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ABSTRACT

Novel deterministic heuristics are generated using Single Node
Genetic Programming for application to the One Dimen-
sional Bin Packing Problem. First a single deterministic
heuristic was evolved that minimised the total number of
bins used when applied to a set of 685 training instances.
Following this, a set of heuristics were evolved using a form
of cooperative co-evolution that collectively minimise the
number of bins used across the same set of problems. Re-
sults on an unseen test set comprising a further 685 prob-
lem instances show that the single evolved heuristic out-
performs existing deterministic heuristics described in the
literature. The collection of heuristics evolved by cooper-
ative co-evolution outperforms any of the single heuristics,
including the newly generated ones.

Categories and Subject Descriptors

Computing methodologies [Machine learning]: Machine
learning algorithms

Keywords

Hyper-Heuristics; One Dimensional Bin Packing Algorithms;
Single Node Genetic Programming

1. INTRODUCTION
This paper introduces a system for generating both dis-

crete and cooperative heuristics for application to the 1D Bin
Packing Problem (BPP). A compact form of Genetic Pro-
gramming (GP) named Single Node Genetic Programming
(SNGP) [16, 15] is used as a generative hyper-heuristic (HH)
to create novel deterministic heuristics. The motivation for
the research lies with the premise that selective HH can ex-
ploit the abilities of different heuristics by selecting the one
that is best suited for each problem instance. Also gener-
ative HH can be used to generate single heuristics which
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exhibit superior performance than similar human designed
heuristics and can be used to produce collections of heuris-
tics that collectively maximise the potential of selective HH.
The papers contribution is two fold. Single heuristics ca-
pable of outperforming a range of well researched deter-
ministic heuristics are generated by combining features ex-
tracted from those heuristics. Secondly an island model[19]
is adapted to use multiple SNGP implementations to gener-
ate diverse sets of heuristics which collectively outperform
any of the single heuristics when used in isolation. Both ap-
proaches are trained and evaluated using equal divisions of a
large set of 1370 benchmark problem instances sourced from
the literature[11, 22]. The heuristics generated outperform
6 well researched human-designed deterministic heuristics in
terms of both the number of optimum solutions found in the
test set, and the total number of bins required to solve all
instances.

2. ONE DIMENSIONAL BIN PACKING
The one dimensional bin packing problem (BPP) is a well

researched NP-hard problem [13] which has been tackled
using exact procedures[22], deterministic heuristics[13], bio-
logically inspired metaheuristics [11, 18] and HH [20, 1, 21,
5, 24]. The objective is to find the optimal number of bins,
OPT (bins), of fixed capacity c required to accommodate a
set of n items, J = {ω1 . . .ωn} with weights ωj : j ∈ {1 . . . n}
falling in the range 1 ≤ ωj ≤ c whilst enforcing the con-
straint that the sum of weights in any bin does not exceed
the bin capacity c. For any instance OPT (bins) must lie
between the lower and upper bounds shown in Equation 1
with the upper bound occurring when all items are greater
than half the bin capacity and the lower bound achieved
when the total free space summed across all bins is less than
the capacity of one bin.

#(
∑n

j=1
ωj)÷ c$ ≤ OPT (bins) ≤ n (1)

Metaheuristics, such as Genetic Algorithms (GA) [11] and
Ant Colony Optimisation [18], have been successfully used
to solve the BPP. However they are often complex hybrid
procedures incorporating both stochastic global search and
highly optimised local search mechanisms tailored to the
benchmark problem instances they are designed to solve.
Metaheuristics have been criticised as being costly in terms
of the time and the level of expertise required to develop
and adapt them for real world applications.



HH, introduced in the following section, aim to address
many of the issues surrounding the complexities associated
with applying metaheuristics by finding“good enough - soon
enough - cheap enough” [2] methods for solving problem in-
stances of widely varying characteristics.

