
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2013

1 | P a g e

www.ijacsa.thesai.org

Jabber-based Cross-Domain Efficient and Privacy-

Ensuring Context Management Framework

Zakwan Jaroucheh, Xiaodong Liu, Sally Smith

School of Computing

Edinburgh Napier University

10 Colinton Road, EH10 5DT, Edinburgh, UK

{z.jaroucheh, x.liu, s.smith}@napier.ac.uk

Abstract—In pervasive environments, context-aware applications

require a global knowledge of the context information distributed

in different spatial domains in order to establish context-based

interactions. Therefore, the design of distributed storage,

retrieval, and dissemination mechanisms of context information

across domains becomes vital. In such environments, we envision

the necessity of collaboration between different context servers

distributed in different domains; thus, the need for generic APIs

and protocol allowing context information exchange between

different entities: context servers, context providers, and context

consumers. As a solution this paper proposes ubique, a

distributed middleware for context-aware computing that allows

applications to maintain domain-based context interests to access

context information about users, places, events, and things - all

made available by or brokered through the home domain server.

This paper proposes also a new cross-domain protocol for

context management which ensures the privacy and the efficiency

of context information dissemination. It has been robustly built

upon the Jabber protocol which is a widely adopted open

protocol for instant messaging and is designed for near real-

time communication. Simulation and experimentation results

show that ubique framework well supports robust cross-domain

context management and collaboration.

Keywords—pervasive computing, cross-domain context

management, context modelling, Jabber protocol, privacy.

I. INTRODUCTION

In the emerging and challenging pervasive environments,
users will wear smart clothes that will monitor their bio
signals; they will carry smart cards that will handle
automatically their transactions; invisible chips will be
embedded everywhere in the smart homes and offices to assist
them in their daily life tasks; more sophisticated control
navigation and control will be embedded into their vehicles.
All these devices will cooperate together to create a context-
aware pervasive environment that supports humans in everyday
activities, e.g., business, health care, or education. In this
respect, the user will enjoy a new experience in a non-obtrusive
way as the existing infrastructures will be more proactive and
dynamically adaptable to current situations; user preferences;
and environmental context in a less intrusive way [1]. Context-
awareness is the cornerstone to achieve the vision of such a
pervasive environment. It helps to support non-intrusive
adaptability of applications to new situations and to turn a

static computing environment into a dynamic ecology of smart
and proactive applications [2].

In this paper, we base our context management framework
on the notion of context domain explained in [3] which
organizes the pervasive environment hierarchically and
establishes a context management scope. A context domain is
defined as an abstraction of a spatial area which has a clear
boundary and it is built on top of the traditional notion of
network domain. Essentially, context domain establishes (i) the
place and responsibility of context instances storage; (ii) the
responsibility for managing context providers and consumers
inside the domain; and (iii) a set of sub-domains.

Although users are more interested in context information
related to their location, other context information from other
domains may also be relevant to the current task at hand. For
instance, a dynamic recalculation of the quickest routes for a
trip involves acquiring the latest contextual information such as
traffic congestion from remote sources. In this respect, we can
imagine a domain-based context management system where
the context information available in each domain is managed
by a separate context server. While moving, the user roams
across domains. In addition, each domain may maintain its own
sensors and mechanisms for inferring context related to this
user. Consequently, collaborative context management across
domains is needed.

In particular, an efficient cross-domain context
management middleware system for such a setting needs to
fulfil key requirements that include: (i) domains of context
perception, (ii) uniform API interface for accessing context
servers, (iii) efficient context information dissemination, (iv)
support of cross-domain reasoning, (v) dynamic matching
between context providers and consumers, and (vi) support for
privacy. In this paper, we propose ubique, a new domain-based
context management infrastructure for disseminating context
information between context providers, context consumers and
context servers, and a set of APIs for interfacing between these
entities. ubique fulfils the above mentioned key requirements
and it forms an underlying robust and generic infrastructure for
context management, which significantly simplifies the
development of context-aware pervasive applications.

This paper is structured as follows. In Section 2, we outline
the different requirements that should be fulfilled by a cross-

mailto:s.smith%7d@napier.ac.uk

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2013

2 | P a g e

www.ijacsa.thesai.org

domain context management system. Then in Section 3, we
critically review the advantages and weaknesses of existing
solutions with respect to the defined criteria. Section 4
describes the context dissemination problem. In Section 5, we
detail our new proposed approach for context management.
Finally, we evaluate the proposed approach by mean of real
experimentation and simulation and we draw conclusions.

II. REQUIREMENTS AND CHALLENGES

Hereafter, we refer to the computational entity responsible
for transparently binding the context consumers (CCs) (i.e.
applications) with corresponding context providers (CPs) a
context server (CS). The context management in each domain
is done by the context server available in that domain. The
complexity of developing context-aware applications that
require context information available in different CSs makes
the use of a cross-domain context management middleware
crucial. From our pilot experiments and literature analysis, we
identify that a middleware for such a setting must fulfil the key
requirements such as:

Domains of context perception: Since the context
information is naturally distributed, the context management
must be distributed in order to allow efficient and scalable
dissemination of context. However, the task of context-aware
developers becomes more difficult as it requires a priori
knowledge of the computational entities responsible for
providing the context information they are interested in. Their
task becomes even more complex when context providers
dynamically enter and leave the pervasive environment. Thus,
there is a need for a dynamic discovery mechanism of context
providers.

Furthermore, the middleware scalability could be increased
by restricting the access and perception of the context to some
domains [3]. Moreover, as we will see later, the notion of home
domain server reduces the number of CSs that may be involved
in the resolution of context interests. This requirement
conforms to the principle of system boundary [4] of pervasive
applications.

Uniform API interface and protocol: In order to enable
every party to become a context provider and implement its
own CS, every CS should: (i) obey a certain protocol with
which context information can be federated between different
CSs; and (ii) implement a standard API which allows context
providers to register and publish context information in it, and
context consumers to acquire context information they are
interested in. This way, for instance, an organization can
operate a CS for its members, and an individual can run a CS
as a context provider for a single user or family members.
Therefore, similar to the Next Generation Service Interfaces
(NGSI) [5], providing a standard API for accessing such
information, allows third party application developers to build
new services based on the context made available to them.

Efficient context information dissemination: With regard
to situations involving mobile users roaming across domains,
additional restrictions may arise (e.g. concerning limited
connectivity and bandwidth, unknown network conditions,
etc.), thus exchanging context information between domains
should be fast and only the required information should be

transferred when users roam across domains. This requirement
calls for a federation protocol between CSs. Furthermore, the
middleware should support the “publish on demand” mode of
operation. That is, usually context providers publish context
constantly and independently of existing consumers. In this
case if a context provider publishes at a higher rate the context
information is more accurate in terms of freshness. However,
this is a costly operation in terms of the network bandwidth
usage (i.e. increase of the number of messages sent through
network), processing power, and energy consumption (e.g.
battery usage of WiFi scanners). Thus, the middleware should
enable providers to publish when there is a corresponding
consumer.

