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Abstract—Proof of Work (PoW) is used to provide a 
consensus mechanism for Bitcoin. In this mechanism, the 
process of generating a new block in the blockchain is referred 
to as mining. Such process is intentionally designed to be 
resource-intensive and time consuming so that the rate of block 
generation remains steady. A single participant, called a miner 
usually has limited computation power to produce PoWs. This 
leads miners to form a mining pool, where miners aggregate 
their computing power and share the rewards. However, a 
phenomenon raises in such a mining pool activity, where miners 
attack each other. Consequently, this results in a decrease in 
total rewards received from the mining pool. To address the 
abovementioned problem, we build a multi-miner model for 
forming a mining pool. We further propose a method to improve 
the cooperation-probability of miners in the pool by introducing 
a Zero-Determinant strategy and a Temporal Difference 
learning method (TD(λ)). Experimental simulation results show 
that the proposed method can effectively promote the 
cooperation among miners, therefore, increase the rewards 
received from the formed mining pool.  

Keywords—Bitcoin, Blockchain, Temporal Difference 
Learning Method, Zero-Determinant Strategy, Block withholding 
Attack 

I. INTRODUCTION 
Bitcoin [1] is currently the most successful blockchain 

application in the world, which possess the largest number of 
users, the largest system, and the most stable transactions. It 
provides a novel consensus mechanism, called Proof of Work 
(PoW), which directly led to the birth of blockchain 
technology. PoW describes a secure accounting system that 
solves the Byzantine Problem by introducing a hash rate (the 
computing power in Bitcoin network) competition of 
distributed nodes to ensure data consistency and consensus. 
The nodes who participate in the competition are called miners, 
and the process of computing is called mining. As the Bitcoin 
system becomes larger, the possibility of a single miner 
mining successfully becomes smaller. In order to get more 
rewards, the mining pool, where several miners aggregate 
their own hash rate and share the overall rewards, has 
appeared. 

Studies have shown that in an open pool, miners can 
implement block withholding attack to increase their own 
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profits. From the perspective of game theory based on 
hypothesis of rational man, all miners will eventually choose 
to attack each other, but they will receive less revenue than 
not* attacking each other. This is the dilemma of the miners 
under PoW. We can compare it with the classic Prisoner’s 
Dilemma [2] in game theory, which represents such a situation 
that the optimal strategy for the individual is not the overall 
optimal strategy. Therefore, we can analyze and optimize the 
miner’s dilemma from the perspective of game theory.                                               

Zero-Determinant Strategies (ZD strategies) is one of the 
hot trends in current game theory research. Originating from 
the papers published by Press and Dyson [5] , they indicates 
that there is such a strategy in the iterative prisoner’s dilemma: 
a single prisoner is able to unilaterally pin his opponent’s 
payoff or to enforce a liner relationship between his own 
payoff and his opponent’s payoff. On the basis of Press and 
Dyson, Pan et al applied the ZD strategy in a multi-player 
game, and proved that the ZD strategy can enforce the linear 
relationship between the payoffs of us and all our opponents 
[6] . This brings great inspiration to the writing of this paper. 

This paper build a  multi-miner game model and uses the 
multi-ZD strategy to optimize Bitcoin pool, achieving the full 
cooperation of miners, thus increasing the overall rewards of 
pool. In order to acquire the best strategy of the game and 
converge the overall cooperation probability of pool to 1 
within the shortest number of iterations, we treat each pool as 
an agent, using the Temporal Difference learning method to 
predict next round payoffs, and choose strategy of next round 
by comparing them, meanwhile changing the cooperation 
probability of pool. 

II. RELATED WORK 

A. Block withholding attack 
Mining pool is consisted of pool manager and several 

miners. The pool manager joins the Bitcoin system as a singer 
miner. Instead of searching the specific nonce value, he 
outsources the work to the miners. Every miner in the pool 
will be assigned partial nonce value search task, which called 
partial proof of work. And the pool manager evaluates miners’ 
effort by estimating each miner’s power with partial proof of 
work that be submitted. Once the specific nonce value, which 



called full proof of work, is generated by any miner in the pool, 
this miner sends it to the pool manager. Subsequently, the pool 
manager publishes the nonce value to the Bitcoin system. 
Finally, the pool manager receives the full revenue of the 
block and distributed it fairly according to the miners’ power 
[7] . 

