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Global population growth and urbanization necessitate countless

more buildings in this century, causing an unprecedented

increase in energy consumption, greenhouse gas emissions,

waste generation and resource use. It is imperative to achieve

maximal efficiency in buildings quickly. The building envelope

is a key element to address environmental concerns, as it is

responsible for thermal transfers to the outdoors, causing

energy demand and carbon emissions. It also requires cladding,

thus consuming a significant amount of finite resources. This

paper investigates the relationship between surface area and

indoor space to unravel the sustainability of building forms.

Firstly, we demonstrate what the optimal form is. Secondly, as a

single definite form is of little use in practice, we develop a

scale-independent metric to measure the degree of optimality of

building forms and show its practical use. This newly

developed metric can significantly help in early design stages,

by quantifying how much a building form deviates from

optimality and identifying the domain of alternative geometries

to bring us closer to it. This compactness measure also

represents a theoretical basis for further research, to explore

how optimality changes when additional parameters are

factored in. It therefore contributes to both theory and practice

to support global efforts towards sustainable built environments.
1. Background
Buildings are ubiquitous. The vast majority of human interactions,

energy consumption and waste generation are related to—or take

place in—buildings and cities [1]. Buildings and, consequently,

cities are also the greatest single cause of anthropogenic

greenhouse gas emissions (GHG) and the largest consumer of

the Earth’s finite natural resources [2].

Buildings also account for over half of the global energy

demand and more than a third of waste flows [3]. Due to

unprecedented growth rates in human history for both global

population and urbanization, countless more buildings are

needed in the next decades. In fact, they can be counted: between

now and 2030, cities will house an additional one billion people,
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which equates to building one new city of 1.5 million inhabitants (roughly the population of Manhattan)

each week for the next 12 years [4].

Also, in spite of global efforts, International Energy Agency (IEA) projections suggest that carbon

emissions are on track to double by 2050 [5]. Cities are already aware of their resource consumption

and environmental impacts [6] but with such projections it has never been so imperative, timely and

important to approach maximal efficiency in buildings to accelerate the transition to a sustainable

built environment and avoid crossing that 28C limit that would cause catastrophic and irreversible

climate change [7].

In accommodating an additional one billion people while mitigating the negative impact on the

natural environment at all levels, the need for an effective use of space in buildings is both evident

and crucial. Arguably, each building is unique; and yet buildings can be surprisingly clustered

around very few parameters. Two, in particular, suffice to provide a rough understanding of their

forms and functions, namely:

— Floor Area1: for two-dimensional-driven spaces, that is when the lettable or walkable area is what

defines the use and the value of a built asset, such as in dwellings and offices.

— Volume: for three-dimensional-driven spaces, in those cases where the volume is the key dimension of

the building design, such as for theatres, museums, auditoria, lecture halls and so on.

In both cases, the building envelope is the key by which thermal transfer between indoor and outdoor

space occurs, thus, it is directly responsible for the building’s heating and cooling demands and

related GHG [9,10].

1.1. The role of building forms
As referenced in the next section, minimizing the envelope surface area—for a given amount of enclosed

volume (and/or floor area)—is a clear objective to approach maximal efficiency in buildings. In addition

to mitigating thermal transfer, reducing the envelope surface can also help lower the embodied energy

and environmental impacts linked to materials and products that are required to construct the envelope

itself, especially considering that such building components are often characterized by energy- and

carbon-intensive supply chains [11]. The relationship between envelope surface area (of a building or

any three-dimensional object) and corresponding internal volume is indeed a geometric one. This

ultimately suggests that some building forms are inherently more efficient than others, regardless of the

material being used to realize them. There are, however, other elements related to a building envelope

that do influence its energy consumption and the overall building sustainability—for instance, passive

strategies for natural ventilation or the reduction of cooling loads—but they are outside the scope of this

paper although would represent interesting areas for further expansion of the work presented here.
2. Previous works
Scholarly interest in building forms is not new [12], but the amount of existing literature does not seem to

reflect the importance of the topic. Our understanding of, and explanation for, the lack of extensive

literature on the topic is the overwhelming attention that has been sadly given to operational energy

alone in the past decades [13]. This seems to be finally shifting, with publications and standards

assessing the life cycle performance of buildings [14], and a greater social and political awareness of

this important aspect, as demonstrated by the recent London Environment Strategy [15], the Buy

Clean California Act [16] and local authorities that require reporting of embodied carbon [17]. From

our literature review, two macro areas of research on building forms emerged.