3. HYPER-HEURISTICS
The term hyper-heuristics (HH) first appeared in relation

to combinatorial optimisation problems in [6] although the
term was first coined in [9] to describe an amalgamation
of artificial intelligence techniques in the domain of auto-
mated theorem proving. However, the concept can be traced
back to the 1960’s when Fisher & Thompson [12] used ma-
chine learning techniques to select combinations of simple
heuristics to produce solutions to local job-shop schedul-
ing problems. Originally described as “heuristics to select
heuristics” [2] the field has evolved to encompass techniques
including“heuristics to generate heuristics”using GP to cre-
ate new heuristics from constituent component parts [4, 5].
All HH, no matter the approach, have the commonality that
they search over a landscape defined by a set of heuristics,
or their component parts, for a procedure to solve a problem
rather than searching directly over the space defined by the
problem itself. A more concise review can be found in [2, 3].
HH have been applied to the BPP previously not only in

the 1D form investigated here but also in its 2D and 3D va-
rieties. Ross et al.[21], developed a HH that introduced the
notion of describing the state of a problem instance accord-
ing to the percentage of items that fall into 4 pre-defined
”natural” categories relating to item size, given as a ratio of
the bin capacity. A Michigan style Learning Classifier Sys-
tem (LCS) was used to evolve a set of rules mapping prob-
lem states to suitable heuristics. Each iteration the chosen
heuristic packs a single bin with the potential of a filler pro-
cess being invoked that attempts to fill a partially filled bin
further. The remaining items are then reclassified using the
new problem state resulting in the application of a sequence
of heuristics for solving each instance.
In [24] the authors built on the work presented in [21]

by training a k-nearest neighbour classification algorithm
to predict which from a set of four deterministic heuristics
would perform best on a large set of benchmark problem
instances. Rather than utilising the pre-determined “nat-
ural” characteristics used in [21] a genetic algorithm was
used to evolve an undetermined quantity of characteristics.
The characteristics evolved were expressed as variable sized
ranges of the bin capacity and were shown to improve the
accuracy when predicting the best heuristic for an instance.
Both HH described above can be characterised as heuris-

tics to select heuristics using the classification schema set
out in [4]. In contrast the approaches taken in [1, 5] fall into
the class of heuristics to generate heuristics where GP tech-
niques were employed as a means of automating the design
of on-line heuristics for the BPP. In both of these studies a
small number of 1D BPP benchmark instances were used to
evaluate the performance of the heuristics generated. The
research presented here is evaluated against a far larger set
of problem instances which in conjunction with the fact that
the heuristics generated are off-line heuristics means that no
direct comparison can be made. In order to evaluate the ap-
proach taken here the results obtained are compared to a
range of off-line heuristics sourced from the literature. It
should be noted that these include a hand crafted heuristic

(ADJD) created for a previous study [24] in order to ad-
dress the poor performance of the other heuristics used on
problem instances where the average item size is small when
measured as a ratio of the bin capacity.

Heuristics are generated using a compact form of GP, de-
scribed in Section 5, to evolve both single and innovatively a
set of cooperative off-line heuristics which collectively cover
more of the problem search space.

In [1, 5] the heuristics evolved directly decide which bin
to pack an item into given the state of any partially packed
bins and the characteristics of the next item presented. In
contrast the heuristics evolved here indirectly pack items,
one bin at a time, by means of a side effect of the heuristic.
The result of executing a heuristic is not used explicitly to
decide whether to pack an item; rather, the value returned
determines whether the packing process currently running
should terminate or continue. As a consequence of executing
a heuristic certain terminal nodes may be invoked which may
cause one more more items to be packed into the current bin;
an outcome described in the literature as a “side effect”.

4. BENCHMARKS
Six deterministic heuristics and five sets of benchmark

problem instances were sourced from the literature and used
to evaluate the heuristics evolved here. Three of the data
sets totalling 1210 instances were introduced in [22] and have
optimal solutions that vary from the lower bound given by
Equation 1. All optimal solutions are known and have been
solved since their introduction [23]. A further 2 data sets
comprising 160 problem instances were taken from [11]. All
but one have optimal solutions at the lower bound [14]. For
the remainder of this paper the term “optimal” refers to the
solutions described within these publications. The complete
set of 1370 benchmark instances were split into equal sized
training and test sets with the test set comprising of every
2nd instance. This ensured an even distribution of instances
from each of the data sets and from each of the subsets that
were generated using discrete parameter combinations. The
reader is directed to the original publication for a description
of how these problem instances were generated.