 Since most of the pool is open, allowing any miners to 
join, therefore any pool could infiltrate another by sending his 
miners to implement block withholding attack [8] . The 
concept of block withholding attack is that the attacker joins 
the pool, only sends partial proof of work to the pool manager 
but discards full proof of work. Due to the partial proof of 
work the attack delivered, pool manager considers that he is 
an honest miner and estimate his power. Therefore, the 
attacker enjoys the rewards of pool but does not actually 
contribute, which resulting in lower revenue of all miner in the 
pool including himself. 

B. Prisoner’s dilemma 
Prisoner’s dilemma was first proposed by Kuh et al [9] . In 

prisoner’s dilemma, two agents have to choose cooperation (C) 
or betrayal (D) in the circumstance of not knowing the 
information of his opponent. Both parties get the payoffs R 
when they all cooperate, and get the payoffs P when they all 
betrayed; One party cooperates, the other party betrayed, the 
betrayer gets the maximum payoffs T, and the cooperator gets 
the minimum payoffs S. The parameters satisfy the condition 
T > R > P > S. Under this circumstance, the best strategy of 
each agent is betrayal. However, if two agents betray each 
other together, they will both get the payoffs P, which is less 
than they both cooperate. How to solve the dilemma is the 
main problem in prisoner’s dilemma research. 

C. Zero-Determinant strategies 
For prisoner’s dilemma, many scholars proposed many 

strategies: WSLS (win stay, lost shift), TFT (tit-for-tat), GTFT 
(generous tit-for-tat), no-memory full cooperation strategy 
and full betrayal strategy. However, none of these strategies 
can determine the opponent’s payoffs unilaterally until Press 
and Dyson first proposed Zero-Determinant Strategies in 2012, 
which can not only unilaterally determine the opponent's 
payoffs, also ensure that our payoffs are multiple of opponents’ 
payoffs, thus achieving the purpose of extortion. Its 
advantages have been widely concerned by many scholars. 

D. Temporal difference leaning method 
Temporal-Difference learning method that based on linear 

value function can be traced back to 1988. Linear Temporal 
Difference (LTD) and TD(λ) method were first proposed from 
Sutton. In Sutton’s paper, The Temporal-Difference learning 
is used as a multi-steps predictive learning method based on 
Markov chain to solve the policy evaluation or value function 
prediction problem of the smoothing Markov decision process, 
So far, scholars have been studying and improving such 
learning method. This paper uses the TD(λ) [10] algorithm to 
predict next round payoffs in the miners’ game, and then 
compares payoffs of different strategy to choose a more 
profitable strategy.  

III. MULTI-MINER GAME 

A. Miner’s dilemma in multi-miner game 
In Bitcoin’s pool, miner’s calculation task for the specific 

nonce value assigned by the pool manager would consume a 
certain amount of hash rate, assuming that the resource 

consumed by this part is ( 0)c c  . If multiple miners choose 
to cooperate in mining, the probability of finding the specific 
nonce value will increase greatly, that is, the expected payoffs 
of each miner will be greater than they mining alone. We 
assume that if miners mining cooperatively, the expected 
payoffs of the pool will be expanded r  times, and r  is a 
value greater than one. The pool manager will distribute the 
mining revenue according to the hash rate of each miners. For 
miners who implement block withholding attacks, the pool 
manager will also distribute the revenue according to their 
hash rate. 

Due to the complexity of the multi-party game, we will 
only discuss the fact that each miner in the pool has equal hash 
rate in this paper. Assuming the total hash rate of the pool with 
N miners is N, then the hash rate of each miner can be 
expressed as 1. Therefore, we can simply use the miner’s hash 
rate to represent the miner’s assigned payoffs. When a miner 
chooses to cooperate, he needs to consume a certain amount 
of hash rate, which is represented here by c  as we defined 
above. Also, when multiple miners cooperate together, the 
overall payoffs of the pool will expand. We use r  to denote 
the revenue expansion coefficient. However, there is a 
problem: with the increase of cooperative miners, the 
possibility of finding the full of proof will increase. That 
means the value of r  should also increase with the number of 
cooperators and the growth curve should gradually become 
flatter. To solve the problem, we define ( )lnr k b= + , where 
k  is number of cooperators and b  is a constant.   