Cross-domain reasoning: As the context information is
originated from different domains, a cross-domain context
management system should facilitate the context information
reasoning that spans multiple domains. That is, in order to
track user’s behaviour there is a need to consider the context
information available in the different domains the user visits
[6]. Hence, understanding the user’s current situation may
require considering the different states the user experienced in
these domains. For example, to identify if the current day was
busy for the user there is a need to consider the different
activities and states the user has experienced in work,
shopping, on the road, etc.

Dynamic matching between context providers and
consumers: Typically developers define context interests
which should be transparently kept across distributed CSs. The
main challenge in such dynamic environment is therefore to
accommodate changes on the environment without infringing
active context interests. The middleware should allow the
context consumers (applications) to register their interests in
context information; and the context providers to register their
capabilities. Then, for any change in either the context
consumers or providers, a matching function should be
triggered so that applications asynchronously receive
notifications of context information that match their interests.
In addition, the application should be able to specify its context
interests on the basis of context types and meta-attributes such
as precision and accuracy and to indicate additional restrictions
based on properties of the provider or the context publication.
In this case, the middleware has to be responsible for choosing
the most adequate context providers among a dynamic set of
available ones.

Support for privacy: The flow of context information
between different distributed domains obviously raises user
privacy issues. A cross-domain system should protect user’s
information and guarantee privacy across domains. As we will
see later the usage of a home domain server provides an
interesting approach for control privacy of context access,
since it is a central point of access for a given entity’s context.
A user can control the context dissemination for some
consumers through modifying its privacy policy published in
his home domain server.

III. LIMITATIONS OF CURRENT APPROACHES

Classical work in context-aware computing has developed
centralized and application-specific solutions such as Context
Toolkit [7] which provides a set of abstractions that can be

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2013

3 | P a g e

www.ijacsa.thesai.org

used to implement reusable software components for context
sensing and interpretation. The context information is directly
acquired from a sensor by means of the context widget
component. Widgets can be combined with interpreters, which
transform low-level information into higher-level information
that is more useful to applications, and aggregators, which
group related context information together in a single
component. Finally, context-aware applications can invoke
actions using actuators, and locate suitable widgets,
interpreters, and aggregators using discoverers. Another
interesting work is Gaia [8] which adopts the concept of active
spaces, which are physical spaces where devices in a
heterogeneous network, such as PDAs and printers, can
discover each other, auto-configure and dynamically start a
context-aware interaction. It provides a framework to develop
user-centric, resource-aware, multi-device, context-sensitive
and mobile applications. However, these approaches offer
solutions for restricted and small-size smart spaces
environments, with localized scalability.

GLOSS [9] composes heterogeneous context management
systems through hierarchical or peer-to-peer interconnection
methods. By introducing the notion of Global Smart Spaces,
GLOSS supports interaction amongst people, artifacts and
places while taking account of both context and movement on
a global scale that facilitates the implementation of location–
aware services. It allows users to pick up small notes left for
them in the environment. GLOSS uses the idea of home nodes,
however, it has been designed to manage location context only.

More recent middleware offers access to context
information in distributed repositories. For example, the
Context Fabric (Confab) [10] provides architecture for privacy-
sensitive systems, as well as a set of privacy mechanisms that
can be used by application developers. It maintains context
information in distributed tuple-spaces called infospaces. Each
infospace is a repository responsible for storing one or more
context types. An application interested in a certain context,
builds a context query using the address of the responsible
infospace. In order to handle queries over distributed
infospaces, Confab offers a query processing service, which
distributes queries over distributed infospaces and composes
the query results. Privacy is supported by adding operators to
an infospace to carry out actions when tuples enter or leave the
space. However, as Confab focuses so heavily on privacy, it
does not adequately address the other middleware requirements
such as mobility or context information dissemination across
domains.

The scalability issue is considered in PACE [11], which is
another distributed middleware focusing on offering a flexible
context model called CML (Context Modeling Language) and
advanced context-based programming abstractions for
distributed context-aware applications. PACE is organized in
layers that provide, in addition to context management, an
interface to execute distributed context queries, and an
adaptation layer, which maintains a reusable repository of
adaptation abstractions. Applications use a catalog and meta-
attributes to discover which repository satisfies their context
requirements. However, when a user roams across domains,
this discovery mechanism does not allow developers to identify

the repositories existing in the domains visited by the roaming
user which contain his context information.

CAMUS [12] is another distributed middleware where
context-aware system federation is composed by environments
based on CAMUS services, which disseminate context
information as tuples, in order to increase dissemination
efficiency. Each service of an environment must be registered
in a Jini discovery service. A CAMUS context domain is an
environment that supports a minimum set of CAMUS services.
The set of Jini services responsible for each CAMUS domain
composes a federation. In order to access context information
or to use a service of a specific domain, a client must query the
Jini federation, using parameters such as the name and
localization of the domain. CAMUS, however, does not
address cross-domain context dissemination and how to ensure
user’s privacy.

Another interesting approach to allowing distributed
context management based on federating context-aware
services is Nexus [13]. Nexus supports heterogeneity among
context management systems’ context models, i.e. each context
management system can adopt a particular context model and
must implement an abstract interface and register itself at an
Area Service Register. Thus, it focuses on the data
management aspect of large-scale pervasive computing
systems. A client may access context information provided by
the federation, by using a query language. However, there is no
concept such as domain or environment: each context server is
a repository of a specific context type [3].

The Context Management Framework (CMF) proposed in
MobiLife project [14][15] is designed for the discovery of,
exchange of, and reasoning on context information. It is a set
of components, which are connected at run time, that together
provide the relevant context information for the service or
application, using sensing and interpretation mechanisms. The
main tasks for the CMF are to enabling the discovery of
context providers, to provide a published agreement or
interface contract between context providers and context
consumers, and binding context consumers with the matched
context providers in order to use their context service functions
through the use of context broker. Therefore, in CMF there is
no concept such as domain so that the application is able to
specify the domain(s) from which the context information is
originated. In addition, the infrastructure needed for setting and
enforcing privacy of user-controlled data available through
context providers is controlled by the Trust Engine. However,
we believe that this setting weakens enforcing the privacy since
a malicious context provider can skip contacting the trust
engine to verify if the context consumer is eligible to access the
context information; thus a centralized trusted entity
responsible to enforce the privacy is needed.

ICE [16] is a scalable context management middleware for
Next Generation Networks. It is based on the concepts of
context sessions and context flows. The idea is to separate
signaling data from content exchange, as in IP Multimedia
Subsystem, to establish context sessions for more scalable and
adaptive management of context information. The Context
Access Language (CALA) has been designed to support
context queries and subscriptions. However, ICE focuses

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2013

4 | P a g e

www.ijacsa.thesai.org

heavily on efficient context information dissemination between
context sources and sinks. Thus, it ignores in its designed
protocols ensuring entities privacy. In addition, context
sources’ descriptions and context sinks’ queries/subscriptions
must be registered in a centralized entity - the context broker.
Thus, as the user roams between domains, this adds complexity
to the developers as they must know in advance which context
broker they have to contact to get the context information they
are interested in.