Six deterministic heuristics, described below, are used for
comparison. All but one are off-line algorithms. The ex-
ception is the Sum of Squares (SS) algorithm [7, 8] which is
designed as an on-line algorithm but used here as a deter-
ministic off-line heuristic. All heuristics described here, are
presented with each problem instance’s items pre-sorted in
descending order of size.

• First Fit Descending (FFD) packs each item into the
first bin that will accommodate it. If no bin is available
a new bin is opened. All bins remain open for the
duration of the procedure.

• Djang and Finch [10] (DJD) packs items into a bin
until it is at least one third full. The set of up to
three items which best fills the remaining space is then
found with preference given to sets with the lowest
cardinality. The bin is then closed and the procedure
repeats using a new bin.

• DJD more Tuples (DJT) [21]. DJT works as for DJD
but considers sets of up to five items after the bin is
filled more than one third full.



• Adaptive DJD (ADJD) [24] packs items into a bin until
the free space is less than or equal to three times the
average size of the remaining items. It then operates
like DJD looking for the set of up to three items of
lowest cardinality that best fills the remaining space.

• Best Fit Descending (BFD) works as for FFD but
packs each item into the bin with the least free space
which will accommodate it.

• Sum of Squares (SS) [7, 8] is an on-line bin packing
heuristic which puts items into bins such as to min-
imise the number of bins with equal free space. It is
included here as a deterministic off-line heuristic with
items presented in descending order of size.

It is interesting to note that SS solves 79 of the 80 in-
stances in Falkenauer’s Triplet set when presented with the
items in the order that they are published. When the order
of items was shuffled randomly, SS failed to find any optimal
solution for any of the 80 problem instances. When SS was
applied to the 685 problem instances in the test set with
the items presented in the order that they are published it
finds 421 optimal solutions using 61231 bins. When items
are pre-sorted in descending order of size it finds 383 opti-
mal solutions using a total of 61369 bins. When items were
shuffled randomly 100 times. SS finds on average 97 optimal
solutions using an average of 63282 bins.

5. SNGP
Single Node Genetic Programming was introduced by Jack-

son in [16] and applied to 3 problems amenable to being
solved using dynamic programming, namely 6 multiplexer,
even-parity and symbolic regression. SNGP differs from the
conventional GP model introduced by Koza [17] in a number
of key respects.

• Each individual node may be the starting point for
evaluation, not only the top most node.

• Nodes may have any number of parent nodes (includ-
ing none and duplicates) allowing for network struc-
tures other than trees to be formed.

• The only evolutionary operator used is mutation which
is employed as a hill climber with the mutation undone
if no improvement is achieved.

Figure 1 shows two partial SNGP structures with any
nodes not connected to the current top node omitted for
clarity. The standard tree structure on the left show how
the DJD heuristic could be represented using the nodes out-
lined in Table 1. The right side of the diagram highlights a
key difference between SNGP and conventional GP; that in-
dividual nodes are permitted to have multiple parent nodes.
In keeping with the terminology used in the literature each
node is considered as an individual in a population. Each
node can be the starting point for evaluation making each a
unique heuristic. As described later, each SNGP structure
contains exactly 1 of each of the available terminal nodes and
a predefined number of randomly selected terminal nodes.
These may be disconnected during the mutation process.
When evaluating a node only it and those nodes connected
recursively as child nodes need to be considered. Evaluation
of the population may either be carried out by averaging the
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Figure 1: Two examples of partial SNGP structures
with any unused nodes hidden.

fitness of all nodes or by considering the node with the best
fitness in isolation. The second elitist measure is adopted
here.

One of the advantages of SNGP is in its efficiency as all
nodes do not need to be re-evaluated after each mutation.
However this only holds for problems where the numerical
output of an evolved program is used to explicitly make
some decision. Jackson carried out a further investigation
of SNGP in [15] where its effectiveness on problems where
the solution is obtained as a side effect was explored. For
this class of problem executing the program does not yield
a result which determines an appropriate action but causes
a side effect such as producing a transition between adja-
cent positions in a maze. Three such problems were tackled
using SNGP; the Santa Fe artificial ant problem, a maze nav-
igation task and third problem where the objective was to
generate a program capable of parsing arithmetic and logical
expressions. SNGP was shown to be an effective approach
for tackling this class of problem. The results presented
showed significant improvement to those obtained using con-
ventional GP. SNGP operates as follows.