Due to the high dimension of the payoffs constituted by N 
miners, it is hard to show a payoffs table to find the existing 
condition of multi-miner’s dilemma. But from the definitions 
above, we still could find it.  

According to the definition, for a miner in a pool with N 
miners, we can express his payoffs of cooperation and attack 
as: 

⚫ Cooperation:  

( ) ( )1 ln 1
N

n n b
c

+ + +
−  

⚫ Attack: 

( )ln
N

n n b+
 

Where n  denotes the number of cooperators among his 
opponents. According to prisoner’s dilemma, our miner is in  
such a scenario that the best strategy of he is attack whether 
his opponents cooperate or attack. In multi-miner game, which 
scenario is existed when: 

( ) ( ) ( )ln 1 ln 1
N N

n n b n n b
c

+ + + +
 −               (1) 

Solving (1), we have the feasible region for multi-miner 
miner: 

( )

( )

11
ln

N>

n

n

n b
n b

c

+
+ +

+
                             (2) 



Where b  and c  are two constants, which means that the 
feasible region of N changes only as n  changes. And analysis 
of (2) shows that the right part of the inequation is an 
increasing function of n , in this way we can find a certain 
region of N if we substitute the maximum n , which is 

max N 1n = −  based on our assumption. Then we have a new 
inequation: 

( )

( )

N

N 1

N
ln

N 1
N>

b
b

c

−

+

− +
                         (3) 

Through a simple transformation, the inequation will 
become: 

N Nce b +                               (4) 

Next, we construct two function: cN
1f (N)=e  and 

( )2f N N b= + , where 0 1c   and 1b e − according to our 
definition. Finally, we could graph these two functions to find 
the feasible region in Fig. 1. From Fig. 1, it’s easy to know 
that there is iN (0,+ )  meet iN

iNce b= + , and N Nce b +  
when iN>N . iN>N  is exactly the feasible region of N. 

 
Fig. 1 Feasible region of N 

B. Multi-miner model 
Assuming there are N miners in the pool, miners cannot 

communicate with each other, and they independently decide 
whether to implement the block withholding attack. At this 
time, the action space of game is:  

 C,AB =  

Next, we assume that the current round of miner’s action 
is determined only by the state of previous round, then the 
repeated game between N miners can be regarded as a 
Markov chain. 

In such a game, each round will have N2  possible state 
outcomes. For example, when N 3= , the game state space 
can be expressed as

 CCC,CCA,CAC,CAA,ACC,ACA,AAC,AAAS = .If 
N is too large, the game state space will be difficult to give a 
concrete expression. Therefore, we use is  to refer to the 
specific game state outcome: 

 1 2N, , , ,iS s s s=  

Also, for any miner in the pool, he will have a strategy 
vector: 

1 2N, , , ,
Tx x x x

ip p p p =    

Where x
ip  indicates the probability that an arbitrary 

miner chooses cooperation in the current round in the case 
where the final game outcome of the previous round is is . 
We take three-miners as an example, the strategy vector of an 
arbitrary miner in a pool with three miners, let’s say miner 
1 ’ s strategy vector, can be expressed as 

1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8, , , , , , ,

T
p p p p p p p p p =   .  

To clarify the state of xp , we can further define the 
expression of xp . In a pool game with N miners, participants 
can be divided into us, let’s say miner1, and the opponents, 
which means those N 1−  other miners. The action of miner 
1 and the action of his all opponents constitute a game state. 
If we know how many opponents have chosen to cooperate 
in the previous round, we can express the state of the previous 
round in the strategy vector xp . Therefore, we define C,np  
(or A,np ) to indicate the probability that miner 1 cooperate in 
current round when it cooperates (or attack) while n  
opponents cooperate in the last round. This way, miner 1’s 
strategy vector can be expressed as： 

1 1 1 1
C,0 C, C, C,N 11
1 1 1 1
A,0 A, A, A,N 1

, , , , , ,

, , , , ,

T

n n

n n

p p p p
p

p p p p
−

−

 
=  
  

 

For example, in a pool with three miners, miner 1’s 
strategy vector can be expressed as： 

