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Abstract

This paper defines a structured methodology which is based on the founda-
tional work of Al-Shaer et al. in [1] and that of Hamed and Al-Shaer in [2]. It
defines a methodology for the declaration of policy field elements, through to the
syntax, ontology and functional verification stages. In their works of [1] and [2]
the authors concentrated on developing formal definitions of possible anomalies
between rules in a network firewall rule set. Their work is considered as the foun-
dation for further works on anomaly detection, including those of Fitzgerald et al.
[3], Chen et al. [4], Hu et al. [5], among others. This paper extends this work by
applying the methods to information sharing policies, and outlines the evaluation
related to these.



1 Introduction

In an increasingly connected world, data is becoming a key asset, especially within a
Big Data context, where data from different domains can be brought together to pro-
vide new in-sights. Most of the systems we have in-place, though, have been built to
securely keep data behind highly secure environments, and have difficulty in integrat-
ing with other disparate systems. This is now a major barrier to using data in a wide
range of applications. Along with this, information sharing has many regulatory con-
straints, which often disable information sharing across domains, but, with carefully
managed information architectures, it is possible to overcome many of these problems.
An important challenge is thus to support information sharing across different domains
and groups across multiple information systems. In the context of this paper, a domain
is defined as the governance (and possible ownership) of a set of data, which is exposed
to others through well-managed services.

The problem of providing governance around trusted infrastructures is highlighted by
Boris Evelson who outlines that:

“Big data is such a new area that nobody has developed governance procedures and
policies, there are more questions than answers.”

This paper outlines a novel modelling method for information sharing policies using
Binary Decision Diagrams using a syntax defined in [6] and which is currently being
used in a range of information sharing applications in health and social care.
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2 Literature Review

2.1 Introduction

Information-sharing between police and community partner organisations lies at the
very centre of the Intelligence-Led Policing model. However, a number of key barri-
ers need to be overcome to ensure that this sharing occurs within a legal framework
and is proportionate to the goal of the sharing. This chapter outlines a perspective
on the Intelligence-Led Policing model, from its historical origins to the present state,
including recent developments and identification of areas of concern. A number of ex-
amples of information sharing frameworks and a brief outline of their characteristics
is included in order to highlight some of the advantages of collaborative working. The
chapter defines certain key issues affecting enterprise systems interoperability, a key
barrier to information sharing, and proposed measures for addressing these.

2.2 Policies

Policies are sets of rules which govern the behaviour of a system. The correct def-
inition, implementation and audit of policies is essential to ensure that the system is
compliant with its governing rules. High-level security policies are typically defined
by an organisation’s upper management and usually describe the what, or goals, of the
security of the organisation. Without this definition of security goals, it is difficult to
use security mechanisms effectively [7]. The lower-level implementation, or technical
policies, are then created from the overall high-level policy. This is the how of the
organisation’s security policy and it is used to enforce the security policy. The general
term policy is used interchangeably in literature to describe both the high-level poli-
cies, as well as the low-level implementation rules. In this paper, the term policy is
used explicitly to refer to high-level policies while the term rules is used to refer to
lower-level implementation rules. The processes involved in security policy creation
and implementation are illustrated in Figure 1. A useful definition, taken from The Site
Security handbook - RFC2196 [7], of an overarching security policy is:

‘a formal statement of the rules by which people who are given access to
an organization’s technology and information assets must abide’

The principles and guidelines outlined in RFC2196 provide a good reference for sys-
tem administrators and policy decision makers when creating security policies. At its
core is a five-step iterative process detailing the processes for the creation and main-
tenance of security policies. A key element of this is that the definition of a policy is
an ongoing process, with regular reviews and auditing of mechanisms and providing
feedback to improve it. This highlights a fundamental principle that the process of
creation, development and implementation of a policy is an integral part of the design
of a system and is also a continuously evolving process, rather than simply being the
implementation of various security products [8, 9].
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Figure 1: Policy creation and implementation processes.
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2.3 Policy Enforcement

A number of industry standards and frameworks also highlight further principles of
the policy creation process based on industry best practices. Two widely-used frame-
works are Control Objectives for Information and Related Technology (COBIT) and
the ISO27002 Code of Practice for Information Security Management (previously ISO
17799) which provide detailed industry standards in information security management
and audit compliance [10]. A common theme, often emphasised in these guidelines, is
the involvement of end-users in the implementation of policies, and their understand-
ing of the goals the policies aim to enforce. End-users’ awareness and comprehension
of policies is often cited as a key factor in the policy’s successful implementation.
Danchev [11] refers to this as an awareness program which emphasises that even the
most technologically advanced security measures, such as firewalls and intrusion de-
tection and prevention systems, can be rendered useless by careless or misinformed
end-users. As illustrated in Figure 1, defining security policies includes details on how
the integrity, availability and confidentiality of assets belonging to an organisation are
protected. In order to accomplish this, Sandhu et al. state in [12] that policy documen-
tation should contain details of authentication, authorisation and auditing procedures,
which are used to enforce higher policy goals and, often, should also specify the de-
ployment of services including authentication systems, encryption and firewalls as part
of the mechanisms used to enforce these policies. Samarati and de Vimercati [13] also
show that, typically, the authorisation aspect of policy definition is usually of primary
importance as it specifies who has access to what resource. Once this has been speci-
fied, the authentication policy is then used to reinforce this by defining what criteria a
user needs to satisfy to ensure that they are who they claim to be. Finally, the auditing
policy allows logs to be kept of any relevant action carried out by users on objects.
This paper focuses on the authorisation aspect of policy definition as it forms the core
of higher-level policy, and because both the authentication and auditing aspects of pol-
icy definition are inherently dependent on the authorisation conditions. Sandhu and
Samarati refer to authorisation in [14] as the specification of what one party allows an-
other to do with respect to the resources and objects mediated by the former. In terms
of information sharing, this relates to ensuring that authorised individuals can access
resources and that others cannot. It also means ensuring that requests to access a spe-
cific resource are only granted if the request is permitted in the policy definition. In
terms of networks, the most commonly used access control mechanisms are firewalls
and filtering routers which control access to resources by filtering network traffic, only
allowing access that is specified by the security policy [15]. It is, however, difficult to
ensure that lower-level implementation policies are always compliant with their higher-
level security goals. This issue is frequently aggravated in multi-domain environments
where policies need to be translated, interpreted and applied between the different do-
mains involved, such as those of the police and various community partners. A possible
solution to this, as described by Susan Hinrichs in [16], is to define the goals of a policy
at a high-level and decouple these from the specifics of its implementation, which are
defined at a lower-level. For example, Hinrichs states that a high-level policy statement
may be in the form shown in Listing 1. Such a statement does not identify implemen-
tation details, such as which machines are part of the Engineering Department or on
what port the server is listening. High-level policies, therefore, need to be translated
into a format which is understandable by policy enforcement devices, such as routers
or firewalls. Listing 2, for example, shows a firewall rule derived from the higher-level
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policy shown in Listing 1.

Listing 1: Example of a high-level policy.
Engineering Department should have access to the

web server

Listing 2: Example of a firewall rule derived from Listing 1.
permit TCP traffic on port 80 from 192.168.56.0/24

to 128.45.67.34/32

Abrams and Bailey also propose an approach in [17] which is similar to Hinrichs’
top-down approach. They suggest the use of a layered concept, where a policy is first
defined at a high-level and then abstracted at a number of lower-levels according to
layers. Further, they suggest that users are grouped at different layers based on how
the policy affects them. The higher-level policy can then be abstracted according to
the layer at which the user resides. This approach allows the policy to be framed in a
context that is relevant to the user and in terms with which the user is familiar. Abrams
and Bailey suggest the following three-layered approach:

1. Top-level management.

2. Computer users.

3. Process level.

The management level is the highest level where the policy is defined in terms of its
goals. In an enterprise, the management will, typically, view the policy as it affects the
entire enterprise and define it in broad and general terms. At the computer user level,
Abrams and Bailey suggest that the policy be abstracted based on the job functions per-
formed by individual users. For example, certain users may require access to a system
which allows them to update customer details, while other users may require access
to payroll systems. Hence, the policy at this layer is abstracted so that it is defined in
terms that are relevant to the specific user and the function they perform. The process
layer forms the lowest level of this hierarchy, where the policy is abstracted in terms of
how data is handled by individual systems, such as a customer management or payroll
processing system. This would typically also include firewall and routing specifica-
tions detailing how data is filtered, routed and handled by the systems involved. The
top-down approach suggested by Abrams and Bailey in [17] and Hinrichs in [16] has
the advantage that policies are represented at a high-level using syntax and expressions
which are close to natural language, such as written English. The motivation for this
is to make the initial, high-level policy statements as clear and accessible to a human
reader as possible. Such high-level abstractions also allow policy statements to be able
to capture specific nuances, or intents of the administrator. A policy statement at a
high-level, therefore, defines the policy in terms of its goal without being biased to
its method of enforcement. This statement can then be interpreted by different appli-
cations and devices based on their own specific enforcement mechanisms. High-level
policies, therefore, should only need to be defined once and can subsequently be trans-
lated to their specific enforcement points. Hence, a range of diverse policy enforcement
mechanisms, including vendor-specific devices which use different syntaxes, may be
used within a single domain as each device would derive its own rules from the same
high-level policy. This mechanism ensures that although various policy enforcement
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mechanisms may express a specific policy differently, based on their own lower-level
languages, they should be uniform in their policy interpretation and enforcement. A
further benefit resulting from decoupling the mechanism for policy definition from the
method for policy enforcement is that business rules, which change frequently and re-
quire continuous management, can be administered more efficiently. This is difficult
to monitor in an environment where policy definition and policy enforcement are not
decoupled. Fraser et al. outline a five-step iterative process in their Site Security Hand-
book [7] for policy creation and maintenance. One central component of their work is
the definition of a security policy as a continuously evolving process. This implies that
policies are audited and reviewed regularly to ensure that mechanisms for providing
feedback and improvements are in place. The authors, therefore, see policy formali-
sation as an intrinsic aspect of the design of a system, an observation echoed by other
researchers including security expert Bruce Schneier [8]. They also echo the observa-
tions of Cheswick et al. [9] that policy formalisation is an evolving process, requiring
regular review, of which the actual implementation of security products is simply the
consequence.

2.4 High-Level Policy Approaches

The development of effective methods for defining formal policies has been an active
research area since the 1960s, which saw the development of strategies for securing
mainframes and large-scale industrial computers. With increasing reliance on more
complex systems, the area of policy-based management (PBM) [18] has seen signif-
icant interest not only from its traditional computer-security discipline, but also from
the more diverse systems management community [19]. Damianou et al. identify a key
driver for this in [20] as being the increased dependency of large-scale business pro-
cesses on policy-based systems, where business goals, service-level agreements and
trust relationships within or between enterprises, all have an impact on defining poli-
cies. However, as Susan Hinrichs identifies in [16], there is often a conceptual gap
between high-level policy statements and their translation to respective lower-level en-
forcement configurations.

2.4.1 Role-Based Policy Definition

One area of exploration in addressing the gap between high-level policy statements and
lower-level enforcement configurations is the development of policy specification lan-
guages based on formal logic. The attractiveness of logic-based languages is in their
unambiguous mathematical formalism. This makes these languages amenable to mod-
elling and analysis. Chen and Sandhu [21] describe the need for Role-Based Access
Control (RBAC) constraints to be expressed in an unambiguous and precise manner
and use mathematical logic notation. They describe RBAC Subjects, Privileges, Roles
and Sessions in first order logic format. Hayton et al. [22] also use a logic-based lan-
guage in the Role Definition Language (RDL). Their method uses roles as credentials
and is based on the definite clause property of Horn clauses. In [23] Joshua Guttman
proposes the Network Policy Tool (NPT). The NPT tool uses a high-level policy lan-
guage, which is decoupled and independent of device configurations, to describe an
enterprise’s packet routing policy and defines where in an organisation’s network spec-
ified packets can be routed. The tool describes the relationship between entities, such
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as network devices and users, using a description of the networks topology. These are
specified using a Lisp-like policy specification language and modelled using a bipartite
graph which represents network traffic routing devices, as well as the different areas
of the network, using nodes. The undirected edges between the nodes represent the
interfaces of the devices connected to the different areas. Each interface can have an
associated filtering posture created, in both in-bound and out-bound directions. List 3
shows an example of NPT code specifying a corporate network. These postures are
abstract representation of the bi-directional packet filtering that is enforced by rout-
ing and firewall devices. Although the NPT tool is useful as a reference mechanism
for administrators creating lower-level specifications, it does not generate the device
configurations itself.

Listing 3: Example of NPT-generated code specifying a corporate network [23].
(areas
;; name distinguished hosts
(external)
(periphery proxy-host)
(engineering eng-mail-server db-server)
(financial financial-mail-server)
(allied))
(connectivity
;; router name areas
(per/ext-router periphery external)
(per/eng/fin-router periphery engineering
financial)
(eng/allied-router engineering allied)
(allied/ext-router allied external))
(services
(telnet tcp 23)
(ftp tcp 21)
(ftp_data tcp 20) ...)

