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Abstract 

Background  

High throughput gene expression time-course experiments provide a perspective on 

biological functioning recognized as having huge value for the diagnosis, treatment, and 

prevention of diseases. There are however significant challenges to properly exploiting this 

data due to its massive scale and complexity. In particular, existing techniques are found to 

be ill suited to finding patterns of changing activity over a limited interval of an 

experiments time frame. The Time-Series Explorer (TSE) was developed to overcome this 

limitation by allowing users to explore their data by controlling an animated scatter-plot 
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view. MaTSE improves and extends TSE by allowing users to visualize data with missing 

values, cross reference multiple conditions, highlight gene groupings, and collaborate by 

sharing their findings.  

Results  

MaTSE was developed using an iterative software development cycle that involved a high 

level of user feedback and evaluation. The resulting software combines a variety of 

visualization and interaction techniques which work together to allow biologists to explore 

their data and reveal temporal patterns of gene activity. These include a scatter-plot that can 

be animated to view different temporal intervals of the data, a multiple coordinated view 

framework to support the cross reference of multiple experimental conditions, a novel 

method for highlighting overlapping groups in the scatter-plot, and a pattern browser 

component that can be used with scatter-plot box queries to support cooperative 

visualization. A final evaluation demonstrated the tools effectiveness in allowing users to 

find unexpected temporal patterns and the benefits of functionality such as the overlay of 

gene groupings and the ability to store patterns.  

Conclusions  

We have developed a new exploratory analysis tool, MaTSE, that allows users to find 

unexpected patterns of temporal activity in gene expression time-series data. Overall, the 

study acted well to demonstrate the benefits of an iterative software development life cycle 

and allowed us to investigate some visualization problems that are likely to be common in 

the field of bioinformatics. The subjects involved in the final evaluation were positive about 

the potential of MaTSE to help them find unexpected patterns in their data and 

characterized MaTSE as an exploratory tool valuable for hypothesis generation and the 

creation of new biological knowledge.  
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Background 

Recent years have seen an explosion in the rate at which biological data is generated and 

utilized. High-throughput technologies such as microarrays and RNA sequencing, that 

allow biologists to conduct experiments that measure the expression of tens of thousands of 

genes simultaneously, are becoming increasingly accessible and online data repositories 

continue to expand to give biologists unprecedented access to data recorded under an 

increasingly diverse set of experimental conditions [1]. It is widely recognized that these 

new sources of data have great potential to improve the diagnosis, treatment, and 

prevention of diseases [2,3]. However, the very scale and complexity of the data that gives 

it such potential can also make effective analysis problematic. If we consider a typical 

microarray data-set, we know that it can report gene expression for up to around 40,000 

genes over 4 conditions and 20 time points [4,5]. So, in a single experiment we can have 

over three million data values. Simply storing or transforming these quantities of data can 

be problematic before we even begin to consider a way to present the data so that an analyst 

can extract valuable information.  

A general methodology employed for the analysis of large scale gene expression data has 

been to use filtering and clustering to disregard less interesting parts of the data and 

generate a more 'manageable' data abstraction [6]. This allows the data to be visualized and 

an analyst to detect the general trends determined by the particular clustering algorithm 

employed. A disadvantage of this course of action is that it can lead to the loss of certain 

characteristic patterns such as changing activity over intervals of time (for example Figure 

1 from [7]). Here, a rise then a fall in expression found over a particular interval could 

suggest that a group of genes are related to a particular biological process and that that 

process is associated with the experimental conditions. These types of pattern involve less 

of the data than the general trends found by clustering but nonetheless show great potential 

to generate biological insight [8, 9].  
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Figure 1. A significant pattern occurring exclusively over an interval. This filtered 

subset of genes share a pattern of falling activity from C9 to C10 and rising activity from 

C10 to C11. 

In order to allow biologists to discover these types of patterns we developed the Time-

series Explorer (TSE) technique [9-11]. This allowed us demonstrate the ability of an 

animated visualization technique to reveal previously unsuspected patterns of temporal 

activity in large scale microarray data. The gene expression time-series explorer (MaTSE) 

builds on this functionality to support a broader spectrum of user requirements for the 

analysis of gene expression time-series. This includes various improvements such as better 

performance, the accommodation of missing data, the facility to compare multiple 

groupings, a view of gene groupings and new functionality to support collaborative 

visualization. This paper describes the design and development of the new application.  

Related work  

Current techniques developed for the exploratory analysis of large scale gene expression 

time-series data largely rely on procedures developed for the analysis of multidimensional 

data. These process the data to form clusters (groups) of genes based on the relative 

similarity of recorded expression (characteristic examples are [5, 12, 13]). Time-series data 

can be conceptualized as a specialized subset of multidimensional data [14] with the 

distinguishing characteristic that dimensions (time-points) are ordered. Clustering 



techniques do not account for this aspect of the data and, as a consequence, are ill-suited to 

revealing certain potentially significant patterns in the data [8]. Specifically, clustering 

tends to miss out patterns that occur exclusively over smaller intervals of an experiment's 

time frame such as previously described in Figure 1. Despite the fact that genes may share a 

similar profile over an interval of the data time-frame, differences in their expression over 

the remainder of the time course prevent them from being assigned to the same cluster. The 

application of feature extraction and fuzzy clustering could resolve this problem by 

accounting for the order of values and allowing genes to belong to more than one cluster 

[15]. This would, however, greatly increase the number of results by returning a cluster for 

every temporal pattern in the data without providing the user with any obvious way to 

explore the results.  