1. Each terminal node T ∈ {t1, . . . tr} is added once and
given an integer identification number ranging from 1
. . . r.

2. A number, n, of function nodes are selected at random
from the set of all function nodes F ∈ {f1, . . . , fs}
and given an identification number ranging from r+1,
. . . r+n. Function nodes may be duplicated or omitted
from the SNGP structure.

3. Each function node has its child nodes assigned at ran-
dom from the set of all nodes with a lower id to prevent
any recursive loops.

4. A single mutation operator is used which selects a func-
tion node at random and reassign one of its edges to
point at a node chosen randomly from the set of all
nodes with a lower identification number.

5. If no node from the new mutated network proves more
effective on the training problems then the network is
reverted to its previous state.

Steps 4 and 5 are repeated until the stopping criteria is met
which for both experiments described in Section 7 was after
500 generations. In the two HH studies, described in Section
3, the value output from the evolved program was used to
directly decide where to pack the next item. The system
presented here differs in that the process of evaluating a
terminal node may cause items to be packed into the current
bin.



In order to ensure that all heuristics terminate, even when
no items are packed, a wrapper, described by Algorithm 1, is
used to encompass the node being evaluated. The wrapper
is responsible for determining when to open a new bin based
on both the value returned by the heuristic and the state of
the solution currently being constructed. The nodes selected
for use in this study, described in Table 1, were identified by
decomposing the heuristics outlined in Section 4.

Table 1: Nodes Used

Function Nodes
Protected divide. Returns -1 if the denominator

/ is 0 otherwise the result of dividing the first
operand by the second is returned

> Returns 1 if the first operand is greater
than the second or -1 otherwise

IGTZ Is Greater Than Zero: If the first operand
evaluates as greater than zero then the result
of evaluating the second operand is returned.
Otherwise the result of evaluating the
third operand is returned

< Returns 1 if the first operand is less
than the second or -1 otherwise

X Returns the product of two operands
Terminal Nodes

B1 Packs the single largest item into the current
bin returning 1 if successful or -1 otherwise

B2 Packs the largest combination of exactly
2 items into the current bin returning
1 if successful or -1 otherwise

B2A Packs the largest combination of up to 2 items
into the current bin giving preference to sets of
lower cardinality. Returns 1 if successful
or -1 otherwise

B3A As for B2A but considers sets of up to 3 items
B5A As for B2A but considers sets of up to 5 items
C Returns the bin capacity
FS Returns the free space in the current bin
INT Returns a constant integer value randomly

initialised from ∈ [−1, 1, 2, 3, 4, 5]
W1 Packs the smallest item into the current bin

returning 1 if successful or -1 otherwise

Algorithm 1 SNGP Node Wrapper

Require: I ∈ {i1, i2, ..., in} {The set of items to be packed}
Require: B = ∅ {The set of bins which is initially empty}

repeat
add a new bin b to B
repeat

I ′ = I
result = evaluate(Node) {This may cause items
from I to be packed into the current bin b}

until result < 0 or I = ∅ or I = I ′

if I = I ′ and I '= ∅ then
pack each remaining item in a new bin

end if
until I = ∅

SNGP was chosen as a methodology after trials using con-
ventional GP were unsuccessful due to the network struc-

tures suffering from bloat. SNGP eliminates this undesirable
trait due to its use of a single mutation operator. With no
crossover employed there is no mechanism to allow the struc-
tures generated to grow beyond their initial size. SNGP also
allows for more complex programs (using the same number
of nodes) to emerge than would be possible using GP which
restricts the topology of networks to tree structures.

HH search for a suitable procedure for solving a problem
instance rather than directly searching for a solution. The
research presented incorporates an island model with mul-
tiple instances of SNGP to generate sets of heuristics which
collectively cover this search space better than any single
heuristic. The system is explained in the following section.