Guttman documents in later work [24] how aspects of the NPT tool can be improved
upon. Specifically, he mentions how administrators find it difficult to use the abstract
policy representations generated by NPT to model an existing network policy. He
proposes the use of the Atomizer tool in [25] which allows administrators to generate
NPT specifications directly from Cisco access control lists. One major advance of
the Atomizer tool in achieving this is the use of Binary Decision Diagrams (BDD)
[26]. Guttman uses BDDs to represent criteria which can then be used to classify
network packets and, hence, be used to describe existing configuration files. BDDs are
discussed in greater detail in Section 2.5.

2.4.2 Logic-Based Formal Policies

Another approach uses the Z-notation logic-based language which uses a combina-
tion of formal logic and set theory. Boswell [27] uses Z-notation in producing logic-
based Mandatory Access Control (MAC) and Discretionary Access Control (DAC) for-
mal security policy model for the NATO Air Command and Control System (ACCS).
Hoagland et al. [28] take a different approach with the introduction of the Language for
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Security Constraints on Objects (LaSCO), a formal policy language that expresses con-
straints based on graphs. The main advantage of this method is that it provides a visual
representation of policies, which the author claims is easier to understand than complex
formal logic statements. However, this approach is limited in that it is unable to handle
obligation policies and often requires additional information, usually expressed as text
in conjunction with graphical representation. While the graphical-textual hybrid rep-
resentation makes LaSCO more expressive than the purely graphical version, it adds
significant complexity. Listing 4 shows a sample of Boswell’s Z-notation code which
defines the basic Bell-LaPadula [29] security concept of no read up. This concept stip-
ulates that no user is allowed to read from an object with a classification higher than
the user’s security clearance, which is a common requirement for classified informa-
tion. Figure 2 illustrates a similar Bell-LaPadula concept in Hoagland et al.’s graphical
representation.

Listing 4: Z-notation sample [27] defining Bell-LaPadula no read up concept.
SystemElements
∀ proc : ProcessId; obj : ObjectId; mode :

AccessMode‖
(proc, obj, mode) ∈ cat ∧ mode ∈ ReadControlModes •
(clearanceOf proc) dominates (secLevelOf obj) ∨
(proc, obj, mode) ∈ activeTwoPersonRuleOps

type = “user” &&
sec_level = $UL

type = “file” &&
sec_level = $FL

method = “read”
$UL = $FL

Figure 2: LaSCO policy graph [28] defining Bell-LaPadula no read up concept.

In [30], Bartal et al. propose another tool which takes a top-down approach called
Firmato, a firewall management toolkit. Firmato uses a high-level policy language
to create a vendor independent global policy, which can be compiled into individual
vendor specific device configurations. The network topology is first defined in the high-
level policy definition language, which is then translated into an entity-relationship
model using a role-based model of the access policy and the relationship to the network
topology. A core strength of the Firmato system, and an important improvement over
Guttman’s work in [24], is that it allows high-level policies to be defined independently
of a network’s topology. The advantage of this is that changes to the topology do not
mean that the policy has to be reworked. Other motivations behind the system were
to abstract the policy away from low-level languages, enabling vendor-independent
management of firewall configurations, and to automatically generate configurations
across multiple filtering devices from the high-level global policy. Firmato uses the
Model Definition Language (MDL) as its high-level language. A sample of MDL,
shown in Listing 5, defines network services and hosts.

Listing 5: A sample of Firmato Model Definition Language (MDL) [30].
<service-name> ‘=’
<protocol-base>
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‘[’<Dest-Port-No-Range> ‘,’
<Src-Port-No-Range>‘]’
<host-name> ‘=’ ‘[’ <IP-Addr>
‘]’ ‘:’ <role-grp-name>
<host-grp-name> ‘=’ ‘[’
<IP-Range> ‘]’ ‘:’
<role-grp-name>

Mayer, Wool, and Ziskind proposed FANG, firewall analysis engine [31], which im-
proved on the earlier work by Bartal et al. and the Firmato system [30]. FANG is
actually an analysis engine which runs on top of the same Firmato policy model. It
can be used to test a policy before it is deployed and could also be use to audit a de-
ployed policy. It has the functionality required to build the model from existing filtering
configurations, and so it is classed as a bottom-up system. It can take Cisco router con-
figuration files or Lucent firewall files as input to create the policy model and uses a
separate parser module for each filtering device it supports, making the system scalable
to multiple vendor platforms. The system works on multiple filtering devices, and so
a global policy can be tested. A network topology has to be entered initially and this
is done manually using the Model Development Language (MDL), as is the case with
the Firmato system. The queries which can be performed on the FANG system are
based around a triple of source host group (source network address range), a destina-
tion host group (destination network address range) and a network service. Queries can
be created such as (*, web servers, http services) to find the answers to questions, such
as ‘which systems have access to the organisations web servers’. A GUI was created
to perform queries, and drop down menus implement the query triples. An example,
taken from Mayer et al. in [31], shows the result of a query asking ‘which services can
get from the internal network to the DMZ network’ in Figure 3. Another strength of

Figure 3: FANG interface displaying results of a query [31].

the FANG system is that it can also be used to reverse engineer a model of a policy
from firewall configurations. The administrator can then query the policy to become
familiar with it before changes are made, or can check that the policy matches the over-
all security requirements. This auditing system has been improved on, by the creation
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of the Lumeta Firewall Analyser [32, 33]. This improved on the FANG system by au-
tomatically creating the queries needed to analyse the firewall policy model. Lumeta
generates what the authors describe as the most interesting queries, and then displays
the results of these queries. This attempts to highlight possible risks in the firewall
policy and limits the need for user input to the system. The authors recognised the
fact that one of the problems with their earlier system was that the administrator had
to decide which queries to ask the system, and then create the queries manually. This
is described as a significant usability issue with FANG. In the FANG system, the ad-
ministrator has to enter the network topology description manually, using the Firmato
MDL language. The requirement to use MDL, however, was identified as a consider-
able problem during beta testing and, in the new Lumeta system, the network topology
can be created automatically using the network routing table. The graphical interface
to FANG, shown in Figure 3, was also replaced as it was deemed difficult to use by
testers. This has been replaced by a batch process which performs a comprehensive
simulation of traffic through the firewall policy and reports on this. This is interesting
as the administrator users found the original Firmato CLI interface easy to use, and yet
it was replaced with a GUI. This shows the design was perhaps not tailored to the type
of user correctly [34]. The output from the system is now a report in the form of web
pages, with the ability to drill down into more detail if the user needs to. Using HTML
to provide this type of flexible reporting is described as an ideal mechanism for security
analysis tools. However, one significant problem with the FANG system is that it can
only translate Lucent managed firewall, which does not have a large market share. The
Lumeta system has added parser modules for CheckPoint firewall and Cisco access
control list (ACL) configurations, so heterogeneous networks could be modelled, and
therefore the product would be useful to a wider audience. The low-level configura-
tions are abstracted to the Lucent managed firewall-based language used by Firmato
and FANG, and the analysis query engine uses this as an input. The Lucent Managed
Firewall language was used as it is contains high-level constructs and is easy to parse.
The Lumeta architecture [33] is shown in Figure 4. A query-based system, similar

Figure 4: Lumeta architecture [33] illustrating data flow through the firewall analyser.

to the FANG system [31], was developed by Marmorstein and Kearns in [35] for the
Linux iptables firewall. The ITVal system uses multi-way decision diagrams (MDDs)
rather than binary decision diagrams (BDDs), but operates in much the same way. The
authors’ main motivation was to provide a simple query tool to aid in firewall configura-
tion, so that an administrator could test a firewall configuration before it was deployed.
The query language is designed to be simple and based on natural language. A single
rule set can be read-in by the tool and an MDD model built. The queries are created in
an English-based query language and return a simple textual answer, in a similar way
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as the FANG system does. However, a common problem with analysis systems using
queries is that they have to be created by the administrator. The system administrator
has to learn another query language, as well as knowing which queries to perform.
The onus is on the administrator to work out what needs to be queried and when the
query should be executed. Further, as a consequence of using MDDs, the number of
possible decisions that can be made at any single node becomes variable. This is not a
significant issue for the ITVal system, as it is designed for use in network environments
where the rule syntax is strictly controlled and the number of bits required to represent
a field does not change. Within the context of this paper, however, where information
sharing policies can have multiple, user-defined fields which can, in turn, be of any
length, using MDDs becomes unfeasible.

2.4.3 Graphical Approaches to Policy Formalisation

The Cisco Secure Policy Manager (CSPM) [36] is a policy management tool which
incorporates aspects of the system defined by Hinrichs in [16]. The CSPM provides
policy administrators with a graphical interface which uses a tree view to depict net-
work topology information and configure policy. The topology tree represents the en-
forcement devices, and areas between devices, and contains a policy structure with the
individual policies defined in an abstract policy language. These can then be applied
to the enforcement devices in the topology tree to enforce policies between network
zones. Figure 5, from [36], shows the interface to the CSPM tool. The Cisco CSPM

Figure 5: Cisco Secure Policy Manager (CSPM) interface [36].

tool generates configurations for routers and firewalls by first applying high-level poli-
cies to each specific device. This entails identification of rules which are applicable to
an individual device and pruning rules which are not applicable. In this way, devices
only receive rules which are relevant to them. This is a significant enhancement on
previous systems which either apply all rules to all devices, or perform very minimal
pruning. Secondly, the set of rules identified as being applicable to a specific device
are evaluated against the physical resources available to that device. This evaluation
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would take into account factors such as processing power and memory available to
the device, and whether these are adequate for the device to enforce the rules applied.
Another factor which is part of this evaluation process is rule set anomaly analysis.
This includes checking for conflicts and anomalies in the rule set. For example, if
two rules specify the same source address, destination address and service, but dif-
ferent actions, the CSPM too would generate a notification to the administrator. The
administrator can then decide to take corrective action, such as removing one of the
two conflicting rules from the rule set. Once the administrator has taken the corrective
action needed, the CSPM tool creates an intermediate, abstract, rule set for each de-
vice and stores it in a database. The database is used to store semantics of the device
configurations to be created, but leaves the actual generation of specific configurations
to an agent which reads the generic filter rules, and creates low-level rules in the de-
vice’s native configuration language. This process allows different devices to be used
while only requiring the final stage to be repeated to create configurations for the new
devices. Although this is a Cisco-specific closed system, it could, in theory, be used to
create other low-level vendor device configurations. Uribe and Cheung [37, 38] pro-
pose a similar mechanism to that proposed by Guttman [23], which generates low-level
configurations from high-level policies. Their approach extends Guttman’s approach
of modelling and configuring firewalls to include intrusion detection systems as well.
Enck et al. propose a configuration management system called PRESTO [39] which
makes use of templates to create a hybrid scripting language, rather than introducing
an entirely new language for high-level policy syntax definition. The templates are
then used to generate low-level device configurations at run-time. Damianou et al. pro-
pose the multi-purpose policy specification language, Ponder [18]. Ponder is designed
to meet multiple needs including providing a means of specifying security policies
that map onto various access control implementation mechanisms, including firewalls,
operating systems, databases and Java. Ponder has the capability to specify the entire
high-level security policy, including access control policies, user authorisation policies,
and traffic filtering policies. However, Ponder is more complex than other approaches
mentioned and requires extensive training and familiarity to construct effective filtering
policies. Another high-level policy modelling language, FLIP, is proposed by Zhang
et al. in [40]. FLIP also allows high-level policies to be compiled into low-level de-
vice configurations. The scope of the FLIP system is global and can manage firewalls
across an entire network. FLIP generates conflict free rules automatically, by perform-
ing conflict analysis as it generates the low-level device configurations. This improves
on most of the systems described, which would need to be analysed separately for rule
conflicts. Although this allows configurations to be generated more automatically, the
integration of multiple functionalities together, as is proposed in FLIP, implies a re-
duction in its flexibility [34]. Listing 6 shows an example of a high-level policy which
allows the use of ‘Yahoo!’ instant messaging and Windows remote desktop service
(tcp, port 3389) from the 140.192.* network, while blocking an on-line game on port
3724 and web proxy cache squid, which can be exploited by Trojans, on port 3128. In
the example shown, the administrator has chosen to block all traffic on ports between
3100 and 3800.

