
TARGO: Transition and Reallocation Based Green Optimization for Cloud VMs 
 

Daren Fang, Xiaodong Liu 
School of Computing 

Edinburgh Napier University 
Edinburgh, UK 

{d.fang, x.liu}@napier.ac.uk 
 

Lin Liu 
School of Software 

Tsinghua University 
Beijing, China 

linliu@tsinghua.edu.cn 
 

Hongji Yang 
Software Technology Research Lab 

De Montfort University 
Leicester, UK 

hyang@dmu.ac.uk 
 

 
 
Abstract — Much research has been conducted focusing on 
improving resource utilization efficiency in data centers in the 
context of Green Cloud Computing (GCC). While virtualization 
enables better resource provision and utilization for various 
computational resources, different approaches are proposed 
based on virtual machine (VM) optimizations using either server 
or workload consolidation techniques. Nonetheless, these 
solutions can only be applied inside the Cloud. In fact, 
Infrastructure-as-a-Service (IaaS) users can hardly proactively 
achieve better VM resource utilization efficiency, as they 
typically have no control over any hypervisor or hardware in any 
Clouds. The issue gets more critical when workloads on VMs 
alter dramatically from time to time. This paper presents a novel 
approach namely Transition and Reallocation Based Green 
Optimization (TARGO) for such users. Through fully automated 
and intelligent VM optimization according to customizable 
optimization rules, TARGO guarantees that VMs or their 
successors being optimized will always run at their customizable 
green optimal states regardless how workloads vary. Experiments 
conducted on Amazon EC2 instances in the EU region show that, 
even under extreme random workloads, TARGO is still capable 
of selecting and retaining VM successors which run at an 
average CPU utilization of 50%-60%. 

Keywords - Green Cloud Computing; Server Consolidation; 
VM Migration; Green Optimization Rules; IaaS; 

I.  INTRODUCTION 
In a Cloud Computing (CC) environment, resource 

virtualization organizes CC hardware components into 
independent resource blocks where workloads are handled 
within virtualized boundaries. In this context, much GCC 
research has been done addressing on virtualization and VM 
management optimizations. Current approaches to achieve 
better energy and (computational) resource utilization 
efficiency can be generally classified into two categories: 1) 
server/workload consolidation solutions involving VM 
scheduling [1][14][16], migration [15][18][26], and 
sizing/resizing management [9][22][24]; 2) hardware 
integrated solutions involving dynamic voltage and 
frequency scaling (DVFS) [25] and hardware cooling control 
mechanism [12]. As a matter of fact, these approaches can 
only be implemented on Cloud service provider (CSP) side 
(inside the Cloud). For IaaS users who have extremely 
limited privilege and control over the Cloud VM hypervisor 
or any physical hardware, they are not applicable. In this 

paper, we present the design and implementation of TARGO, 
a pure CC client-side solution which facilitates IaaS VM 
transition and workload reallocation according to 
customizable optimization rules. TARGO is developed to 
work seamlessly with IaaS CSPs by allowing intelligent and 
fully automated VM green optimizations. 

As a transition and reallocation based solution, TARGO 
periodically monitors resource utilization of the VMs and 
extracts their dynamic workload patterns. Whenever it 
detects concrete resource utilization/workload changes for a 
certain VM, TARGO initiates an optimization by 
dynamically replacing such with a successor of an optimal 
VM size (so that the successor can handle the current 
workload efficiently). All successors created will appear to 
be the same as the original VMs as they are created based on 
the most current VM images. At the end of such 
optimizations, workloads are reallocated to the successors 
once they become fully operational, without any interruption 
or gaps except the switching moment. The whole 
optimization process is automatically operated and logged 
once optimization rule parameters are defined. In general, the 
proposed approach has the following contributions: 
 The novel Cloud client-side VM optimization enables 
automated VM transitions where selected successors always 
run within their own specified green boundaries no matter 
how individual workload varies. The approach is well 
capable to work on top of other server/workload 
consolidation optimization solutions. 
 The dynamic workload pattern extraction and recognition 
provide regulated views of the VM resource utilization states, 
which reveal actual workload trends and concrete changes. 
 The concept of Performance Gap Ratios (PGR) between 
different VM sizes in IaaS Clouds is introduced. From the 
performance test data of EU Amazon EC2 instances, a series 
of PGRs are calculated and demonstrated. 
 The approach allows IaaS users to always retain the 
smallest VMs (VM with fewest resources) depending on the 
actual real-time workload. In comparison with using a fixed 
large-enough VM to manage fluctuated workload, it saves 
significant amount of computational resource, and enables 
better resource allocation and distribution inside IaaS Cloud. 

The rest of the paper is organized as follows. Section II 
discusses the related work. Section III outlines system 
architecture and components of TARGO. In section IV, 



TARGO optimization rules are further explained. Section V 
demonstrates the implementation of TARGO. A series of 
experiments and evaluations are illustrated in Section VI. 
Finally, Section VII concludes the paper. 

II. RELATED WORK 
In [1], the authors propose to optimize VM scheduling 

over Cloud data center based on energy-aware resource 
provision and allocation algorithm, where Green Cloud 
Architecture involving “energy-aware power model” is 
demonstrated. Power Aware Meta Scheduler [16] is another 
attempt implemented from the perspective of VM scheduler. 
By predicting Cloud data center utilization, the scheduler 
manages lifecycle of the running VMs through dynamic 
power saving stage switches. Earlier work based on similar 
approaches can also be found in [2][8]. Nonetheless, they all 
share a single limitation: none of them clarifies the time and 
cost needed for VM migration or state changes, which is a 
critical factor affecting the frequency and effectiveness of 
such optimizations [7]. Additionally, they do not consider 
comprehensive VM resource utilization (including CPU, 
memory, network, and disk usages), which would also 
influence the overall green efficiency of the optimized 
physical machines (PMs). A more comprehensive work is 
[14], where the authors argue a scheduling policy which 
models and manages virtualized data centers to maximize 
their utilization efficiency by considering the following 
facets: power consumption, service level agreements (SLAs), 
virtualization overheads, heterogeneity management, etc. 
This provides a comparatively comprehensive view of the 
VM scheduling approach. 

Dynamic resource allocation based on VM migration 
[26] attempts to minimize the overall number of running 
PMs in a server pool according to relevant load prediction, 
resources utilization distribution and “hot to cold” threshold 
algorithms. Basically, after the allocation and migration 
decision is made, VMs of different load are properly 
migrated between the PMs, where idle PMs can be resulted 
and then are turned off. Similar approaches are seen in 
[15][18]. Differences are that instead of workload predictions, 
monitor services and power meter (in [15]) and service 
analyzer and energy monitor (in [18]) are used to facilitate 
VM migration decisions. Another work is the resource 
allocation optimization system [10]. By employing an 
application prediction module which estimates SLA relevant 
resource utilization, the system performs VM migration 
based PM “mutation” actions. The overall efficiency is 
optimized due to the fact that VM resource utilizations are 
effectively managed across all PMs. Nevertheless, a possible 
drawback of all above approaches is that they fail to consider 
the effort and energy consumed while performing VM 
migration in such large scales, such as the overall time and 
total power usage of those large volumes of VM migrations 
[11]. 

Another perspective in server consolidation approaches 
is known as VM sizing/resizing, which is argued in [9][24] 
[22]. EnaCloud [9] comprises two key components: Global 
Controller which manages job scheduling and distribution 
tasks, and Resource pool where VM hypervisors perform 

monitor, sizing, and power management control. GARL [24], 
on the other hand, is equipped with VM Power Monitor and 
VM Resource Allocator which facilitate VM resizing and 
replacement according to VM performance monitor data. 
The authors of [22] utilize workload forecasting statistics as 
the basis to facilitate VM sizing and resizing consolidation 
tasks. 

For software hardware combined optimizations, 
CloudScale [25], an automatic elastic resource scaling 
system (for multi-tenant Cloud infrastructure), consists of 
three key aspects: service level objective (SLO) based 
resources demand prediction, support of concurrent 
multi-tenant VM migration, and integration of DVFS scaling 
control. Another work [12] introduces DVFS along with 
active fan cooling control mechanism into VM scheduling 
tasks to achieve better resource utilization efficiency. iSIM 
framework [17] presents an alternative for VM performance 
optimization via virtual CPU core state management 
depending on the dynamics of the workload 

From a different viewpoint, dynamic workload 
placement optimization is found as another solution. Discrete 
Particle Swarm Optimization (DPSO) algorithm [23] is 
proposed as a solution to allocate/distribute appropriate 
workload across VMs with different CPU cores. The authors 
of [13] advocate artificial swarm intelligence as well as Ant 
Colony Optimization (ACO) algorithm for a more energy 
efficient workload placement. 

In contrast to the above work, TARGO focuses on 
improving resource utilization and consumption of VMs 
provisioned in the Cloud. Specifically for IaaS users who 
rarely have control over the Cloud hypervisor and hardware 
nor the workload, it actively replaces the non-green running 
VMs to those with better (more suitable) resources allocated. 
As a pure client-side VM-oriented solution, TARGO is able 
to work well on top of other approaches to achieve additional 
resource saving. Additionally, considering the significant 
differences between VMs due to their performance gaps as 
well as distinct types/patterns of workloads in real world 
scenarios, TARGO employs dynamic workload pattern 
extraction as well as customizable optimization parameters, 
so that accurate and effective optimizations can be facilitated 
regardless how VMs’ performances and workloads vary. 