From the perspective of globally connecting sensors, the
Open Geospatial Consortium provided the Sensor Web
Enablement (SWE) initiative [17] to building a framework of
open standards for exploiting Web-connected sensors and
sensor systems of all types such as flood gauges, air pollution
monitors, Webcams, etc. SWE provides the opportunity for
adding a real-time sensor dimension to the Internet and the
Web. It focuses on developing standards to enable the
discovery, exchange, and processing of sensor observations, as
well as the tasking of sensor systems in order to achieve a
"plug-and-play" Web-based sensor networks. Thus, SWE
cannot be directly applied to achieve context-awareness
because, for example, Sensor Model Language (SensorML)
describes sensors systems; provides information needed for
discovery of sensors, location of sensor observations, etc. but it
does not consider modelling the entities about which the sensor
is able to provide information.

Compared to this solution, Chen et al. [18] propose a data-
centric infrastructure based on Context Fusion Networks
(CFNs) to support context-aware pervasive-computing
applications. CFNs are based on an operator graph model, in
which context processing is specified by application developers
in terms of sources, sinks and channels. In this model, sensors
are represented by sources, and applications by sinks.
Operators, which are responsible for data processing, act as
both sources and sinks. At runtime, the implemented peer-to-
peer (P2P) infrastructure instantiates the operator graphs on
behalf of context-aware applications. Solar consists of a set of
functionally equivalent hosts named Planets. The components
messages will be delivered to a Planet with the numerically
closest ID; therefore, unlike our proposed approach, Solar
services focuses on the data objects instead of on where they
live i.e. from which domain they are originated. In addition,
Solar does not address privacy enforcement. Another hybrid
approach to modeling contextual information that incorporates
the advantages of object-oriented and ontology-based modeling
techniques is introduced by Lee and Meier [19]. The objective
is to support a specific large-scale pervasive domain, namely
the transportation domain. Their notion of Primary-Context
Model and the Primary-Context Ontology is used to share
context between different domains. Although their approach is
interesting, it does not address other issues such as mobility
and cross-domain context dissemination.

Zebedee et al. [20] introduced ACMF, an adaptable context
management system by adopting autonomic computing
paradigm. This system is implemented by using the Web
services and the Web Services Distributed Management
(WSDM) standards. ACMF views each device in terms of the
roles it plays with respect to context management which
includes client, server, and context proxy. ACMF defines a

context model and a set of context exchange protocols between
devices. ACMF models the pervasive computing environment
as a collection of domains where each domain contains a set of
regions and a set of device types. A domain is a logical
representation of a physical space, such as a building or
campus, containing regions and device-types. In this respect,
their domain concept is very similar to the domain concept
used in our approach. However, because the focus is on
exchanging context information between devices available on a
local area (one region) ACMF does not address cross-domain
context dissemination, which is a requirement in pervasive
environment. Therefore, querying context information
available in distributed domains is not possible in their
approach.

Closely integrated with an application domain of e-health,
Pung and Gu et.al proposed a Context-Aware Middleware for
Pervasive Homecare (CAMPH) [21]. The middleware offers
several key-enabling system services that consist of P2P-based
context query processing, context reasoning for activity
recognition and context-aware service management. The key
contribution of CAMPH is physical context data collection and
reasoning, however, it lacks innovation in the architecture of
context management.

Most of the previous work focussed on the software
engineering perspective of the distributed context management.
From a knowledge management perspective, Castelli and
Zambonelli [22] addressed the distributed management of
context information from a knowledge management
perspective. They propose a self-organized agent-based
approach to autonomously organize distributed contextual data
items into knowledge networks. These data atoms as well as
any higher-level piece of contextual knowledge represents a
fact which can be expressed by means of a four-fields tuples
(Who, What, Where, When); they call it W4 Data Model. This
model is able to represent data coming from heterogeneous
sources and to promote ease of management and processing.
These knowledge atoms are linked via general-purpose
mechanisms and policies to form W4 knowledge networks
which can facilitate services in extracting useful information
out of a large amount of distributed contextual items. The
usage of tuple-space like repositories supports heterogeneity
and facilitates building the knowledge network; however,
because the focus is on the knowledge management
perspective other requirements e.g. mobility between domains
has been partially addressed. In addition, despite the efficiency
in retrieving tuples during query resolution phase, using the
spidering approach to create the knowledge networks may be
inefficient when considering the rapidly changing context
information such as entities location.

If we look at the aforementioned requirements and at the
approaches described above, it reveals that research in the area
of context management is well established and many ideas
have been developed for addressing most of the above
requirements individually. However, none of the examined
approaches supports all of our requirements to a sufficient
extent. Therefore, there is a need to design a new context
management framework that takes into consideration the
distribution of context in different domains and the necessity to
protecting user’s privacy.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2013

5 | P a g e

www.ijacsa.thesai.org

IV. CONTEXT DISSEMINATION PROBLEM

Consider a simple context federation scenario: a user is
subscribed to a CS located in domain A; namely CSA. This
server maintains the profile information of its subscribed users
and maintains a sensor infrastructure for domain A. We call
this server the home domain server (HDS) of its subscribed
users. Likewise, the context server CSB maintains users’
profiles and physical context information of domain B.
Obviously as long as the user is still in the domain A the
scenario is rather simple; all the context information needed by
the application about this user exists in CSA. However, when
the user move from A to B (we call the user a foreign entity in
domain B), the context information related to the users
maintained by CSA and CSB (such as location or environment
context information) may become relevant to the applications
interested in the user’s context. In this case, we call the CSB
the visited domain server (VDS). Thus, there is a need for a
mechanism which allows applications to know which domains
are visited by the user at any point of time and the context
information gathered about the user in these visited domains.

One possible solution is to use tuple space (e.g., Confab
[10]). Confab architecture structures context information into
distributed tuple-spaces called infospaces, which store tuples
about a given entity. An application interested in a certain
context, builds a context query using the address of the
responsible infospace. Although distributed infospaces
contribute to decrease the context management overhead in a
distributed environment, this distribution is not kept
transparent to applications, which must know what infospace
contains the desired context information. Another possible
solution is to maintain in the HDSs “links” to the VDSs. In this
case, in order to handle the application’s queries about the
users (or entities) over distributed domains, the HDS may have
to distribute queries over the VDSs and compose the query
results (e.g. [10][18]). However, this approach requires
maintaining the link list of the VDSs, and may degrade the
system performance as it requires distributing the application
query over different servers and regrouping the result.

On the other hand, the notion of home and visited domains
are also used by mobile telephone networks like GSM. The
main idea used in these networks is that users have their “home
domains” in which their context is gathered but when they
roam to another domain this domain becomes a “visited
domain”. When a mobile device moves into a different domain,
the server of the visited domain inter-links the mobile device
and its home server. The home server redirects query
statements to the server of the visited domain, which finally
dispatches it to the mobile device. This is achieved by using
the Home Location Register (HLR) and Visitor Location
Register (VLR) approach of the GSM user profile database
[23]. This approach addresses the location-awareness problem
by minimizing the invocation of multiple updates in the home
node each time a mobile user changed his/her location.
However, the effectiveness of this mechanism is questionable
for other types of context information, as it requires the
application to submit their queries through a web of pointers
from the home node to the visited node of the mobile user [24].