Listing 6: An example of a high-level policy definition in FLIP [40].
service yahoo_msg = tcp.[port=5050],
torrent = tcp.[port >= 6881, port <= 6999];
policy_group student_policy
{
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incoming:
yahoo_msg { deny any }
torrent { deny any }
outgoing:
http { allow any }
}
policy_group dom_std_policy extend student_policy
{
incoming:
yahoo_msg { allow any }
tcp.[port>=3100, port < 3800] { deny any }
tcp.[port=3389] { allow 140.192.* }
}

Pozo et al. propose another high-level policy language, AFPL in [41] and AFPL2 in
[42], resulting from work at the University of Seville. This, again, intends to fill the
gap between high-level network security policies and low-level firewall languages. It
has been designed to be simpler than some of the preceding high-level languages while
still retaining the functionality needed to describe filtering policies, and can also be
automatically compiled into leading vendor firewall filtering languages. A similar pro-
posal by Hinrichs et al. in [43] is the Flow-based Management Language (FML). FML
is a formal, high-level network policy specification language designed to replace the
low-level policy rules by controlling the flows of data within the network, regardless
of the physical devices that they flow through. After specifying a policy, FML can
be translated to low-level network hardware configuration rule sets automatically, us-
ing tools provided by the authors. This work contributes an extensible, adaptable and
efficient mechanism for controlling network access. A number of policy verification
initiatives are based on the Extensible Markup Language (XML). The Netconf protocol
proposed by Bierman et al. in [44] arose out of recommendations made at a workshop
of the Internet Engineering Task Force (IETF) in 2002. It was designed to be a simple
mechanism through which device configurations could be managed using an XML-
based system [45]. The entire, or partial, XML encoded configurations, of a Netconf
enabled device can be retrieved, updated, and deployed back to the device by remote
management applications. The protocols control messages are encoded in XML, as
well as the data being sent. Major network device vendors, such as Cisco and Juniper
Networks, now have XML-based agents in their latest products and are participating
in Netconf standardisation [46]. Cisco Netconf configuration is detailed in [47] and
Juniper in [48]. Although XML-based systems have many advantages over more tra-
ditional low-level languages, as highlighted by Munz et al. in [49], complex policies
framed in XML are still not easily read and understood by non-expert human end users.
From the perspective of information sharing between community partner organisations,
this presents a significant hurdle to effective collaboration.

2.5 Policy Definition and Binary Decision Diagrams (BDDs)

A number of policy definition approaches are inspired by packet filtering techniques.
Testing of packet filtering rule sets was explored by Hazelhurst et al. in the late 1990s
[50]. The motivations for their work included the analysis of low-level rule sets to
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identify and understand their dependencies on the high-level policies that they imple-
ment. A further area of investigation, as explored by Chomsiri et al. in [51], centred on
the performance advantages of using Binary Decision Diagrams (BDDs) instead of the
traditional methods of processing rules sequentially. Their work developed a query-
based system to analyse rule sets. BDDs were used to represent firewall and router
access policies. Each rule in the rule set can be converted into a Boolean expression
which is then combined in a BDD. Queries are used to pose questions about the rules,
which can then be answered using the BDDs. An example of these ‘what if?’ queries
might be ‘which destination addresses can packets reach from a source address and a
certain port?’. The user can analyse, and so test, a policy by querying the rule set in
various ways. This can be used to validate and explore the policy before deploying
the rule set onto filtering devices. The language used to specify the queries is a func-
tional language (FL), and the output is a textual representation of the query answer.
The FL query language is low-level and, often, difficult to use for the system admin-
istrator when creating queries. This was recognised, and the system was improved to
include a graphical interface for easier querying of the policy in [52]. The authors also
recognised that the best interface was one for visualising important information about
the rule set, and for basic querying, but a textual interface was better suited for an
advanced user to develop more powerful queries. The scope of the system described
by Hazelhurst et al. [50] only extends to a single rule set, but later research expanded
query-based systems to cover entire networks. The primary analysis mechanism is the
manual query and answer system, but a basic rule set conflict analysis process was also
developed. This automated the task of detecting redundant rules in the rules set prior to
deployment and seems to be one of the first systems to perform conflict analysis within
rule sets and is often cited by other research in the area. A further key finding of the
work carried out by Hazelhurst et al. [50] and a key motivation for this paper, centres
on the performance advantages offered by the use of binary decision diagrams (BDDs)
over that of sequential processing of access rules, as used by most firewall and router
packet filtering devices. The following sections provide an overview of packet filter-
ing, as utilised by most firewall and routing systems, and identify areas where BDDs
can be used to improve packet filtering system performance. Packet filtering devices,
including routers and firewalls, operate at Layer 3, the network layer, of the Open Sys-
tems Interconnection (OSI) model, as illustrated in Figure 6. Devices operating at this
level have no way of interpreting high-level security policies and usually only inspect
the IP header of a packet to make filtering decisions. Security policies designed to be
enforced by devices operating at this layer, therefore, need to be expressed in terms of
the packet’s protocol and source and destination IP addresses. Devices inspect packets
passing through them and will attempt to match the relevant fields in a packet’s header
to specified rules. If a rule match is found, the devices undertake the action, either per-
mit or deny, specified by the rule. If no rule match is found, the device denies the packet
from passing through. Packet filtering devices are relatively inexpensive to implement
[53] and have found widespread use in firewall and routing implementations. Devices
using packet filtering have also seen better performance results [54] than application-
level [55] or transport-level firewalls. The security rules which govern the behaviour
of packet filtering devices are typically structured in the form of an access-control list,
and are usually evaluated sequentially in a top-down fashion. Thus, whether the packet
is permitted to pass through or denied depends on the action specified by first rule
which matches the packet’s relevant header fields. Although this structure allows for
the uncomplicated representation of rules, it relies heavily on their correct ordering.
Further, administrators need to be aware of the potential interaction between rules in
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Figure 6: Open Systems Interconnection (OSI) reference model.

an access-control list and possible anomalies which can result from mis-configuration
and can potentially cause devices to function incorrectly. As Adi Attar identifies in
[56], devices represent access-control lists internally as a linear set of rules. The de-
vice’s lookup process, which is the process used to determine whether or not a packet
matches a rule, entails a sequential application of each individual rule specified in the
access-control list to the packet. This process continues until a matching rule is found
or until all rules in the list have been checked. If a matching rule is found, the action
defined by that rule is taken. However, if no matching rule is found, the default rule
applied is usually a deny passage rule. As Cheswick et al. identify in [9], the look-up
process must be repeated sequentially for each packet, as no contextual information
is retained by the inspecting device. Cheswick et al. in [9] and Attar in [56], both,
highlight that the performance latency resulting from sequential lookup process is pro-
portional to the size of the access-control list. A list with a large number of rules would,
therefore, affect the performance of a system much more significantly than a list with
a smaller number of rules. A method suggested by Oppliger in [53] and Cheswick et
al. in [9] to improve overall performance and mitigate against latency effects is to re-
order access-control list rules, such that the most often matched rules are located near
the top of the list and the least matched rules located lower in the list. However, as
Chapman notes in [57], re-ordering of rules in an access-control list is a complex and
error-prone process since the order of rules, and potential conflict between rules, has
a significant influence on the behaviour of the system. Other research has also been
directed at development of methods that seek to address the performance issues result-
ing from sequential rule processing. In [56], Attar provides an overview of some of
these proposed methods, broadly categorised as using either table-driven approaches
or using specialised data structures. Table-driven methods include recursive flow clas-
sification (RFC) [58], cross producting [59] and range matching [60], while proposed
specialised data structures approaches include the grid of tries [61], expression trees
[62] and decision graphs [63].
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2.5.1 Table-Driven Packet Filtering Approaches

Table-driven approaches to improve packet filtering classification mainly use algorith-
mic techniques which can represent access-control lists in tabular form. To achieve this,
the algorithms rely on identification of specific patterns in the access list rules. For this
reason, table-driven approaches tend to yield better performance results when applied
to access-control lists which mainly contain similar rules but not to lists in which rules
are dissimilar. Gupta and McKeown describe a table-driven approach called recursive
flow classification (RFC) in [58]. The RFC approach essentially uses a multi-stage
classification of rules that is able to filter one million packets per second in software
and up to 30 million packets per second, in optimised hardware. Their proposed al-
gorithm involves classification of rules which contain similar fields into classes and
associating each class of rules with an identifier, classID. The algorithm then maps S-
bits of the packet header to T-bits of the classID, where T = logN , T << S and N is
the number of rules. The authors suggest that a quick way of achieving this mapping
would be to pre-emptively compute the value of classID for each of the 2S different
packet headers. Although this would achieve a mapping in one single memory ac-
cess step, it would require very large amounts of memory. Hence, the authors suggest
recursively performing the same mapping over several stages where each successive
stage reduces the target rule set size to achieve a match. Due to the classification algo-
rithm, as illustrated in Figure 7, relying on identifying similarities between fields, RFC
tends to yield better performance results on access-control lists with a large number
of similar rules which can be grouped into classes. However, where the target access
lists contains dissimilar rules, an increase in the number of rules in the access list re-
sults in an exponential increase in the memory required to process it which, in turn,
causes significant deterioration in performance. Srinivasan et al. also propose a sim-
ilar approach in [59] where the rule’s syntactical structure is used to mitigate against
exponential memory requirements. Their method, similar to that proposed by Gupta
and McKeown in [58], utilises a pre-emptive conversion of rules in an access-control
list to generate cross-product table. Their method is based on a decomposition-based
algorithm which utilises successive prefix matching of rules over a number of steps.
This method relies on at least two steps where, initially, the longest prefix in the packet
header field is matched and, secondly, using the cross-product of the results of the pre-
fix match to determine the target rule. However, due to the multiplicative nature of the
cross-product calculations, the table resulting from the algorithm is often extremely
large and requires, either, very large memory space or long lookup times. In [60], Lak-
shman and Stiliadis attempt to address performance issues resulting from the sequential
processing of rules by using bit-parallelism. Their algorithm defines a set of rules of
size N in K-dimensional filter space. This process relies on a two-stage process where,
initially, bit vectors of all rules for each field are calculated and, secondly, the rules
most likely to complete the header are identified. The second stage is completed by
calculating the bit vectors corresponding to each header field and then computing their
common intersection. The first set bit in the resulting bit vector is used to locate the
position of the applicable rule. Although use of the bit-parallelism technique yields bet-
ter performance over sequential rule processing, it generally produces most significant
improvements when used in conjunction with specialised parallel-processing hardware
implementations. However, as with all approaches which make use of pre-processing,
using bit-parallelism still suffers from poor update times.
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Figure 7: Illustration of packet flow in the RFC algorithm [58].
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2.5.2 Packet Filtering Approaches Using Specialised Data Structures

Packet filtering approaches which seek to address sequential rule processing perfor-
mance issues tend to use graph-based techniques to represent access-control lists. Hence,
they are less sensitive than table-driven methods to a device’s internal representation of
the access list. In [61], for example, Cheung and McCanne, propose the Grid of Tries
solution. The define a trie as a tree-based data structure, based on Edward Fredkin’s
work in [64]. Each node in a trie has one or more children and edges to each one
correspond to different bit sequences. Tracing a path from the root of the trie to any
specific node would, therefore, yield a distinctive sequence of bits for that node. In their
implementation, Cheung and McCanne extend the trie structure to two fields with pos-
itive results. However, their solution does is not easily extensible to multi-dimensional
filters with greater number of fields. The work of Mogul et al. in [62] forms semi-
nal contribution to packet filtering using the technique of representing access-control
list rules as expression trees. The authors describe the technique as kernel resident,
protocol-independent packet demultiplexing which functions as a programmable ab-
straction of a Boolean predicate function. This process can then be applied to a packet
stream in order to filter a defined subset of the stream. Their original packet filter was
known as known as the CMU/Stanford packet filter or CSPF and was based on a stack-
oriented virtual machine, where selected packet contents could be pushed on a stack
and Boolean and arithmetic operations could be performed over these stack operands.
A drawback of this method is that repeated computations may be needed to compute
the Boolean expression used to represent the packet header. This expression must then
be matched to the expression tree representing the list of rules in order to locate the de-
sired target rule, if one exists. However, this process causes a linear growth in lookup
times as the number of rules in the access-control list grows. In [63], Decasper et
al. seek to improve rule lookup performance times through the use of directed acyclic
graphs (DAGs). Their approach uses tables of filters, where each filter represents a
field in the packet header. A key advantage of this approach is that the size of the filter
table is equivalent to the number of fields being checked. Hence, lookup times should
be dependent on the syntax of rules but, theoretically, independent of the number of
rules in an access-control list. Although the authors list fast packet classification times
achieved through that this approach, they do not mention the memory required for this
process. Due to the lack of comparative testing and the scarcity of analytical results
of approaches to improving on the performance issues inherent in sequential rule pro-
cessing, it is difficult to make definitive comparisons. However, performance results
indicate that those approaches that make use of specialised data structures tend to yield
better performance results than those approaches that are table-driven. For this reason,
this research uses binary decision diagrams (BDDs) which is also a specialised data
structure approach and is closely related to the Grid of Tries method proposed in [61].
However, as noted by Attar in [56], the BDD approach has the advantage that it pro-
vides more control over the order in which bits in the packet are inspected which could
be defined with a specific field order in mind and, hence, provide faster lookup times
while avoiding redundant checks. The BDD approach also has the advantage over the
Grid of Tries method in that it is not restricted in the number of fields that it can filter.
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2.6 Firewall Rule Set Management Tools

The work by Ehab Al-Shaer and Hazem Hamed at DePaul University in Chicago has
contributed greatly to research in the areas of policy modelling and analysis. Al-Shaer
and Hamed have been the main contributors with over a dozen publications between
them. Their first research into policy analysis focused on auditing legacy firewall
policies to automatically discover conflicts and anomalies in firewall policies. This
anomaly checking can also assist administrators when editing the deployed policies
[65, 66]. The rule set conflict detection aims to highlight possible problems in a rule
set, based on the order of the rules and the dependencies between rules resulting from
rule ordering. For example, a more general rule before a more specific rule in a rule set
would mean the more specific rule would never be reached. The more specific rule is
classified as shadowed by the first rule if the filtering actions taken are different (pass
and drop), or redundant if the actions are the same (for example, both rules pass the
packet). These are classed, by the authors, as rule set anomalies [66]. The firewall pol-
icy advisor (FPA) tool was created based around a formal model of the firewall rules
and the relationships between them. Modelling of the filtering policies is done using
binary decision diagrams (BDDs) and algorithms have been created to detect anoma-
lies in the rule set model. To prove the concept, the authors demonstrate a five tuple
filtering syntax, using protocol type, source IP address, source port, destination IP ad-
dress and destination port, to describe the filtering rules used as input to the system.
These five tuples, along with the additional rule order and action fields, map directly
to current low-level filtering languages such as Cisco access control lists (ACLs). The
format of the five tuple filtering rule is shown in Listing 7. The literature only shows
examples of these commonly used filtering fields, but the authors state this could easily
be extended to include any other filtering fields from low-level languages [65]. This
could be extended to include the filtering options available in modern low-level filter-
ing languages, such as Cisco ACLs or Linux IP Tables. Note that the filters used in the
examples only use classful ranges of IP addresses, and classless ranges would need a
more sophisticated wildcard specification. Al-Shaer and Hamed define all the possible
relationships between rules, which are then proved mathematically to be the union of
all possible relations. Details of how anomalies within rule sets are defined are covered
in Section 2.6.1.