The first one can be labelled as classification-seeking. This includes contributions aimed at a better

understanding of the existing building stock. Such information is of vital importance, for instance, to

run analyses aimed at identifying specific energy policies or to understand the effectiveness of

refurbishment campaigns. This area also includes those efforts aimed at examining the evolution of the

morphology of urban systems [18] as well as differences [19] and similarities [20] in urban forms and

cities across the globe. Seminal contributions in the classification-seeking area come, for instance, from
1In this manuscript, floor area is used as a shorthand for the Gross Internal Floor Area, as defined by the Royal Institution of Chartered

Surveyors [8]. Open Access publication was made possible thanks to FP’s Vice Chancellor’s Fellowship at Edinburgh Napier

University.
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Steadman and colleagues [21,22] who surveyed the building stock of England and Wales to unravel its

identifying features [23]. More recently, Julia et al. [24] developed a Bayesian-based method to define

residential archetypes in urban building energy models in the US, while Hargreaves [25] developed an

innovative method to convert average residential densities into sets of one-hectare three-dimensional

tiles that aim to represent the dwelling stock in the UK. This latter method has since been applied to

forecast how residential urban forms affect regional carbon emissions from retrofitting and decentralized

energy supply [26], which is a perfect example of how a previously developed classification-seeking
method is utilized to serve its purpose of analysing the effect of energy policies on the building stock.

The second macro area of research can be labelled as form-seeking, for it aims at identifying optimal or

effective forms given a specific objective. This is the area of the seminal work of Leslie Martin [27] and

Lionel March [12]—who posed the famous, and likely yet unanswered question ‘What building forms make
the best use of land?’—as well as the subsequent works that followed at the Martin Centre of the University

of Cambridge. Some noteworthy examples are those of Steemers [28], investigating the building energy

use in relation to urban built forms and density; Ratti et al. [29], exploring the effects of urban texture on

building energy consumption through digital elevation models; and Ratti et al. [30], assessing the

relationship between building forms and environmental performance through archetypes. Also falling

in this area is the work done by Catalina et al. [31] who investigated the impact of building forms on

energy consumption in the case of office buildings. They utilize a combination of a building shape

factor (Lb) and a building relative compactness indicator (Rc) to optimize the shape and functional

structure of energy-saving buildings. The relative compactness Rc has also been used by Ourghi et al.
[32] in a simplified analysis to predict the impact of shape on annual energy use for office buildings.

Similarly, Schlueter & Thesseling [33] developed a building information modelling (BIM) tool for

energy and exergy performance assessment. These kind of studies, however, adopt the building form

as the starting point rather than the final objective of a study. In terms of optimization, Jedrzejuk &

Marks developed [34] and applied [35] a multi-criteria optimization approach that considers

construction costs, seasonal demand of heating energy and pollution emitted by heat sources. For a

review of optimization algorithms for building design, the reader is referred to Machairas et al. [36].

Outside of this line of enquiry, Hachem et al. [37,38] investigated housing unit designs in order to

optimize urban settlements to exploit solar radiation. Similarly, Okeil [39] sought energy-efficient

building forms by cutting solar profiles through a conventional block, thus developing what he called a

Residential Solar Block (RSB) that maximizes the solar energy hitting the building’s façades. Conversely,

Caruso et al. [40] aimed to explore geometric forms which minimize the direct solar radiation incident

on the building’s envelope to reduce cooling loads. They found that for a given volume, V, the optimal

form is represented by a family of ovoidal solutions, parametrized against the latitude of the building

location. Jin & Jeong [41] developed an optimization method for free-form building shapes aimed at

minimizing thermal loads through a genetic algorithm implemented in Rhinoceros.