Furthermore, for some IaaSs, there are some native 
solutions regarding resource monitor and utilization of VMs. 
Examples for Amazon EC2 are seen as CloudWatch, Auto 
Scaling and Elastic Load Balancing. CloudWatch [3] 
provides monitor functionalities for many services in AWS. 
It allows EC2 users to view instance (and other) utilization 
statistics according to customizable metrics, such as CPU 
usage, network or disk I/O information, etc. Additionally, 
with monitor alarms setup, it can automatically perform a 
series of simple actions according to users’ configuration 
once an alarm is triggered, e.g., EC2 users can configure 
alarms to send them notification emails if selected VM 
instances’ CPU utilization remains at 100% for a certain 
period. Auto Scaling [4] is designed to enable scaling 
optimization options for EC2 instances. According to users’ 
configurations, it acts automatically to increase/decrease the 
number of running EC2 instances based on either periodic 



 
Figure 1. TARGO System Architecture 

 

“healthy” checks of the selected current running instances at 
fixed schedules. Elastic Load Balancing [5] works to balance 
the network traffic load of EC2 instances, so that workloads 
are distributed evenly rather than concentrating on certain 
ones. Although the above three services seem to be very 
useful, in fact, they are not primarily designed for green 
effectiveness and efficiency requirements: I) At the moment, 
AWS alarm mechanism for EC2 only provides three 
available actions if an alarm is triggered: to send notification 
email(s), to shut down the instance(s), to terminate the 
instance(s). These options obviously do not switch any 
instance into a “green mode”. In EC2 control panel, there is 
an option to change the instance size, but the instance must 
be stopped first to perform this resizing task. II) Auto 
Scaling can only launch new instances from the same AMI, 
whereas all new instances created have to be of the same 
instance size (of the original instance). III) Elastic Load 
Balancing simply distributes network traffics evenly, across 
different regions and availability zones. 

In comparison with CloudWatch, TARGO acts 
dynamically to find appropriate VM successors according to 
the dynamics of the workload. By doing so continuously, it 
always retains instances in most green efficient sizes so that 
all VMs can run their own workload within own specified 
green boundaries. In contrast to Auto Scaling, TARGO 
launches successors in different machine sizes, in fact, the 
most green-effective sizes. Compared with adding/removing 
instances at a per instance basis and then to distribute the 
workload, TARGO saves VM resources as each optimization 
can be performed at a smaller scope. In many cases an 
appropriate larger/smaller sized instance would be able to 
manage the increased/decreased work at better green 
efficiency whilst several same-sized instances could be 
easily over-provisioned. 

III. SYSTEM ARCHETECTURE 

A. Rule-based Intelligent Optimization 
The architecture of TARGO is shown in Fig. 1. As a 

solution to inefficient VM resource utilization, TARGO 
behaves proactively to implement intelligent VM size 
transitions and workload reallocations, according to a series 
of optimization rule parameters. Generally, such 
optimization comprises the following steps: Whenever there 
is excessive high or low workload detected on a VM, which 
indicates that the instance cannot handle it green efficiently, 
a successor VM of larger or smaller type is created using its 
most current VM image. While the new better-sized VM is 
up and running, the original optimization rule parameters 
are dynamically adjusted to fit the successor VM as well. 
Finally, the new rule and the workload are transferred to the 
new VM where the original one is switched off. The whole 
optimizations process takes as less as few minutes. To the 
end users, there would be only millisecond’s unavailable 
state for the moment of the switch, but the dynamically 
retained VMs are guaranteed to operate at their optimal 
green states. 

 

B. Workload Pattern Extractor 
Through IaaS resource monitor interfaces provided by 

many CSPs, statistics of a series of VM resource metrics are 
available at certain costs, e.g., CPU usage, network, disk 
in/out, etc. These are used as raw data to formulate dynamic 
workload patterns. Here, a workload pattern can be 
understood as: for a specific repeating interval, the load of a 
VM seems to fit for certain regularity studies. However, due 
to the complexity of various real world VM applications, 
some may not come in fixed patterns. In addition, 
performances of VMs could vary depending on their images, 
type specifications, geographic locations, or even at 
different time slots. In fact, while different VMs are running 
their tasks, even for the same percentage increase on their 
own workloads, they could react differently. Therefore, load 
prediction algorithms and fixed load pattern modeling 
would hardly work. To effectively deal with the above 
issues, the dynamic workload pattern extractor is introduced 
to lively reflect the current status of the VM instances. 
Based on a customizable monitor frequency in a repeating 
period, a regulator is used to produce the most accurate 
utilization data. 
 

𝑅𝑉𝑡 = 𝐹
𝑃
∗ ∑  𝑀𝑉𝑛𝑡𝑛 𝑃/𝐹

𝑛=1                                    (1) 
 

Equation (1) is used to compute the regulated monitor 
statistics so as to formulate workload patterns. F and P 
specify monitor frequency and period respectively. RVt 
stands for regulated value at time t for certain F and P. 𝑀𝑉𝑛𝑡 
indicates the nth raw monitor data value recorded at each 
monitor time tn. Basically, for each monitor interval, the 
average value of all values collected from the last monitor 
period is used as the regulated value. Generally speaking, 
the more stable certain workload is expected, the smaller P 



and larger F should be set to; the more dynamic the 
workload is anticipated, the larger P and smaller F should 
be given. Fig. 2 shows two examples of how raw CPU 
monitor data in percentage are regulated in Workload 
Pattern Extractor based on (1). It can be seen that the 
regulated utilization data appears to be concrete and is 
capable of showing the trend of the workload. 

C. Performance Gap Calculator 
Nowadays, most CSPs like Amazon EC2 and 

Rackspace Cloud Servers offer more than five size/type 
options in different platforms/OSs (operating system), 
which range from small to very large and are designed and 
provisioned to handle different tasks and workload. To 
facilitate green optimization for IaaS VM by making sizing 
transitions, it is essential to measure the approximate gaps 
of performances between the available VM sizes. 

 
EC2 Instance 
Types: 

CPU: 
Super Pi 
(1M) 
Calculation 
Time 

wPrime 
(32M) 
Calculation 
Time 

Performance 
Gap 
Ratio: 

T1.Micro 170.751 sec 478 sec 0.24 

M1.Small 42.657 sec 158.021 sec 
0.51 

M1.Medium 21.148 sec 90.339 sec 
0.57 

M1.Large 18.174 sec 35.194 sec 
0.69 

M1.Extra Large 18.125 sec 21.909 sec 
0.61 

M3.Extra Large 12.724 sec 18.717 sec 
0.71 

M3.Double Extra 
Large 

12.711 sec 9.367 sec 

 
Table 1. EU Amazon EC2 Instance CPU Performances and PGRs 

To find out how exactly Cloud VM instances of 
different sizes would respond to a same workload, a number 
of performance tests were implemented on Amazon EC2 
instances (with plain Windows Server 2012 image in EU 
region) to examine their CPU frequency and multi-core 
scores. Although similar work evaluating KVM 
virtualization performance is done in [19], we implemented 
own comprehensive ones over Amazon EC2 Xen virtualized 
infrastructure due to later experiments needs. Super Pi 
(single core processing ability) [20] and wPrime (multi-core 
compute capability) [21] were used to test how quickly 
heavy compute tasks could be completed. Generally, the 
fewer the time needed, the better the virtual processor 
performance is. Table 1 demonstrates the (best) average 
performance test data of 20 concurrent tests executed at 
different time during the day (Data was correct at the time 
of the tests, although may vary a little at a different time). 
By comparing the result, the equivalency ratios were then 
“approximately” extracted. 

The last column of Table 1 presents the ratios between 
different VM types of the EU EC2 instances. This is to be 
understood as: a workload resulting in 50% CPU usage on 
an m1.medium VM instance would be roughly equivalent to 
100% of such in size of m1.small and 30% for an m1.large. 
Note that the ratios indicate general equivalency information, 
and may fluctuate under certain circumstances. 

D. VM Sizing Governor 
VM Sizing Governor generates transition calls when a 

VM reaches its thresholds in limits according to one’s 
current workload and certain PGR. Currently TARGO only 
supports step-by-step transitions. Although this may slow 
the transition pace down in case of experiencing dramatic 
workload alteration, the overall effectiveness of the 
optimization is affected rarely. 

E. Optimization Rule Modifier 
Optimization Rule Modifier manages the consistency 

of rule customization based on PGRs for every VM 
successor returned. Currently it only changes the green 
up/down limits where necessary. The reason for rule 
modification is that after several times of optimization 
transitions, the original specified green boundary can 
become too wide or too narrow for a specific VM size of the 
current successor. If so, it would cause to either miss the 
optimal transition opportunity or start an optimization 
earlier than it should be. Therefore, without this proactive 
green limits adjustment for the new VM, TARGO would not 
run effectively. The modification process initiates 
immediately after a successor reaches its running state and 
successfully takes place of the original instance. 