Listing 7: Example of a high-level policy.
<order> <protocol> <src_ip> <src_port> <dst_ip> <

dst_port>
<action>

In [1] Al-Shaer and Hamed describe an example policy rule set, as shown in Figure 8.
This rule set and the relations within it are then modelled as a BDD. This is then repre-
sented as a policy tree, with nodes on the tree representing filtering fields, and branches
being the values. Each path through the tree represents a rule in the input rule set. This
model was chosen, as the rule set and the anomalies can be visualised by the users. An
example of this type of tree, taken from [1], is shown in Figure 9, which illustrates the
four anomaly types of redundancy, shadowing, generalisation and correlation. Section
2.6.1 offers a further detailed discussion on these anomaly types. Algorithms used to
detect any anomalies within the rule set are then run, and can be displayed to the user
in the FPA tool interface. The system provides a graphical interface which can show
the policy tree and any rule set anomalies. The interface is shown in Figure 10, which
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Figure 8: Example of policy rule set [1].

is taken from [65]. The policy tree is shown in the left hand pane, and the discovered
anomalies in the right hand pane. The rule set is shown in the bottom pane with the
conflicts highlighted. The FPA tool also allows the user to maintain the rule set, by
inserting, modifying and deleting rules. As the user edits the rules, the tool provides
feedback on any conflicts that may be introduced by these actions. Although Al-Shaer
and Hamed describe the Firewall Policy Advisor system in [66] as able to analyse
legacy firewall policies, no automatic importing of these policies is described. The sys-
tem seems to need an administrator to manually translate the low-level rule set into the
five tuple syntax. This would classify the systems top-down, however, the translation
of deployed policies is not difficult as it is a direct mapping from most firewall configu-
ration languages. Fixed format configurations from devices can be easily parsed using
a scripting language, such as Perl, as used by Avishai Wool in [32]. The FPA sys-
tem does, however, provide advancement over the query-based analysis systems such
as FANG [31] and Lumeta [32], in that it does not require as much effort to redefine
deployed rules sets into the high-level policy specification languages used by these sys-
tems, as the FPA system can analyse the rule sets directly. Although the initial scope
of the FPA system was as a single device and rule set, this was extended to anomaly
detection across multiple firewalls in further work by Al-Shaer and Hamed in [67] and
[2]. Application of the FPA to include other policy enforcement devices by Al-Shaer et
al. in [68], such as intrusion-detection systems (IDS) and gateways, extended the sys-
tem even further and allowed inter-device anomaly analysis across the global policy.
The FIREMAN Firewall Analysis system, proposed by Yuan et al. in [69], can perform
analysis of firewall filtering including detecting anomalies resulting from redundant
and conflicting rules, which may cause errors in security configurations. Again, binary
decision diagrams (BDDs) are used to model one or more interconnected firewalls. The
analysis can discover policy anomalies, similar to the anomalies defined in the Firewall
Policy Advisor system in [66], as well as detecting certain violations in the policy. The
authors define policy violations as based on a blacklist or whitelist, which is defined
by the administrator, as well as a general policy for all rule sets based on the twelve
common firewall configuration errors identified by Avishai Wool in [70]. The model
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Figure 9: Policy tree derived from policy rule set in Figure 8.
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Figure 10: Policy Advisor anomaly detection user interface [65].

of FIREMAN, however, is created with a bottom-up approach by parsing device con-
figuration files. An evaluation of the system was carried out by creating artificial rule
sets of up to 800 rules and performance evaluation was carried out based on timing
metrics. The experimental conditions used were rule sets of incrementing size. The re-
sults indicated that the FIREMAN system can analyse up to 800 rules in less than three
seconds. Research at AT&T Labs by Caldwell et al. in 2003, produced a configuration
auditing and management system called EDGE [71]. This system creates an abstract
model of the networks routing information by reading in and processing entire device
configuration files. The network is modelled using an entity-relationship model stored
in a database of network services and described in the configuration files. EDGE can
provide off-line analysis of the network configuration and generate reports to identify
inconsistent routing configurations on devices. The Administrator can then decide to
amend the device configurations as required. The motivation for this system is similar
to many of the other policy management systems discussed earlier. However, the sys-
tem proposed by Caldwell et al. is unique in that it emphasises a bottom-up approach to
identifying high-level policies from lower-level network configurations. A significant
limitation with the EDGE system, which also affects the other approaches discussed
earlier, is that administrators seeking to develop proficiency in the languages used to
configure these systems face a considerable challenge due to their inherent complexity.
Caldwell et al. propose automatic provisioning of configurations as a possible solution
to this problem. In the case of the EDGE system, this means working with a model of
the current network and using various visualisation techniques to help the administra-
tor to understand the policies being implemented. This system has been successfully
commercialised, and was effective in the management of complex, enterprise networks.
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However, as identified by Zhang et al. [72], with increasing provisioning of enterprise-
class cloud computing solutions, systems such as EDGE, which were not designed
with cloud services in mind, are finding this limitation progressively more restrictive.
Another limitation with systems which convert to, and from, vendor-specific configu-
rations is that the configuration languages tend to change rapidly. For example, Cisco’s
access control list (ACL) filtering language has had many additional features added to
it since the first version in the mid 1990s. This means that the parser modules have
to be continually reviewed to keep them up-to-date with the latest syntax changes. As
part of another configuration management system developed by Caldwell et al. in [73],
some interesting research into Cisco router parsing and modelling was carried out at
AT&T Labs. In [73], Caldwell et al. describe a learning system and adaptive parser.
The overall system will be able to process and extract information from existing net-
work configurations, much as described in their previous work with the EDGE system
in [71]. However, the advance on the EDGE system is that the parser can adapt to
changes in the configuration language being parsed. The parser is automatically gen-
erated from valid configurations, which are fed into the learning system. Hence, the
system would not need manual changes to be made whenever the configuration lan-
guage version was modified. This would overcome one of the major problems with
the bottom-up approach to any type of policy modelling, especially when dealing with
rapidly changing configuration languages such as Cisco device operating systems.

2.6.1 Anomalies in Firewall Rule Sets

In their cornerstone work of [1], Al-Shaer et al. define the fundamental principles of
conflict-detection within firewall rule sets. This work, which also extends to a dis-
tributed scenario in [74] and led to formal anomaly definitions in [2], defines access-
control list rules as having the structure as shown in Listing 8 and consisting of three
components: condition, permission and order.

• Condition: The condition component of a rule is made up of a number of sub-
fields. Although, these may vary depending on the proprietary syntax used by the
device manufacturer, they usually contain protocol, source and destination IP ad-
dress and source and destination port numbers. The first rule in an access-control
list which matches the condition is applied to the packet.

• Permission: The permission component of a rule can either be permit or deny
and defines whether a packet which matches the condition is permitted or denied
passage through the device.

• Order: The order component of a rule identifies where, from top to bottom, the
rule occurs in the access-control list.

Listing 8: Structure of access-control list rules as defined in [74]
Order ; Permission ; Condition

Al-Shaer et al. classify possible anomalies in access-control lists as redundancy, shad-
owing, generalisation and correlation anomalies, as shown in Figure 11. Following is a
detailed description of these anomaly types. The description is based on two example
rules, shown in Listing 9, which are derived from the structure shown in Listing 8.
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Listing 9: Example of rules based on the rule structure shown in Listing 8
Rule X (Rx) has the structure
Rx = Order (Ox) ; Permission (Px) ; Condition (Cx)
Rule Y (Ry) has the structure
Ry = Order (Oy) ; Permission (Py) ; Condition (Cy)

Figure 11: Anomaly state diagram from [66] for rules Rx and Ry , where Rx precedes
Ry in the rules list.

Redundancy Anomaly A redundant rule has the same permission and the same con-
ditions as another rule, such that if the redundant rule is removed, the behaviour of the
rules list will not be affected. Redundancy can be determined by the logical criteria
shown in Listing 10.

Listing 10: Logical criteria for the redundancy anomaly type
if the permissions of Rx and Ry are the same,

(Px = Py),
then Ry is redundant to Rx if every field of Ry is

a subset or equal to the corresponding field in
Rx, (∀i : Ry[i] ⊆ Rx[i])

or Rx is redundant to Ry if every field of Rx is a
subset or equal to the corresponding field in Ry

,
(∀i : Rx[i] ⊆ Ry[i]), where i ∈ {protocol, s_ip, s_port,

d_ip, d_port}

25



Shadowing Anomaly A rule is shadowed when a previous rule, higher up in the set
of rules, matches all the conditions that match this rule, such that the shadowed rule
will never be activated. Listing 11 illustrates the case where Rule Y (Ry) is shadowed
by Rule X (Rx).

Listing 11: Logical criteria for the shadowing anomaly type
Rule Y (Ry) is shadowed by Rule X (Rx)
if (Rx) precedes (Ry) in the rule set order, (Ox < Oy)

,
and the permissions of Rx and Ry are different,

(Px 6= Py),
and every field in the condition of Ry is a subset

or equal to the corresponding field in the
condition of Rx,

(∀i : Ry[i] ⊆ Rx[i]), where i ∈ {protocol, s_ip, s_port,
d_ip, d_port}

Generalisation Anomaly A rule is generalisation of another preceding rule if it
matches all the packets of the preceding rule. Listing 12 illustrates the case where
Rule Y (Ry) is a generalisation by Rule X (Rx).

Listing 12: Logical criteria for the generalisation anomaly type
Rule Y (Ry) is a generalisation of Rule X (Rx)
if (Rx) precedes (Ry) in the rule set order, (Ox < Oy)

,
and the permissions of Rx and Ry are different,

(Px 6= Py),
and every field in the condition of Rx is a subset

or equal to the corresponding field in the
condition of Ry,

(∀i : Rx[i] ⊆ Ry[i]), where i ∈ {protocol, s_ip, s_port,
d_ip, d_port}

Correlation Anomaly Two rules are correlated if the first rule in order matches some
of the fields of the condition of the second rule and the second rule matches some of
the fields of the condition of the first rule. If some fields of the condition of Rule
X (Rx) are subsets or equal to the corresponding fields of the condition of Rule Y
(Ry), and the remaining fields of the condition of rule Rule X (Rx) are supersets to
the corresponding fields of the condition of Rule Y (Ry), and the permissions of the
two rules are different, then Rx is in correlation with Ry . Listing 13 illustrates the case
where Rule X (Rx) is in correlation with Rule Y (Ry).