In fact, the main problem of context dissemination across
domains originates from the observation is that in a distributed
system there is an obvious trade-off between costs of updates
and costs of requests; i.e. between the communication cost
introduced by the fully replicating context data to the home
node and the degree of replication that is eventually necessary.
This has a direct impact on the achieved system performance
and on the provided context precision. For example, when the
volume of context data or the rate of change is high, providing
high precision context value tends to degrade the performance;
on the contrary, optimal performance can only be achieved by
sacrificing the precision of the context copy. In the proposed
approach, as we will see, the context consumers play a decisive
role in the process of context replication as well as the update
rate of the relevant context data.

V. THE PROPOSED APPROACH

Basically, when a CS receives a query referring to an
entity’s context information stored in the local repository the
procedure is straightforward. When the required context
information is not stored in the local repository it has to be
retrieved from a remote CS. An efficient look-up mechanism
for finding this context information is essential for the
scalability of the whole system. To achieve this mechanism, we
choose to synchronize the context information with the HDS
only when there is a consumer for this information. This choice
is made for the following reasons:

(i) Efficient cross-domain query handling: having all
context information related to an entity in one place (HDS) can
be exploited during the query resolution phase in order for the
applications to retrieve the context information more
efficiently. That is, handling a query submitted to the system
requires considering the context information in the entity’s
HDS replicated from different domains instead of sending sub-
queries to all VDSs. Thus, the querying response time
decreases significantly.

(ii) Privacy ensuring: the alternative to publish the actual
data at the HDS would be to only keep references to the
relevant visited context server. However, this weakens the
privacy support as the context data is stored by the foreign
domain that provides the sensor infrastructure. Thus, we
choose, as we will see, to design a protocol between CSs which
force the context information to be centralized in the HDS.
This way, enforcing user’s privacy policy will be feasible.

(iii) Cross-domain reasoning: it becomes possible to reason
about the context information across different domains (e.g.
tracking and understanding user’s tendency) and to identify the
contextual situations which span different domains (see [6] for
example). Moreover, this enforces the idea that each domain
should have its own inference mechanism and in the home
domain a cross-domain inference mechanism becomes
possible.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2013

6 | P a g e

www.ijacsa.thesai.org

Fig. 1. The proposed context meta-model

(iv) High efficiency: it would be more efficient if we
establish context replica on the HDS depending on how often
the context change and at the same time on the context
consumers needs. In situation of roaming users across domains,
additional restrictions may arise (e.g. concerning the limited
network connectivity, device power consumption, privacy
enforcement, etc.), rendering imperative the need to establish
an optimized mechanism in support of optimized context
information dissemination among domains taking into account
the explicit requirements of consumers.

In the following subsections, we present our designed and
implemented framework, ubique, which aims at optimizing and
controlling the amount of exchanged context information in
such a way that context information can efficiently and easily
flow from context providers to consumers. ubique envisions a
highly distributed and loosely coupled solution in order to
exchange context information between context providers, CSs,
and applications. Therefore, ubique context management
framework aims at: (i) enable the discovery of context
providers, (ii) standardize context exchange between providers
and consumers, (iii) federate contexts among CSs, (iv)
standardize and enforce privacy, (v) allow context providers to
publish on demand where there is a consumer, (vi) relieve CSs
from the burden of replicating frequent updates to the HDS,
and (vii) prohibit overloading the context consumers with
context information that does not interest them for the time
being.

A. ubique Context Meta-Model

Context information can be represented in many ways. For
ubique context modeling, we choose an approach based on

XML. As illustrated in Fig. 1, the context information is
represented in terms of context elements, which provide
information about context entities, context types and meta-data.

The main assumption in the proposed model is the
representation of relationships between entity and information:
context entities (such as persons, places, events, etc.) are
identified and classified by an ID. Each context entity is
associated with a set of context types (such as address,
location, etc.) which may include other context types. Further,
each context type may be characterized by a set of metadata
which contain, for example, source of information, timestamps,
expiration time, and any Quality-of-Context information such
as accuracy and confidence.

B. Context Management Componentss

The ubique context management framework is designed for
the discovery and exchange of context information across
domains. It provides the relevant context information for the
service or application, using distributed sensing infrastructure
and centralized storing mechanisms. We define ubique context
management framework as a set of components which are
loosely coupled to provide relevant context information both
by sensing and interpreting mechanisms. These key
components or building blocks are depicted in Fig. 2, and
described below.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2013

7 | P a g e

www.ijacsa.thesai.org

Fig. 2. ubique components

Context Consumer: (CC) is a software entity that uses the
CS interface to register its context interest or query. The CC
receives the requested context information asynchronously by
submitting context interest and synchronously by submitting
context query to the CS. A CC exposes interfaces to start
receiving context information from the corresponding CS when
they become available. These interfaces adhere to standards
defined in the Standards Framework (SF).

Context Provider (CP): is a software entity that uses the CS
interface to register its capability of providing context
information. A CP exposes interfaces to publish context
information to the corresponding CS on-demand. These
interfaces adhere to standards defined in the SF. It is registered
in the CS so that context consumers can discover and
introspect it. Note that any software agent, reasoner, or storage
component can be a CP as long as it adheres to the interfaces
defined in SF. Usually, CPs wrap context sources such as GPS
receiver or temperature sensor to provide their information.

Context Server (CS): provides a registration service for CPs
to register/update/unregister their capabilities that uniquely
describe their functionalities and for CCs to
register/update/unregister their context interests that can be
matched against the available CPs, and enables the discovery
of various context providers. Additionally, it provides services
to exchange the CCs’ context interests and CPs capabilities
between CSs as we will see later.

Standards Framework (SF): A set of specifications
describing the CP capabilities, the CC interests and queries, the
interfaces to exchange commands and context information
between different components, a format to exchange an atomic
context information element, as well as a format for privacy
tags.

In ubique we rely on the reasonable assumption that a CS is
identified by its Internet domain name and that the CS is
responsible for managing the context information available in
its domain. Additionally, each entity (sensor, user, application,
etc.) has a unique ID that should be registered in one of the
CSs. For example Alice ID could be
Alice@merchiston.napier.ac.uk as she is a registered

user in the CS of the domain merchiston.napier.ac.uk
which is Alice’s HDS.

C. Context Interfaces and Operations

ubique provides three different interfaces which allows
integrating CSs, CCs, and CPs into the eco- system. In the
following we describe the main interfaces and the main
corresponding operations.