F. Optimization Executor 
Optimization executor implements calls generated by 

VM Sizing Governor by sending request to IaaS providers. 
This involves retrieving complete VM specification 
information, creating the current VM image, getting state of 

 
(2.a) 

 
(2.b) 

 
Figure 2. Workload Pattern Extraction 

0 

20 

40 

60 

80 

100 
00

:0
0:

01
 

00
:0

0:
02

 
00

:0
0:

03
 

00
:0

0:
04

 
00

:0
0:

05
 

00
:0

0:
06

 
00

:0
0:

07
 

00
:0

0:
08

 
00

:0
0:

09
 

00
:0

0:
10

 
00

:0
0:

11
 

00
:0

0:
12

 
00

:0
0:

13
 

00
:0

0:
14

 
00

:0
0:

15
 

00
:0

0:
16

 
00

:0
0:

17
 

00
:0

0:
18

 
00

:0
0:

19
 

00
:0

0:
20

 
00

:0
0:

21
 

00
:0

0:
22

 
00

:0
0:

23
 

00
:0

0:
24

 
00

:0
0:

25
 

00
:0

0:
26

 CP
U

 U
til

iz
at

io
n 

in
 %

 

Resource Utilization Regulation with P = 5, F = 1 

CPU Utilization 
Regulated Usage Value 

0 

20 

40 

60 

80 

100 

00
:0

0:
01

 
00

:0
0:

04
 

00
:0

0:
07

 
00

:0
0:

10
 

00
:0

0:
13

 
00

:0
0:

16
 

00
:0

0:
19

 
00

:0
0:

22
 

00
:0

0:
25

 
00

:0
0:

28
 

00
:0

0:
31

 
00

:0
0:

34
 

00
:0

0:
37

 
00

:0
0:

40
 

00
:0

0:
43

 
00

:0
0:

46
 

00
:0

0:
49

 
00

:0
0:

52
 

00
:0

0:
55

 
00

:0
0:

58
 

00
:0

1:
01

 
00

:0
1:

04
 

00
:0

1:
07

 
00

:0
1:

10
 

00
:0

1:
13

 
00

:0
1:

16
 

00
:0

1:
19

 
00

:0
1:

22
 

00
:0

1:
25

 CP
U

 U
til

iz
at

io
n 

in
 %

 

Resource Utilization Regulation with P = 10, F = 0.5 

CPU Utilization 
Regulated Usage Value 



the image created, creating a VM from the image as a 
successor, getting state of the successor, transferring bound 
information (e.g., IP address, customized names, tags, etc.) 
to the successor. In addition, to deal with the possible 
failures that may occur during the above process, 
Optimization Executor involves a series of error handling 
mechanisms which guarantee any optimization to be 
intelligent and consistent. 

IV. OPTIMIZATION RULES 

A. Optimization Rule Parameters 
An optimization rule has two parts. The first part 

involves ID, time (when a rule is created), and name of a 
rule; the second part is the body with following parameters: 
“Period” expresses the likely repeating period of how often 
one’s workload would increase/decrease by a concrete level. 
“Frequency” indicates how often TARGO requests for raw 
Cloud monitor data for an instance. This also influences the 
frequency of workload pattern extraction, and so as the 
optimization frequency. “Up Limit” and “Down Limit” state 
a green boundary, only within which an instance is 
considered to be running at its optimal state. “Thresholds” 
indicates how many times that an instance can go 
below/over its down/up limits (after those times of 
violations, an instance is then regarded as necessary to be 
optimized). “Metric” specifies the name from available 
metric types such as CPU utilization, network in or out data, 
disk write or read operations, etc (this paper only focuses on 
the CPU metric). “Statistics” states how a selected metric is 
sampled: e.g., percentages of CPU utilization, bytes of 
network in/out data, times of disk read/write operations, etc. 
Metric and statistics options are set by and vary between 
different CSPs. Finally, “Counters” are up-to-date violation 
times of an instance has gone below/over its green limits. 
They are refreshed every time when there is a violation. 

B. Optimization Rule Modification 
1) Rule Modification: To Broaden Out 

Due to the fact that IaaS users have only a few fixed 
VM size options, whenever a transition is initiated and the 
best successor is successfully returned, we must check how 
the workload would drive the CPU utilization on the 
successor, and make modifications if necessary. In fact, 
while upsizing/downsizing, the original down/up limit may 
become too large/small once certain optimization(s) 
occur(s). Either of those situations would cause TARGO to 
run into an infinite transition state.  

2) Rule Modification: To Narrow Down 
On the other hand, it is necessary to narrow down the 

gap of the green up/down limits, so that transitions can 
always take place at the optimal moments. Generally, as a 
VM is upsizing, one’s overall performance is getting 
steadier. As a result, neither a narrow boundary set on a 
small sized VM nor a wide boundary set on a large sized 
VM would be appropriate. An example is that an initial 
green boundary of 20%-80% is reasonably settled on a 

t1.micro VM, and after a number of transitions the boundary 
is transferred into a successor in size of m1.large. It then 
would become too wide for the m1.large instance as there 
will not be any optimization as long as the majority of its 
CPU utilization stays between 10%-90%. 

3) Modification Equations 
 
If Counter >= TU:  
 
 𝑁𝐿𝑈 = 𝑂𝐿𝑈;                                          (2.1) 
 

 𝑁𝐿𝐷 = �
𝑁𝐿𝑈 ∗ 𝑅𝑎𝑡𝑖𝑜𝑀(𝑂−𝑁);  (𝑖𝑓 𝑂𝐿𝐷 >  𝑁𝐿𝑈 ∗ 𝑅𝑎𝑡𝑖𝑜𝑀(𝑂−𝑁))
𝑁𝐿𝑈 ∗ 𝑅𝑎𝑡𝑖𝑜𝑀(𝑂−𝑁)

2 ;  (𝑖𝑓 𝑂𝐿𝐷 <  𝑁𝐿𝑈 ∗ 𝑅𝑎𝑡𝑖𝑜𝑀(𝑂−𝑁)
2 )

𝑂𝐿𝐷;  (𝑒𝑙𝑠𝑒)

�    (2.2) 

 
If Counter >= TD: 

 𝑁𝐿𝑈 =

⎩
⎪
⎨

⎪
⎧

 𝑁𝐿𝑈
𝑅𝑎𝑡𝑖𝑜𝑀(𝑂−𝑁)

;  �𝑖𝑓 𝑂𝐿𝑈 < 𝑁𝐿𝐷
𝑅𝑎𝑡𝑖𝑜𝑀(𝑂−𝑁)

�

 𝑁𝐿𝑈
𝑅𝑎𝑡𝑖𝑜𝑀(𝑂−𝑁)

2 ;  �𝑖𝑓 𝑂𝐿𝑈 > 𝑁𝐿𝐷
𝑅𝑎𝑡𝑖𝑜𝑀(𝑂−𝑁)

2 �

𝑂𝐿𝑈;  (𝑒𝑙𝑠𝑒)

�                  (3.1) 

      
 𝑁𝐿𝐷 = 𝑂𝐿𝐷                                            (3.2) 
 

Where 𝑁𝐿𝑈 <= 90 and 𝑁𝐿𝐷 >= 10. U means Up 
and D means Down. OL stands for the original limit, 
whereas NL stands for the new limit. T is the threshold value. 
𝑅𝑎𝑡𝑖𝑜𝑀(𝑂−𝑁) means the respected PGR of the metric (CPU) 
between the original instance size and the new size. 

Equations (2.1) to (3.2) illustrate how the limits should 
be customized based on the current instance size and the 
relevant PGR. Basically, I) for upsizing, the up limit 
remains unchanged, whereas the down limit should be a 
value between multiplying the current limit by the first and 
second power of the respected PGR from the original VM 
size to the new size; II) for downsizing, the down limit stays 
unaltered; whereas the up limits should be between dividing 
the current limit by the first and second power of the 
respected PGR. In this way, no matter how a workload 
scales up or down, it is guaranteed that after the transition 
there is a properly updated green boundary for the successor 
where the workload will fall within the limits (as long as it 
is not suddenly changed). 

V. IMPLEMENTATION 
Shown in Fig. 3, the TARGO prototype provides a full 

optimization console as well as additional IaaS management 
interfaces. Initially, the system asks a user to enter one’s 
IaaS API access security credential. In the optimization 
panel one can create new optimization rules by selecting 
target instances and entering mandatory parameters. Later 
modification or deletion can be made. By clicking the 
“start/restart Optimization” button, the optimization 
processes are initiated. Every VM in optimization rules has 
its private controller and runs in its individual optimization 
cycle. The whole system runs fully automatically and does 
not need any supervision. Whenever an optimization occurs, 



 
 

Figure 3. Screenshot of TARGO Prototype 
 

the bound information (IP address, tag, name, etc.) is not 
transferred to the successor until it reaches the full 
operational state. This guarantees minimal side effects of the 
optimization. 

As a matter of fact, the life-cycles of VMs in Clouds 
are far different from those in a private infrastructure 
environment. The time needed for VM creation, booting-up 
and shutting-down, image creation, etc. are highly variable. 
Not to say that these processes even sometimes fail. To deal 

with these problems, TARGO is built with a series of error 
handling components and is therefore capable of 
intelligently solving various unexpected incidents. This 
ensures service consistency of the VMs being optimized. In 
addition, every action TARGO implements is logged, which 
helps users understand all background processes of 
optimizations. Fig. 4 demonstrates an example log saved 
while an optimization occurred. Used Amazon EC2 
instances shown in the example, on reaching the threshold 
specified in the rule, TARGO retrieved all information of 
the instance and then selected an appropriate successor size 
at first. The AMI creation request was then sent. As the 
AMI became available, successor creation was started. 
When the successor became up and fully available, the 
follow-up transfer was performed, involving tag and IP 
re-association. 

VI. EXPERIMENTS & EVALUATION 
A series of experiments have been conducted over 

Amazon EC2 instances of different VM sizes in the EU 
region. To fully test the effectiveness and scalability of 
TARGO, the tests involved a series of CPU-oriented 
workloads with different dynamics of distinct patterns. The 
test workloads were generated by Apache Jmeter [6] 
installed on a number of client machines, which sent 
quantitative server requests in a controlled manner. On the 
VM server side, for every request that Jmeter sent out there 
was a calculation task executed. Additionally, for available 
VM sizes, as IaaS providers typically offer choices of both 
CPU cores and processor speed, we specifically adjusted the 
calculation task so that it is both CPU clock speed and 
multi-core sensitive. 