Listing 13: Logical criteria for the correlation anomaly type
Rule X (Rx) is in correlation with Rule Y (Ry)
if the permissions of Rx and Ry are different,

(Px 6= Py),
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and some fields in the condition of Rx are subsets
or equal to the corresponding fields in the
condition of Ry and the rest of the fields in
the condition of Rx are supersets of the
corresponding fields in the condition of Ry,

(∀i : Rx[i] . /Ry[i], ∃i, j such that Rx[i] ⊆ Ry[i] and
Ry[j] ⊂ Rx[j] and i 6= j), where i, j ∈ {protocol, s_ip,
s_port, d_ip, d_port}

2.7 Reverse-Engineering Policies

Research by Al-Shaer and Hamed in [65] and [75] produced the first research into
reverse engineering of existing device configurations to high-level, natural language
policies. The authors aggregate network services together, using their Firewall Policy
Advisor (FPA) [66] system as a base model, and produce a basic text based abstract
policy description from a filtering rule set. They then use the binary decision diagram
(BDD) produced by the FPA based on the rule set and generate another BDD based
on network services. Services can then be aggregated together, changing it into a form
which can be presented to the user in a natural language. The interface for the tool uses
a graphical interface showing the network services based tree and the textual represen-
tation of the policy. Figure 12 from [65] illustrates the network service-based tree and
the high-level policy which has been inferred. The creation of an abstract high-level

Figure 12: Translation tree and policy translation interface [65].

policy from low-level device configurations has also been researched by Tongaonkar et
al. in [76] and describes a technique to extract high-level policies from analysis of the
low-level representations of rule sets. Their system attempts to flatten the rule set by
aggregating overlapping rules together, thus eliminating the dependency on the order
of the rules. This also reduces the size and complexity of the rule set, giving the ad-
ministrator a better understanding of the policy it represents. This technique is similar
to that used by Al-Shaer and Hamed in [65]. In [77], Bishop and Peisert propose a
system of reverse engineering policies from Linux file system access control configu-
rations. Although this does not involve firewall policies but user access policies from
Linux password files, the reverse engineering process is relevant. Around the same
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time Golnabi et al. have also worked on the problem of inferring high-level policies
in [78], but their approach is based around an active system and data mining of de-
vice logs, and not by static analysis of the device configurations. Similarly, Abedin et
al. describe techniques in [79] which are used to mine firewall log files to regenerate
effective firewall rules. Their method uses algorithms to reduce the data set through
mining of firewall network traffic logs using packet frequencies. These are then used
to calculate the occurrence of each attribute of a log record in a firewall log file, thus
generating primitive rules. Actual firewall rules are then regenerated from these prim-
itive rules using aggregation and a set of heuristics. Anomalies in the original rule set
and defects in the firewall implementation are then identified through a comparison of
the regenerated rules with the original, manually-defined rules.

28



3 Framework Implementation

3.1 Introduction

This paper builds upon the information sharing policy verification framework. Specif-
ically, it extends the work of Al-Shaer et al. in [1] and that of Hamed and Al-Shaer
in [2]. In these, the authors concentrated on developing formal definitions of possible
anomalies between rules in a network firewall rule set.

3.2 Policy Verification Process

This section describes the mode of operation of the policy verification framework as
illustrated in Figure 13. The process used to verify a proposed policy against possible
anomalies uses:

• Definition of policy syntax structure and declaration of policy field elements.

• Syntactic verification of the proposed policy.

• Ontological verification of the proposed policy.

• Functional verification of the proposed policy.

Definition

Start

Input new policy

New policy syntax 
verification

New policy ontology 
verification

New policy functional 
verification

End

Figure 13: Mode of operation of the policy verification framework.
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3.2.1 Definition

The definition stage comprises a two-step process where the first step requires the defi-
nition of the syntax to be used to describe information sharing policies, and the second
step requires a declaration of all possible elements which can occur as part of the fields
of a policy. Thus, the definition stage defines the universe of all possible policy fields,
as well as the possible elements of each field, and forms the basis of any subsequent
policy verification processes. The following example illustrates the definition process.

Policy Definition Example This example assumes the scenario that two organisa-
tions, Police Force A and Child Protection Agency B, have initiated an information
sharing agreement, a policy from which is shown in Listing 14.

Listing 14: Example of a policy in an information sharing agreement.
The Records Admin from the Records Unit of

Child Protection Agency B permits a Sergeant
from the Domestic Violence Unit of
Police Force A to read the Unique Identifier of
a Child, whilst complying with the
Human Rights Act, 1998, as long as it is for an
abuse investigation and the Sergeant is the
Investigating Officer.

The first step of the definition stage requires the specification of the information sharing
policy syntax. For the purposes of this example, information sharing policies are de-
fined as having a nine-field syntax, where each field is enclosed within square brackets,
‘[’ and ‘]’, as illustrated in Listing 15.
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Listing 15: Nine-field syntax used to define information sharing policies.
[permission] [requester] [relationship] [action] [

attribute] [object] [context] [owner] [
compliance]

Once the information sharing policy syntax has been specified, it can be used to repre-
sent polices from the information sharing agreement. For the purposes of this example,
the requester and owner fields are defined as hierarchical, while the remainder
of the fields are non-hierarchical. The requester and owner fields are, both, sub-
divided into domain, organisation, unit and role, with a full stop (‘.’) used
to delineate between each field sub-division. Listing 16 shows the example information
sharing policy from Listing 14 using the syntax from Listing 15.

Listing 16: Information sharing policy from 14 espressed in syntax from 15.
[Permit] [Police.Police_Force_A.

Domestic_Violence_Unit.Sergeant] with [
Investigating_Officer] relationship [R] [
Unique_Identifier] of [Child] with [
Abuse_Investigation] context from [Social_Care.
Child_Protection_Agency_B.Records_Unit.
Records_Admin] with Compliance [
Human_Rights_Act_1998]

The second step of the definition stage requires a declaration of all possible elements
which can occur within the fields of a policy. Table 1 illustrates all possible elements
from an example information sharing agreement. In fact, elements used to define the
example policy shown in Listing 16 have all been selected from Table 1. It should be
noted that a policy field can also be defined using the ‘*’ wildcard, which symbolises
that an element has not been declared for a specific field in a policy. Further, as illus-
trated in Table 1, the elements of the hierarchical requester and owner fields are
declared with respect to their specific higher-level fields. This means that the elements
of the highest-level field, domain, would be declared by themselves. For example, in
Table 1, the domains Police and Social_Care would be declared by themselves.
The elements of the organisation field, however, are declared in relation to their
respective domains. For example, the organisation Police_Force_A is declared
in relation to its specific domain, as Police.Police_Force_A. Similarly, the or-
ganisation Child_Protection_Agency_B is declared in relation to its specific
domain, as Social_Care.Child_Protection_Agency_B. The same princi-
ple applies to the subsequent lower-level fields of unit and role.

3.2.2 Syntax Verification

Syntax verification is the initial stage of the policy verification process. During this
stage, a proposed policy is checked to verify that it satisfies the defined syntax crite-
ria for information sharing policies, as specified previously during the definition stage,
illustrated in Listing 15. The following example illustrates the syntax verification pro-
cess. If the proposed policy does not comply with this syntax structure, the testing
process is terminated, as other tests only need to be carried out if a policy meets the
required syntax criteria.
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Table 1: Possible elements of example information sharing policy.

Policy Field Declared Elements

Permission Permit
Deny

Domain Social_Care
Police

Organisation (Social_Care) + Child_Protection_Agency_B
(Police) + Police_Force_A

Unit (Social_Care.Child_Protection_Agency_B) + Records_Unit
(Police.Police_Force_A) + Domestic_Violence_Unit

Role (Social_Care.Child_Protection_Agency_B.Records_Unit) + Records_Admin
(Police.Police_Force_A.Domestic_Violence_Unit) + Sergeant

Relationship Investigating_Officer

Action Read

Attribute Health_Record
Unique_Identifier

Object Child

Context Abuse_Investigation

Compliance Data_Protection_Act
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Syntax Verification Example This example assumes an information sharing policy,
shown in Listing 17, is proposed to be added to an existing set of policies.

Listing 17: Example policy used for syntax verification example.
[Permit] [Police.Police_Force_A.*.Sergeant] with

[*] relationship [R] [Unique_Identifier] of [
Child] with [Abuse_Investigation] context
from [Social_Care.Child_Protection_Agency_B.
Records_Unit.Records_Admin] with Compliance [
Human_Rights_Act_1998]

The syntax verification stage checks that the number of fields specified in the proposed
policy, as well as the syntax structure of the proposed policy, correspond with the
syntax and number of fields defined earlier in the definition stage, as shown in Listing
15. In this example, the policy shown in Listing 17 is parsed to extract its constituent
fields, as enclosed within square brackets, ‘[’ and ‘]’. This process checks that the
number of fields in the proposed policy corresponds correctly with the number of fields
defined earlier in the definition stage. Further, the requester and owner fields
from the proposed policy, that is fields two and eight, respectively, are checked to
ensure that they correspond correctly with the hierarchical structure defined for these
fields. This entails ensuring that fields two and eight contain four sub-divisions which
are delineated using full stops, (‘.’). Since the example policy shown in Listing 17
is expressed correctly using the defined syntax, the syntax verification is successful
and the next stage of policy verification commences. If the proposed policy had not
complied with the defined syntax structure, the testing process would be terminated, as
other tests only need to be carried out if a policy meets the required syntax criteria.

3.2.3 Ontology Verification

Ontology verification is the second stage of the policy verification process, following
syntax verification. During this stage, a proposed policy is checked to verify that each
field of the policy statement comprises valid elements. An element is designated as
valid if it has been previously declared in the definition stage. The following example
illustrates this process.

Ontology Verification Example This example assumes a scenario where policy field
elements, as shown in Table 2, are specified as part of the definition stage in an infor-
mation sharing agreement.

Four information sharing policies, Rw, Rx, Ry and Rz , are proposed to be added to an
existing set of policies. Listings 18, 19, 20 and 21 show policies Rw, Rx, Ry and Rz ,
respectively.
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Table 2: Defined policy field elements for Ontology Verification Example.

Policy Field Declared Elements

Permission Permit
Deny

Domain Social_Care
Police

Organisation (Social_Care) + Child_Protection_Agency_B
(Police) + Police_Force_A

Unit (Social_Care.Child_Protection_Agency_B) + Records_Unit
(Police.Police_Force_A) + Domestic_Violence_Unit

Role (Social_Care.Child_Protection_Agency_B.Records_Unit) + Records_Admin
(Police.Police_Force_A.Domestic_Violence_Unit) + Sergeant

Relationship Investigating_Officer

Action

Read (R)
Create (C)
Update (U)
Delete (D)

Attribute Health_Record
Unique_Identifier

Object Child

Context Abuse_Investigation

Compliance Data_Protection_Act
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Listing 18: Policy Rw used for ontology verification example.
[Permit] [Police.Police_Force_A.

Domestic_violence_Unit.Sergeant] with [*]
relationship [R] [Unique_Identifier] of [Child]
with [Abuse_Investigation] context from

[Social_Care.Child_Protection_Agency_B.
Records_Unit.Records_Admin] with Compliance [
Human_Rights_Act_1998]

Listing 19: Policy Rx used for ontology verification example.
[Permit] [Police.Police_Force_A.

Domestic_violence_Unit.*] with [*] relationship
[R] [Unique_Identifier] of [Child] with [
Abuse_Investigation] context from [Social_Care.
Child_Protection_Agency_B.Records_Unit.
Records_Admin] with Compliance [
Human_Rights_Act_1998]

Listing 20: Policy Ry used for ontology verification example.
[Permit] [Police.Police_Force_A.

Domestic_violence_Unit.Constable] with [*]
relationship [R] [Unique_Identifier] of [Child]
with [Abuse_Investigation] context from

[Social_Care.Child_Protection_Agency_B.
Records_Unit.Records_Admin] with Compliance [
Human_Rights_Act_1998]

Listing 21: Policy Rz used for ontology verification example.
[Permit] [Police.Police_Force_A.

Domestic_violence_Unit.Records_Admin] with [*]
relationship [R] [
Unique_Identifier] of [Child] with [
Abuse_Investigation] context from [Social_Care.
Child_Protection_Agency_B.Records_Unit.
Records_Admin] with Compliance [
Human_Rights_Act_1998]

The initial step of the ontology verification stage comprises parsing of the proposed
policies in order to extract their constituent field elements, as enclosed within square
brackets, ‘[’ and ‘]’. Table 3 shows field elements extracted from the example proposed
policies.

It must be noted here that where the ‘*’ wildcard is used instead of a field element,
the corresponding field is not checked for against an entry in the definition. Compari-
son between elements of the proposed policies, as shown in Table 3, and the declared
elements shown in Table 2, illustrates that each element in the proposed policy, Rw,
exists as a valid declared element, in its respective declared field. Therefore, for policy
Rw, the ontology verification process is successful, and the next stage of verification
can commence. Similar to policy Rw, each element in the proposed policy, Rx, also
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Table 3: Field elements of proposed information sharing policies Rw, Rx, Ry and Rz

for Ontology Verification Example 3.2.3.