Non-rectangular shapes have also been the subject of investigation in an attempt to minimize cooling

loads [42] with the conclusion that a reduced envelope surface drives optimality in building forms aimed

at lowering energy consumption. A result, this latter, in accordance with previous findings from

Steadman et al. [9] who empirically demonstrated, for the entire non-domestic building stock of

London, the existence of a strong correlation between exposed building surface area (walls plus roof)

and gas/electricity use. Similar results have been also recently confirmed by Vartholomaios [43] in

geographical contexts with warmer climates such as Greece, where he identified a synergy at different

urban densities between compactness and passive solar design. Switching from solar radiation to air

quality, Cheshmehzangi [44] investigated, through computational fluid dynamics (CFD) modelling,

forms that yield maximum air quality in urban micro environments. Chau et al. [45] instead attempted

to define optimal building heights in the context of Hong Kong by factoring in construction costs and

property prices as well as the building height. They found that both costs and revenues increase with

height, though the former rises faster than the latter, thus implying the existence of an optimal height

from an economic point of view. In terms of buildings height, recent work by Helal et al. [46]

questioned the premium-for-height method developed by Khan [47] by broadening the scope of the

analysis and included additional driving factors such as embodied energy, water and carbon.
3. Aim and objective
The studies reviewed in the previous section highlight a wide range of objectives and parameters

that can be considered in seeking optimal building forms. Yet, most results concur to the fact that
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reducing the external building surface, while increasing its internal volume, leads to lower energy

consumption and a mitigation of related environmental impacts. Building on this simple but

important observation, the main objective of this work has been to analytically derive a

dimensionless factor to enable measurements of the extent to which variations of the geometric

form affect the relationship between external surface area and the internal volume of building

shapes. As such, the objective is aimed at providing a tool (suited to a broad range of

stakeholders, such as designers, urban planner and policy makers) to help achieve a more

sustainable use of resources and space. In this work, we refer, for sustainable development, to a

passage from the Brundtland’s report ( p. 9) which frames it as ‘a process of change in which the
exploitation of resources, the direction of investments, the orientation of technological development, and
institutional change are made consistent with future as well as present needs.’ [48]. From this

definition, this article is primarily focused on two of the defined elements above. Firstly, it

considers the exploitation of resources, both as materials used in the building envelope as well as

fossil fuels and/or renewable energy technologies for the energy demand in the operational

phase of buildings. Secondly, it aims to orient design therefore addressing the technological

development of today’s and tomorrow’s built environment.
pen
sci.6:181265
4. Analysis
A common approach adopted to quantify the relationship between the external surface area (S) of a

building—or any other three-dimensional-solid—and its hosted internal volume (V) is to look at the

ratio S/V [49,50], therefore preferring building forms scoring a low ratio as an indicator of high

compactness. An important limitation, however, of the surface area-to-volume ratio is that such a

parameter is not scale-independent, meaning that two building forms with the same exact shape (let

say, a cube) but different size, will inevitably result in two different S/V ratios. More precisely, for a

given geometric shape, the bigger the volume being considered, the smaller the ratio S/V becomes.

Such a scale-dependency of S/V (also known as the square-cube law [51]) makes the surface area-to-

volume ratio of little use for comparative shape analyses. When designing two-dimensional-driven

building spaces, for instance, the total internal floor area (Atot) to be realized is usually known a priori,
and so the building internal volume:

V ¼ hAtot, (4:1)

(where h ¼ inter-storey height) therefore, the designer’s task would be to compare alternative building

shapes that match the given internal floor area (and hence volume) while reducing the required

envelope surface area (S).

A new, dimensionless, factor is introduced here to consistently quantify the degree of compactness of

building forms only as a function of their shape, thus regardless of their size (and volume). Applicability

of such a compactness factor is limited to rectangular building forms. However, this limitation should not

prevent the theoretical results presented here from finding a useful application in real design practice,

given that the vast majority of buildings fall within this category [52].
4.1. Preliminaries
Given a generic three-dimensional building form, we consider V its internal volume, S its external surface

area and Smin the minimum amount of external surface area required to enclose the given volume V.