In addition, in order to show the effectiveness of 
TARGO, we demonstrate statistics collected from a large 
range of instances available in AWS from t1.micro to 
m3.2xlarge. All (initial) instances (successor instances were 
originated from the latest images of last VM automatically) 
used in the experiments were created from Amazon’s 
official “Windows 2008 Server SP2 with IIS" AMI. 

A. Optimization under Stead Workload 
Fig. 5 illustrates an example of using TARGO while 

experiencing a fairly steady workload. The round dots 
describe the volume of experiment workload allocated to a 
fixed IP addresses (yet it actually pointed to a series of 
VMs). The test started with an initial workload of one unit, 
and after continuous steady increase for every ten minutes 
passed, it finally ended with 15000% of the initial value. 
The IP address used in the experiment was firstly assigned 
to an m1.small EC2 VM instance with the test AMI image. 
During the test, it was re-associated again and again on each 
successor, until finally on the final one in size of m3.2xlarge. 
The initial rule for the original instance in m1.small was 
specified as “Period: 5, Frequency: 0.5, Threshold: 4/5, 
Down: 50, Up: 70, Statistics: Average, Metric: 
CPUUtilization”. By the end of the experiments, the final 

… 
Sat Mar 23 14:17:30 GMT 2013 # For i-d490e79e of CPUUtilization RV: 73 Sat Mar 23 
14:17:30 GMT 2013 
Sat Mar 23 14:17:30 GMT 2013 # For CPUUtilization Due to: 73 >= 70, Uplimit Counter 
updated in rule list 
Sat Mar 23 14:17:30 GMT 2013 # Counter Updates for instance: i-d490e79e Downlimit: 3 
Uplimit: 4 for rule: 1363739083143  
Sat Mar 23 14:17:30 GMT 2013 ! Success: Rule counters successfully updated for i-d490e79e 
Sat Mar 23 14:17:30 GMT 2013 ## i-d490e79e reached CPUUtilization Uplimit: 70 4 limits 
Sat Mar 23 14:17:31 GMT 2013 <<< Monitor schedule  reset for i-d490e79e in rule: 
1363739083143  state: cancelled >>> 
Sat Mar 23 14:17:31 GMT 2013 >>> Optimisation is initiated... for i-d490e79e <<< 
Sat Mar 23 14:17:33 GMT 2013 * Original Instance info: 481498207418 i-d490e79e m1.small 
ami-800c04f4 2013CCS quick-start-3 176.34.184.176 Name iis 
Sat Mar 23 14:17:33 GMT 2013 **Instance found, Start creation process!** 
Sat Mar 23 14:17:34 GMT 2013 ** AMI creation in progress, Please wait... 
Sat Mar 23 14:17:35 GMT 2013 *** SUCCESS! AMI of original instance: ami-aec6ccda is 
ready for use. Start new instance creation... 
Sat Mar 23 14:17:36 GMT 2013 ***Succesor of i-d490e79e is i-507b381a m1.medium 
ami-aec6ccda 2013CCS quick-start-3 
Sat Mar 23 14:17:36 GMT 2013 * Awaiting new instance: i-507b381a to reach running state 
Sat Mar 23 14:17:56 GMT 2013 * Awaiting new instance: i-507b381a to reach running state 
Sat Mar 23 14:19:09 GMT 2013 * New instance: i-507b381a is fully ready for use... 
Sat Mar 23 14:19:09 GMT 2013 ** Tags Reassociation of Name iis is successfully completed 
between i-d490e79e i-507b381a 
Sat Mar 23 14:19:10 GMT 2013 *** IP Reassociation on 176.34.184.176 is successfully 
completed between i-d490e79e i-507b381a 
Sat Mar 23 14:19:10 GMT 2013 ** Switch completed, original instance: i-d490e79e will be 
stopped after certain dalay... 
Sat Mar 23 14:19:14 GMT 2013 ** New instance: i-507b381a is successfully returned 
Sat Mar 23 14:19:15 GMT 2013 %% Rule modified for i-507b381a with EQ: 0.51 
Sat Mar 23 14:19:15 GMT 2013 %% New rule prepared for the instance: 
[Period:4,Frequency:0.5,Threshold:4!4,Down:36,Up:70,Statistics:Average,Metric:CPUUtilizatio
n,InstanceID:i-507b381a,Counter:0!0;] 
Sat Mar 23 14:19:15 GMT 2013 !! Success: Rulelist updated with new rule applied. New 
Monitor schedule will be started shortly for successor. 
Sat Mar 23 14:19:15 GMT 2013 << New Monitor schedule created: i-507b381a for ruleID:  >> 
Sat Mar 23 14:19:15 GMT 2013 <<< Succesor Monitor schedule for: i-507b381a started >>> 
Sat Mar 23 14:19:15 GMT 2013 >>> Optimisation is complete... i-d490e79e is replaced with 
new instance: i-507b381a <<< 
Sat Mar 23 14:19:16 GMT 2013 # Awaiting monitor data... for instance: i-507b381a 
Sat Mar 23 14:19:46 GMT 2013 # For i-507b381a of CPUUtilization {Timestamp: Sat Mar 23 
14:20:10 GMT 2013 *** Original instance: i-d490e79e stopped... 
Sat Mar 23 14:20:16 GMT 2013, Average: 77.5, Unit: Percent, } 
Sat Mar 23 14:20:46 GMT 2013 # For i-507b381a of CPUUtilization RV: 42 Sat Mar 23 
14:24:16 GMT 2013 
Sat Mar 23 14:21:16 GMT 2013 # Updates: Monitor value is within limits for i-507b381a in 
rule: 
… 
              Figure 4. System Logs of TARGO 



modified rule for the size of m3.2xlarge was “Period: 5, 
Frequency: 0.5, Threshold: 4/5, Down: 36, Up: 70, Statistics: 
Average, Metric: CPUUtilization”. 

The rhombus dots in Fig. 5 indicate the combined CPU 
utilization values monitored at a one minute interval for all 
instances involved during the optimization transitions. This 
indicates that each of those instances has participated in 
handling certain workloads during its running cycle. For 
example, the initial instance with size of m1.small was 
stopped at the time 00:00:31, whereas from then the 
workload started to run on the successor instance with size 
of m1.medium. At 00:01:00, the successor in m1.medium 
was replaced with a new successor in m1.large… until the 
final successor in m3.2xlarge. This proves that TARGO has 
successfully managed to: 1) find better instance types 
according to the quantity of real-time workload; 2) 
dynamically request and create successors in appropriate 
sizes by using the same AMI; 3) complete the transition and 
reallocation process without service interruption by transfer 
whatever is needed. 

In this experiment, TARGO implemented five 
optimizations, considering how green efficient those 
instances were serving their duties, notably in Fig. 5, the 
CPU utilization values are generally between 40% and 80%. 
This suggests that each VM successor was working at a 
comparative green level while contributing own effort. 
Nonetheless, notably the 40%-80% contradicts the initial 
boundary of 50%-70%. This is due to: 1) TARGO’s 
threshold counting algorithm, which would only act after a 

VM reaching the limits; 2) reallocation delay caused while 
waiting a successor to boot up (current instance continues 
serving until its successor becomes fully operational, even if 
it is out of the green boundary). However, they do not affect 
the overall effectiveness of the green optimization, as the it 
shows TARGO is capable of keeping a VM instance at a 
green optimal machine type (with average of 60% CPU 
usage overall) based on the dynamics occurred in the 
workload. In a word, TARGO works faultlessly for 
instances under a steady workload, despite the critical 
increase in the workload. 

B. Optimization under Workload With Small Dynamics 
Fig. 6 describes a comparative example of with/without 

TARGO while experiencing a slightly more “complicate” 
workload. The controlled experiment workload 
demonstrated in Fig. (6.a) was firstly allocated separately on 
m1.large, m1.xlarge, and m3.xlarge three instances of the 
same image without involving TARGO; and then the test 
was rerun on an m1.large instance with TARGO using the 
rule: “Period: 5, Frequency: 1, Threshold: 5/5, Down: 40, 
Up: 80, Statistics: Average, Metric: CPUUtilization”. 

In Fig. (6.a) , it can be seen that the workload lasted for 
90 minutes (from the first request sent until the final reply 
received), whilst there were dramatic increase and decrease 
in the first thirty minutes. The increase over the first twenty 
minutes was almost four times of the initial units. From then 
the decrease was fairly gradual. Notably that the increase 
and the decrease were at a per minute basis, so the dynamics 
was far more frequent than the one in Fig. 5. 