Visual queries are an alternative method of analysis used to find genes with a specified 

pattern of activity over an interval of the data. To form a visual query the user draws a 

shape over a line-chart overview of the data to specify either: an acceptable range of values 

over an interval [16], a positive or negative change between time-points [16, 17] or a 

profile of adjacent expression values [17]. Since line-chart overviews of time-series data 

are only really effective at showing the range of values at individual time points the 

biologists needs to already know the sort of expression pattern they are looking for before 

forming their query. So, while these methods allow a biologists find out which genes have a 

particular known expression pattern, they are incapable of allowing them to reveal any new 

unsuspected patterns.  

When visual queries are combined with clustering views, the combination provides both an 

overview and a means of querying the data to look at interval patterns. Neither of these 

techniques is, however, capable of allowing a biologist to find unsuspected interval patterns 

and their combination does little to counter the limitation of either technique in this respect. 

Likewise, when different clustering views are linked they can be used to compare dominant 

trends but there is still no scope to find the patterns that each clustering view would be 



incapable of finding if applied in isolation. So, the interactive techniques that supplement 

clustering do not allow biologists to find interval patterns in their data.  

Other techniques overlay line-chart views of gene expression data onto a gene network 

graph [18-22]. These techniques allow users to find interval patterns only if the genes 

involved already happen to be clustered together in the original gene network diagram. This 

makes it difficult to find co-expressed genes that do not already have some known 

association. These techniques are also limited by the amount of data that they can display 

and are generally used to view small parts of a gene network rather than provide an 

overview of the results of a high-throughput experiment.  

The Time-series Explorer  

The Time-series Explorer technique [9-11] (see Figure 2) was developed to overcome the 

limitation of existing techniques in order to allow biologists to explore large scale gene 

expression time-series data to find unsuspected patterns of temporal activity (such as the 

pattern shown in Figure 1). The technique employs two primary coordinated views of the 

data: a line-chart and a scatter-plot. The line-chart has two jobs. Firstly, it provides an 

overview of the data-set by overlaying value versus time representations of the recorded 

activity for all genes. The line-chart also allows the user to specify an interval of time. The 

scatter-plot summarizes the data within the selected interval by representing each gene as a 

single point. Genes are positioned so that their translation along the Y-axis corresponds to 

activity over the selected interval and translation along the X-axis corresponds to change-

in-activity from the start to the end of the selected interval. As the line-chart view controls 

are adjusted and the selected interval is moved (with start and end times of the selected 

interval moved independently or in parallel), the positions of genes in the scatter-plot are 

recalculated with repeated continuous adjustments of the selected interval resulting in an 

animation. This allows users to perceive patterns of gene activity over time.  

 



 

Figure 2. The basic Time-series Explorer technique. The technique uses tightly coupled 

line-chart and scatter-plot views of the data. The line-chart shows gene expression against 

time and allows the user to select an interval. The scatter-plot summarizes the data within 

the selected interval representing each gene as a single point. The y-axis represents mean 

activity and the x-axis change in activity. Adjusting the interval forward through time 

causes genes to move smoothly and predictably in an anticlockwise direction as expression 

changes from low to rising to high falling back to low etc.  

Implementation 

MaTSE [23] (additional file 1) builds on the functionality of TSE to support a broader 

spectrum of user requirements for the analysis of gene expression time-series. In order to 

ensure that the application would address a broad range of real world user requirements we 

held a one day workshop attended by biologists from diverse sub-disciplines such as 

Vascular Biology, Immunology, Bioinformatics, Statistics, Developmental Biology, 

Agriculture, Botany and Inflammation. This, and subsequent follow-up meetings, allowed 

us document the limitations of the Time-series Explorer and identify additional 

requirements for a new application. An example of a limitation was that patterns found 

were not measurable in TSE and that the biologists wanted results to be quantifiable so they 

could be stored during an exploration and shared or referenced at a later date. Examples of 

additional functionality requested were; the ability to cross-reference results with existing 

gene groupings, the representation of missing data, support for multiple experimental 

conditions, and rescaling to support different types of data. Performance also needed to be 

improved for the software to handle larger data sets.  



This requirements analysis informed development of MaTSE. The initial stages of 

development focused on the core functionality of the data-model and animated scatter-plot. 

The objectives here were to improve performance and refine the layout to support 

measurable queries. We then worked to incorporate the display of missing values, the 

visualization of multiple conditions, the visualization of gene groupings and finally, the 

functionality required to support cooperative visualization. This plan focused on delivering 

working prototypes to involve users as early as possible in the software life-cycle. It was 

felt that the more we could engage potential users in evaluation the more effective our final 

application would be at addressing a wide variety of relevant end-user requirements.  

From previous experience evaluating bioinformatics tools [24-26] we found that biologists 

evaluating a technique working with their own data, or at least data directly related to their 

own work, tended to be more motivated and generate better results. Biologists working 

with their own data also tended to find it easier to generate scenarios for evaluation since 

these can be based on their own objectives rather than simply imagined. They are also less 

likely to misunderstand the data and falsely interpret faults with the application. In general 

the process of evaluation was more natural when the biologists could envisage more 

familiar scenarios. This was crucial for the development of a system such as MaTSE where 

the results of the analysis would depend a lot on how the user interacted with the system. A 

potential drawback of test subjects working on their own data is that users might focus on 

data-set properties that are of particular interest to themselves rather than leading 

phenomena in the data under study. This could lead to the development of a tool that was 

specialized toward a particular biologist or a smaller group of biologists. While the tool we 

planned to develop was specialized to a degree in that it would focus on exploratory 

analysis of temporal patterns, we also wanted the tool to be useful across different sub-

disciplines. Therefore, to mitigate the bias of any one particular biologist or group of 

biologists, efforts were made to validate evaluation findings with the larger group of 

biologists involved in our initial user requirements meeting. This was done before results 

were used to generate new user requirements. While this was costly due to time it took for 



new requirements to be vetted, we considered that the overall benefits of users working on 

their own data far outweighed the disadvantages.  