1)Integrating Context Providers: The provided operations
allow registering CPs and their information with the CS as
well as providing a discovery function with which
participating components can check for available CPs.

registerContextProvider: This operation is used by the CP
to advertize its capabilities in terms of the types of context
information it can provide and the relevant entities playing a
role in this information. Additionally, the registration provides
a set of available CP meta-data (which mention information
about the provider as well as quality of context information it
provides). For example, the user’s location can be measured
with different quality by location sensors like GPS, CellId,
WLAN-in-range, etc. Finally, registration provides further
information about the registered entities. The CP capabilities
XML scheme is depicted in Fig. 3.

Basically, the CP specifies in its capabilities its ID, the
domain its information is originated from, and one or more
capability. Each capability specifies its ID, the entities having
the context information, and the supported context types.
Optionally, it specifies the meta-data about these context types,
its different attributes (features), and collection policies.

discoverContextProviders operation is used by CCs to get
the list of available CPs and their capabilities for later query.

sendCPCommand: This operation is used by the CS to
command a specific CP to start/stop publishing its information.
The command message contains a reference (tuple ID) where
the context information should be pushed.

2)Integrating Context Consumers: The provided
operations allow registering CCs with the CS, querying
(synchronously), as well as subscribing in order to be notified
about context information (asynchronous).

queryContextServer: This operation is used by the CC to
synchronously request for context information. The CC specify
its interest in terms of the needed context types of specific
entity(ies), as well as additional constraints on the CPs and
context types meta-attributes.

subscribeContextConsumer: This operation enables long-
lasting monitoring of the system. Basically, the logic of this
operation is similar to the latter operation, but the request
context information is returned in the form of an asynchronous
“notify” callback operation. Fig. 4 depicts the CC interest
XML scheme. The CC can specify one or more interests. Each
interest specifies its ID, the entities the CC is interested to get
their context information, and the interested context types.
Optionally, it specifies the condition(s) on the context types,
the domain(s) this information is originated from, the required
feature(s) from the CP, and the ID of a specific CP.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2013

8 | P a g e

www.ijacsa.thesai.org

Fig. 3. CP capabilities XML scheme

Fig. 4. CC interest XML scheme

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2013

9 | P a g e

www.ijacsa.thesai.org

sendCCCommand: This operation is used by the CS to
command a specific CC to start/stop receiving the information
it has subscribed to. The command message contains a
reference (tuple ID) where the context information should be
popped.

3)Federation between CSs: as already mentioned, every
CS is responsible for providing and storing context information
related to entities registered in it. Since the sensor
infrastructure in each domain may provide context information
about roaming entities, a collaboration protocol is needed
between CSs in order to federate this information to the
entities’ HDSs. We can distinguish here between three types of
information exchanged between CSs:

- CP Capabilities: CPs may advertise their ability to provide
context information about entities not registered in the current
domain. For example, a GPS sensor of Alice mobile phone can
provide location information about Alice@domain1.com to the
CS available in domain1.com (Alice’s HDS). However, when
Alice move to domain2.com, then this CP advertise its
capability to provide Alice location information to CS of the
domain2.com. In this case, CS of domain2.com should federate
the CP capability to domain1.com (Alice’s HDS) which is
responsible to handle all queries related to Alice.

- CC Interests: A CS may receive context interest about
entities not registered in it. In this case, the CS should federate
these interests to the HDS of the corresponding entities.

- Context information: The idea is that each CS has to
maintain a repository for all CP capabilities able to provide
context information about its registered entities as well as all
CC interests related to these entities. Any change in this
repository (i.e. addition, updating, or deletion of CP
capabilities or CC interests) should trigger a matching function
which tries to bind a CP with a CC. When a match is found, a
new tuple has to be created; a startPublishing command
message has to be sent to the CP (via sendCPCommand
operation) along with the corresponding CC interest and tuple
ID; and a startReceiving command has to be sent to the CC
(via sendCCCommand operation) along with the tuple ID. The
CP now has all the information necessary to know what kind of
context types, for which entities, and when to publish to the
tuple (e.g. regularly or for a context changes greater than a
specific threshold, etc.). Note here that when, for example, an

application is interested in Alice location in domain2.com,

the CS of domain1.com (Alice’s HDS) will create a tuple in

CS of domain1.com and ask the CP of Alice location to start

publishing in this tuple. In other words, all the context
information related to Alice, even those emerging from foreign
domains, will be kept in her HDS. This way, we have more
control about ensuring entities privacy. This mechanism is
illustrated in the example usage in the Section 6. Fig. 5 depicts
the XML scheme of the published context information which

we call it contextlet. Basically, each contextlet specifies the CP
ID, the interest ID (so that the CC knows that this information
is related to which interest he has submitted), the domain from
which this information is originated, the entity in question, a
list of the requested context types and their values.

Fig. 5. Contextlet XML scheme

D. Privacy

Privacy is about protecting users’ personal information,
which may include also context information e.g. location,
mood, etc. Obtained context information might be severely
misused, e.g., to track users. In context aware environments,
the devices belonging to the user communicate with the
available CSs all the time, thus revealing privacy sensitive
information about the user. In ubique approach, to ensure the
confidentiality of the privacy-sensitive information, users have
the flexibility to define their own privacy policy covering all
types of context information that may be distributed in
different domains.

Obviously, the sensor infrastructure in each domain may
report context information related to entities out of the scope of
the current domain which in turn weaken the privacy ensuring
mechanism and loosen control over the context originated in
different domains. In this case we need a mechanism with
which the context information of the foreign entities can be
moved to their HDS with the following conditions: (i) there is a
corresponding consumer for this information, and (ii) revealing
this information does not violate the privacy policy specified
by the user. That is, when the CS finds a match between a CP
and CC, it retrieves the privacy policy of the entity the CC
specifies its interest in getting context information. If this
request does not violate the user’s privacy then the CP is asked
to start publishing the required context information at the
entity’s HDS; otherwise, an “access denied” response is sent to
the CC. Fig. 6 shows the privacy tag schema used in ubique.
Each user (or each entity in general) has the flexibility to
specify its privacy policy for each context type and for each
domain. The privacyTag specifies for each context type the
CCs having the right to get access to the context information
and the time intervals during which this context information
can be revealed to them.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2013

10 | P a g e

www.ijacsa.thesai.org

Fig. 6. Privacy XML scheme

Finally, secure storage of context information requires
proper authentication and authorization to access it. Therefore,
we assume here that each CC is a computational entity
registered in one of the CSs which means that it has a unique
ID and password, and it must be authenticated by its CS.

E. ubique Implementation

Fig. 7 illustrates the proposed domain-based context-aware
computing eco-system. In general, the system should integrate
distributed hardware and software components and provide
naming scheme for those entities. The eco-system starts from a
single system with client-server architecture; then multiple
systems federate together through server-to-server
communication to form the eco-system. A single system
usually manages local clients, such as users and devices in a
specific domain.