Policy Field Elements of Policy Elements of Policy Elements of Policy Elements of Policy
Rw Rx Ry Rz

Permission Permit Permit Permit Permit

RD Police Police Police Police

RO (Police)+ (Police) + (Police) + (Police) +
PFA PFA PFA PFA

RU
(Police)+ (Police)+ (Police)+ (Police)+
(PFA)+ (PFA)+ (PFA)+ (PFA)+
DVU DVU DVU DVU

RR

(Police)+ (Police)+ (Police)+ (Police)+
(PFA)+ (PFA)+ (PFA)+ (PFA)+
(DVU)+ (DVU)+ (DVU)+ (DVU)+
Sergeant * Constable RA

Relationship * * * *

Action R R R R

Attribute Unique Identifier Unique Identifier Unique Identifier Unique Identifier

Object Child Child Child Child

Context Abuse Investigation Abuse Investigation Abuse Investigation Abuse Investigation

OD SC SC SC SC

OO (SC)+ (SC)+ (SC)+ (SC)+
CPAB CPAB CPAB CPAB

OU
(SC)+ (SC)+ (SC)+ (SC)+
(CPAB)+ (CPAB)+ (CPAB)+ (CPAB)+
RU RU RU RU

OR

(SC)+ (SC)+ (SC)+ (SC)+
(CPAB)+ (CPAB)+ (CPAB)+ (CPAB)+
(RU)+ (RU)+ (RU)+ (RU)+
RA RA RA RA

Compliance Data Protection Act Data Protection Act Data Protection Act Data Protection Act

Table 4: *
Field or Element Abbreviation
Requester/Owner Domain : RD/OD
Requester/Owner Organisation : RO/OO
Requester/Owner Unit : RU/OU
Requester/Owner Role : RR/OR
Police_Force_A : PFA
Domestic_Violence_Unit : DVU
Social_Care : SC
Child_Protection_Agency_B : CPAB
Records_Unit : RU
Records_Admin : RA
Data_Protection_Act : DPA36



exists as a valid declared element, in its respective declared field. Since Rx shows
the Requester_Role element as the wildcard ‘*’, this field is not checked against
the respective field in the definition, and, hence, the ontology verification process for
policy Rx is also successful.

In the case of policy Ry , however, the element for the Requester_Role field is
shown as Constable. Since Constable is not a defined element for the Requester_Role
field, and, hence, does not appear as a defined element in the column in Table 2, pol-
icy Ry will fail the ontology verification stage. In the case of policy Rz , although the
Requester_Role field, shown as Records_Admin, exists as a declared element
in the definitions in Table 2, it does not belong to the Police.Police_Force_A.Domestic_violence_Unit
hierarchy. Therefore, policy Rz will also fail the ontology verification stage. In the case
where a policy fails the ontology verification stage, the testing process would be termi-
nated as other tests only need to be carried out if a policy meets the required ontology
criteria.

3.2.4 Functional Verification

The functional verification stage is the final stage of the policy verification process
and identifies any potential anomalies which may exist between a proposed policy and
those present in an existing set of policies. This stage uses the anomaly definitions
of redundancy, shadowing, generalisation and correlation, as detailed in Section 2.6.1.
Therefore, functional verification is split into four stages, each to check for a specific
category of anomaly. The logical state diagram for anomaly classification is based on
the work of Al-Shaer and Hamed in [66], illustrated in Figure 14.

Figure 14: Anomaly state diagram from [66] for rules Rx and Ry , where Rx precedes
Ry in the rules list.
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A simplified version of the anomaly classification method, derived from the work of Al-
Shaer and Hamed in [66], is shown in Figure 15. As indicated, anomalies are detected
by logically comparing the permissions, Px and Py , and conditions, Cx and Cy , for
any two policies, Rx and Ry .

Figure 15: Simplified anomaly classification method for functional verification.

The comparison process, with respect to anomaly detection, entails identification of a
subset, superset or equivalence relation between respective fields of the policies, Rx

and Ry , which is achieved by carrying out bitwise logical operations between compar-
ative fields. When operating on non-hierarchical fields, the operation simply involves
using the entire field in the comparison. For hierarchical fields, however, this involves
the definition of the fields as logical conjunctions (∧), of all of their sub-fields. The
logical operation is then performed for the entire hierarchical field. For example, the
Requester and Owner fields can both be defined as logical conjunctions of their
constituent Domain, Organisation, Unit and Role sub-fields:

Requesterx, Ownerx : Domainx ∧Organisationx ∧ Unitx ∧Rolex
Requestery , Ownery : Domainy ∧Organisationy ∧ Unity ∧Roley

In practice, the logical comparisons are carried out using Binary Decision Diagrams
(BDDs), as implemented for firewall rules by Hazelhurst et al. in [52] and access list
modelling by Hazelhurst in [80]. However, the logical ‘AND’ operation, or conjunction
(∧), is used here to identify subset, superset or equivalence relations. This allows a
generic method of illustrating logical relationships, which is independent of the internal
computations of any specific Binary Decision Diagram (BDD) software package.

Since BDDs perform bitwise logical operations, the permissions, Px and Py , and con-
ditions, Cx and Cy , of policies Rx and Ry must first be represented in binary bits.
However, unlike modelling firewall rules and access lists, information sharing policies
can have fields of varying lengths. This is due to the fact that there is no limit on the
number of possible elements which may be declared as part of a field in an information
sharing agreement. Hence, since the number of possible elements in a field can vary,
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where each field must be adjusted for the number of bits before any bitwise operations
can be performed on it. The adjustment process involves assigning an element identi-
fier, Element ID, to each element in a field and then representing the element identifier
in binary form. Hence, the total number of binary variables needed to represent a field
element is dependent on the total number of possible field elements declared during
the definition stage. Table 5 illustrates the assignment of Element IDs to elements from
Table 2, from the Ontology Verification Example, and their binary representations.

Table 5: Assignment of Element IDs to elements from Table 2 and their binary repre-
sentation.

Policy Field Elements from Definition Element ID Binary Representation

Permission Deny 0 0
Permit 1 1

Domain Social Care 1 01
Police 2 10

Organisation Child Protection Agency B 1 01
Police Force A 2 10

Unit Records Unit 1 01
Domestic Violence Unit 2 10

Role Records Admin 1 01
Sergeant 2 10

Relationship Investigating Officer 1 1

Action

Read (R) 1 001
Create (C) 2 010
Update (U) 3 011
Delete (D) 4 100

Attribute Health Record 1 01
Unique Identifier 2 10

Object Child 1 1

Context Abuse Investigation 1 1

Compliance Data Protection Act 1 1

Listing 22 shows an example information sharing policy with field elements populated
from elements defined in Table 5. Listing 23 illustrates the example policy from Listing
22 in its binary representation.
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Listing 22: Example information sharing policy with field elements populated from
elements defined in Table 5.

Rx:
[Permit] [Police.Police_Force_A.

Domestic_Violence_Unit.Sergeant] with [
Investigating_Officer] relationship [R] [
Health_Record] of [Child] with [
Abuse_Investigation] context from [Social_Care.
Child_Protection_Agency_B.Records_Unit.
Records_Admin] with Compliance [
Data_Protection_Act]
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Listing 23: Example information sharing policy from Listing 22 in binary representa-
tion.

Rx:
[1] [10.10.10.10] [1] [001] [01] [1] [1]

[01.01.01.01] [1]

The binary representation in Listing 23 shows that an information sharing policy pop-
ulated from elements defined in Table 5 will consist of 26 binary bits. If, however, the
Role field is now updated to include two additional roles, Constable and Analyst, the
number of bits required to represent the policy will change. Table 6 shows the Role
field from Table 5 updated with the additional roles.

Table 6: Role field from Table 5 updated with Constable and Analyst roles.

Policy Field Elements from Definition Element ID Binary Representation

Role

Records Admin 1 001
Sergeant 2 010
Constable 3 011
Analyst 4 100

The same information sharing policy, Rx from Listing 22, now expressed using the
updated Role field from Table 6, will have the binary form as shown in Listing 24.
As shown, 28 binary bits are now required to represent Rx whereas previously only
26 binary bits were required. This illustrates the sensitivity of binary expressions and,
hence, any binary calculations, to modifications made to the set of elements registered
for an information sharing agreement.

Listing 24: Example information sharing policy from Listing 22 represented in binary
form using updated Role field from Table 6.

Rx:
[1] [10.10.10.010] [1] [001] [01] [1] [1]

[01.01.01.001] [1]

The following examples provide details on each stage of the functional verification
process. The methods used for functional verification are as illustrated in Figure 15.
Each example assumes an information sharing agreement between two organisations,
Police Force A and Child Protection Agency B. Only the requester and owner
fields are manipulated in the following anomaly verification examples for reasons of
brevity.

3.2.5 Example of Redundancy Anomaly Verification

Elements from Table 5 are used to define two information sharing policies. Listing 25
shows Rx, an existing policy in the agreement and Listing 26 shows Ry , a proposed
policy to be added. Listing 27 shows the binary representations of the two policies.
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Listing 25: Existing policy set for redundancy anomaly functional verification exam-
ple.

Rx : [Permit] [Police.Police_Force_A.
Domestic_Violence_Unit.*] with [*] relationship
[R] [*] of [Child] with [*] context from [
Social_Care.Child_Protection_Agency_B.
Records_Unit.*] with Compliance [*]

Listing 26: Proposed policy for redundancy anomaly functional verification example.
Ry : [Permit] [Police.Police_Force_A.

Domestic_Violence_Unit.Sergeant] with [*]
relationship [R] [*] of [Child] with [*] context
from [Social_Care.Child_Protection_Agency_B.

Records_Unit.*] with Compliance [*]

Listing 27: Binary representation of existing policy Rx from Listing 25 and proposed
policy Ry from Listing 26 for redundancy anomaly functional verification example.

Rx : [1] [10.10.10.*] with [*] relationship [R]
[*] of [1] with [*] context from [01.01.01.*]
with Compliance [*]

Ry : [1] [10.10.10.10] with [*] relationship [R]
[*] of [1] with [*] context from [01.01.01.*]

with Compliance [*]

Test 1: As illustrated in Figure 15, the first comparison in the functional verification
stage, Test 1, is to compare the permissions, Px and Py , from policies Rx and Ry to
check if they are the same. This operation is illustrated in the computation below using
the logical relationship that if the permissions Px and Py are the same, (Px ⇔ Py) is
TRUE, then the expression ((Px ∧ Py) ∨ (¬Px ∧ ¬Py)) must also be TRUE.

Px : 1
Py : 1

(Px ⇔ Py) : ((Px ∧ Py) ∨ (¬Px ∧ ¬Py))
: ((1 ∧ 1) ∨ (¬1 ∧ ¬1))

∴ (Px ⇔ Py) : TRUE

Test 2: Since Px and Py are the same, the next comparison in the functional verifica-
tion stage, Test 2, is to compare the conditions, Cx and Cy , to check if (Cy ⇒ Cx) is
TRUE. This test, if TRUE, indicates that Cy is either equal to, or a subset of, Cx which
means that policy Ry is redundant to policy Rx. This operation is illustrated in the
computation below using the logical relationship that if condition Cy implies condition
Cx, (Cy ⇒ Cx) is TRUE, then the expression (¬Cy ∨ Cx) must also be TRUE.
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Cx : 10.10.10.XX
Cy : 10.10.10.10

Cy ⇒ Cx : ¬Cy ∨ Cx

: 01.01.01.01 ∨ 10.10.10.XX
∴ Cy ⇒ Cx : TRUE

Conclusion: As can be seen from Figure 15, if Test 1 and Test 2 result in TRUE,
policy Ry is redundant to policy Rx.

3.2.6 Example of Shadow Anomaly Verification

Elements from Table 5 are used to define two information sharing policies. Listing 28
shows Rx, an existing policy in the agreement and Listing 29 shows Ry , a proposed
policy to be added. Listing 30 shows the binary representations of the two policies.

Listing 28: Existing policy set for shadow anomaly functional verification example.
Rx : [Deny] [Police.Police_Force_A.

Domestic_Violence_Unit.*] with [*] relationship
[R] [*] of [Child] with [*] context from [
Social_Care.Child_Protection_Agency_B.
Records_Unit.*] with Compliance [*]

Listing 29: Proposed policy for shadow anomaly functional verification example.
Ry : [Permit] [Police.Police_Force_A.

Domestic_Violence_Unit.Sergeant] with [*]
relationship [R] [*] of [Child] with [*] context
from [Social_Care.Child_Protection_Agency_B.

Records_Unit.*] with Compliance [*]

Listing 30: Binary representation of existing policy Rx from Listing 28 and proposed
policy Ry from Listing 29 for shadow anomaly functional verification example.

Rx : [0] [10.10.10.*] with [*] relationship [R]
[*] of [1] with [*] context from [01.01.01.*]
with Compliance [*]

Ry : [1] [10.10.10.10] with [*] relationship [R]
[*] of [1] with [*] context from [01.01.01.*]

with Compliance [*]

Test 1: As illustrated in Figure 15, the first comparison in the functional verification
stage, Test 1, is to compare the permissions, Px and Py , from policies Rx and Ry to
check if they are the same. This operation is illustrated in the computation below using
the logical relationship that if the permissions Px and Py are the same, (Px ⇔ Py) is
TRUE, then the expression ((Px ∧ Py) ∨ (¬Px ∧ ¬Py)) must also be TRUE.
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Px : 0
Py : 1

(Px ⇔ Py) : ((Px ∧ Py) ∨ (¬Px ∧ ¬Py))
: ((0 ∧ 1) ∨ (¬0 ∧ ¬1))

∴ (Px ⇔ Py) : FALSE

Test 2: Since Px and Py are different, the next comparison in the functional verifica-
tion stage, Test 2, is to compare the conditions, Cx and Cy , to check if (Cy ⇒ Cx) is
TRUE. This test, if TRUE, indicates that Cy is either equal to, or a subset of, Cx which
means that policy Ry is shadowed by policy Rx. This operation is illustrated in the
computation below using the logical relationship that if condition Cy implies condition
Cx, (Cy ⇒ Cx) is TRUE, then the expression (¬Cy ∨ Cx) must also be TRUE.

