits. If, however, the
Role field is now updated to include two additional roles, Constable and Analyst, the
number of bits required to represent the policy will change. Table 11 shows the Role
field from Table 10 updated with the additional roles.

Table 11: Role field from Table 10 updated with Constable and Analyst
roles.

Policy Field Elements from Definition Element ID Binary Representation

Records Admin 1 001
Sergeant 2 010
Role Constable 3 011
Analyst 4 100

The same information sharing policy, R, from Listing 34, now expressed using the
updated Role field from Table 11, will have the binary form as shown in Listing 36.
As shown, 28 binary bits are now required to represent R, whereas previously only
26 binary bits were required. This illustrates the sensitivity of binary expressions and,
hence, any binary calculations, to modifications made to the set of elements registered
for an information sharing agreement.

Listing 36: Example information sharing policy from Listing 34
represented in binary form using updated Role field from Table 11.
R, :
(1] [10.10.10.010] [1] [001] [O01] [1] [1]
[01.01.01.001] [1]

The following examples provide details on each stage of the functional verification
process. The methods used for functional verification are as illustrated in Figure 25.
Each example assumes an information sharing agreement between two organisations,
Police Force A and Child Protection Agency B. Only the requester and owner
fields are manipulated in the following anomaly verification examples for reasons of
brevity.

3.2.5 Example of Redundancy Anomaly Verification

Elements from Table 10 are used to define two information sharing policies. Listing 37
shows ., an existing policy in the agreement and Listing 38 shows R, a proposed
policy to be added. Listing 39 shows the binary representations of the two policies.
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Listing 37: Existing policy set for redundancy anomaly functional
verification example.

R, : [Permit] [Police.Police_Force_A.
Domestic_Violence_Unit.x] with [%] relationship
[R] [*] of [Child] with [*] context from [
Social_ Care.Child_Protection_Agency_B.
Records_Unit.x] with Compliance [x*]

Listing 38: Proposed policy for redundancy anomaly functional
verification example.

R, : [Permit] [Police.Police_Force_A.
Domestic_Violence_Unit.Sergeant] with [*]
relationship [R] [*] of [Child] with [*] context
from [Social_Care.Child_Protection_Agency_B.
Records_Unit.*] with Compliance [x*]

Listing 39: Binary representation of existing policy R, from Listing 37
and proposed policy R, from Listing 38 for redundancy anomaly
functional verification example.

R, : [1] [10.10.10.%] with [+] relationship [R]
[*x] of [1] with [*] context from [01.01.01.%]
with Compliance [x]

Ry 3 [1] [10.10.10.10] with [x] relationship [R]

[*] of [1] with [*] context from [01.01.01.%]
with Compliance [x]

Test 1:  As illustrated in Figure 25, the first comparison in the functional verification
stage, Test 1, is to compare the permissions, P, and P, from policies R, and I, to
check if they are the same. This operation is illustrated in the computation below using
the logical relationship, from Equation 2, that if the permissions P, and P, are the
same, (P, < P,) is TRUE, then the expression ((P; A P,) V (—P, A —P,)) must also
be TRUE.

P, 1
P, : 1
(P, P,) : ((PyAP,)V (=P A-P,))
(1A1)V (=1 A 1))
S (PoeP) TRUE

Test 2: Since P, and P, are the same, the next comparison in the functional verifi-
cation stage, Test 2, is to compare the conditions, C,, and C,, to check if (Cy = C,)
is TRUE. This test, if TRUE, indicates that C,, is either equal to, or a subset of, C,
which means that policy I, is redundant to policy I,. This operation is illustrated in
the computation below using the logical relationship, from Equation 1, that if condition
C, implies condition Cy, (Cy, = () is TRUE, then the expression (—C,, V C,) must
also be TRUE.
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Cy : 10.10.10.XX

C,y : 10.10.10.10
Cy=C,p —Cy V C,
01.01.01.01 V 10.10.10.XX
L Cy=Cy TRUE

Conclusion: As can be seen from Figure 25, if Test 1 and Test 2 result in TRUE,
policy R, is redundant to policy .

3.2.6 Example of Shadow Anomaly Verification

Elements from Table 10 are used to define two information sharing policies. Listing 40
shows ., an existing policy in the agreement and Listing 41 shows R, a proposed
policy to be added. Listing 42 shows the binary representations of the two policies.

Listing 40: Existing policy set for shadow anomaly functional
verification example.