6. ISLAND MODEL

6.1 Description
The model used here is adapted from [19] where the au-

thors used a novel approach for evolving “interacting coad-
apted subcomponents”. The authors distinguish their model
from other approaches, such as Learning Classifier systems
which the authors describe as competitive rather than coop-
erative. The model is evaluated on a simple bit string pat-
tern matching task before being applied to the more complex
task of evolving weights for a cascading neural network. The
bit string pattern matching task involves finding a match set
of N binary strings which match as well as possible a much
larger target set of K bit strings. The target set is gener-
ated at random using either 2, 4 or 8 disparate masks. The
objective is to generate a set of either 2, 4 or 8 matching
strings. For example if 2 masks are used, ####1111 and
1111#### (where# represents a random binary value),
then the objective of is to generate two strings which be-
tween them match as many of the bits in this set as pos-
sible. The model allows the number of islands to emerge
as a property of the system making the technique amenable
in situations where the number of cooperating subcompo-
nents is not known a priori. A matching string is evaluated
by averaging the number of bits in the same position with
the same value over the complete target set. Islands are
removed if their contribution is deemed negligible and are
added when the fitness of the system stagnates.

The system described in the following section evolves a set
of complimentary heuristics which cover different portions of
the heuristic search space and collectively outperform any of
the individual constituent heuristics.

6.2 Implementation
Figure 2 illustrates the utility of combining heuristics.

Non-overlapping areas describe those instances for which a
heuristic uses fewer bins than any other. Heuristic H2 gives
no contribution and could be eliminated as it is fully enclosed
by H1. The island model described was adapted to use mul-
tiple instances of SNGP rather than GAs. Each node in
an island’s network structure is evaluated by measuring its
ability to cooperate with the best nodes taken from each of
the the other islands. The process of co-evolving heuristics
is described by Algorithm 2 and conceptualised by Figure 3.
Note that only partial SNGP structures are depicted due to
space restrictions. The fitness value attributed to a heuris-
tic (node) is designed to reflect its ability to cooperate with
the best nodes from each of the other islands.
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Figure 2: The Venn diagram conceptualises how a
set of heuristics collectively improve upon their in-
dividual abilities to solve a set of problem instances.
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Figure 3: Measuring an Islands Contribution to the
Ecosystem.

Fitness is calculated using Equations 2, 3 and 4 and is
simply the sum of the number of bins fewer required by the
heuristic in comparison to the best result achieved by any
of the other islands best heuristics. Only problem instances
where the heuristic being evaluated uses less bins than any
of the other islands best heuristics are used for the fitness
metric’s calculation.

fitnessij =
p

∑

k=1

∆binsijk (2)

where fitnessij is the fitness of islandi nodej evaluated
across all training problem instances k = 1, . . . , p

∆binsijk =

{

bestp − binsijk :if binsijk < bestp

0 :otherwise
(3)

where ∆binsijk is the difference in the number of bins used
to solve problem instance k using island i node j and the
best result obtained using the other islands given by bestp

bestp = min (bestibinsp
) ∀i ∈ {1, . . . , n} : i '= x (4)

where x is the id of the island being evaluated, bestibinsp

is the number of bins required to pack problem p using the
node with the best fitness from island i and n is the num-
ber of islands in the ecosystem. Each island is evaluated in
turn. The diagram shows how each of the six nodes from
island 1 (along with their successor nodes) that constitute
the 6 heuristics are decomposed. Each node from the island
being evaluated is placed into a set of nodes containing one

Algorithm 2 Island Model Pseudo-Code

add one Island to the empty set of Islands
bestBins = Integer.MaxValue
repeat

if bestBins is unimproved for 20 generations then
for all Island ∈ Islands do

Remove Island
if total number of bins > bestBins then

reinstate Island
end if

end for
add new island
evaluate all nodes in new island
set all of the new islands nodes fitnesses

end if
bestBins = evaluateBins()
for all Island ∈ Islands do

mutate(island)
evaluate all nodes in mutated island
set all nodes fitnesses in mutated island
if evaluateBins() ≥ bestBins then

revert Island to previous state before mutation
else

bestBins = evaluateBins()
end if

end for
until 500 generations have elapsed

representative from each of the other islands. The node se-
lected as a representative from each of the other islands is
that which was awarded the highest fitness score during the
previous iteration. All nodes in an island have their fitness
value recalculated after the island is mutated as follows.