Data import  

MaTSE supports two separate repository file formats (GDS soft [27], MAGE-TAB [28]) 

and an additional native CSV based file format for users who wish to import their data from 

a Microsoft excel or equivalent spreadsheet. Data import handles multi-condition data, 

replicates, ratios, and missing values. To ensure the data is properly interpreted a data 

import wizard helps users correctly identify data columns, compare conditions and re-order 

time points. The wizard also allows users to scale their data in order to better view the types 

of change they are most interested in. Scaling options include per value rescaling (log2, 

log10, cube root) and rescaling to a given data point or combination of data points (error 

weighted mean or median). Initially these options were only available through the import 

wizard, but evaluation showed that users often wanted to change rescaling options during 

an analysis session depending upon which option was most useful at any given point in 

time. Hence, rescaling options were eventually incorporated as an option that could be 

adjusted during analysis by selecting options in a toolbar directly above the main 

visualization panel.  

Scatter-plot view  

The scatter-plot views of the Time-series Explorer application [11] and MaTSE [23] both 

summarize data inside a selected interval by representing each gene as a single point with 

gene's translation along the Y-axis corresponding to activity over the selected interval and 

translation along the X-axis corresponding to change-in-activity from the start to the end of 

the interval. The definitions of activity and change in activity, however, differ substantially 

(see Table 1 and Figure 3). For MaTSE, activity is calculated as the mean value over the 

interval and change in activity is measured as the difference or fold change between values. 

This allows MaTSE to overcome a significant limitation of TSE and operate with negative 

values and normalized data. MaTSE also avoids a limitation of TSE and allows the user to 

select a time interval with a duration of zero. Here, the × axis change-in-value is 



interpolated using the values for the nearest proper intervals directly before and after the 

selected interval. This interpolation is also used for animation between time-points. To 

avoid the interpolated values being used to form queries (which would lead to results being 

based on artifacts of the display rather than the data), the start and end of the interval 

selection automatically click to the nearest time-points for which expression is recorded at 

any time the user is not adjusting the interval selection.  

Technique Pre-processing x-Axis y-Axis Limited to 

represents p>0 p=0 represents p>0 p=0  

Time-series 

Explorer 

None Ratio 

0v

vn
 

n/a n/a 

p

a
 

n/a Positive 

real 

numbers 

MaTSE None, log-

rescaling and/or 

normalization 

Difference 

or fold-

change 

0vvn 
 

Interpolate

d value 

Mean value 
nv 0

 

v  Real 

numbers 

Table 1. Comparison of the scatter-plot layouts in the Time-series Explorer and MaTSE.  

 

Figure 3. Attribute definitions for Time-series Explorer and MaTSE scatter-plot 

layouts. See table 1 for a comparison of the scatter-plot layouts in the Time-series Explorer 

and MaTSE.  

 

 



Visualizing missing values  

Gene expression data frequently suffers from missing values. This can be either due to 

experimental reasons or post-processing where the variability of recorded values makes it 

inappropriate to include any value in the resulting data-set. For the development of our 

gene expression time-series explorer application we decided against omitting the 

representation of missing values altogether since this might give the false impression that 

the genes for which data was not shown were not included in the experiment. Instead we 

decided to interpolate missing values where possible and change the manner in which they 

were represented in order to avoid them being attributed undue significance.  

 

Figure 4. Encoding for missing values in the scatter-plot. a) Icon used when 

displacement along both axes is based on interpolated values. b) Icon used when only Y-

axis displacement is based on interpolated values. 

Visualizing multiple conditions  

High throughput gene-expression experiments are often repeated with a single variable 

changed and biologists need to compare data generated under different conditions. Here the 

independent variable might be an environmental factor such as temperature, an exposure to 

a different treatment, or some form of genetic modification. The effect of these additional 

conditions on the data is to add another dimension and multiply the size accordingly. To 

support multiple conditions in MaTSE we provide the user with an overview line-chart for 

each condition and a linked scatter-plot and line-chart for a single in-focus condition (see 

Figure 5). This design allows users to compare patterns across conditions using line-chart 

views and explore to find patterns, or investigate patterns in more detail, as they would for 

a single-condition data-set using the linked line-chart and scatter-plot.  

http://www.biomedcentral.com/qc/1471-2105/14/S19/S1/figure/F5


 

Figure 5. Display of multiple conditions. This uses line-chart overviews and a single 

linked scatter-plot and line-chart view for the current selected condition. 

Visualizing gene groupings  

In bioinformatics, genes groupings can indicate things such as functional similarity, the 

encoding of a common protein or co-expression under particular conditions. These 

groupings can be extremely useful for biologists when it comes to assessing to significance 

of any patterns found during the analysis of a data-set. In MaTSE, gene groupings can be 

imported from external sources, created from gene selections in the interface, visualized, 

and exported to files. The alternative methods for visualizing gene groupings are: colour 

coding, outline colour, symbols, areas with texture and colour, and smoothed outline shapes 

with transparent shading (see Figure 6). These employ the qualitative colour-coding 

schemes proposed by Brewer [30].  

 

Figure 6. Displaying gene groupings in the scatter-plot. Smoothed outline shapes with 

transparent shading allow the effective visualization of up to four groups simultaneously.  



When we evaluated these different methods it was found that users considered outlined 

transparent shading to be the most effective and aesthetically pleasing option. While this 

method had a potential false-positive effect of circling genes that do not belong to the 

encoded group, users did not consider this to be a serious disadvantage. This was how they 

expected the highlighting to work and if they specifically wanted to see the individual 

genes of a grouping highlighted in the scatter-plot they could select those genes by clicking 

on the group name in the gene-grouping panel. In order to interpret the display the 

biologists were able to use the metaphor of a line drawn around a group of points on a 

projection of a scatter-plot over a whiteboard. This technique worked well with up to four 

individual gene-groups being viewed at the same time. The biologists involved in 

evaluation considered that this would be sufficient for the majority of their requirements.  