R, : [Deny] [Police.Police_Force_A.
Domestic_Violence_Unit.x] with [*] relationship
[R] [*] of [Child] with [*] context from [
Social_Care.Child_Protection_Agency_B.
Records_Unit.x] with Compliance [x*]

Listing 41: Proposed policy for shadow anomaly functional
verification example.

IRy & [Permit] [Police.Police_Force_A.
Domestic_Violence_Unit.Sergeant] with [«*]
relationship [R] [x] of [Child] with [*] context
from [Social_Care.Child Protection_Agency_B.
Records_Unit.*] with Compliance [x*]

Listing 42: Binary representation of existing policy R, from Listing 40
and proposed policy R, from Listing 41 for shadow anomaly functional
verification example.

R, : [0] [10.10.10.%] with [*] relationship [R]
[*] of [1] with [*] context from [01.01.01.%*]
with Compliance [*]

Ry 3 [1] [10.10.10.10] with [x] relationship [R]

[*] of [1] with [*] context from [01.01.01.%]
with Compliance [x]

Test 1:  As illustrated in Figure 25, the first comparison in the functional verification
stage, Test 1, is to compare the permissions, P, and P, from policies R, and R, to
check if they are the same. This operation is illustrated in the computation below using
the logical relationship, from Equation 2, that if the permissions P, and P, are the
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same, (P, < P,) is TRUE, then the expression ((P, A Py) V (~P; A =P, )) must also
be TRUE.

P, 0
P, : 1
(Pr & Py) = (Pe ARV (~Pr AFy))
((0A1)V (-0A—1))
(P,eP) FALSE

Test 2: Since P, and P, are different, the next comparison in the functional verifi-
cation stage, Test 2, is to compare the conditions, C,, and C), to check if (C,, = C;)
is TRUE. This test, if TRUE, indicates that C, is either equal to, or a subset of, C,
which means that policy R, is shadowed by policy R,. This operation is illustrated in
the computation below using the logical relationship, from Equation 1, that if condition
C,, implies condition C, (Cy, = C;) is TRUE, then the expression (—C,, V C,) must
also be TRUE.

C. ; 10.10.10.XX
c, : 10.10.10.10
Cy=Cp ~Cy V Cy
01.01.01.01 V 10.10.10.XX
L Cy=>Cy TRUE

Conclusion: As can be seen from Figure 25, if Test 1 results in FALSE and Test 2
results in TRUE, policy 2, is shadowed by policy I2,.

3.2.7 Example of Generalisation Anomaly Verification

Elements from Table 10 are used to define two information sharing policies. Listing 43
shows I2;, an existing policy in the agreement and Listing 44 shows R, a proposed
policy to be added. Listing 45 shows the binary representations of the two policies.

Listing 43: Existing policy set for generalisation anomaly functional
verification example.

R, : [Deny] [Police.Police_Force_A.
Domestic_Violence_Unit.Sergeant] with [x*]
relationship [R] [x] of [Child] with [*] context
from [Social_Care.Child_Protection_Agency_B.
Records_Unit.*] with Compliance [x*]

Listing 44: Proposed policy for generalisation anomaly functional
verification example.

Ry S [Permit] [Police.Police_Force_A.
Domestic_Violence_Unit.x] with [*] relationship
[R] [*] of [Child] with [*] context from [
Social_Care.Child_Protection_Agency_B.
Records_Unit.x] with Compliance [x*]
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Listing 45: Binary representation of existing policy R, from Listing 43
and proposed policy R, from Listing 44 for generalisation anomaly
functional verification example.
I [0] [10.10.10.10] with [*] relationship [R]
[*] of [1] with [*] context from [01.01.01.x]
with Compliance [*]
Ry 9 [1] [10.10.10.%] with [x] relationship [R]
[*] of [1] with [*] context from [01.01.01.%*]
with Compliance [x]

Test 1:  As illustrated in Figure 25, the first comparison in the functional verification
stage, Test 1, is to compare the permissions, P, and P, from policies R, and I, to
check if they are the same. This operation is illustrated in the computation below using
the logical relationship, from Equation 2, that if the permissions P, and P, are the
same, (P, < P,) is TRUE, then the expression ((P, A Py) V (~P; A =P,)) must also
be TRUE.

-~ 0
P, : 1
(P, < Py) : ((Py APy)V (=P, AN—Py))
((0A1) V(-0 A 1))
S (P.e P, FALSE

Test 2: Since P, and P, are different, the next comparison in the functional verifi-
cation stage, Test 2, is to compare the conditions, C,; and C,, to check if (C,, = C;)
is TRUE. This test, if TRUE, indicates that C, is either equal to, or a subset of, C,
which means that policy R, is shadowed by policy R,. This operation is illustrated in
the computation below using the logical relationship, from Equation 1, that if condition
C,, implies condition C, (Cy, = C;) is TRUE, then the expression (—C,, V C,) must
also be TRUE.