 
                  (6.a)                                         (6.b)                                                        (6.c) 

Figure 6. Optimization under More Dynamic Workload 

0% 

2000% 

4000% 

6000% 

8000% 

10000% 

12000% 

00
:0

0:
01

 
00

:0
0:

11
 

00
:0

0:
21

 
00

:0
0:

31
 

00
:0

0:
41

 
00

:0
0:

51
 

00
:0

1:
01

 
00

:0
1:

11
 

00
:0

1:
21

 
00

:0
1:

31
 

W
or

kl
oa

d 
V

ol
um

e 

Experiment Workload 
Work load 

0 

20 

40 

60 

80 

100 

00
:0

0:
01

 
00

:0
0:

12
 

00
:0

0:
23

 
00

:0
0:

34
 

00
:0

0:
45

 
00

:0
0:

56
 

00
:0

1:
07

 
00

:0
1:

18
 

00
:0

1:
29

 
00

:0
1:

40
 

00
:0

1:
51

 
00

:0
2:

02
 

00
:0

2:
13

 
00

:0
2:

24
 

CP
U

 U
til

iz
at

io
n 

in
 %

 

CPU  Utilizations of 3 VMs 
without TARGO 

m1.large without TARGO 
m1.xlarge without TARGO 
m3.xlarge without TARGO 

0 

20 

40 

60 

80 

100 

00
:0

0:
01

 
00

:0
0:

04
 

00
:0

0:
07

 
00

:0
0:

10
 

00
:0

0:
13

 
00

:0
0:

16
 

00
:0

0:
19

 
00

:0
0:

22
 

00
:0

0:
25

 
00

:0
0:

28
 

00
:0

0:
31

 
00

:0
0:

34
 

00
:0

0:
37

 
00

:0
0:

40
 

00
:0

0:
43

 
00

:0
0:

46
 

00
:0

0:
49

 
00

:0
0:

52
 

00
:0

0:
55

 
00

:0
0:

58
 

00
:0

1:
01

 
00

:0
1:

04
 

00
:0

1:
07

 
00

:0
1:

10
 

00
:0

1:
13

 
00

:0
1:

16
 

00
:0

1:
19

 
00

:0
1:

22
 

00
:0

1:
25

 
00

:0
1:

28
 

00
:0

1:
31

 
00

:0
1:

34
 

CP
U

 U
til

iz
at

io
n 

in
 %

 

Time 

Combined CPU Utilizations of  10 VMs with TARGO   
Monitored at 1 Minute Interval 

 
Figure 5. Optimization under Steady Increasing Workload 

1 1.5 2.4 4 6 10 15 25 
40 

60 

100 
150 

0 
20 
40 
60 
80 

100 
120 
140 

00
:0

0:
01

 
00

:0
0:

03
 

00
:0

0:
05

 
00

:0
0:

07
 

00
:0

0:
09

 
00

:0
0:

11
 

00
:0

0:
13

 
00

:0
0:

15
 

00
:0

0:
17

 
00

:0
0:

19
 

00
:0

0:
21

 
00

:0
0:

23
 

00
:0

0:
25

 
00

:0
0:

27
 

00
:0

0:
29

 
00

:0
0:

31
 

00
:0

0:
33

 
00

:0
0:

35
 

00
:0

0:
37

 
00

:0
0:

39
 

00
:0

0:
41

 
00

:0
0:

43
 

00
:0

0:
45

 
00

:0
0:

47
 

00
:0

0:
49

 
00

:0
0:

51
 

00
:0

0:
53

 
00

:0
0:

55
 

00
:0

0:
57

 
00

:0
0:

59
 

00
:0

1:
01

 
00

:0
1:

03
 

00
:0

1:
05

 
00

:0
1:

07
 

00
:0

1:
09

 
00

:0
1:

11
 

00
:0

1:
13

 
00

:0
1:

15
 

00
:0

1:
17

 
00

:0
1:

19
 

00
:0

1:
21

 
00

:0
1:

23
 

00
:0

1:
25

 
00

:0
1:

27
 

00
:0

1:
29

 
00

:0
1:

31
 

00
:0

1:
33

 
00

:0
1:

35
 

00
:0

1:
37

 
00

:0
1:

39
 

00
:0

1:
41

 
00

:0
1:

43
 

00
:0

1:
45

 
00

:0
1:

47
 

00
:0

1:
49

 
00

:0
1:

51
 

00
:0

1:
53

 
00

:0
1:

55
 

00
:0

1:
57

 
00

:0
1:

59
 

C
PU

 U
ti.

 in
 %

 (r
ho

m
bu

s 
do

t) 
W

or
kl

oa
d 

V
ol

um
e 

(ro
un

d 
do

t) 
Combined CPU Utilization of 6 Instance Types with TARGO under 

Steady Increasing Workload 
CPU Utilization Workload 

transition & 
reallocation occurred 

m1.small 
m1.medium 

m1.large 

m1.xlarge 
m3.xlarge 

m3.2xlarge 

transition & 
reallocation occurred 

m
1.large 

m
1.xlarge 

m
3.xlarge 

m
3.2xlarge 

m
3.xlarge 

m
1.xlarge 

m
1.large 

m
1.m

edium
 

m
1.sm

all 

t1.m
icro 



Seen in Fig. (6.b), although with the same test 
workload, only instance with the size of m3.xlarge managed 
to finish on time; the other two experienced certain delays 
due to their poorer performances. I) In size of m1.large, the 
VM instance took almost another hour to finish the whole 
test. From ten minutes after the test started, its CPU 
utilization remained at 100% until some decrease happened 
at one hour and forty minutes of time. This period was 
obviously not considered to be green friendly, as a constant 
full CPU load generally means the processor cannot handle 
the workload. II) With resource provision of m1.xlarge 
capacity, the VM also needed extra twenty minutes to 
complete the test. The constant CPU utilization of 100% for 
about half an hour indicates that the workload was still too 
heavy for this specification. Moreover, from thirty minutes 
before the VM finished the test, its CPU utilization dropped 
and remained below 50%, whereas for the last twenty 
minutes it did not even reached 20%. This implies that the 
workload during this period was too low for this instance 
size. III) The instance in m3.xlarge managed to complete the 
work in time. The resource capacity appeared to be 
acceptable for the workload. Yet, except for a small amount 
of time the CPU usage had stayed above 80%, the rest had 
remained under 40% for most of the test. Compared with 
m1.xlarge, the VM instance is over provisioned for the 
workload. This seriously failed to efficiently utilize the 
provisioned VM resources. 

With TARGO, Fig. (6.c) illustrates the combined CPU 
usage data of all successors during the optimization 
transition processes. For the dynamics of the workload, the 
original instance in m1.large transited up and down nine 
times until it finally stayed at t1.micro when the workload 
stopped. The combine CPU utilization was generally 
between 30%-90%, despite the 40%-80% initially specified. 
This indicates that the original boundary was a little too 
wide for an m1.large, and after several times of rule 
modification, the final boundary turned into 20%-90% on 
the t1.micro. Still, the experiment result implies that 
TARGO is able to retain appropriate instances types whiling 
facing comparatively complicate workload which involves 
fast increase and decrease in a short period of time. 

C. Optimization under Extreme Random Workload 
Another experiment showing how TARGO would act 

under workload with extreme random patterns is 
demonstrated below in Fig. 7. Fig (7.a) illustrates the test 
workload, whilst Fig (7.b) shows the combined CPU 
utilization of the 6 VMs incurred during the transitions, with 
initial rule “Period: 10, Frequency: 0.5, Threshold: 4/4, 
Down: 50, Up: 70, Statistics: Average, Metric: 
CPUUtilization”. From Fig. (7.a) it can be seen that the 
workload used had dramatic increase and decrease in every 
two minutes, whereas the actual span of the unit difference 
was extremely large at 30000%. The only obvious change in 
the workload may be that it was decreasing in general 
considering the entire running time. However, for the first 
half an hour, there was not any clear trend. Most 
importantly, within some two minutes during the 
experiment, the actual increase/decrease was over 100 times. 
Clearly, no VM can run this workload with a definite steady 
CPU Utilization. Here, using a large enough (well-resourced) 
VM would be the only way to properly handle the peaks of 
such workload. However, this would also mean wasting 
considerable amount of resource due to over-provision for 
the rest of the load, which would fail to meet any green 
efficiency requirement. 

On the other hand, even under such extreme dynamic 
workload, TARGO managed to find the best possible 
instance sizes to complete the tasks by maintaining their 
combined CPU utilization within a relatively green range. 
The initial instance was setup in size of m3.xlarge, whereas 
it was finally ended with a successor in t1.micro. Seen in 
Fig. (7.b), their combined CPU utilization data monitored at 
a per minute basis fluctuated seriously, from which it is hard 
to tell any clear judgment. Yet at a slightly larger monitor 
interval, the data then appear to be fall into a relatively 
small boundary. The square dots in Fig. (7.b) demonstrate 
the CPU utilization values monitored at every two minutes 
on each instances. Generally, almost all of the dots remain 
within the range of 35%-75%. This illustrates that even for a 
VM which works under extreme random workload that 
changes very frequently, TARGO is still capable of 
retaining successors in appropriate VM sizes according to 
the parameters entered in the optimization rule. 