Cooperative visualization  

An advantage of having scatter-plot coordinates based on measurable parameters in MaTSE 

is that it allowed us to adapt the interface to support a process of collaborative visualization 

where biologists are able to work together toward an understanding of the data and 

biological phenomena under investigation [31, 32]. This process is based on entities called 

'patterns' which are defined as findings or insights that can be summarized using a selection 

or group of selections together with their result. In MaTSE genes are selected by first 

selecting an interval then clicking and dragging to draw a box around groups of genes in the 

scatter-plot. Selections can be combined using Boolean logic AND, OR and NOT rules and 

the stored specification of a pattern includes the parameters used to form queries, the logic 

used to combine the queries and contextual data such as the data-set identifier and details of 

any transforms applied to the data during pre-processing. Patterns are automatically stored 

and listed in a 'patterns' panel [31]. This panel can also be used to annotate, restore, 

combine, refine or export patterns for them to be passed to other users. In order that 

patterns are understandable when they are recalled or shared, query parameters are 

restricted to rounded values (see Figure7a) and superfluous parameters are removed as 

queries are formed (see Figures 7b and7c).  



 

Figure 7. Cooperative visualization in MaTSE. a) Bold font labels on the axes describe 

the rounded-value cross-hair positions to inform the user before and during query 

specification. b) The user clicks on point I and drags to point II to form the box-query 

illustrated with dotted lines. c) The dotted line indicates the single threshold the user 

actually wants to set and the threshold sent to the MaTSE pattern browser as the recorded 

query.  

Results and discussion 

The final MaTSE prototype (see Figure 8) allows users to perform exploratory analysis of 

gene expression data by controlling linked line-chart and animated scatter-plot views to 

view patterns of gene activity over time and find unexpected patterns of changing activity. 

This can be achieved for with at least 50,000 genes with activity recorded over 12 time-

points on a low spec desktop computer designed for personal use with 4GB RAM and a 

2GHz CPU. MaTSE also allows the user to view missing data, visualize multiple 

conditions and overlay gene groupings. The user can also store the selections used to select 

genes. These selections are grouped together as 'patterns' which can be stored, restored, 

adjusted, exported and shared with other biologists (either by passing a file or uploading a 

pattern to the MaTSE web repository).  

 



 

Figure 8. A screenshot of the MaTSE interface. Labelled components are I) the pattern-

browser, II) scatter-plot and III) line-chart. 

MaTSE provides a unique view of gene expression data that allows users to explore and 

find patterns of changing activity over intervals of time that have the potential to lead to 

biological insights [8, 9] (for an example, see Figure 1). These patterns cannot be found 

using either clustering techniques or established techniques that allow the user to compose 

visual queries. Clustering tends to lose these patterns due to more dominant patterns over a 

larger time frame while visual queries rely on a pattern being suspected before the user 

composes a query.  

MaTSE is also unique in that it allows queries to be adjusted in a predictable manner. 

While a number of tools allow users to share findings by saving and restoring application 

states (for example Spotfire DecisionSite [4] and Agilent Genespring), analysis steps 

cannot be adjusted in a predictable way or with adequate feedback of results. The majority 

of software applications used for the analysis of microarray data rely on clustering 

algorithms which prescribe a fixed set of gene clusters based on gene-gene activity 

similarity scores. A finding from this type of interface tends to be an individual cluster 

exhibiting a pattern of gene activity with a gene population that is correlated with a 



predefined gene grouping or biological pathway sourced from the literature. For a user to 

alter a query on which a clustering finding is based they would need to select an alternative 

grouping, specify alternative clustering parameters (such as the distance metric) or use an 

alternative clustering algorithm. In the former case the results would be unrelated to the 

original result and in the latter two cases the outcome is highly unpredictable as an entirely 

new set of gene clusters will be generated with little relation to the original set [33, 34]. 

Visual query techniques also fail to provide adequate feedback of results when queries are 

adjusted since the overview provided is unable to reveal anything other than the range of 

values at individual time points [11]. Changes in activity are represented by angled lines 

between time-points in a line-chart and the majority of lines are occluded. Conversely, 

since MaTSE provides an overview of meaningful attributes for genes over the selected 

interval for every query that is formed (see Table 1), any specification or adjustment of 

query parameters has a predictable result with immediate feedback of results.  

Evaluation  

Usability is a critical factor for the effective development of information visualization 

applications [35]. It was therefore important for the MaTSE project to employ a user-

centred development methodology. To make use of user feedback throughout the software 

life-cycle we employed an iterative development strategy where a succession of prototypes 

would gradually introduce new functionality to be evaluated and refined before the 

production of a final prototype with full functionality. To ensure we considered the actual 

needs of a wide range of potential users, evaluation was conducted with real life 

representatives from all of our target user groups. These included academics, industrial 

users, bioinformaticians, experimental biologists, and users with a general knowledge of 

multiple areas.  

During evaluation we used a mixture of techniques designed to elicit qualitative feedback 

from smaller groups of expert users [36]. These included interviews, demonstration and 

hands-on observation of real world exploration using the speak-aloud protocol and heuristic 

evaluations. Our final evaluation involved interviews and further real world testing in the 



form of case studies. To remove bias, these employed users not involved in evaluation 

sessions during the earlier stages of development cycle.  

Case studies  

This section describes excerpts from two case studies used to demonstrate the functionality 

of MaTSE. The first of these studies was to compare results obtained with MaTSE with 

those obtained with other approaches. This involved repeating the process of finding a 

known pattern that was previously unexpected and found using TSE (originally 

documented in [28]) followed by analysis of the same data with alternative analysis 

techniques. The second case study involved biologists analyzing a data-set to test 

functionality such as the creation and visualization of gene groupings.  