Cx : 10.10.10.XX
Cy : 10.10.10.10

Cy ⇒ Cx : ¬Cy ∨ Cx

: 01.01.01.01 ∨ 10.10.10.XX
∴ Cy ⇒ Cx : TRUE

Conclusion: As can be seen from Figure 15, if Test 1 results in FALSE and Test 2
results in TRUE, policy Ry is shadowed by policy Rx.

3.2.7 Example of Generalisation Anomaly Verification

Elements from Table 5 are used to define two information sharing policies. Listing 31
shows Rx, an existing policy in the agreement and Listing 32 shows Ry , a proposed
policy to be added. Listing 33 shows the binary representations of the two policies.

Listing 31: Existing policy set for generalisation anomaly functional verification ex-
ample.

Rx : [Deny] [Police.Police_Force_A.
Domestic_Violence_Unit.Sergeant] with [*]
relationship [R] [*] of [Child] with [*] context
from [Social_Care.Child_Protection_Agency_B.

Records_Unit.*] with Compliance [*]

Listing 32: Proposed policy for generalisation anomaly functional verification exam-
ple.

Ry : [Permit] [Police.Police_Force_A.
Domestic_Violence_Unit.*] with [*] relationship
[R] [*] of [Child] with [*] context from [
Social_Care.Child_Protection_Agency_B.
Records_Unit.*] with Compliance [*]
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Listing 33: Binary representation of existing policy Rx from Listing 31 and proposed
policy Ry from Listing 32 for generalisation anomaly functional verification example.

Rx : [0] [10.10.10.10] with [*] relationship [R]
[*] of [1] with [*] context from [01.01.01.*]

with Compliance [*]
Ry : [1] [10.10.10.*] with [*] relationship [R]

[*] of [1] with [*] context from [01.01.01.*]
with Compliance [*]

Test 1: As illustrated in Figure 15, the first comparison in the functional verification
stage, Test 1, is to compare the permissions, Px and Py , from policies Rx and Ry to
check if they are the same. This operation is illustrated in the computation below using
the logical relationship that if the permissions Px and Py are the same, (Px ⇔ Py) is
TRUE, then the expression ((Px ∧ Py) ∨ (¬Px ∧ ¬Py)) must also be TRUE.

Px : 0
Py : 1

(Px ⇔ Py) : ((Px ∧ Py) ∨ (¬Px ∧ ¬Py))
: ((0 ∧ 1) ∨ (¬0 ∧ ¬1))

∴ (Px ⇔ Py) : FALSE

Test 2: Since Px and Py are different, the next comparison in the functional verifica-
tion stage, Test 2, is to compare the conditions, Cx and Cy , to check if (Cy ⇒ Cx) is
TRUE. This test, if TRUE, indicates that Cy is either equal to, or a subset of, Cx which
means that policy Ry is shadowed by policy Rx. This operation is illustrated in the
computation below using the logical relationship that if condition Cy implies condition
Cx, (Cy ⇒ Cx) is TRUE, then the expression (¬Cy ∨ Cx) must also be TRUE.

Cx : 10.10.10.10
Cy : 10.10.10.XX

Cy ⇒ Cx : ¬Cy ∨ Cx

: 01.01.01.00 ∨ 10.10.10.10
∴ Cy ⇒ Cx : FALSE

Test 3: Since the result of Test 2 is FALSE, the next comparison in the functional
verification stage, Test 3, is to compare the conditions, Cx and Cy , to check if (Cx ⇒
Cy) is TRUE. This test, if TRUE, indicates that Cx is either equal to, or a subset of,
Cy which means that policy Ry is a generalisation of policy Rx. This operation is
illustrated in the computation below using the logical relationship that if condition Cx

implies condition Cy , (Cx ⇒ Cy) is TRUE, then the expression (¬Cx∨Cy) must also
be TRUE.

Cx : 10.10.10.10
Cy : 10.10.10.XX

Cx ⇒ Cy : ¬Cx ∨ Cy

: 01.01.01.01 ∨ 10.10.10.11
∴ Cy ⇒ Cx : TRUE

45



Conclusion: As can be seen from Figure 15, if Test 1 results in FALSE, Test 2 results
in FALSE and Test 3 results in TRUE, policy Ry is a generalisation of policy Rx.

3.2.8 Example of Correlation Anomaly Verification

Elements from Table 5 are used to define two information sharing policies. Listing 34
shows Rx, an existing policy in the agreement and Listing 35 shows Ry , a proposed
policy to be added. Listing 36 shows the binary representations of the two policies. It
must be noted that, unlike in previous examples, in this example the conditions Cx and
Cy of policies Rx and Ry have different Requester and Owner fields. Therefore,
the conjunction of both these fields will be used in the tests below when comparing
conditions.

Listing 34: Existing policy set for correlation anomaly functional verification example.
Rx : [Deny] [Police.Police_Force_A.

Domestic_Violence_Unit.Sergeant] with [*]
relationship [R] [*] of [Child] with [*] context
from [Social_Care.Child_Protection_Agency_B.

Records_Unit.*] with Compliance [*]

Listing 35: Proposed policy for correlation anomaly functional verification example.
Ry : [Permit] [Police.Police_Force_A.

Domestic_Violence_Unit.*] with [*] relationship
[R] [*] of [Child] with [*] context from [
Social_Care.Child_Protection_Agency_B.
Records_Unit.Records_Admin] with Compliance [*]

Listing 36: Binary representation of existing policy Rx from Listing 34 and proposed
policy Ry from Listing 35 for correlation anomaly functional verification example.

Rx : [0] [10.10.10.10] with [*] relationship [R]
[*] of [1] with [*] context from [01.01.01.*]

with Compliance [*]
Ry : [1] [10.10.10.*] with [*] relationship [R]

[*] of [1] with [*] context from [01.01.01.01]
with Compliance [*]

Test 1: As illustrated in Figure 15, the first comparison in the functional verification
stage, Test 1, is to compare the permissions, Px and Py , from policies Rx and Ry to
check if they are the same. This operation is illustrated in the computation below using
the logical relationship that if the permissions Px and Py are the same, (Px ⇔ Py) is
TRUE, then the expression ((Px ∧ Py) ∨ (¬Px ∧ ¬Py)) must also be TRUE.
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Px : 0
Py : 1

(Px ⇔ Py) : ((Px ∧ Py) ∨ (¬Px ∧ ¬Py))
: ((0 ∧ 1) ∨ (¬0 ∧ ¬1))

∴ (Px ⇔ Py) : FALSE

Test 2: Since Px and Py are different, the next comparison in the functional verifica-
tion stage, Test 2, is to compare the conditions, Cx and Cy , to check if (Cy ⇒ Cx) is
TRUE. This test, if TRUE, indicates that Cy is either equal to, or a subset of, Cx which
means that policy Ry is shadowed by policy Rx. This operation is illustrated in the
computation below using the logical relationship that if condition Cy implies condition
Cx, (Cy ⇒ Cx) is TRUE, then the expression (¬Cy ∨ Cx) must also be TRUE.

Requester Field Owner Field
Cx : 10.10.10.10 01.01.01.XX
Cy : 10.10.10.XX 01.01.01.01

Cy ⇒ Cx : ¬Cy ∨ Cx ¬Cy ∨ Cx

: 01.01.01.00 ∨ 10.10.10.10 10.10.10.10 ∨ 01.01.01.11
: FALSE TRUE

∴ Cy ⇒ Cx : FALSE

Test 3: Since the result of Test 2 is FALSE, the next comparison in the functional
verification stage, Test 3, is to compare the conditions, Cx and Cy , to check if (Cx ⇒
Cy) is TRUE. This test, if TRUE, indicates that Cx is either equal to, or a subset of,
Cy which means that policy Ry is a generalisation of policy Rx. This operation is
illustrated in the computation below using the logical relationship that if condition Cx

implies condition Cy , (Cx ⇒ Cy) is TRUE, then the expression (¬Cx∨Cy) must also
be TRUE.

Requester Field Owner Field
Cx : 10.10.10.10 01.01.01.XX
Cy : 10.10.10.XX 01.01.01.01

Cx ⇒ Cy : ¬Cx ∨ Cy ¬Cx ∨ Cy

: 01.01.01.01 ∨ 10.10.10.11 10.10.10.00 ∨ 01.01.01.01
: TRUE FALSE

∴ Cx ⇒ Cy : FALSE

Test 4: Since the result of Test 3 is FALSE, the next comparison in the functional ver-
ification stage, Test 4, is to compare the conditions, Cx and Cy , to check for correlated
fields. For this example, this requires checking that the Requester and Owner fields
of one policy are the same as, or subsets of, the corresponding fields of the other policy
and that the remaining fields of the former policy are supersets of the corresponding
fields of the latter policy. Formally, this means that for the fields being compared, if for
certain fields (Cx ⇒ Cy) is TRUE, then (Cy ⇒ Cx) must be TRUE for the remaining
fields being compared. This operation is illustrated in the computation below using the
logical relationship that if condition Cx implies condition Cy , (Cx ⇒ Cy) is TRUE,
then the expression (¬Cx ∨ Cy) must also be TRUE.
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Requester Field Owner Field
Cx : 10.10.10.10 01.01.01.XX
Cy : 10.10.10.XX 01.01.01.01

Requesterx ⇒ Requestery : ¬Requesterx ∨Requestery
: 01.01.01.01 ∨ 10.10.10.11
: TRUE

Ownery ⇒ Ownerx : ¬Ownery ∨Ownerx
: 10.10.10.10 ∨ 01.01.01.11
: TRUE

∴ Requesterx ⇒ Requestery
∧Ownery ⇒ Ownerx : TRUE

Conclusion: As can be seen from Figure 15, if Test 1 results in FALSE, Test 2 results
in FALSE, Test 3 results in FALSE and Test 4 results in TRUE, policies Rx and Ry are
correlated.
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4 Framework Evaluation

4.1 Introduction

This section presents an analysis of the evaluation scenarios which are constructed
in order to analyse the performance of the proposed information sharing framework,
based on varying central processing unit (CPUs) and random-access memory (RAM)
availability.

4.2 Total Processing-Time

This section offers an overview of the total processing times for the four scenarios
under evaluation. As illustrated in Figures 16, 17, 18 and 19, the total processing
times increase with respect to increasing policy set size for all four scenarios. This
is expected, since the resource configurations do not change within a scenario, and
only the policy set size varies. Hence, with the same available resource configuration,
it is expected that the total processing time will increase proportionally to the size
of the policy set. In fact, as illustrated by the graphs in the figures mentioned, the
rate of change of the total processing time increases with increasing policy set size,
indicating a polynomial relationship. A related observation from Figures 16, 17, 18
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Figure 16: Scenario 1: Comparison of total processing times using sequential and BDD
methods against increasing rule set size

and 19 is that the total processing times for the sequential method are higher than the
total processing times for the method using Binary Decision Diagrams (BDDs), for all
four evaluation scenarios. This result is expected, as the process using BDDs, due to
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Figure 17: Scenario 2: Comparison of total processing times using sequential and BDD
methods against increasing rule set size
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Figure 18: Scenario 3: Comparison of total processing times using sequential and BDD
methods against increasing rule set size
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Figure 19: Scenario 4: Comparison of total processing times using sequential and BDD
methods against increasing rule set size

their tree structure, involves fewer computations than sequential comparisons. Further,
it should be noted that the total processing time for the sequential process increases
at a greater rate than the total processing time for the process using BDDs. This is
illustrated in Figures 20, 21, 22 and 23, where each figure highlights the increasing
difference between sequential and BDD total processing times. The calculation for this
is formalised as f(x) in Function 1.

f(x) = (TotalProcessingT ime)Sequential − (TotalProcessingT ime)BDD (1)

An important outcome from this observation is that, as policy set sizes increase, policy
verification processes using BDDs offer increasingly better performance, in terms of
faster total completion times, than verification processes using sequential matching. It
is also important to note that, apart from total processing times, measurements were
also made of the percentage processor utilisation over time and are shown in the results
in the Appendices. These were taken for each stage of the policy verification process
and for every policy set size (50,000 to 1,000,000 policies) under test, during each of
the four evaluation scenarios. An analysis of these measurements indicates that the per-
cent processor utilisation does not vary noticeably with either increasing policy set size
or with changes in the resource configuration as defined by each evaluation scenario.
However, it is interesting to note that the arithmetic mean value of the percent pro-
cessor utilisation for the sequential method is consistently lower than that BDD-based
method. This implies that, although there is no direct relationship between increased
processor utilisation and increasing policy set sizes, the BDD-based method, registers
lower processor utilisation than the sequential comparison method. Table 7 offers a
comparison of the variation in total processing times against available resources, based
on the four scenarios under evaluation. This involves computing the arithmetic mean
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Figure 20: Scenario 1: Graph of difference in total processing times of sequential and
BDD methods against increasing policy set size.
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Figure 21: Scenario 2: Graph of difference in total processing times of sequential and
BDD methods against increasing policy set size.
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Figure 22: Scenario 3: Graph of difference in total processing times of sequential and
BDD methods against increasing policy set size.