1 1 1 1 1 1 1 1 1
C,2 C,1 C,1 C,0 A,2 A,1 A,1 A,0, , , , , , ,

T
p p p p p p p p p =    

Since there are N2  outcomes of game state in the pool 
with N miners, we will have a payoff vector with N2  
corresponding sub-elements for each miner in the pool. Let’s 
consider the miner’s payoff vector: 

N1 2
, , , ,

Tx x x x
iu u u u =    

Where  1, Nx  .Recalling the definitions in last section, 

we can obtain the expression of x
iu : 

( )

N

x
ix x

i i

r n i h
u h c

 + 
= −  

Where ( )n i  denotes the number of cooperators among 

opponents in the game state is ;  x
ih  indicates our action in the 

game state is , if we choose Cooperate, then 1x
ih = , 

otherwise, 0x
ih = ; Similarly, given the pool with three 

miners, the payoff vector of miner 1 is: 

1 2 2 2, , , , , , ,0
3 3 3 3 3 3

Tr r r r r ru r c c c c 
= − − − − 
 

 



Noticing that we use a fixed value of r rather than 
( )lnr k b= +  for convenient calculation latter. This will not 

affect our derivation.   

Next, we define the Markov state transition matrix of 
multi-miner game: 

N N, 2 2
M i jM


 =    

Where ,i jM  refers to the transition probability of the pool 
moving from state i  to state j  ( i and j  are the indexes of 
old and new states respectively). Subsequently, according to 
the definition of the Markov state matrix, ,i jM  can be 
calculated by the following equation: 

N
, 1

x
i j x

M m
=

=  

Where x  represents any miners in the pool, further 
defined： 

( )( ) ( )( )

( )( ) ( )( )

1

C, C,

1

A, A,

1 ,      ;

1 ,      ;

xhx j
j

xhx j
j

h
x x

n i n ix

h
x x

n i n i

p p if miner x chooses cooperate in state i
m

p p if miner x chooses attack in state i

−

−


−


= 


−

 

Here ( )n i  is the number of cooperators among opponents 

in state i ; x
jh  indicates the action of us in state j . If we 

choose cooperate, then 1x
jh = , otherwise, 0x

jh = . 

IV. APPLICATION OF MULTI ZERO-DETERMINANT STRATEGIES 
IN MULTI-MINER GAME 

A. Multi zero determinant strategy 
If M  is a regular state transition matrix, it must have a 

unique stationary vector TV . Here, we take the stationary 
vector TV  whose eigenvalue is 1, and get: 

MT TV V =                                 (5) 

Now we define that: 

M M I = −                               (6) 

Which is: 
N

, ,1
x

i j i jx
M m 

=
 = −                         (7) 

Where ,i j  is Kronecker delta, the specific expression is: 

,

0,  ;
1, i ;i j

if i j
f  i j




= 


 

Next we do some elementary column operations for M

[6], then we can separate the joint probabilities, leaving one 
column solely controlled under the strategy of miner x . We 
define the strategy of miner x  after separated as xp : 

C,0 C, C,

C,N 1 A,0 A,n A, A,N 1

1 , , 1 , , 1 , ,
1 , , , , , , ,

n nx

n

p p p
p

p p p p p− −

− + − + − + 
=  

− +  
 

We can apply the Cramer rule to M : 

( ) ( )Adj M M =det M I=0                       (8) 

Meanwhile, combined with (5) and (6), we obtain: 

M 0TV  =                                (9) 

Comparing (8) and (9), it is easy to know that each row of 
( )Adj M  is proportional to the stationary vector TV . 

Therefore, for an arbitrary payoff vector xu , there is: 

( )
N N

,1 1
Adj MT x x x

j j i jijj j
V u u a m u

= =
  = =          (10) 

Where ,i jm  denotes the minor of ,j iM  .From (10), we 

obtain a determinant of the matrix which by replacing the thi  
column of the matrix M  with the payoff vector 

xu .Assuming that i  is the last column: 

( )1 Ndet , , , , ,T x x xV u p p p u =              (11) 

Where ( )1 Ndet , , , , ,x xp p p u  is a determinant of 
N N2 2  matrix. We give the TV u  of the three-miner game 

in Fig 2. 