The first case study involved a data-set (contained in additional file 2) recording the 

expression of around 8,500 genes over 17 time points belonging to four successive stages 

of development in mouse breast tissue: virgin (days 10 and 12), pregnancy (days 1, 2, 3, 

8.5, 12.5, 14.5 and 17.5), lactation (days 1, 3 and 7) and involution (days 1, 2, 3, 4 and 20). 

A more complete description of the data is made by Stein et al and full annotated data is 

available online [37]. This data-set was analyzed first using MaTSE then with software that 

allowed users to combine clustering and visual querying.  

Analysis with MaTSE began with the data being rescaled in the data import wizard so that 

values are expressed as the fold change from the first time point for each gene. This 

involved selecting a 'per-value rescaling' method of 'log2' and a 'data category to scale to' of 

'V10'. The next stage of analysis involved finding a known pattern of activity to confirm 

that there were no problems with the data or experiment and that MaTSE displayed the data 

in the way the biologist expected it to. Here the biologist moved the line-chart view sliders 

to focus on the time period at the start of lactation (P17.5 to Lac1) and moved the mouse 

cursor over the scatter plot to look at genes with rising activity (see Figure 9). A number of 

the genes labeled were found to be familiar. This reassured the biologist that their 



understanding of the MaTSE scatter-plot layout was correct and that patterns found in the 

data could be trusted.  

 

Figure 9. Selecting genes known to have rising activity at the start of lactation. The 

controls on the line-chart are adjusted to select the time interval from P17.5 to Lac 1 and 

genes with rising activity are highlighted in the scatter-plot using the excentric labeling 

tool.  

Next the biologist shifted their attention to finding more unsuspected patterns of activity. 

This involved selecting an interval fixed at one time-point and exploring the data by 

pressing 'rewind' then 'play' (from the View menu) to animate through the data-set and 

sporadically pausing to adjust the selected time interval manually. The resulting animation 

allowed them to find a number of general trends in the data such as a general flattening of 

the scatter-plot along the horizontal axes at the start of lactation. This indicated that there 

were a large number of genes with significant changes in their expression around this time 

and was a pattern that could be seen again when the data was clustered. The animation also 

allowed the biologist to find a previously unsuspected pattern of activity with potential 

biological significance. This was evident when the scatter-plot was animated from interval 

P1 to P2 through to interval P2 to P3 (see Figure 10 top). Here a small group of outlying 

genes were seen to swing first out to the right of the scatter-plot, then out to the left. This 

indicated that the genes shared an outlying pattern of rising then falling activity over the 

time-frame of the animation. The animation was stopped and the pattern was highlighted in 



the line-chart view by selecting the genes in the scatter-plot using an excentric labeling tool 

(Figure 10 bottom). The pattern was then stored by dragging a box around the genes in the 

scatter-plot (using the box tool from the Select menu) and shifting to another interval to 

refine the selection (Figure 11).  

 

 

Figure 10. Animating the MaTSE scatter-plot from interval P1 to P2 through to 

interval P2 to P3 reveals a group of outlying genes with rising then falling activity 

over a small interval of the time-course. A small group of outlying genes were seen to 

swing first out to the right of the scatter-plot, then out to the left (top). This indicates that 

the genes share an outlying pattern of rising then falling activity over the time-frame of the 

animation. The effect in the actual animated scatter-plot is a lot stronger due to the Gestalt 

law of common fate which groups together objects with a common trend of motion. The 

pattern can be highlighted in the line-chart view when the genes are selected in the scatter-

plot using the excentric labeling tool (bottom). 



 

Figure 11. Storing a pattern of temporal activity. The pattern is stored by dragging a box 

around the genes in the scatter-plot (using the box tool from the Select menu) and shifting 

to another interval to refine the selection (top). The stored pattern can be seen as a selection 

in the line-chart view (bottom).  

To evaluate the added value of MaTSE and see which patterns could be found using other 

techniques the analysis was repeated using applications combining various cluster and 

visual-query views of the data. Figure 12 shows an example of this with the data being 

analyzed in the Hierarchical Clustering Explorer application [38] with Average Link 

hierarchical clustering using Pearson's Correlation Coefficient as a distance measure. Here, 

and with various other clustering methods, the data tended to cluster into two principle 

groups with activity either rising or falling after lactation. Within these groups it was 

possible to identify a number of smaller subgroups that often indicated an earlier or later 



rise or fall in activity. These patterns were not unexpected but definitely held biological 

significance and could undoubtedly be described as some of the most significant patterns in 

the data. However, the interval pattern found during the analysis with MaTSE was also 

considered to have potential biological significance but it was not possible to detect this 

pattern with any of the clustering methods used. Despite the fact that the genes shared a 

similar profile over an interval of the data time-frame, it was always the case that more 

dominant patterns of expression over the remainder of the time course would cause the 

genes to be assigned to different clusters. This phenomenon can be observed by selecting 

the known pattern from Figure 11 in a visual query view and highlighting the results in a 

cluster view of the same data (see Figure 13). Here the relative displacement of genes 

demonstrates how differently they tend to be clustered. This result is unsurprising since the 

objective of clustering is to find the most dominant patterns in the data and genes are 

assigned to clusters accordingly. Even if genes could be assigned to more than one cluster 

and a cluster was produced for every temporal pattern, the number of potentially significant 

temporal patterns is likely to be massive and there would be no obvious way to explore the 

results to find patterns.  

 

Figure 12. Overview of the data in an application that supports both clustering and 

visual queries. The heat-map dendrogram clustering view (top) shows the genes clustered 

using Average Link hierarchical clustering with Pearson's Correlation Coefficient as a 



distance measure. The visual query overview (bottom) uses a silhouette to illustrate the 

extreme values of gene activity over time. This type of application cannot be used to find 

interval patterns such as those shown in Figures 1 and 12.  