A (dimensionless) compactness measure of the building form can be safely taken as the ratio S/Smin.

In such a case, the degree of compactness will be inversely proportional to the value of the ratio, with

optimal (maximum) compactness achieved when S/Smin is at its minimum, i.e. when S/Smin ¼ 1. The

problem thus consists of defining a reference value for Smin, or more precisely, to find a function

Smin(V ) so that, for a given three-dimensional building shape with volume V, the corresponding ratio

S/Smin(V ) can be computed.

Ideally, the sphere is the three-dimensional shape with minimum external surface area (Ssphere) for a

given volume V ¼ Vsphere, and therefore it makes perfect sense to derive Smin(V ) by looking at the

relation between Ssphere and Vsphere. In this case we would have:

Ssphere ¼ 4pR2 and Vsphere ¼
4

3
pR3, (4:2)
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B = rLL

Figure 1. Cuboid-like building shape, parametrized in terms of footprint aspect ratio (r) and slenderness aspect ratio (k).
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with R being the sphere radius. Inserting the second equation (4.2) into the first equation (4.2), then

rearranging, we obtain:

Ssphere ¼ 4p 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Vsphere

4p

� �2
s

¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36pV2

sphere

q
: (4:3)

Remembering that Ssphere is the minimum surface to envelop a generic volume V, the degree of

optimality of the generic surface S which wraps V can be captured by the following expression of

compactness measure:

S
Smin

¼ S
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36pV2
p : (4:4)

Equation (4.4) is useful—and usable—to assess the degree of compactness of building forms regardless of

their actual size. Yet, such a compactness ‘score’ would only tell us how ‘far’ from the (theoretically

optimal) spherical shape a certain building form is. It would certainly be more useful to draw some

general relationships between characteristic parameters defining the shape of buildings (e.g. in terms

of footprint aspect ratio and/or slenderness ratio) and their effect on compactness.
4.2. Cuboid-like shapes
Neglecting spherical shapes, the geometric domain to derive a reference value for Smin can be limited to

rectangular parallelepiped box shapes (also known as cuboids). In this case, the minimum surface area—

excluding the part of the surface in contact with the ground—required to enclose a given volume V is:

Smin(V) ¼ 3 3
ffiffiffiffiffiffiffiffi
4V2
p

: (4:5)

Proof. Let us consider a generic cuboid having width ¼ L, depth ¼ B and height ¼ H, thus its shape

can be expressed in terms of footprint aspect ratio (r) and slenderness aspect ratio (k) as follows (see

figure 1):

B ¼ rL and H ¼ kL, (4:6)

which yields the following expressions for S and V:

S ¼ rL2 þ 2rLH þ 2LH and V ¼ rL2H: (4:7)

Note: the part of the external surface in contact with the ground has not been considered in the first

equation (4.7). In order to demonstrate equation (4.5), we are first going to determine for what value

of footprint aspect ratio (r) the surface area (S) is minimized. From the second equation (4.7), we have:

L ¼
ffiffiffiffiffiffi
V
rH

r
, (4:8)

which inserted into the first equation (4.7) enables us to express the surface area as a function of volume,

height and footprint aspect ratio:

S(V, H, r) ¼ V
H
þ 2H

ffiffiffiffi
V
H

r
r1=2 þ 2H

ffiffiffiffi
V
H

r
r1=2

r
: (4:9)
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For a given V and H, the value of r such that S is minimized can be found by setting the partial derivative

of S with respect to r as equal to zero:

r �! @S
@r
¼ 0, (4:10)

where:

@S
@r
¼ H

ffiffiffiffi
V
H

r
r�1=2 þ 1

r2
H

ffiffiffiffi
V
H

r
r�1=2r� 2H

ffiffiffiffi
V
H

r
r1=2

 !
¼ 0, (4:11)

which rearranged becomes:

Hffiffi
r
p

ffiffiffiffi
V
H

r
1þ 1

r
� 2

r

� �
¼ 0: (4:12)

Multiplying both sides of equation (4.12) by
ffiffiffiffiffiffi
rH
p

=(H
ffiffiffiffi
V
p

) gives:

1

r
� 1 ¼ 0, (4:13)

which has solution r ¼ 1, meaning that the surface area is minimized when the building footprint is a

perfect square. Indeed, this holds true for any volume and, most important, for any given height.