Fig. 7. Domain-based context-aware eco-system

The server is called Domain Server and Communication
Bus. As indicated by its name, the server provides core
functionalities, such as security and naming, and acts as a
communication infrastructure for clients available in its
administrative domain. The naming scheme is similar to that of
e-mail systems. Each server has a unique domain name; clients
have their names concatenated to the server name. Clients from
different systems can also communicate with each other with
the server-to-server communication. Clients could be devices,
such as sensors, and applications that provide services to the
user. Clients can be also services that provide functionalities
the server does not provide such as the context manager (see

Fig. 7). Clients have to be authenticated by the server to use the
system.

Notice that the server does not provide context
management service itself, leaving that responsibility to a
separate client, the context manager. The context manager can
be easily replaced or upgraded without affecting the whole
system. The client-server and server-to-server communication
interfaces are standardized, which facilitates the system
extensibility.

In order to robustly implement the ubique approach, relying
on a standard or already established protocol is obviously a
preferred choice. The eXtensible Messaging and Presence
Protocol (XMPP) [25] (also known as a Jabber protocol) is
widely adopted open protocol for instant messaging and is
designed for near real-time communication. In the following
section we describe Jabber technologies by which ubique is
inspired and based on.

1) Jabber Overview

Jabber is an extensible instant messaging (IM) system.
More precisely, Jabber is a set of streaming XML protocols
and technologies that enable any two entities on the Internet to
exchange messages, presence, and any other structured
information in near real-time.

The Internet Engineering Task Force (IETF) has
standardized the core Jabber protocol as the XMPP protocol
[26]. The architecture of the Jabber system is distributed. A
Jabber server has a number of registered clients. Clients on the
same server interact through that server; clients on different
servers interact through server-to-server communication.
Jabber enables message transfer not only between people, as in
traditional IM systems, but also between any two entities. An
entity can be a person, a device, or a software service. Each
entity has a unique Jabber ID (JID). A JID is similar to an e-
mail address. For example, a JID for Alice is

Alice@merchiston.napier.ac.uk. Each entity is
allowed to have multiple resources. For example, Alice may
have a laptop and a cell phone which could be identified as

Alice@merchiston.napier.ac.uk/dell and
Alice@merchiston.napier.ac.uk/nokia

respectively.

Furthermore, Jabber enriches the communication support
beyond chat to many other interaction semantics thanks to the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2013

11 | P a g e

www.ijacsa.thesai.org

XMPP extensions. The Jabber Software Foundation develops
extensions to XMPP through a standards process centered on
XMPP Extension Protocols (XEPs) [27]. Examples of these
extensions are the Jabber RPC [XEP-0009], ad-hoc commands
[XEP-0050], streaming audio and video [XEP-0166], and so
on.

In addition, Jabber has an interesting pubsub facility [XEP-
0060], in which both publishers and subscribers are Jabber
entities. A publisher publishes a message item to a topic, and
then all the topic subscribers will be notified to receive the
newly published item. In this communication mechanism,
since the publisher does not know who will receive the
message, and a subscriber does not know who sent it, the time-
coupling and reference-decoupling between publishers and
subscribers are assured. This pubsub mechanism is ideal for
implementing ubique, where context providers and consumers
can be associated and disassociated dynamically.

2) Jabber and Domain-based Context Management

As aforementioned, the proposed domain-based context
management architecture is based on Jabber technologies.
Jabber has been chosen because its design, architecture, and
features match our requirements: In the pervasive environment
the interaction between different entities should be generic and
not in a particular format. Jabber provides a rich set of
communication mechanisms (see Section 5.5.1). Moreover, the
context management infrastructure should support the
interaction between different users, devices, and software
components in a universal way. In Jabber systems, any entity
that implements the XMPP-Core and its extensions protocols
can establish a connection with a Jabber server and interact
with other entities on any Jabber server. Thus the open
architecture and standardization of the Jabber platform ease its
adoption to build ubique.

Other than these capabilities, Jabber has other advantages
such as its increasing popularity and community support; the
availability of a set of servers, clients, and software libraries
supporting a low-barrier entry for developers; and its adoption
of XML to communicate messages between entities make it
possible to leverage existing XML tools and libraries.

3) Jabber and Context Manager

Jabber entities can be implemented either as clients or as
external server components. Clients use the protocols defined
in “XMPP Core” to connect to the Jabber server; external
components use the “Jabber Component Protocol” (JCP)
[XEP-0114] for the connection. These two types of entities are
functionally similar; thus for a given service, we can
implement it as either a client or a component. However,
unlike client components whose contact lists and subscription
are maintained by the Jabber server, external component has to
manage its subscriptions and contact lists by itself. The naming
convention for external components is different from client
components. For example, the context manager JID might be

context@merchiston.napier.ac.uk if it is
implemented as a client, and

context.merchiston.napier.ac.uk, if it is
implemented as an external component.

In ubique the context manager has been implemented as an
external Jabber component. The choice of considering the
context manager as an extension to the Jabber server functions
is more of design decision than a functional one. Fig. 8 shows
the architectures of the context manager: Context. The pubsub
server is also a Jabber component. Context component
connects to a Jabber server using JCP. The actual context data
(contextlets) is stored in the pubsub so that the pubsub server
will notify the subscriber of any context changes.

Fig. 8. The context manager external component

In Fig. 9, two Jabber servers are inter-connected; one of
them connects to a CP and the other connects to a CC. The
context manager, Context, connects to the Jabber server as a
Jabber external component. The continuous lines represent the
transport connections which are the actual routes for
transferring data. On the other hand, the dashed lines indicate
logical connections which means the communication between
two end points does not happen directly, but through physical
ones.

Fig. 9. ubique components interactions

When the system starts up, both CP and CC logon to their
Jabber servers which may or may not be the same one. Then,
the capabilities of each CP and the interests of each CC are
registered into the corresponding Jabber server (Step 1 and 2).
Thus the context manager can match the published CPs’
capabilities with the CCs’ interests or queries (Step 3). If the
context manager decides that the CC interest matches the CP
capability and this does not violate any entity’s privacy, then it
creates a tuple space in the local PubSub server and sends the
startPublishing command message to the CP (Step 4) and the
startReceiving message command to the CC (Step 5) along
with the tuple space ID embedded in the message. Once the CP
publishes a new contextlet (Step 6), the CC can receive it

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2013

12 | P a g e

www.ijacsa.thesai.org

asynchronously (Step 7). For the CC query, when the context
manager decides which CP can have the requested context
information it queries that CP and returns the result to the CC
synchronously.

ubique is built on top of a number of technologies, such as
Jabber (we use OpenFire [28] as a XMPP server), OWL, Jena
[29], and XML. It leverages these enabling technologies to
achieve the goal of controlling the context information
dissemination between administrative domains in a way that is
efficient in terms of saving network bandwidth and devices
energy, as well as respecting people privacy in the pervasive
environment. The system has a clear architecture and is highly
extensible.

VI. CASE STUDY ON UBIQUE CONTEXT USAGE

Alice and her husband Bob work as lecturers in Edinburgh
Napier University in Merchiston campus. Alice has a daughter,
Carol, who studies in the same university in Sighthill campus.
Alice would like to keep updated about her husband activities
and her daughter location.