 

 

Figure 13. A pattern of temporal activity selected in an application that supports both 

clustering and visual queries. A known pattern of temporal activity has been selected in 

the visual query view (bottom) and with their positions highlighted using arrows in the 

cluster view (top). Despite the fact that the genes share a similar profile over an interval of 

the data time-frame, more dominant patterns of expression over the remainder of the time 

course cause the genes to be assigned to different clusters (this is not, however, the case for 

all genes since some genes are close enough to each other in the cluster view that the 

arrows showing their position overlap). 

The interval pattern found using MaTSE was also impossible to find using a visual query 

approach. Here, the line-chart overview was found to be unable to reveal anything other 

than the range of values at individual time points and if a biologist has no knowledge of the 

timing or the genes that form a pattern they would need to execute an impractical number 

of speculative queries before the pattern could be revealed. This lead our test subject to 

conclude that the use of an interactive visualization technique such as MaTSE, that allows 

the user to explore the data by filtering and navigating the data in a predictable manner, 

would be necessary to find this type of pattern.  



Our second case study involved time course data (contained in additional file 2) examining 

osteoblast differentiation by comparing cells exposed to growth factors with control cells 

(series GSE3792 at NCBI GEO). This data records the activity of around 20,000 genes over 

7 time points (day 4, 5, 6, 8, 16, 25 and 30). As with the previous data-set the data is 

rescaled so that values are expressed as the fold change from the first time point for each 

gene. During the analysis of this data-set, the user created 3 individual groups by selecting 

genes in the scatter-plot. These included an 'early rising' group of highly expressed genes at 

day 6-8, a 'downward' group of those genes with very low expression at Day 25-30; and an 

'upward' group of those genes with highest expression at day 25-30). After selecting genes 

to create each group, the user scanned the names of the genes to check for known stem cell 

marker genes. This helped the user confirm that the groups were populated according to 

their expectations. After this the user selected a colour for each group (using the dropdown 

box next to the name of each grouping) and animated the scatter-plot across time (see 

Figure 14). This helped give the biologist a better impression of how the activity of the 

groups related to each other and allowed them to notice an overlap between the 'upward 

group' and the 'early risers' group from day 25 to 30. This was considered to be of potential 

biological significance and the name of the overlapping gene was noted for further 

investigation.  

 

Figure 14. Animating the scatter-plot to view patterns of activity among gene 

groupings. Grouping outlines move as the scatter-plot is animated to reveal patterns of 

activity among the gene groupings.  

 

http://www.biomedcentral.com/qc/1471-2105/14/S19/S1/suppl/S2


Discussion  

During the evaluation of MaTSE users generally expressed satisfaction and were positive 

about the potential of MaTSE to help find valuable patterns in their data. In general they 

believed that MaTSE would be of best use for exploratory analysis and hypothesis 

generation rather than for investigating known phenomena. It was suggested that a typical 

analysis workflow involving MaTSE would start with a more prescriptive method such as 

clustering to find the most significant patterns in the data. MaTSE could then be used to 

explore the data and find unsuspected patterns of temporal activity. This would be followed 

by statistical analysis of the results using a package such as R. It was also suggested that 

future work would benefit from fully harnessing the growing and highly valuable 

knowledge bases and annotation services such as the Gene Ontology [39], as well as 

supporting the use of the large sets of gene group lists built up by experienced biologists, 

which would make analysis more convenient for users.  

Another suggestion from our test-users was that MaTSE could also be useful for the 

analysis of large scale time-series data other than that produced by microarray experiments. 

This might include the analysis of similar data obtained at the mRNA level, such as 

sequencing-based expression data [40], or time series proteome profiling data obtained at 

the protein level [41]. The analysis of these types of data is often similar to that of 

microarray data with biologists having the same general objective of finding groups of 

genes or proteins with certain common patterns of activity. MaTSE could also be used for 

non expression time-series data such as metabolite measurements [42] or multivariate 

environmental data. In general, the added value of MaTSE should be more pronounced for 

series with larger numbers of data elements and more time-points. Both these factors affect 

the number of temporal patterns in the data that would be lost if the data were only 

analyzed using clustering methods.  

 

 



Conclusions 

In this paper we describe MaTSE, a new information visualization application for the 

analysis of gene-expression time-series data. MaTSE allows users reveal previously 

unsuspected patterns of gene activity over smaller intervals of an experiments time frame 

by allowing them to control an animated interval scatter-plot view of their data. MaTSE 

also supports multiple condition experiments, data with missing values and allows the 

display of up to four different gene groupings using a novel method using smoothed outline 

shapes with transparent shading. Users can also compose queries to define patterns that can 

be stored to be combined, refined, restored, annotated or exported for collaborative work. 

The utility of MaTSE is demonstrated in case studies showing how the final prototype can 

be used to find patterns, store patterns and explore gene-groupings.  

The development of MaTSE demonstrates the benefits of an iterative software life cycle 

where developers work closely with potential users. It also allowed us to investigate some 

visualization problems that are likely to be common in the field of bioinformatics where 

large scale complex data is ubiquitous. Examples of these are how to highlight multiple 

groups in a densely populated scatter-plot and how to deal with superfluous parameters 

when recording a selection. In the final evaluation, our testers were positive about the 

potential of MaTSE to help them to find significant patterns in their data. Here MaTSE was 

characterized as an exploratory tool with potential for hypothesis generation and the 

creation of new biological knowledge. The biologists envisioned themselves using MaTSE 

as part of an iterative cycle of investigation together with a gene expression data repository 

and/or a database of gene groupings.  

Competing interests 

The authors declare that they have no competing interests.  