  
                                  (7.a)                                                                         (7.b) 

Figure 7. Optimization under Extreme Random Workload 

0.00% 

5000.00% 

10000.00% 

15000.00% 

20000.00% 

25000.00% 

30000.00% 

35000.00% 

00
:0

0:
01

 
00

:0
0:

06
 

00
:0

0:
11

 
00

:0
0:

16
 

00
:0

0:
21

 
00

:0
0:

26
 

00
:0

0:
31

 
00

:0
0:

36
 

00
:0

0:
41

 
00

:0
0:

46
 

00
:0

0:
51

 
00

:0
0:

56
 

00
:0

1:
01

 
00

:0
1:

06
 

00
:0

1:
11

 
00

:0
1:

16
 

00
:0

1:
21

 
00

:0
1:

26
 

00
:0

1:
31

 
00

:0
1:

36
 

W
or

kl
oa

d 
V

ol
um

e 

Experiment Workload 
Allocated Workload 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

00
:0

0:
01

 
00

:0
0:

04
 

00
:0

0:
07

 
00

:0
0:

10
 

00
:0

0:
13

 
00

:0
0:

16
 

00
:0

0:
19

 
00

:0
0:

22
 

00
:0

0:
25

 
00

:0
0:

28
 

00
:0

0:
31

 
00

:0
0:

34
 

00
:0

0:
37

 
00

:0
0:

40
 

00
:0

0:
43

 
00

:0
0:

46
 

00
:0

0:
49

 
00

:0
0:

52
 

00
:0

0:
55

 
00

:0
0:

58
 

00
:0

1:
01

 
00

:0
1:

04
 

00
:0

1:
07

 
00

:0
1:

10
 

00
:0

1:
13

 
00

:0
1:

16
 

00
:0

1:
19

 
00

:0
1:

22
 

00
:0

1:
25

 
00

:0
1:

28
 

00
:0

1:
31

 
00

:0
1:

34
 

00
:0

1:
37

 
00

:0
1:

40
 

CP
U

 U
til

iz
at

io
n 

in
 %

 

Combined CPU Utilization of 6 Instances with TARGO  

transition & 
reallocation occurred 

m1.small 

m1.medium 
m1.large 

m3.xlarge 
m1.xlarge 

t1.micro 



VII. CONCLUSIONS & FUTURE WORK 
While numerous research proposes server and 

workload consolidation as well as hardware integrated 
control mechanism solutions to achieve GCC, this paper 
argues another approach known as TARGO – the 
optimization specifically for IaaS VM users who usually 
have no control over any Cloud hardware or the hypervisor. 
We have demonstrated how TARGO could actively 
facilitate automated VM transition and workload 
reallocation optimizations on discovering waste or overuse 
of VM resources. Experiments have shown that TARGO 
could always retain suitable successors that would work 
within green boundaries regardless how workloads vary. 
The future work will address on: I) extended optimization 
scenarios based on additional metric types such as network, 
disk utilization; II) advanced optimization using third party 
VM load balancers on multiple VMs; III) multiple IaaS 
CSPs support. 

ACKNOWLEDGMENT 
The work in this paper has been sponsored by the 

Lawrence Ho Research Fund (LH-Napier2012). 

REFERENCES 
[1] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource 

allocation heuristics for efficient management of data centers for 
Cloud Computing”, Future Generation Computer Systems, vol. 28, 
issue 5, pp. 755-768, 2012 

[2] A. Beloglazov and R. Buyya, “Energy Efficient Resource 
Management in Virtualized Cloud Data Centers”, Proceedings of the 
10th IEEE/ACM International Conference on Cluster, Cloud and 
Grid Computing, pp.826-831, 2010 

[3] Amazon Web Services, Inc., “Amazon CloudWatch Developer 
Guide”, 2010, [Online], Available: 
http://awsdocs.s3.amazonaws.com/AmazonCloudWatch/latest/acw-d
g.pdf, [Accessed: Feb. 21, 2013] 

[4] Amazon Web Services, Inc., “Auto Scaling Developer Guide”, 2011, 
[Online], Available: 
http://awsdocs.s3.amazonaws.com/AutoScaling/latest/as-dg.pdf, 
[Accessed: Feb. 24, 2013] 

[5] Amazon Web Services, Inc., “Elastic Load Balancing Developer 
Guide”, 2012, [Online], Available: 
http://awsdocs.s3.amazonaws.com/ElasticLoadBalancing/latest/elb-d
g.pdf, [Accessed: Feb. 22, 2013] 

[6] Apache Software Foundation, “Apache JMeter”, 2013, [Online], 
Available: http://jmeter.apache.org/, [Accessed: Mar. 15, 2013] 

[7] A. Strunk, “Costs of Virtual Machine Live Migration: A Survey”, 
IEEE Eighth World Congress on Services, pp.323-329, 2012 

[8] A. Younge, G. Laszewski, L. Wang, S. Lopez-Alarcon, and W. 
Carithers, “Efficient resource management for Cloud Computing 
environments”,  International Green Computing Conference, 
pp.357-364, 2010 

[9] B. Li, J. Li, J. Huai, T. Wo, Q. Li, and L. Zhong, “EnaCloud: An 
Energy-saving Application Live Placement Approach for Cloud 
Computing Environments”, IEEE International Conference on Cloud 
Computing, pp. 17-24, 2009 

[10] C. Huang, C. Guan, H. Chen, Y. Wang, S. Chang, C. Li, and C. Weng, 

“An adaptive resource management scheme in Cloud Computing”, 
Engineering Applications of Artificial Intelligence, vol. 26, issue 1, 
pp. 382-389, 2013 

[11] D. Aikema, A. Mirtchovski, C. Kiddle, and R. Simmonds, “Green 
Cloud VM Migration: Power Use Analysis”, International Green 
Computing Conference (IGCC), pp. 1-6, 2012 

[12] D. Lago, E. Madeira., and L. Bittencourt, “Power-aware virtual 
machine scheduling on Cloud using active cooling control and 
DVFS”, Proceedings of the 9th International Workshop on 
Middleware for Grids, Clouds and e-Science, vol. 2, 2011 

[13] E. Feller, L. Rilling, and C. Morin, "Energy-Aware Ant Colony 
Based Workload Placement in Clouds", Grid Computing (GRID), 
12th IEEE/ACM International Conference, pp.26,33, 21-23, 2011 

[14] L. Goiri, J. Berral, J. Fitó, F. Julià, R. Nou, J. Guitart, R. Gavaldà, J. 
Torres, “Energy-efficient and multifaceted resource management for 
profit-driven virtualized data centers”, Future Generation Computer 
Systems, vol. 28 issue 5, pp.718-731, 2012 

[15] L. Liu, H.Wang, X. Liu, X. Jin, W. H, Q. Wang, and Y.Chen, 
“GreenCloud: a new archetecture for green data center”, Proceedings 
of the 6th International Conference Industry Session on Automatic 
Computing and Communication Industry Session, pp. 29-38, 2009 

[16] R. Jeyarani, N. Nagaveni, S. Sadasivam and V. Rajarathinam, “Power 
Aware Meta Scheduler for Adaptive VM Provisioning in IaaS Cloud”, 
International Journal of Cloud Applications and Computing, vol.1, 
issue 3, pp.36-51, 2011 

[17] R. Jeyarani, N. Nagaveni, S. Srinivasan, and C. Ishwarya, “ISim: A 
Novel Power Aware Discrete Event Simulation Framework for 
Dynamic Workload Consolidation and Scheduling in Infrastructure 
Clouds”, Advances in Intelligent Systems and Computing, vol. 177, pp. 
375-384, 2013 

[18] R. Karthikeyan and P.C Hitra, “Novel Heuristics Energy Efficiency 
Approach for Cloud Data Center”, IEEE International Conference on 
Advanced Communication Control and Computing Technologies 
(ICACCCT), pp. 202 – 207, 2012 

[19] Q. Chen, P. Grosso, K. Veldt, C. Laat, R. Hofman, and H.Bal, 
“Profiling energy consumption of VMs for green Cloud Computing”, 
Ninth IEEE International Conference on Dependable, Autonomic and 
Secure Computing, pp. 768-775, 2011 

[20] wPrime Systems., “Super Pi Single-Thread Benchmark”, 2012, 
[Online], Available: http://www.superpi.net/, [Accessed: Jan. 06, 
2013] 

[21] wPrime Systems., “wPrime Multi-Threaded Benchmark”, 2012, 
[Online], Available: http://www.wprime.net/, [Accessed: Jan. 06, 
2013] 

[22] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis, 
“Efficient Resource Provisioning in Compute Clouds via VM 
Multiplexing”, ICAC '10 Proceedings of the 7th international 
conference on Autonomic computing, pp.11-20, 2010 

[23] Y. Chen and S. Tsai, “Optimal Provisioning of Resource in a Cloud 
Service”, IJCSI International Journal of Computer Science, vol. 7, 
issue 6, 2010 

[24] Y. Guo and X. Zhou, “Coordinated VM Resizing and Server Tuning: 
Throughput, Power Efficiency and Scalability”, 20th International 
Symposium on Modeling, Analysis and Simulation of Computer and 
Telecommunication Systems, pp.289-297, 2012 

[25] Z. Shen, S.Subbiah, X.Gu, and J. Wilkes, “CloudScale: elastic 
resource scaling for multi-tenant Cloud systems”, Proceedings of the 
2nd ACM Symposium on Cloud Computing, Vol. 5, 2011 

[26] Z. Xiao, W. Song, and Q. Chen, “Dynamic Resource Allocation using 
Virtual Machines for Cloud Computing Environment”, IEEE 
Transactions on Parallel and Distributed Systems, issue. 99, 2012

 