Fig. 10 depicts the sequence of exchanging information
between different components: CPs, CCs, and CSs.

This is described as follows: The CP
ActivityProvider@merchiston.napier.ac.uk

registers the following capability in its HDS and wait for
confirmation (Step 1).

Fig. 10. Interaction between different components

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2013

13 | P a g e

www.ijacsa.thesai.org

Fig. 11. Example of the activity provider advertized capabilities

The CS analyzes the received CP capability to see if any of
the supported entities is not registered in it. Because this CP
does not provide context information about entities not

registered in merchiston.napier.ac.uk no further
interaction with other CSs has to be taken. Obviously, any
change in the available CPs or CCs triggers the matching
function.

For the sake of simplicity and without loss of generality,
the example application

App1@merchiston.napier.ac.uk is registered in
Alice’s HDS. It registers the following CC interest (Step 2):

Fig. 12. Example of an application context interest

This CC interest shows that the application is interested to
know the location of Carol in any domain and the activity of

Bob in the merchiston.napier.ac.uk domain. Note
here that any CP registered in

merchiston.napier.ac.uk domain or in any of its sub-
domains is eligible to be matched with the interest CCI1. For
each context interest, the CS checks for the corresponding
entity privacy before registering it. Fig. 13 shows an example
of Carol privacy tag.

Fig. 13. Example of a privacy policy

If the privacy is violated, an “access denied” message
should be sent to the application; otherwise the following
context interest will be registered and a confirmation message
should be sent to the application.

The CS of merchiston.napier.ac.uk finds out
that there is a match between the CP capability whose ID is
CPC1 (Fig. 11) and the CC interest whose ID is CCI1 (Fig.
12), therefore, it creates a tuple and sends the necessary
commands so that
ActivityProvider@merchiston.napier.ac.uk

starts publishing contextlets in the created tuple and

App1@merchiston.napier.ac.uk starts receiving the
published contextlets. Fig. 14 shows an example of the
contextlet sent by the activity provider. Alice may like to send
Bob a congratulations message when he finishes his
presentation.

Fig. 14. Example of contextlet received from activity provider

In merchiston.napier.ac.uk there is no provider
for Carol location. When Carol roams to

sighthill.napier.ac.uk the CP
LocationProvider@sighthill.napier.ac.uk

reports its ability (Fig. 15) to provide Carol as well as other

entities locations to CS of sighthill.napier.ac.uk.

Fig. 15. Example of the location provider advertized capabilities

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2013

14 | P a g e

www.ijacsa.thesai.org

The CS of sighthill.napier.ac.uk finds out that
the location provider is able to provide Carol location which is
not registered in it; thus, it federates the CP capability depicted

in Fig. 16 to Carol HDS: merchiston.napier.ac.uk
(Step 10.4 in Fig. 10). Notice that this capability is the same of
Fig. 15 except that the entities not registered in

merchiston.napier.ac.uk have been removed.

Fig. 16. The location provider capabilities federated to the Carol HCS

After the re-matching process, the CS of

merchiston.napier.ac.uk finds out that there is a CP
able to provide Carol position. Therefore, as in the previous

case, it creates a tuple and sends the necessary commands to
the corresponding entities; however, this time the locally
published contextlets are pushed by a CP from other domain.
Fig. 17 shows an example of a contextlet published by the
location provider indicating Carol location.

Fig. 17. Example of Carol location contextlet

Fig. 18 depicts screenshots of the example application. The
cyan circles represent roughly the domain border of each CS.
Each small dot circle represents a contextlet.

Fig. 18. Screenshots of the example application

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2013

15 | P a g e

www.ijacsa.thesai.org

VII. EVALUATION

In this section, we first analyze the suitability of the ubique
approach according to the requirements of context management
in pervasive applications as proposed in Section 2. The
efficiency of ubique is then evaluated via a set of experiments
based on the case study (Section 6).

A. Analysis of ubique vs. the requirements

Domains of context perception: This requirement, which
is compliant with the principle of system boundary of
pervasive applications, is achieved by using CS in each domain
and the federation between CSs across different domains.
Additionally, the notion of home domain CS simplifies
application developments as it is the reference point for any
context information related to the entities registered in it.

Uniform API interface and protocol: By providing the
ubique’s set of open and generic APIs, context is made
available to third party application developers to build new
services without having to define specific mechanisms for
context distribution and management between domains. In
addition, these APIs and the proposed protocol between
different entities enable external providers and consumers to be
integrated into the ubique system to provide or consume
context information.

Efficient context information dissemination: Since the
communication resources are limited, and since most context
information gathered by a context server will not be necessarily
used by any application, ubique considers filtering and
replicating only the context information that is explicitly
required by an application.

Cross-domain reasoning: ubique provides an enabling
infrastructure to support reasoning about the context
information across different domains and to identify the
contextual situations which span different domains. Moreover,
this enforces the idea that each domain should have its own
inference mechanism whereas in the HDS a cross-domain
inference becomes possible.

Dynamic matching between context providers and
consumers: In ubique the matching function of the context
manager ensures efficient context information dissemination.
In addition, since the CPs specify their capabilities in providing
context information that correspond to different domains, an
application can specify in its interests or queries the domain(s)
from which it is interested in retrieving the context
information.

Support for privacy: Since the context information is
centralized in one CS (HDS), enforcing user’s privacy policy
which spans different domains is feasible. In addition, the
dissemination protocol between CPs and CSs on one hand, and
the between CSs on the other hand, ensures that the context
information will not be stored everywhere and that this
information will be disseminated only if the receiver has the
privilege to get it.

B. Performance evaluation

The efficiency of ubique has been evaluated in terms of
update latency. As part of the case study, evaluation

experiments were done using four CSs distributed in four
university campuses (Merchiston, Craighouse, Sighthill, and
Craiglockhart) which store the context information available in
their corresponding campuses. All 4 servers have the same
hardware capability: Pentium 4, 3.40GHz and 4GB RAM. The
aim is to measure the latency average of federating the
contextlets from one CS to another. Fig. 19 shows the variation
of the latency time (milliseconds) with respect to the number of
contextlets simultaneously federated. Obviously the latency
increases when the volume of data increases; however, the
results show that the increase is not in a linear pace with the
amount of contextlets, i.e. the latency is higher when the
amount of contextlets is over 150. The latency could reach
around 1.5s for sending 200 contextlets simultaneously, which
is reasonable and acceptable even for the highly dynamic
context information e.g. noise level.

Fig. 19. ubique performance evaluation

VIII. CONCLUSION

The essence of context-awareness is to let applications and
users take full advantage of the available context information
e.g., users’ or devices’ locations. The requirement for universal
context access demands for a middleware solution as an
essential requirement for building context-aware systems. In
order to address these new challenges, it is essential to
establish innovative data storage and dissemination
mechanisms. The architecture of ubique presented in this paper
hides the increasing complexity of context management from
applications and incorporates advanced mechanisms that
support mobile users. In ubique, a Jabber-based context
information dissemination protocol has been adopted. The
storage and dissemination of the context information is
performed by federation between distributed CSs. ubique
brings several unique features to cross domain context
management as discussed in section 7, all of which have been
verified by the case studies.