• Each of the 685 training problem instances are solved
using each of the the representatives from the other
islands.

• If the node being evaluated is able to solve any of the
same instances using fewer bins then the improvement
in the number of bins is added to its fitness score.

• Only problem instances where an improvement is seen
are used for determining a node’s fitness.

• Once all nodes in an island have been evaluated the
collective ability of the ecosystem is evaluated by mea-
suring the total number of bins required to pack all
training instances when the best node from each is-
land is applied greedily to all training instances.

• If the total number of bins required increases from the
value obtained during the last iteration then the muta-
tion is undone and the island is reverted to its previous
state.

This process then repeats with the other islands.

7. EXPERIMENTS AND RESULTS
Two sets of experiments were conducted using the set of

training instances and then evaluated on the unseen test
instances outlined in Section 4. Both experiments were con-
ducted using the island model outlined previously with the
first experiment restricted to using a single island.



The objective of the first experiment was to generate a
single heuristic which minimised the cumulative number of
bins required when applied to all 685 problems in the test
set. The second experiment used the island model described
previously to co-evolve a set of cooperative heuristics which
when applied greedily to the test set were able to collectively
outperform any of the individual constituent heuristics.
Both experiments were executed 30 times and each termi-

nated after 500 iterations. The results presented here only
show the first 250-260 generations as no improvement was
observed after this point. In all cases the SNGP structures
were initialised as described in Section 5 using 12 randomly
selected function nodes. The software was implemented in
Java and executed on a high performance cluster comprising
of 18 servers each equipped with dual, quad-core cpu’s with
16Gb ram running Fedora 12.
The results of the first experiments are summarised in

Table 2 which shows for comparison the number of problem
instances that were solved optimally by each of the six de-
terministic heuristics described in Section 4. The number of
extra bins more than the optimal of 60257 required by each
heuristic when applied to the same set of instances is also
given. The table also gives the results obtained by treating
each terminal node as an individual heuristics. This high-
lights the benefits of using SNGP to evolve heuristics which
are composed of combinations of nodes used in the terminal
set. It is interesting to note that by encompassing the nodes
in a wrapper that continues to execute the heuristic until
no more items are packed even the simple terminal nodes
when used in isolation can outperform the human designed
heuristics.

Table 2: Comparison between 6 deterministic
heuristics, the terminal nodes that cause a side ef-
fect and the best generated heuristic (HGEN) on
the test set of problem instances.

Heuristic Optimal Solutions Extra Bins
FFD 393 1088
DJD 356 1216
DJT 430 451
ADJD 336 679
BFD 394 1087
SS 383 1112

Terminal Node Optimal Solutions Extra Bins
B1 393 1088
B2 308 3250
B2A 432 944
B3A 303 764
B5A 332 692
W1 31 16761

Generated Heuristic Optimal Solutions Extra Bins
HGEN 518 257

Figures 4 and 5 show statistical results for single heuristic
generation taken over 30 runs. The box plots illustrate how
25 of the 30 runs evolve in less than 250 generations to give
the same results using both the number of instances solved
and the total number of bins required as metrics. For those
5 runs where the results deviated from the best the devi-
ation was minimal. Using a Mann-Whitney rank sum test
to compare the best human designed heuristic (DJT) to the
best evolved heuristic using the number of bins required as

a metric offers little insight into the obvious improvement in
the results due to the fact that both heuristics generate solu-
tions which require an equal number of bins for many of the
problem instances. However if Falkenauer’s fitness function
[11] is used as a metric then the one-tailed and two-tailed
P values obtained show the results to be highly significant
measuring at 5.48×10−5 and 10.96×10−5 respectively. Two
of the best heuristics generated are shown in Figure 6.
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Figure 4: Single heuristic performance over 30 runs
using the number of training problem instances
solved using the known optimal number of bins as a
metric
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Figure 5: Single heuristic performance over 30 runs
using the total number of bins required to pack all
training instances as a metric
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Figure 6: Two of the single heuristics evolved.