Co : 10.10.10.10
c, : 10.10.10.XX
Cy=Cp ~Cy V C,
01.01.01.00 V 10.10.10.10
S Cy=Cy FALSE

Test 3: Since the result of Test 2 is FALSE, the next comparison in the functional
verification stage, Test 3, is to compare the conditions, C,, and C,, to check if (C, =
Cy) is TRUE. This test, if TRUE, indicates that C; is either equal to, or a subset of,
Cy which means that policy R, is a generalisation of policy R,. This operation is
illustrated in the computation below using the logical relationship, from Equation 1,
that if condition C, implies condition C,;, (C; = C,) is TRUE, then the expression
(=Cy Vv C,) must also be TRUE.
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Cy : 10.10.10.10

C, : 10.10.10.XX
Co=C, ~Cy V C,
01.01.01.01 v 10.10.10.11
Cy=Cy TRUE

Conclusion: As can be seen from Figure 25, if Test 1 results in FALSE, Test 2 results
in FALSE and Test 3 results in TRUE, policy 2, is a generalisation of policy 7.

3.2.8 Example of Correlation Anomaly Verification

Elements from Table 10 are used to define two information sharing policies. Listing 46
shows ., an existing policy in the agreement and Listing 47 shows I, a proposed
policy to be added. Listing 48 shows the binary representations of the two policies. It
must be noted that, unlike in previous examples, in this example the conditions C, and
Cy of policies R, and R, have different Requester and Owner fields. Therefore,
the conjunction of both these fields will be used in the tests below when comparing
conditions.

Listing 46: Existing policy set for correlation anomaly functional
verification example.

R, : [Deny] [Police.Police_Force_A.
Domestic_Violence_Unit.Sergeant] with [x*]
relationship [R] [*] of [Child] with [*] context
from [Social_Care.Child_ Protection_Agency_B.
Records_Unit.*] with Compliance [x*]

Listing 47: Proposed policy for correlation anomaly functional
verification example.

Ry : [Permit] [Police.Police_Force_A.
Domestic_Violence_Unit.x] with [*] relationship
[R] [*] of [Child] with [*] context from [
Social_Care.Child_Protection_Agency_B.
Records_Unit.Records_Admin] with Compliance [x*]

Listing 48: Binary representation of existing policy R, from Listing 46
and proposed policy R, from Listing 47 for correlation anomaly
functional verification example.

R, : [0] [10.10.10.10] with [*] relationship [R]
[*] of [1] with [*] context from [01.01.01.%*]
with Compliance [*]

R, : [1] [10.10.10.%] with [*] relationship [R]
[*] of [1] with [%] context from [01.01.01.01]
with Compliance [x]
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Test 1:  As illustrated in Figure 25, the first comparison in the functional verification
stage, Test 1, is to compare the permissions, P, and P,, from policies R, and R, to
check if they are the same. This operation is illustrated in the computation below using
the logical relationship, from Equation 2, that if the permissions P, and P, are the
same, (P, < P,) is TRUE, then the expression ((P, A Py) V (=P, A =P, )) must also
be TRUE.

P, 0
P, : 1
(P, Py) : ((PeAPy)V(=Py AN—Py))
((OAT)V (-0 A1)
(Pre Py FALSE

Test 2: Since P, and P, are different, the next comparison in the functional verifi-
cation stage, Test 2, is to compare the conditions, C; and Cy, to check if (Cy = Cy)
is TRUE. This test, if TRUE, indicates that C), is either equal to, or a subset of, C,
which means that policy Iz, is shadowed by policy ;. This operation is illustrated in
the computation below using the logical relationship, from Equation 1, that if condition
Cy, implies condition Cy, (Cy = Cy) is TRUE, then the expression (—~C,, V C,) must
also be TRUE.

Requester Field Owner Field
Cy : 10.10.10.10 01.01.01.XX
Cy : 10.10.10.XX 01.01.01.01
Cy=0C; -Cy Vv Cy -Cy VvV Cy
01.01.01.00 v 10.10.10.10  10.10.10.10 v 01.01.01.11
: FALSE TRUE
Cy=Cp FALSE

Test 3: Since the result of Test 2 is FALSE, the next comparison in the functional
verification stage, Test 3, is to compare the conditions, C,, and C,, to check if (C, =
Cy) is TRUE. This test, if TRUE, indicates that C, is either equal to, or a subset of,
Cy which means that policy R, is a generalisation of policy R,. This operation is
illustrated in the computation below using the logical relationship, from Equation 1,
that if condition C, implies condition C,;, (C; = C,) is TRUE, then the expression
(=Cy Vv C,) must also be TRUE.