Further research plans involve exploring the use of the
middleware in more complex scenarios, extending ubique to
support the geographic location based access to context
information, the extension of the privacy protection scheme to
consider not only specified domains but also domain types (e.g.
a restaurant or a swimming pool), and ubique extension to

0

200

400

600

800

1000

1200

1400

1600

1 20 40 60 80 100 120 140 160 180 200 La
te

n
cy

 T
im

e
 (

m
ill

is
se

co
n

d
)

Amount of Contextlets

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. XXX, No. XXX, 2013

16 | P a g e

www.ijacsa.thesai.org

support context queries on the basis of the entities’ and
domains’ types.

ACKNOWLEDGMENT

The work in this paper has been sponsored by the Lawrence
Ho Research Fund (LH-Napier2012).

REFERENCES

[1] M. Weiser, “The Computer for the 21st Century,” Communications, vol.
3, no. 3, pp. 3-11, 1991.

[2] D. Preuveneers, K. Victor, Y. Vanrompay, P. Rigole, M. K. Pinheiro,
and Y. Berbers, “Context-Aware Adaptation in an Ecology of
Applications,” in Context-Aware Mobile and Ubiquitous Computing for
Enhanced Usability: Adaptive Technologies and Applications, 2009, pp.
1-25.

[3] R. C. A. da Rocha, “Context Management for Distributed and Dynamic
Context-Aware Computing,” PhD Thesis, 2009.

[4] T. Kindberg and A. Fox, “System Software for Ubiquitous Computing,”
Pervasive Computing, IEEE, vol. 1, pp. 70–81, 2002.

[5] M. Valla et al., “The Context API in the OMA Next Generation Service
Interface,” in Proceedings of ICIN 2010, 2010.

[6] Z. Jaroucheh, X. Liu, and S. Smith, “Recognize contextual situation in
pervasive environments using process mining techniques,” Journal of
Ambient Intelligence and Humanized Computing, vol. 2, no. 1, pp. 53-
69, Dec. 2010.

[7] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual Framework and
a Toolkit for Supporting the Rapid Prototyping of Context-Aware
Applications,” Human-Computer Interaction, vol. 16, no. 2, pp. 97-166,
2001.

[8] M. Román, C. Hess, R. Cerqueira, and R. H. Campbell, “A Middleware
Infrastructure for Active Spaces,” IEEE Pervasive Computing, vol. 1(4),
pp. 74-83, 2002.

[9] A. Dearle et al., “Architectural Support for Global Smart Spaces,” in
Lecture Notes In Computer Science; Vol. 2574. Proceedings of the 4th
International Conference on Mobile Data Management, 2003, pp. 153-
164.

[10] J. I. Hong and J. A. Landay, “Architecture for privacy-sensitive
ubiquitous computing,” in 2nd International Conference on Mobile
Systems, Applications, and Services, 2004, vol. p, pp. 177-189.

[11] K. Henricksen, J. Indulska, T. McFadden, and S. Balasubramaniam,
“Middleware for Distributed Context-Aware Systems,” in On the Move
to Meaningful Internet Systems 2005: CoopIS, DOA. Proceedings of the
OTM Confederated International Conferences: CoopIS, DOA and
ODBASE 2005, Part 1., 2005, vol. 3760, pp. 846-863.

[12] S. L. Kiani, M. Riaz, S. Lee, and Y.-K. Lee, “Context Awareness in
Large Scale Ubiquitous Environments with a Service Oriented
Distributed Middleware Approach,” in Fourth Annual ACIS
International Conference on Computer and Information Science
(ICIS’05), 2005, vol. 5, pp. 513-518.

[13] M. Grossmann, M. Bauer, N. Hönle, U.-P. Käppeler, D. Nicklas, and T.
Schwarz, “Efficiently Managing Context Information for Large-Scale
Scenarios,” in Third IEEE International Conference on Pervasive
Computing and Communications, 2005, no. PerCom, pp. 331-340.

[14] P. Floreen et al., “Towards a Context Management Framework for
MobiLife,” in In IST Mobile & Wireless Communications Summit,
2005.

[15] M. Klemettinen, Enabling Technologies for Mobile Services: The
MobiLife Book. 2007.

[16] M. Strohbach, M. Bauer, E. Kovacs, C. Villalonga, and N. Richter,
“Context Sessions – A Novel Approach for Scalable Context
Management in NGN Networks,” in MNCNA ’07 Proceedings of the
2007 Workshop on Middleware for next-generation converged networks
and applications, 2007, pp. 1-6.

[17] G. Percivall, C. Reed, and J. Davidson, Open Geospatial Consortium Inc
. OGC White Paper OGC ® Sensor Web Enablement : Overview And
High Level Architecture ., no. December. 2007, pp. 1-14.

[18] G. Chen, M. Li, and D. Kotz, “Data-centric middleware for context-
aware pervasive computing,” Pervasive and Mobile Computing, vol. 4,
no. 2, pp. 216-253, 2008.

[19] D. Lee and R. Meier, “A hybrid approach to context modelling in large-
scale pervasive computing environments,” Proceedings of the Fourth
International ICST Conference on COMmunication System softWAre
and middlewaRE - COMSWARE ’09, p. 1, 2009.

[20] J. Zebedee, P. Martin, K. Wilson, and W. Powley, “An Adaptable
Context Management Framework for Pervasive Computing,” in
Context-Aware Mobile and Ubiquitous Computing for Enhanced
Usability, 2009, pp. 114-146.

[21] H. K. Pung, T. Gu, W Xue, et al., “Context-Aware Middleware for
Pervasive Elderly Homecare,” IEEE Journal on Selected Areas in
Communications (JSAC), Special issue on wireless healthcare, vol. 27,
no. 4, pp. 510-524, 2009.

[22] G. Castelli and F. Zambonelli, “Contextual Data Management and
Retrieval : a Self-organized Approach,” in 2009 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology, 2009, pp. 535-538.

[23] A. Mehrotra, GSM System Engineering. Mobile Communications
Series, Artech House Publishers., 1997.

[24] I. Roussaki, M. Strimpakou, C. Pils, N. Kalatzis, and N. Liampotis,
“Distributed Context Management in Support of Multiple Remote
Users,” in Context-Aware Mobile and Ubiquitous Computing for
Enhanced Usability, 2009, pp. 84-113.

[25] XMPP, “XMPP Standards Foundation,” http://www.xmpp.org/, 2004. .

[26] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” http://www.ietf.org/rfc/rfc3920.txt, 2004. .

[27] “XMPP Standards Foundation (XSF). XMPP Extensions,”
http://xmpp.org/xmpp-protocols/xmpp-extensions/, 2010. .

[28] OpenFire, “OpenFire Server,”
http://www.igniterealtime.org/projects/openfire/index.jsp, 2010.

[29] “Jena2 Semantic Web Toolkit,” http://jena.sourceforge.net, 2010.