Using (11), we can do a Laplace expansion on the last 
column of  T xV u (i.e. xu ) to find the long-term expected 
payoffs xE  of any miner in the pool, thus we have the 
formula of expected payoffs: 

( )
( )

1 N

1 N

1
det , , , , ,

det , , , , ,1

T x
x

T

x x

x

V uE
V
p p p u

p p p


=



=

                 (12) 

Where 1 is an all-one vector introduced for normalization.  

Analysis of (12) shows that the expected payoffs of miner 
is linearly related to his payoff vector. A linear combination 
of all miners’ expected payoffs is obtained, and expressed as: 

( )
( )

N
01

N1 N
01

1 N

det , , , , , 1

det , , , , ,1

x
xx

x x
xx

x

E

p p p u

p p p

 

 

=

=

+

+
=



      (13) 

Recalling the transformation of matrix M , we know that 
there is a column xp  that unilaterally determined by a 
specific miner. Also, we call the specific miner miner 1. If 

miner 1 sets his own 
N1

01
1x

xx
p u 

=
= +  , he can 

unilaterally make the determinant of (13) vanish and enforce 
a linear relationship between all miners’ expected payoffs:  

N
01

0x
xx
E 

=
+ =                          (14) 



( )

1 2 3 1 2 1 3 1 2 3 2 3
C,2 C,2 C,2 C,2 C,2 C,2 C,2 C,2 C,2 C,2 C,2 C,2 1

1 2 3 1 2 1 3 1 2 3 2 3
C,1 C,1 A,2 C,1 C,1 C,1 A,2 C,1 C,1 A,2 C,1 A,2 2
1 2 3 1 2
C,1 A,2 C,1 C,1 A,2

1 2 3

1 1 1 1 1 1 1
1 1 1

D , , , detT

p p p p p p p p p p p p u
p p p p p p p p p p p p u
p p p p p

V u p p p u

− + − + − + − + − + − + − +

− + − + − +

−

 = =

1 3 1 2 3 2 3
C,1 C,1 C,1 A,2 C,1 A,2 C,1 3

1 2 3 1 2 1 3 1 2 3 2 3
C,0 A,1 A,1 C,0 A,1 C,0 A,1 C,0 A,1 A,1 A,1 A,1 4
1 2 3 1 2 1 3 1 2 3 2 3
A,2 C,1 C,1 A,2 C,1 A,2 C,1 A,2 C,1 C,1 C,1 C,1 5
1 2 3
A,1 C,0 A,1 A,1

1 1 1
1

1 1 1

p p p p p p p u
p p p p p p p p p p p p u
p p p p p p p p p p p p u
p p p p

+ − + − +

− +

− + − + − +
1 2 1 3 1 2 3 2 3

C,0 A,1 A,1 A,1 C,0 A,1 C,0 A,1 6
1 2 3 1 2 1 3 1 2 3 2 3
A,1 A,1 C,0 A,1 A,1 A,1 C,0 A,1 A,1 C,0 A,1 C,0 7
1 2 3 1 2 1 3 1 2 3 2 3
A,0 A,0 A,0 A,0 A,0 A,0 A,0 A,0 A,0 A,0 A,0 A,0 8

1
1

p p p p p p p p u
p p p p p p p p p p p p u
p p p p p p p p p p p p u

 
 
 
 
 
 
 
 

− + 
 

− +
 
  

 

Fig. 2 TV u  of the three-miner game  

At this time, miner 1’s strategy vector 1p  is exactly the 
zero determinant strategy under the multi-miner game. 

B. Extortion strategy 
In the extortion strategy, the purpose of miner 1 is to use 

a certain strategy to make his payoffs is   times sum of his 
opponents’ payoffs. We set miner 1 to implement such a 
strategy: 

 ( ) ( )
N

1 1

2
1 1x

x
p u P u P

=

 
=  − − − 

 
                (15) 

Where P  denotes the payoffs when all the miners in the 
pool choose attack. Recall the miner’s payoff vector x

iu , it is 
clear that under the full attack state, the payoffs of each miner 
are 0, therefore (15) can be written as: 

N
1 1

2

x

x
p u u

=

 
=  − 

 
                        (16) 

From the strategy vector in (16), we can obtain the 
relation between the expected payoffs of miner 1 and all his 
opponents： 

N
1

2
0x

x
E E

=

 
 − = 
 

                      (17) 

After a simple transformation: 
N

1

2

x

x
E E

=

=                               (18) 

According to (18), if miner 1 uses the extortion strategy, 
he can unilaterally set the extortion factor   to control that 
his expected payoffs are   times the total expected payoffs 
of his opponents. Under this linear relationship, the best 
strategy of each miner in the pool will be full cooperation, 
thus we solve the multi-miner’s dilemma. 