	TARGO: Transition and Reallocation Based Green Optimization for Cloud VMs
	Hongji Yang
	Lin Liu
	Daren Fang, Xiaodong Liu
	Software Technology Research Lab
	School of Software
	School of Computing
	De Montfort University
	Tsinghua University
	Edinburgh Napier University
	Leicester, UK
	Beijing, China
	Edinburgh, UK
	hyang@dmu.ac.uk
	linliu@tsinghua.edu.cn
	{d.fang, x.liu}@napier.ac.uk
	Abstract — Much research has been conducted focusing on improving resource utilization efficiency in data centers in the context of Green Cloud Computing (GCC). While virtualization enables better resource provision and utilization for various computational resources, different approaches are proposed based on virtual machine (VM) optimizations using either server or workload consolidation techniques. Nonetheless, these solutions can only be applied inside the Cloud. In fact, Infrastructure-as-a-Service (IaaS) users can hardly proactively achieve better VM resource utilization efficiency, as they typically have no control over any hypervisor or hardware in any Clouds. The issue gets more critical when workloads on VMs alter dramatically from time to time. This paper presents a novel approach namely Transition and Reallocation Based Green Optimization (TARGO) for such users. Through fully automated and intelligent VM optimization according to customizable optimization rules, TARGO guarantees that VMs or their successors being optimized will always run at their customizable green optimal states regardless how workloads vary. Experiments conducted on Amazon EC2 instances in the EU region show that, even under extreme random workloads, TARGO is still capable of selecting and retaining VM successors which run at an average CPU utilization of 50%-60%.
	As a transition and reallocation based solution, TARGO periodically monitors resource utilization of the VMs and extracts their dynamic workload patterns. Whenever it detects concrete resource utilization/workload changes for a certain VM, TARGO initiates an optimization by dynamically replacing such with a successor of an optimal VM size (so that the successor can handle the current workload efficiently). All successors created will appear to be the same as the original VMs as they are created based on the most current VM images. At the end of such optimizations, workloads are reallocated to the successors once they become fully operational, without any interruption or gaps except the switching moment. The whole optimization process is automatically operated and logged once optimization rule parameters are defined. In general, the proposed approach has the following contributions:
	( The novel Cloud client-side VM optimization enables automated VM transitions where selected successors always run within their own specified green boundaries no matter how individual workload varies. The approach is well capable to work on top of other server/workload consolidation optimization solutions.
	Keywords - Green Cloud Computing; Server Consolidation; VM Migration; Green Optimization Rules; IaaS;
	I.  Introduction
	In a Cloud Computing (CC) environment, resource virtualization organizes CC hardware components into independent resource blocks where workloads are handled within virtualized boundaries. In this context, much GCC research has been done addressing on virtualization and VM management optimizations. Current approaches to achieve better energy and (computational) resource utilization efficiency can be generally classified into two categories: 1) server/workload consolidation solutions involving VM scheduling [1][14][16], migration [15][18][26], and sizing/resizing management [9][22][24]; 2) hardware integrated solutions involving dynamic voltage and frequency scaling (DVFS) [25] and hardware cooling control mechanism [12]. As a matter of fact, these approaches can only be implemented on Cloud service provider (CSP) side (inside the Cloud). For IaaS users who have extremely limited privilege and control over the Cloud VM hypervisor or any physical hardware, they are not applicable. In this paper, we present the design and implementation of TARGO, a pure CC client-side solution which facilitates IaaS VM transition and workload reallocation according to customizable optimization rules. TARGO is developed to work seamlessly with IaaS CSPs by allowing intelligent and fully automated VM green optimizations.
	( The dynamic workload pattern extraction and recognition provide regulated views of the VM resource utilization states, which reveal actual workload trends and concrete changes.
	( The concept of Performance Gap Ratios (PGR) between different VM sizes in IaaS Clouds is introduced. From the performance test data of EU Amazon EC2 instances, a series of PGRs are calculated and demonstrated.
	( The approach allows IaaS users to always retain the smallest VMs (VM with fewest resources) depending on the actual real-time workload. In comparison with using a fixed large-enough VM to manage fluctuated workload, it saves significant amount of computational resource, and enables better resource allocation and distribution inside IaaS Cloud.
	The rest of the paper is organized as follows. Section II discusses the related work. Section III outlines system architecture and components of TARGO. In section IV, TARGO optimization rules are further explained. Section V demonstrates the implementation of TARGO. A series of experiments and evaluations are illustrated in Section VI. Finally, Section VII concludes the paper.
	𝑅𝑉𝑡=𝐹𝑃∗𝑛=1𝑃/𝐹 𝑀𝑉𝑛𝑡𝑛                                    (1)
	II. Related Work
	In [1], the authors propose to optimize VM scheduling over Cloud data center based on energy-aware resource provision and allocation algorithm, where Green Cloud Architecture involving “energy-aware power model” is demonstrated. Power Aware Meta Scheduler [16] is another attempt implemented from the perspective of VM scheduler. By predicting Cloud data center utilization, the scheduler manages lifecycle of the running VMs through dynamic power saving stage switches. Earlier work based on similar approaches can also be found in [2][8]. Nonetheless, they all share a single limitation: none of them clarifies the time and cost needed for VM migration or state changes, which is a critical factor affecting the frequency and effectiveness of such optimizations [7]. Additionally, they do not consider comprehensive VM resource utilization (including CPU, memory, network, and disk usages), which would also influence the overall green efficiency of the optimized physical machines (PMs). A more comprehensive work is [14], where the authors argue a scheduling policy which models and manages virtualized data centers to maximize their utilization efficiency by considering the following facets: power consumption, service level agreements (SLAs), virtualization overheads, heterogeneity management, etc. This provides a comparatively comprehensive view of the VM scheduling approach.
	For software hardware combined optimizations, CloudScale [25], an automatic elastic resource scaling system (for multi-tenant Cloud infrastructure), consists of three key aspects: service level objective (SLO) based resources demand prediction, support of concurrent multi-tenant VM migration, and integration of DVFS scaling control. Another work [12] introduces DVFS along with active fan cooling control mechanism into VM scheduling tasks to achieve better resource utilization efficiency. iSIM framework [17] presents an alternative for VM performance optimization via virtual CPU core state management depending on the dynamics of the workload
	From a different viewpoint, dynamic workload placement optimization is found as another solution. Discrete Particle Swarm Optimization (DPSO) algorithm [23] is proposed as a solution to allocate/distribute appropriate workload across VMs with different CPU cores. The authors of [13] advocate artificial swarm intelligence as well as Ant Colony Optimization (ACO) algorithm for a more energy efficient workload placement.
	In contrast to the above work, TARGO focuses on improving resource utilization and consumption of VMs provisioned in the Cloud. Specifically for IaaS users who rarely have control over the Cloud hypervisor and hardware nor the workload, it actively replaces the non-green running VMs to those with better (more suitable) resources allocated. As a pure client-side VM-oriented solution, TARGO is able to work well on top of other approaches to achieve additional resource saving. Additionally, considering the significant differences between VMs due to their performance gaps as well as distinct types/patterns of workloads in real world scenarios, TARGO employs dynamic workload pattern extraction as well as customizable optimization parameters, so that accurate and effective optimizations can be facilitated regardless how VMs’ performances and workloads vary.
	Dynamic resource allocation based on VM migration [26] attempts to minimize the overall number of running PMs in a server pool according to relevant load prediction, resources utilization distribution and “hot to cold” threshold algorithms. Basically, after the allocation and migration decision is made, VMs of different load are properly migrated between the PMs, where idle PMs can be resulted and then are turned off. Similar approaches are seen in [15][18]. Differences are that instead of workload predictions, monitor services and power meter (in [15]) and service analyzer and energy monitor (in [18]) are used to facilitate VM migration decisions. Another work is the resource allocation optimization system [10]. By employing an application prediction module which estimates SLA relevant resource utilization, the system performs VM migration based PM “mutation” actions. The overall efficiency is optimized due to the fact that VM resource utilizations are effectively managed across all PMs. Nevertheless, a possible drawback of all above approaches is that they fail to consider the effort and energy consumed while performing VM migration in such large scales, such as the overall time and total power usage of those large volumes of VM migrations [11].
	Furthermore, for some IaaSs, there are some native solutions regarding resource monitor and utilization of VMs. Examples for Amazon EC2 are seen as CloudWatch, Auto Scaling and Elastic Load Balancing. CloudWatch [3] provides monitor functionalities for many services in AWS. It allows EC2 users to view instance (and other) utilization statistics according to customizable metrics, such as CPU usage, network or disk I/O information, etc. Additionally, with monitor alarms setup, it can automatically perform a series of simple actions according to users’ configuration once an alarm is triggered, e.g., EC2 users can configure alarms to send them notification emails if selected VM instances’ CPU utilization remains at 100% for a certain period. Auto Scaling [4] is designed to enable scaling optimization options for EC2 instances. According to users’ configurations, it acts automatically to increase/decrease the number of running EC2 instances based on either periodic “healthy” checks of the selected current running instances at fixed schedules. Elastic Load Balancing [5] works to balance the network traffic load of EC2 instances, so that workloads are distributed evenly rather than concentrating on certain ones. Although the above three services seem to be very useful, in fact, they are not primarily designed for green effectiveness and efficiency requirements: I) At the moment, AWS alarm mechanism for EC2 only provides three available actions if an alarm is triggered: to send notification email(s), to shut down the instance(s), to terminate the instance(s). These options obviously do not switch any instance into a “green mode”. In EC2 control panel, there is an option to change the instance size, but the instance must be stopped first to perform this resizing task. II) Auto Scaling can only launch new instances from the same AMI, whereas all new instances created have to be of the same instance size (of the original instance). III) Elastic Load Balancing simply distributes network traffics evenly, across different regions and availability zones.
	Another perspective in server consolidation approaches is known as VM sizing/resizing, which is argued in [9][24] [22]. EnaCloud [9] comprises two key components: Global Controller which manages job scheduling and distribution tasks, and Resource pool where VM hypervisors perform monitor, sizing, and power management control. GARL [24], on the other hand, is equipped with VM Power Monitor and VM Resource Allocator which facilitate VM resizing and replacement according to VM performance monitor data. The authors of [22] utilize workload forecasting statistics as the basis to facilitate VM sizing and resizing consolidation tasks.
	In comparison with CloudWatch, TARGO acts dynamically to find appropriate VM successors according to the dynamics of the workload. By doing so continuously, it always retains instances in most green efficient sizes so that all VMs can run their own workload within own specified green boundaries. In contrast to Auto Scaling, TARGO launches successors in different machine sizes, in fact, the most green-effective sizes. Compared with adding/removing instances at a per instance basis and then to distribute the workload, TARGO saves VM resources as each optimization can be performed at a smaller scope. In many cases an appropriate larger/smaller sized instance would be able to manage the increased/decreased work at better green efficiency whilst several same-sized instances could be easily over-provisioned.
	Through IaaS resource monitor interfaces provided by many CSPs, statistics of a series of VM resource metrics are available at certain costs, e.g., CPU usage, network, disk in/out, etc. These are used as raw data to formulate dynamic workload patterns. Here, a workload pattern can be understood as: for a specific repeating interval, the load of a VM seems to fit for certain regularity studies. However, due to the complexity of various real world VM applications, some may not come in fixed patterns. In addition, performances of VMs could vary depending on their images, type specifications, geographic locations, or even at different time slots. In fact, while different VMs are running their tasks, even for the same percentage increase on their own workloads, they could react differently. Therefore, load prediction algorithms and fixed load pattern modeling would hardly work. To effectively deal with the above issues, the dynamic workload pattern extractor is introduced to lively reflect the current status of the VM instances. Based on a customizable monitor frequency in a repeating period, a regulator is used to produce the most accurate utilization data.
	III. System Archetecture
	A. Rule-based Intelligent Optimization
	B. Workload Pattern Extractor
	C. Performance Gap Calculator
	D. VM Sizing Governor
	E. Optimization Rule Modifier
	F. Optimization Executor