The results of the second experiment, designed to generate
a set of cooperative heuristics which when applied greedily
to the training problems collectively minimise the number of
bins required, are shown in Table 3 The number of heuristics
evolved is an emergent property of the system and is not
predefined. All heuristics contribute towards the combined
improvement. The number of optimal solutions found and
the number of bins utilised by each new heuristic are shown.
These results are contrasted with the 6 heuristics described
in Section 4



Table 3: Comparison between 6 man made heuris-
tics and 6 generated heuristics on 685 test problems

Heuristic Optimal Solutions Extra Bins
FFD 393 1088
DJD 356 1216
DJT 430 451
ADJD 336 679
BFD 394 1087
SS 383 1112

Combined 544 186

H1 332 692
H2 476 820
H3 465 363
H4 420 500
H5 267 850
H6 471 409

Combined 559 159

The table also shows the total number of problems solved
and the number of extra bins than the optimal required by
each collection of heuristics if applied in a greedy manner.
It is clear that the evolved heuristics outperform the hu-
man designed ones in terms of both metrics used. In or-
der to provide a further comparison, the best heuristics ob-
tained from each experiment were used to solve a much
larger set set of 15830 problem instances (available from
http://www.soc.napier.ac.uk/~cs378/bpp/). The best sin-
gle evolved heuristic used 7.8% fewer extra bins than were re-
quired by ADJD which was the best human designed heuris-
tic on these problems. ADJD used 18541 extra bins that
the known optimal of 1, 362, 542. The set of six cooperative
heuristics collectively required 21% fewer extra bins (15070)
than the optimal number than were needed when greedily
applying the best of the man made heuristics.
Figures 7 and 8 show the performance of the island model

during training. The darkest line at the top of Figure 7
and the bottom of Figure 8 show the results obtained if the
heuristics are applied greedily to each instance. The other
plots on each graph show the results obtained on the training
set by each of the individual constituent heuristics evolved
by the system.
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Figure 7: Number of problems solved individually
and cumulatively from 685 problem instances used
during training
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Figure 8: Number of bins used individually and col-
lectively during training.

Figure 9 depicts one of the best sets of 6 heuristics evolved
during this experiment which is the set used to obtain the
results shown here. Although the results shown are for one
individual run, as was the case with the first experiment
nearly all of the 30 runs conducted converged to produce
identical results which are omitted to increase clarity (27 out
of the 30 runs conducted produced sets of heuristics which
gave the same results when evaluated using both metrics).
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Figure 9: An evolved set of cooperative heuristics
with unused nodes omitted for clarity.

8. CONCLUSIONS AND FUTURE WORK
Single heuristics were generated that outperformed a se-

lection of well researched deterministic heuristics when used
to solve a large set of 685 problem instances frequently used
as benchmark instances in the literature. Furthermore an
island model was added which used a form of cooperative
co-evolution to generate a set of novel heuristics that in-
teract cooperatively to collectively minimise the number of
bins used across the same set of problem instances.

The approach is novel both in its use of SNGP to find new
heuristics, and in its use of cooperative co-evolution to find
sets of heuristics. The results attained highlight the utility
of using HH to combine simple deterministic heuristics in
order to exploit their combined strength. It is intended to
expand the approach taken here by incorporating a heuris-
tic selection strategy. This would create a HH which falls
into both HH categories; “heuristics to select heuristics” and
“heuristics to generate heuristics”.

http://www.soc.napier.ac.uk/~cs378/bpp/
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problem: A problem generator and some numerical
experiments with ffd packing and mtp. International
Transactions in Operational Research, 4(5-6):377–389,
1997.

[24] K. Sim, E. Hart, and B. Paechter. A hyper-heuristic
classifier for one dimensional bin packing problems:
Improving classification accuracy by attribute
evolution. In C. Coello, V. Cutello, K. Deb, S. Forrest,
G. Nicosia, and M. Pavone, editors, Parallel Problem
Solving from Nature - PPSN XII, volume 7492 of
Lecture Notes in Computer Science, pages 348–357.
Springer Berlin Heidelberg, 2012.


	Introduction
	One Dimensional Bin Packing
	Hyper-heuristics
	Benchmarks
	SNGP
	Island Model
	Description
	Implementation

	Experiments and Results
	Conclusions and Future Work
	References