Authors' contributions 



Jessie Kennedy acted as principle investigator and project manager on the Scottish 

Enterprise proof of concept project from which most of this work is sourced. Paul Craig 

acted as chief developer on the project and developed the original Time-series Explorer 

application as part of his PhD supervised by Prof. Kennedy. Alan Cannon was responsible 

for evaluation and case studies while Robert Kukla developed the data model and web 

repository at http://www.matse.org.uk. All of the authors contributed to team meetings and 

discussions related to the design decisions described in the paper.  

Acknowledgements 

The authors would like to thank Dr Torsten Stein and his colleagues at the Institute of 

Cancer Sciences at the University of Glasgow; Simon Tomlinson and his colleagues at the 

Institute for Stem Cell Research, Edinburgh; the Scottish Crop Research Institute; CXR 

Biosciences; and Queen's Medical Research Institute, Edinburgh for participating in the 

requirements analysis and evaluation of MaTSE. This project was funded by the Scottish 

government funding body Scottish Enterprise. The data used in this paper can be found in 

their original format at; http://breast-cancer-research.com/content/6/2/R75 (case study 1), 

and http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3792 (case study 2).  

Declarations 

Publication of this article was supported by the 2nd IEEE Symposium on Biological Data 

Visualization (Bio-Vis 2012), the Scottish Enterprise 'Microarray Time-series Explorer' 

(MaTSE) project (ref L/JR/POC/8-OET003) and the Mexican government Programa para el 

Mejormiento del Profesorado 'Visualisación de la Información de las Estructuras de 

Conjuntos de Documentos para la Recuperación de la Información' project (ref 

PROMEP/103.5/11/4427).  

This article has been published as part of BMC Bioinformatics Volume 14 Supplement 19, 

2013: Highlights from the 2nd IEEE Symposium on Biological Data Visualization. The full 

contents of the supplement are available online at 

http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S19.  

http://www.matse.org.uk/
http://breast-cancer-research.com/content/6/2/R75
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3792
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S19


The publication of this supplement has been sponsored by the IEEE. The articles in this 

supplement have undergone the journal's standard peer review process for supplements. 

The Supplement Editors declare that they have no competing interests.  

References 

1. Barrett Tanya, Troup BD, Wilhite ES, Ledoux Pierre, Evangelista Carlos, Kim FI, 

Tomashevsky Maxim, Marshall AK, Phillippy HK, Sherman MP, Muertter NR, 

Holko Michelle, Ayanbule Oluwabukunmi, Yefanov Andrey, Soboleva Alexandra: 

NCBI GEO: archive for functional genomics data sets-10 years on. Oxford, 

ETATS-UNIS: Oxford University Press; 2011.  

2. Brown PO, Botstein D: Exploring the new world of the genome with DNA 

Microarrays. Nature Genetics 1999, 21(1 Suppl):33-37.  

3. Quackenbush J: Computational Analysis of Microarray Data. Nature Reviews 

Genetics 2001, 2(6):418-427.  

4. Ahlberg C: Spotfire: an information exploration environment. SIGMOD Rec 

1996, 25(4):25-29.  

5. Eisen MB, Spellman PT, Brown PO, Bostein D: Cluster analysis and display of 

genome-wide expression patterns. Proc Natl Acad Sci USA 1998, 95(25):14863-

14868.  

6. Tukey J: Exploratory Data Analysis. Addison-Wesley Publishing Company; 1977.  

7. Wen X, Fuhrman S, Michaels GS, Carr DB, Smith S, Barker JL, Somogyi R: 

Large-Scale Temporal Gene Expression Mapping of CNS Development. Proc 

Natl Acad Sci USA 1998, 95:334-339.  

8. Segal E, Taskar B, Gasch A, Friedman N, Koller D: Rich probabilistic models for 

gene expression. Bioinformatics 2001, 17(Suppl 1):243-52.  

9. Craig P, Kennedy JB, Cumming A: Towards Visualising Temporal Features in 

Large Scale Microarray Time-series Data. In 6th International Conference on 

Information Visualisation - IV2002. IEEE Press;  

10. Craig P, Kennedy J: Coordinated Graph and Scatter-Plot Views for the Visual 

Exploration of Microarray Time-Series Data. In IEEE InfoVis. IEEE Computer 

Society Press; :173-180.  

11. Craig P, Kennedy J, Cumming A: Animated Interval Scatter-plot Views for the 

Exploratory Analysis of Large Scale Microarray Time-course Data. 

Information Visualization 2005, 4(3):149-163.  

12. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander E, 

Golub T: Interpreting patterns of gene expression with self-organizing maps. 

Proceedings of the National Academy of Sciences of the United States of America 

1999, 96(6):2907-2912.  

13. Raychaudhuri S, Stuart J, Altman R: Principal Components Analysis to 

Summarize Microarray Experiments: Application to Sporulation Time Series. 

In Pacific Symposium on Biocomputing, Volume 5. Clustering; :452-463.  

14. Shneiderman B: The Eyes Have It: A Task by Data Type Taxonomy for 

Information Visualizations. In IEEE Visual Languages '96. IEEE Computer 

Society Press; :336-343.  

http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B1
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B2
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B6
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B9
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B10
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B11
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B13


15. Warren Liao T: Clustering of time series data--a survey. Pattern Recognition 

2005, 38(11):1857-1874.  

16. Hochheiser H, Shneiderman B: Dynamic query tools for time series data sets: 

Timebox widgets for interactive exploration. Information Visualisation 2004, 

3:1-18.  

17. Shneiderman B, Seo J: Interactively Exploring Hierarchical Clustering Results. 

IEEE Computer 35 2002, 7:80-86.  

18. Westenberg MA, Hijum SAv, Lulko AT, Kuipers OP, Roerdink JB: Interactive 

Visualization of Gene Regulatory Networks with Associated Gene Expression Time 

Series Data. Berlin, Germany: Springer Verlag; 2007::293-312.  