V. TEMPORAL DIFFERENCE LEARNING METHOD WITH ZERO-
DETERMINANT STRATEGY IN MULTI-MINER GAME 

Below we combine the Temporal Difference learning 
method with the Zero-Determinant extortion strategy to make 
the pool fully cooperative. 

According to (18), the extortion factor   have the 
following definition: multiples of our expected payoffs and 
our opponents’ sum . If we set a fixed value  , which can 
guarantee that we get higher payoffs, but this is not conducive 
to achieve the full cooperation state in pool. Based on this 

consideration, we set   as a dynamic extortion factor：

C

10
P

 =  ,  where CP  denotes the cooperation probability of 

all miners in the pool, and  C 0,1P  . Which means the pool 
will achieve full cooperation state if C 1P = . When CP  is 
small, we improve   to guarantee that we can obtain high 
payoffs; When CP  is large, we lower   , forcing the pool to 
achieve a full cooperation state; Once the pool is in full 
cooperation state, that is, CP  converges to 1, the extortion 
factor   will evolve into a constant and continue to maintain 
the full cooperation state of the pool. 

In reality, there are numerous miners in the pool, and the 
number of state space and expected payoffs of the pool will 
increase linearly with the number of miners, which makes it 
extremely difficult to give an explicit expression of the 
expected payoff formula. Therefore, we use the pool in full 
cooperation state, which means 1xp =  ( and  2, Nx ) in 
the pool, to predict the pool’s payoffs and to simulate the 
evolution trend of CP , we give the expected payoff formula of 
us and opponents: 

( )
( )

( )
( )

1
1

N
N 2

2

det 1, ,1, ,1,
det 1, ,1, ,1,1

det 1, ,1, ,1,

det 1, ,1, ,1,1

x

xx

x

u
E

u
E

=

=

=

=




 

In t -round, we use ( )adpE t  represents our payoffs, 

( )oppE t  represents opponents’ payoffs. Meanwhile, our 
expected payoffs of cooperation and attack are represented by 

( )cooE t  and ( )attE t  respectively. Therefore, in 1t +  round, 
our expected payoff formula can be expressed as: 
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Where the cooperation probability CP  and the attack 
probability AP  are both  0,1x . 

The strategy of next round is determined by comparing the 
expected payoffs of attack and cooperation: 

1) If ( ) ( )1 1coo attE t E t+  + , miner chooses to 
cooperate. Meanwhile, the cooperation probability of 
next round ( ) ( ) ( )( )C C C1 1P t P t F P t+ = + + and 
the attack probability of next round 

( ) ( ) ( )( )A A A1 1P t P t F P t+ = − + . 

2) If ( ) ( )1 1coo attE t E t+  + , miner chooses to attack. 
Meanwhile, the cooperation probability of next 
round ( ) ( ) ( )( )C C C1 1P t P t F P t+ = − +  and the 
attack probability of next round 

( ) ( ) ( )( )A A A1 1P t P t F P t+ = + + .  

3) If ( ) ( )1 1coo attE t E t+ = + ， miner chooses to 
cooperate. Meanwhile, the cooperation probability of 
next round ( ) ( ) ( )( )C C C1 1P t P t F P t+ = + + and 
the attack probability of next round remains the same. 

Where Fermi function ( )F    is expressed as 

( )( )
( ) ( )
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The extortion factor   vary with CP  during the algorithm 
iteration process, which will affect the expected payoffs. 
Based on the hypothesis of rational man, the opponents will 
realize that cooperation is the optimal strategy and choose to 
cooperate in subsequent rounds. With enough iterations, CP  
will eventually converge to 1, thus achieve full cooperation 
state. 