Requester Field Owner Field
Cy : 10.10.10.10 01.01.01.XX
Cy : 10.10.10.XX 01.01.01.01
C,=>Cy -C, Vv Cy -Cy VvV Cy
01.01.01.01 v 10.10.10.11  10.10.10.00 Vv 01.01.01.01
: TRUE FALSE
Ce=>0Cy FALSE

Test 4: Since the result of Test 3 is FALSE, the next comparison in the functional ver-
ification stage, Test 4, is to compare the conditions, C,, and C, to check for correlated
fields. For this example, this requires checking that the Requester and Owner fields
of one policy are the same as, or subsets of, the corresponding fields of the other policy
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and that the remaining fields of the former policy are supersets of the corresponding
fields of the latter policy. Formally, this means that for the fields being compared, if for
certain fields (C, = C,)) is TRUE, then (C,, = C,) must be TRUE for the remaining
fields being compared. This operation is illustrated in the computation below using
the logical relationship, from Equation 1, that if condition C, implies condition C,,,
(Cy = Cy) is TRUE, then the expression (—~C, V C,) must also be TRUE.

Requester Field Owner Field
Cy : 10.10.10.10 01.01.01.XX
Cy : 10.10.10.XX 01.01.01.01
Requester,, = Requester, : —Requester, V Requester,
01.01.01.01 Vv 10.10.10.11
TRUE
Owner, = Owner, : —Ownery V Ownery,
10.10.10.10 v 01.01.01.11
TRUE
.. Requester, = Requester,
NOwnery = Ownery : TRUE

Conclusion: As can be seen from Figure 25, if Test 1 results in FALSE, Test 2 results
in FALSE, Test 3 results in FALSE and Test 4 results in TRUE, policies I, and R, are
correlated.

3.3 Conclusion

This chapter defined a structured methodology which is based on the foundational work
of Al-Shaer et al. in [19] and that of Hamed and Al-Shaer in [20]. This includes a de-
tailed discussion of each stage of the methodology, from the declaration of policy field
elements, through to the syntax, ontology and functional verification stages. Detailed
examples are provided throughout this chapter, in order to clearly illustrate the specifics
of each stage of the methodology and demonstrate how it is applied to information
sharing policies.

In their works of [19] and [20] the authors concentrated on developing formal def-
initions of possible anomalies between rules in a network firewall rule set. Their work
is considered as the foundation for further works on anomaly detection, including those
of Fitzgerald et al. [21], Chen et al. [22], Hu et al. [23], among others. Although these
more recent works focus on extending and refining the original research, they are re-
stricted in their focus to the operation of network firewalls. The methodology defined
in this chapter abstracts from the original work the core principles relating to formal
definitions of anomalies within a set of rules. These abstracted principles, through the
use of the structured approach outlined in this chapter, allow anomalies between rules
to be detected in any rule-based system. The methodology defined in this chapter inte-
grates with the novel syntax for information sharing, as discussed in Section 2.2.2, and
outlines a self-contained architecture for information sharing
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Conclusions and Future Work

4 Conclusion

This paper defined a structured methodology which is based on the foundational work
of Al-Shaer et al. in [19] and that of Hamed and Al-Shaer in [20]. This includes a
detailed discussion of each stage of the methodology, from the declaration of policy
field elements, through to the syntax, ontology and functional verification stages. De-
tailed examples are provided throughout this chapter, in order to clearly illustrate the
specifics of each stage of the methodology and demonstrate how it is applied to infor-
mation sharing policies.

In their works of [19] and [20] the authors concentrated on developing formal def-
initions of possible anomalies between rules in a network firewall rule set. Their work
is considered as the foundation for further works on anomaly detection, including those
of Fitzgerald et al. [21], Chen et al. [22], Hu et al. [23], among others. Although these
more recent works focus on extending and refining the original research, they are re-
stricted in their focus to the operation of network firewalls. The methodology defined
in this chapter abstracts from the original work the core principles relating to formal
definitions of anomalies within a set of rules. These abstracted principles, through the
use of the structured approach outlined in this chapter, allow anomalies between rules
to be detected in any rule-based system. The methodology defined in this chapter inte-
grates with the novel syntax for information sharing, as discussed in Section 2.2.2, and
outlines a self-contained architecture for information sharing
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