19. Jeong DH, Darvish A, Najarian K, Yang J, Ribarsky W: Interactive visual analysis 

of time-series microarray data. Vis Comput 2008, 24(12):1053-1066.  

20. Westenberg M, van Hijum S, Kuipers O, Roerdink J: Visualizing Genome 

Expression and Regulatory Network Dynamics in Genomic and Metabolic 

Context. Computer Graphics Forum 2008, 27(3):887-894.  

21. Bourqui R, Westenberg MA: Visualizing Temporal Dynamics at the Genomic 

and Metabolic Level. Information Visualisation, 2009 13th International 

Conference:317-322.  

22. Kim B, Lee B, Knoblach S, Hoffman E, Seo J: GeneShelf: A Web-based Visual 

Interface for Large Gene Expression Time-Series Data Repositories. IEEE 

Transactions on Visualization and Computer Graphics 2009, 15(6):905-912.  

23. Craig P, Cannon A, Kukla R, Kennedy J: MaTSE: The microarray time-series 

explorer. IEEE Symposium on Biological Data Visualization (BioVis) 2012, :41-48.  

24. Raguenaud C, Graham M, Kennedy J: Two approaches to representing multiple 

overlapping classifications: a comparison. In SSDBM 2001. Edited by Kerschberg 

L, Kafatos M. IEEE Computer Society Press; :239-244.  

25. Craig P, Kennedy J: Concept Relationship Editor: A visual interface to support 

the assertion of synonymy relationships between taxonomic classifications. In 

Visualization and Data Analysis 2008. Edited by Börner K, Gröhn M, Park J, 

Roberts J. Society of Photo-Optical Instrumentation Engineers, Bellingham, WA; 

:680906-680912.  

26. Paterson T, Graham M, Kennedy J, Law A: VIPER: a visualisation tool for 

exploring inheritance inconsistencies in genotyped pedigrees. BMC 

Bioinformatics 2012, 13(Suppl 8):S5.  

27. Edgar R, Domrachev M, Lash A: Gene Expression Omnibus: NCBI gene 

expression and hybridization array data repository. Nucleic acids research 

2002, 30:207-210.  

28. Rayner T, Rocca-Serra P, Spellman P, Causton H, Farne A, Holloway E, Irizarry R, 

Liu J, Maier D, Miller M: A simple spreadsheet-based, MIAME-supportive 

format for microarray data: MAGE-TAB. BMC Bioinformatics 2006, 7:489.  

29. Eaton C, Plaisant C, Drizd T: Visualizing Missing Data: Classification and 

Empirical Study. In INTERACT, Volume 3585 of Lecture Notes in Computer 

Science. Edited by Costabile MF, Paternò F. Springer (Berlin); :861-872.  

30. Brewer C: Guidelines for use of the perceptual dimensions of colour for 

mapping and visualization. In Colour hard copy and graphic arts III, Proceedings 

of the international society for optical engineering (SPIE), San Jose, February 

2004., Volume 2171 Edited by Bares J. :54-63.  

http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B17
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B18
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B21
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B22
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B24
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B25
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B29
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B30


31. Craig P, Cannon A, Kennedy J, Kukla R: Pattern browsing and query 

adjustment for the exploratory analysis and cooperative visualisation of 

microarray time-course data. In Proceedings of the 7th international conference 

on Cooperative design, visualization, and engineering. Volume 1887348. Springer-

Verlag; :199-206.  

32. Isenberg P, Elmqvist N, Scholtz J, Cernea D, Ma KL, Hagen H: Collaborative 

visualization: definition, challenges, and research agenda. Information 

Visualization 2011, 10(4):310-326.  

33. Thalamuthu A, Mukhopadhyay I, Zheng X, Tseng GC: Evaluation and 

comparison of gene clustering methods in microarray analysis. Bioinformatics 

2006, 22(19):2405-2412.  

34. Kerr G, Ruskin H, Crane M, Doolan P: Techniques for clustering gene expression 

data. Computers in Biology and Medicine 2008, 38(3):283-293.  

35. Graham M, Kennedy JB, Benyon D: Towards a methodology for developing 

visualisations. International Journal of Human-Computer Studies 2000, 53(5):789-

807.  

36. Nielsen J: Usability Engineering. Boston: Academic Press Professional; 1993.  

37. Stein T, Morris J, Davies C, Weber-Hall S, Duffy MA, Heath V, Bell A, Ferrier R, 

Sandilands G, Gusterson B: Involution of the mouse mammary gland is 

associated with an immune cascade and an acute-phase response, involving 

LBP, CD14 and STAT3. Breast Cancer Research 2004, 6(2):R75-R91.  

38. Seo J, Shneiderman B: A rank-by-feature framework for interactive exploration 

of multidimensional data. Information Visualization 2005, 4(2):96-113.  

39. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, 

Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, 

Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene 

Ontology: tool for the unification of biology. Nat Genet 2000, 25:25-29.  

40. Torres TT, Metta M, Ottenwälder B, Schlötterer C: Gene expression profiling by 

massively parallel sequencing. Genome Research 2008, 18:172-177.  

41. Mintz M, Vanderver A, Brown KJ, Lin J, Wang Z, Kaneski C, Schiffmann R, 

Nagaraju K, Hoffman EP, Hathout Y: Time series proteome profiling to study 

endoplasmic reticulum stress response. 2008., 7  

42. Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A: Time-course metabolic 

profiling in Arabidopsis thaliana cell cultures after salt stress treatment. 

Journal of Experimental Botany 2007, 58(3):415-424.  

 

 

http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B31
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B32
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B35
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B36
http://www.biomedcentral.com/sfx_links?ui=1471-2105-14-S19-S1&bibl=B41