	The architecture of TARGO is shown in Fig. 1. As a solution to inefficient VM resource utilization, TARGO behaves proactively to implement intelligent VM size transitions and workload reallocations, according to a series of optimization rule parameters. Generally, such optimization comprises the following steps: Whenever there is excessive high or low workload detected on a VM, which indicates that the instance cannot handle it green efficiently, a successor VM of larger or smaller type is created using its most current VM image. While the new better-sized VM is up and running, the original optimization rule parameters are dynamically adjusted to fit the successor VM as well. Finally, the new rule and the workload are transferred to the new VM where the original one is switched off. The whole optimizations process takes as less as few minutes. To the end users, there would be only millisecond’s unavailable state for the moment of the switch, but the dynamically retained VMs are guaranteed to operate at their optimal green states.
	Equation (1) is used to compute the regulated monitor statistics so as to formulate workload patterns. F and P specify monitor frequency and period respectively. RVt stands for regulated value at time t for certain F and P. 𝑀𝑉𝑛𝑡 indicates the nth raw monitor data value recorded at each monitor time tn. Basically, for each monitor interval, the average value of all values collected from the last monitor period is used as the regulated value. Generally speaking, the more stable certain workload is expected, the smaller P and larger F should be set to; the more dynamic the workload is anticipated, the larger P and smaller F should be given. Fig. 2 shows two examples of how raw CPU monitor data in percentage are regulated in Workload Pattern Extractor based on (1). It can be seen that the regulated utilization data appears to be concrete and is capable of showing the trend of the workload.
	Nowadays, most CSPs like Amazon EC2 and Rackspace Cloud Servers offer more than five size/type options in different platforms/OSs (operating system), which range from small to very large and are designed and provisioned to handle different tasks and workload. To facilitate green optimization for IaaS VM by making sizing transitions, it is essential to measure the approximate gaps of performances between the available VM sizes.
	IV. Optimization Rules
	A. Optimization Rule Parameters
	B. Optimization Rule Modification
	1) Rule Modification: To Broaden Out
	2) Rule Modification: To Narrow Down
	3) Modification Equations


	V. Implementation
	VI. Experiments & Evaluation
	A. Optimization under Stead Workload
	B. Optimization under Workload With Small Dynamics
	C. Optimization under Extreme Random Workload

	VII. Conclusions & Future Work
	Acknowledgment
	References

	[11] D. Aikema, A. Mirtchovski, C. Kiddle, and R. Simmonds, “Green Cloud VM Migration: Power Use Analysis”, International Green Computing Conference (IGCC), pp. 1-6, 2012
	[12] D. Lago, E. Madeira., and L. Bittencourt, “Power-aware virtual machine scheduling on Cloud using active cooling control and DVFS”, Proceedings of the 9th International Workshop on Middleware for Grids, Clouds and e-Science, vol. 2, 2011
	[13] E. Feller, L. Rilling, and C. Morin, "Energy-Aware Ant Colony Based Workload Placement in Clouds", Grid Computing (GRID), 12th IEEE/ACM International Conference, pp.26,33, 21-23, 2011
	[14] L. Goiri, J. Berral, J. Fitó, F. Julià, R. Nou, J. Guitart, R. Gavaldà, J. Torres, “Energy-efficient and multifaceted resource management for profit-driven virtualized data centers”, Future Generation Computer Systems, vol. 28 issue 5, pp.718-731, 2012
	[15] L. Liu, H.Wang, X. Liu, X. Jin, W. H, Q. Wang, and Y.Chen, “GreenCloud: a new archetecture for green data center”, Proceedings of the 6th International Conference Industry Session on Automatic Computing and Communication Industry Session, pp. 29-38, 2009
	[16] R. Jeyarani, N. Nagaveni, S. Sadasivam and V. Rajarathinam, “Power Aware Meta Scheduler for Adaptive VM Provisioning in IaaS Cloud”, International Journal of Cloud Applications and Computing, vol.1, issue 3, pp.36-51, 2011
	The work in this paper has been sponsored by the Lawrence Ho Research Fund (LH-Napier2012).
	[17] R. Jeyarani, N. Nagaveni, S. Srinivasan, and C. Ishwarya, “ISim: A Novel Power Aware Discrete Event Simulation Framework for Dynamic Workload Consolidation and Scheduling in Infrastructure Clouds”, Advances in Intelligent Systems and Computing, vol. 177, pp. 375-384, 2013
	[1] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuristics for efficient management of data centers for Cloud Computing”, Future Generation Computer Systems, vol. 28, issue 5, pp. 755-768, 2012
	[18] R. Karthikeyan and P.C Hitra, “Novel Heuristics Energy Efficiency Approach for Cloud Data Center”, IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), pp. 202 – 207, 2012
	[2] A. Beloglazov and R. Buyya, “Energy Efﬁcient Resource Management in Virtualized Cloud Data Centers”, Proceedings of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pp.826-831, 2010
	[19] Q. Chen, P. Grosso, K. Veldt, C. Laat, R. Hofman, and H.Bal, “Profiling energy consumption of VMs for green Cloud Computing”, Ninth IEEE International Conference on Dependable, Autonomic and Secure Computing, pp. 768-775, 2011
	[3] Amazon Web Services, Inc., “Amazon CloudWatch Developer Guide”, 2010, [Online], Available: http://awsdocs.s3.amazonaws.com/AmazonCloudWatch/latest/acw-dg.pdf, [Accessed: Feb. 21, 2013]
	[20] wPrime Systems., “Super Pi Single-Thread Benchmark”, 2012, [Online], Available: http://www.superpi.net/, [Accessed: Jan. 06, 2013]
	[4] Amazon Web Services, Inc., “Auto Scaling Developer Guide”, 2011, [Online], Available: http://awsdocs.s3.amazonaws.com/AutoScaling/latest/as-dg.pdf, [Accessed: Feb. 24, 2013]
	[21] wPrime Systems., “wPrime Multi-Threaded Benchmark”, 2012, [Online], Available: http://www.wprime.net/, [Accessed: Jan. 06, 2013]
	[22] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis, “Efficient Resource Provisioning in Compute Clouds via VM Multiplexing”, ICAC '10 Proceedings of the 7th international conference on Autonomic computing, pp.11-20, 2010
	[5] Amazon Web Services, Inc., “Elastic Load Balancing Developer Guide”, 2012, [Online], Available: http://awsdocs.s3.amazonaws.com/ElasticLoadBalancing/latest/elb-dg.pdf, [Accessed: Feb. 22, 2013]
	[23] Y. Chen and S. Tsai, “Optimal Provisioning of Resource in a Cloud Service”, IJCSI International Journal of Computer Science, vol. 7, issue 6, 2010
	[6] Apache Software Foundation, “Apache JMeter”, 2013, [Online], Available: http://jmeter.apache.org/, [Accessed: Mar. 15, 2013]
	[7] A. Strunk, “Costs of Virtual Machine Live Migration: A Survey”, IEEE Eighth World Congress on Services, pp.323-329, 2012
	[24] Y. Guo and X. Zhou, “Coordinated VM Resizing and Server Tuning: Throughput, Power Efficiency and Scalability”, 20th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, pp.289-297, 2012
	[8] A. Younge, G. Laszewski, L. Wang, S. Lopez-Alarcon, and W. Carithers, “Efficient resource management for Cloud Computing environments”,  International Green Computing Conference, pp.357-364, 2010
	[25] Z. Shen, S.Subbiah, X.Gu, and J. Wilkes, “CloudScale: elastic resource scaling for multi-tenant Cloud systems”, Proceedings of the 2nd ACM Symposium on Cloud Computing, Vol. 5, 2011
	[9] B. Li, J. Li, J. Huai, T. Wo, Q. Li, and L. Zhong, “EnaCloud: An Energy-saving Application Live Placement Approach for Cloud Computing Environments”, IEEE International Conference on Cloud Computing, pp. 17-24, 2009
	[26] Z. Xiao, W. Song, and Q. Chen, “Dynamic Resource Allocation using Virtual Machines for Cloud Computing Environment”, IEEE Transactions on Parallel and Distributed Systems, issue. 99, 2012
	[10] C. Huang, C. Guan, H. Chen, Y. Wang, S. Chang, C. Li, and C. Weng, “An adaptive resource management scheme in Cloud Computing”, Engineering Applications of Artificial Intelligence, vol. 26, issue 1, pp. 382-389, 2013