VI. SIMULATION AND EXPERIMENT 
To test the validity of our application, our experiment 

simulates the evolution of cooperation probability under 
scale-free network environment in pool with three miners. 
Furthermore, we design control experiment, setting the initial 
cooperation probability of pool as 0.1, 0.3, 0.5, 0.7, 0.9 
respectively to test the iteration rounds required to converge 
to 1 under different initial cooperation probability. This paper 
takes the data from first 40 rounds, predict the cooperation 
payoffs and attack payoffs of each rounds and change the 
cooperation probability. Subsequently, we compared rounds 
required to converge to 1 of our strategy with the adaptive 
strategy.  

We show the first 20 rounds of cooperation probability 
evolution in Fig. 3. As the Fig. 3 shown, the cooperation 
probability of pool has an overall increasing tendency with 
the increasement of iteration rounds. Meanwhile, the smaller 
the initial probability of cooperation, the fewer rounds 
required to converge to1. After 6 rounds, all cooperation 
probabilities converge to 1. 

We show the comparation of rounds required to converge 
between our strategy and adaptive strategy in Fig. 4. No 

matter what the initial cooperation probability is, rounds 
required of our strategy are all 1-3 rounds less than the 
adaptive strategy, which means our strategy has better 
performance than adaptive strategy.  

 
Fig. 3 Evolution of cooperation probability 

 

 
Fig. 4 Comparison of TD algorithm with ZD strategy and adaptive 

strategy on rounds required to converge cooperation probability to 1  

We show the evolution of payoffs with different initial 
cooperation probability in Fig. 5-9. As shown, the 
cooperation payoffs are always higher than attack payoffs, 
therefor a rational miner will always choose to cooperate.  
Note that the cooperation payoffs actually did not converge 
until the cooperation probability converged if improve data 
accuracy. And the attack payoffs have different convergence 
value under different initial cooperation probability. Fig. 6 
eventually converge in the 139th round. Fig. 7 eventually 
converge in 35th rounds. The initial cooperation probability 
of Fig. 8 is 0.5, and it converge in 11th rounds. Fig. 9 and Fig. 
10 converge in 9th and 5th rounds respectively. Note that the 
bigger initial cooperation probability, the less rounds 
required to converge to a fixed value. Besides, with the 
convergence of cooperation probability, the revenue of whole 
pool will increase, and the performance of Bitcoin system 
will increase, too.   
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Fig. 5 Evolution of payoffs with initial cooperation probability is 0.1 

 

Fig. 6 Evolution of payoffs with initial cooperation probability is 0.3 

 

Fig. 7 Evolution of payoffs with initial cooperation probability is 0.5 

 
Fig. 8 Evolution of payoffs with initial cooperation probability is 0.7 

 
Fig. 9 Evolution of payoffs with initial cooperation probability is 0.9 

VII. CONCLUSION AND FUTUREWORK 
In this paper, we build a multi-miner game model for a 

given mining pool based on PoW. We provide a new solution 
to the problem of block withholding attack in Bitcoin pool by 
introducing a Zero-Determinant strategy and a temporal 
difference learning method. Specifically, to analyze the game 
situation between miners, we regard the game between miners 
as an iterative prisoner’s dilemma. We build a game model 
with multi-miners, and use the Zero-Determinant strategy to 
extort the opponents by extortion factor  . Subsequently, we 
use the temporal difference learning method to predict the 
payoffs of the next round by using the formula that we 
obtained in the derivation of Zero-Determinant strategy. We 
then compare the payoffs of different strategies and choose the 
one returning larger payoffs to implement the next round. A 
full cooperation state of pool is achieved while cooperation 
probability CP  and attack probability AP eventually converge 
to 1 after multiple iterations.  

Furthermore, the game between the pool members can also 
be regarded as a multi-party game model. An attacker can use 
its own miners to infiltrate other pool members and implement 
block withholding attack on other pool members. In general, 
the effective hash rate of the victim pool is uncharged, but its 
total revenue is distributed among more miners (including its 
own miners and infiltrating miners). The attacker's hash rate 
is reduced, however it earns additional payoffs by infiltrating 
other pool members. As our future research, we plan to 
analyze the game between the pool members and build a 
multi-pool game model, trying to optimize the model by using 
a multi-party game strategy as well as reinforcement learning 
algorithms to improve the cooperation probability between the 
pool members. 
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