0 0.2 0.4 0.6 0.8 1

·106

0

1,000

2,000

3,000

4,000

5,000

6,000

Rule Set Size

Pr
oc

es
si

ng
-T

im
e

(S
ec

on
ds

)

Seq-TT − BDD-TT

Figure 23: Scenario 4: Graph of difference in total processing times of sequential and
BDD methods against increasing policy set size.
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for the total processing time using the sequential method, (PTMeanSeq), and again for
the BDD-based method, (PTMeanBDD), for each scenario. As can be seen from Table
7, there is minimal variation in the total processing times, for the sequential and BDD-
based methods, for Scenarios 1, 3 and 4. The variation in PTMeanSeq for Scenarios
1, 3 and 4 is 4004 seconds, while the variation in PTMeanBDD is 4559 seconds. The
results for Scenario 2, however, indicate significantly higher values, with a PTMeanSeq

time of 234263 seconds and a PTMeanBDD time of 172911 seconds. These values are
in excess of the range values for the other evaluation scenarios by a factor of 58.5 for
PTMeanSeq and 37.9 for PTMeanBDD. As the resource configuration for Scenario 2

Table 7: Mean total processing times by scenario.

Evaluation PTMeanSeq PTMeanBDD PTMeanSeq − PTMeanBDD

Scenario Seconds Seconds Seconds

Scenario 1 52966 49531 3435
Scenario 2 234263 172911 61352
Scenario 3 56324 53449 2875
Scenario 4 56970 54090 2880

has the lowest amount of random-access memory (RAM), this result implies a high
dependence of the testing process, for both the sequential and BDD-based methods, on
RAM availability. It could be argued that this result may be influenced by the avail-
ability of the number of central processing units (CPUs). However, this argument is
discounted on the basis that Scenario 3, which includes the same number of CPUs as
Scenario 2 but has double the available RAM, shows similar results to the other evalu-
ation scenarios. Also, Scenario 1, which includes half the number of available CPUs as
Scenario 2, but with double the available RAM, also shows similar results to the other
evaluation scenarios. A comparison of these results indicates that varying the number
of available CPUs has only a minimal effect on total processing times, while a decrease
in the amount of available RAM may significantly affect processing times. The rela-
tively negligible variation between Scenarios 1, 3 and 4 also imply that a minimum
amount of RAM is required for optimal performance. Based on the results in Table 7,
this amount seems to be 2048MB in the case of the selected evaluation scenarios, as
an increase in this amount, in Scenario 4 for example, does not result in an improve-
ment in total processing times. Further, as shown in Figure 17, Scenario 2 displays
the largest difference between sequential and BDD-based total processing times. This
is an indication that, under constrained RAM conditions, the sequential method is ad-
versely affected to a much higher degree than the BDD-based method. Table 8 offers
a more detailed overview of total processing time by providing a breakdown of the
mean total processing times of each stage of the policy verification process. The mean
processing times for both the sequential, PTMeanSeq, and BDD-based, PTMeanBDD,
methods are expressed as percentages of the total mean processing time. As indicated
in Table 8, the majority of the processing time is utilised at the functional verification
stage and, secondly, by the ontology verification stage. The syntax verification utilises
the minimum amount of processing time for each scenario. This holds true for both the
sequential and BDD-based methods.
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Table 8: Mean processing times by scenario and verification stage, expressed as per-
centage of PTMeanSeq and PTMeanBDD.

Scenario Verification Stage Percentage of Mean Processing Percentage of Mean Processing
Time (Sequential) Time (BDD)

Scenario 1 Syntax 0.27 0.26
Ontology 15.12 16.20
Functional 84.61 83.54

Scenario 2 Syntax 0.05 0.96
Ontology 5.50 6.50
Functional 94.45 92.54

Scenario 3 Syntax 0.22 0.30
Ontology 21.43 22.52
Functional 78.35 77.18

Scenario 4 Syntax 0.24 0.28
Ontology 23.14 24.34
Functional 76.62 75.38

4.3 Random-Access Memory (RAM) Usage

As identified in Section 4.2, the performance of policy verification process is sensi-
tive to the amount of available random-access memory (RAM). This section offers an
analysis of the mean RAM usage with respect to each stage of the verification process.

4.3.1 Syntax Verification Stage

Figure 24 illustrates the mean random-access memory (RAM) usage for the syntax
verification stage of each of the four evaluation scenarios. As indicated, the general
trend of RAM usage for this stage is a logarithmic increase approaching a stable value.
Table 9 lists these values, in megabytes (MB), for all four scenarios, along with the
corresponding policy set sizes, where they occur. The results indicate that Scenario 1
approaches a stable mean RAM usage value of 11.47 MB, while Scenarios 2, 3 and 4
approach a value of 11.70 MB.

Table 9: Stable mean RAM usage values (S-MRU) for the syntax verification stage and
corresponding policy set sizes.

Scenario Stable RAM Value Policy Set
(Megabytes) Size

Scenario 1 11.47 600000
Scenario 2 11.70 350000
Scenario 3 11.70 400000
Scenario 4 11.70 550000
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Figure 24: Graph of Mean RAM Usage (S-MRU) during the syntax verification stage
against increasing policy set size.

4.3.2 Ontology Verification Stage

Figure 25 illustrates the mean random-access memory (RAM) usage for the ontology
verification stage of each of the four evaluation scenarios. Table 10 lists these values,
in megabytes (MB), for all four scenarios. The respective policy set sizes are not listed
as the value fluctuates evenly around a central mean, and does not vary significantly
with respect to increasing policy set sizes.

Table 10: Stable mean RAM usage values (O-MRU) for the ontology verification stage
and corresponding policy set sizes.

Scenario Stable RAM Value
(Megabytes)

Scenario 1 21.14
Scenario 2 21.48
Scenario 3 21.47
Scenario 4 21.46

4.3.3 Functional Verification Stage

This section offers a comparison of the mean random-access memory (RAM) usage
during the functional verification stage of the policy verification process. It focuses on
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Figure 25: Graph of Mean RAM Usage (O-MRU) during the ontology verification
stage against increasing policy set size.

the difference in average RAM usage between sequential and binary decision diagram
(BDD) methods for anomaly detection. The average RAM usage value is defined here
as the arithmetic mean of all RAM readings taken during the functional verification
stage. Figures 26, 27, 28 and 29 offer a comparison of the average RAM usage using
the sequential method, Seq-MRU, and the BDD method, BDD-MRU, against increas-
ing rule set size for Scenarios 1, 2, 3 and 4, respectively. A clear indication from
Figures 26, 27, 28 and 29 is that there is a linear relationship between the mean RAM
usage and increasing policy set size, for both sequential and BDD-based functional
verification methods. This holds true for all four evaluation scenarios. Further, all four
scenarios also display a rate of increase for the sequential method that is much higher
than that of the BDD-based method, for increasing policy set size. This implies that
the BDD-based functional verification method is much more efficient, in terms of RAM
usage per policy set size, than the sequential method. Another feature of the graphs in
the figures mentioned is that, for all four scenarios, the initial RAM usage value for the
sequential method is much lower than that of the BDD-based method. This is expected,
since the BDD-based method requires an allocation of RAM for the initialisation of the
BDD structure, while the sequential method does not. For sequential comparison, only
the RAM amount required to load a policy set is allocated. With increasing sizes of
policy sets, however, the BDD-based method requires progressively lower amounts of
RAM allocation, per policy set size, compared to the sequential method. This is due
to the specialised structure of the BDD decision tree which, once a policy set has been
loaded into memory in the form of a binary string, carries out anomaly-detection logic
functions more efficiently than sequential comparisons. For this reason, as policy set
sizes increase, the sequential comparison method requires more RAM allocation than
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Figure 26: Scenario 1: Comparison of Sequential Mean RAM Usage (Seq-MRU) and
BDD Mean RAM Usage (BDD-MRU) during the functional verification stage against
increasing rule set size.
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Figure 27: Scenario 2: Comparison of Sequential Mean RAM Usage (Seq-MRU) and
BDD Mean RAM Usage (BDD-MRU) during the functional verification stage against
increasing rule set size.
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Figure 28: Scenario 3: Comparison of Sequential Mean RAM Usage (Seq-MRU) and
BDD Mean RAM Usage (BDD-MRU) during the functional verification stage against
increasing rule set size.
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Figure 29: Scenario 4: Comparison of Sequential Mean RAM Usage (Seq-MRU) and
BDD Mean RAM Usage (BDD-MRU) during the functional verification stage against
increasing rule set size.
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the BDD-based method for the same size of policy set. An interesting aspect of this
trend is that, for each evaluation scenario, the sequential comparison method requires
lower RAM allocation than the BDD-based method for certain policy set sizes. Ta-
ble 11 lists the points at which the RAM usage for both methods is the same. The
lowest RAM value where this occurs is 189.51MB for Scenario 3, while the highest
is 191.59MB for Scenario 2. Interestingly, these points also form the boundaries for
the range of policy set sizes where RAM usage is the same, which is 180676 policies
for Scenario 3 and 210935 policies for Scenario 2. An important consequence of these

Table 11: Rule set sizes by scenario at which the sequential and BDD-based RAM
usage values are equal.

Scenario No. of policies in RAM Usage Value
Policy Set Size (Megabytes)

Scenario 1 184386 190.31
Scenario 2 210935 191.59
Scenario 3 180676 189.51
Scenario 4 181094 189.58

values is that, for policy set sizes of approximately 180000 policies and less, the se-
quential comparison method is more efficient than the BDD-based method, in terms of
RAM usage per policy set size, for all four evaluation scenarios. This means that, in or-
der to successfully complete the functional verification process, the sequential method
requires a much lower allocation of RAM than the BDD-based method, as long as the
policy set size is lower than approximately 180000 policies. For all policy set sizes
larger than 180000 policies, however, the BDD-based method displays a lower RAM
allocation requirement. Further, the difference in RAM allocation amounts between the
sequential and BDD-based methods is linear. The linear relation here demonstrates the
higher rate of RAM usage against policy set size for the sequential method compared
against the BDD-based method. In terms of a ratio of policy set size against RAM
usage amount, the BDD-based method, therefore, offers a more efficient application of
available RAM than the sequential method.

5 Conclusion

This paper outlined an evaluation and discussion on the performance of the informa-
tion sharing framework, based on an analysis of its performance during each of the
four evaluation scenarios. As expected, it was evident from the analysis that increas-
ing policy set sizes required an increasing amount of resources, especially in terms of
random-access memory (RAM), and resulted in longer processing times. Although this
trend was true for all four evaluation scenarios, it was evident that the binary decision
diagram (BDD) based method performed better than the sequential method. This result
was verified in the analysis of total processing times and percent processor utilisation,
where the BDD-based method consistently resulted in faster times and lower utilisation
than the sequential method. Further, the difference in total processing times between
the sequential and BDD-based methods increased significantly with increasing policy
set sizes, as was shown in Table 7. Although this trend was observed for all four evalua-
tion scenarios, that is the BDD-based method had faster total processing times than the

60



sequential method for all four scenarios, it was particularly pronounced for Scenario
2. While the difference in total processing times was 3435, 2875 and 2880 seconds
for Scenarios 1, 3 and 4, respectively, it was 61352 seconds for Scenario 2. Further
analysis of the RAM usage values over time for Scenario 2, indicate anomalous values
for sets consisting of greater than 500,000 policies. This implies a high dependence of
the framework on available resources, as limited RAM availability in Scenario 2 may
have contributed to the anomalous values recorded for larger policy sets. The analysis
also verified that the performance of the policy verification process is dependent on the
functional verification stage more than the syntax or ontology verification stages, irre-
spective of available resources. As indicated in Table 8, for example, over 75 percent
of the mean processing time is taken up by the functional verification stage. This is a
crucial argument in favour of the BDD-based method. This is not only because the to-
tal processing times for the BDD-based method are lower than those for the sequential
comparison method, but also because the rate of increase in processing time is signif-
icantly higher for the sequential comparison method than for the BDD-based method.
This observation holds true for all four evaluation scenarios and, therefore, highlights
the increasing advantage of the BDD-based relative to increasing policy set sizes. As
discussed earlier in Section 2, there is a one-to-many relationship between high-level
policies and their lower-level implementations. Due to the large number of legal juris-
dictions and organisations involved in collaborative frameworks, a single information
sharing policy may require a large number of abstractions and interpretations, resulting
in large policy sets. Hence, it is likely that the advantage offered by the BDD method
will be of vital advantage in this context.
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