Therefore, by setting r ¼ 1 in equation (4.9):

S(V, H) ¼ V
H
þ 4

ffiffiffiffi
V
p

H1=2, (4:14)

the value of H such that the external surface is minimized can be found by setting the partial derivative of

S(V, H ) with respect to H as equal to zero:

H �! @S
@H
¼ 0, (4:15)

where:

@S
@H
¼ � V

H2
þ 2

ffiffiffiffi
H
p

H1=2
¼ �V þ 2

ffiffiffiffi
V
p

H3=2

H2
¼ 0, (4:16)

which rearranged becomes:

2
ffiffiffiffi
V
p ffiffiffiffi

H
p

H ¼ V, (4:17)

providing the following value for H:

H ¼ 3

ffiffiffiffi
V
4

r
: (4:18)

The height H can now be expressed as a function of the building width L. Remembering that the optimal

footprint aspect ratio is equal to 1, inserting the second equation (4.7) into equation (4.18) we have:

H3 ¼ V
4
¼ L2H

4
) H ¼ L

2
: (4:19)

Therefore, for any given volume V, the minimum surface area Smin for a cuboid is obtained when r ¼ 1 and

H ¼ L/2, which corresponds to the shape of a semi-cube. For such conditions equation (4.7) becomes:

S ¼ 3L2 and V ¼ L3

2
, (4:20)

and therefore the expression of minimum surface area (4.5) can be obtained by inserting the second

equation (4.20) into the first equation (4.20). A

A compactness measure alternative to equation (4.4) can now be derived from equation (4.5) as

follows:

S
Smin

¼ S
12V

3
ffiffiffiffiffiffiffiffiffi
16V
p

: (4:21)



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181265
7
4.3. Parametric study

In order to analyse how the footprint aspect ratio (r) and slenderness ratio (k) affect the compactness (S/

Smin) of cuboid-like building shapes, we first need to express the external surface area S as a function of r
and k. Inserting the second equation (4.6) into equation (4.9) we have:

S(V, r, k) ¼ V
kL
þ 2Lkffiffiffi

k
p

ffiffiffiffiffiffi
Vr
L

r
1þ 1

r

� �
where L ¼ 3

ffiffiffiffiffi
V
rk

r
, (4:22)

which rearranged in a more compact form becomes:

S(V, r, k) ¼ 3
ffiffiffiffiffiffi
V2
p

3

ffiffiffiffiffi
r
k2

r
þ 2 3

ffiffiffiffiffi
rk
p

1þ 1

r

� �� �
, (4:23)

and divided by Smin, as from equation (4.5), leads to the sought relationship between compactness and

building shape parameters (r and k):

S
Smin

¼ 1

3 3
ffiffiffi
4
p 2rk þ rþ 2k

3
ffiffiffiffiffiffiffiffi
r2k2
p

� �
: (4:24)

It is worth noting that the volumetric term (V) has disappeared from the right side of equation (4.24),

since the compactness metric S/Smin is indeed scale-independent. We believe that equation (4.24) has

useful implications as it enables the measurement of the degree of compactness of a building only

with regard to its shape—parametrized in terms of footprint aspect ratio and slenderness aspect ratio.

A further development of the theory, described so far for cuboid-like building shapes, concerns the

possibility to express the ratio S/V of a generic cuboid as a product between two terms:

— A scale-dependent term, b (that we call here size factor) which provides the minimum S/V ratio

achievable for any given building volume V.

— A scale-independent factor, g (called here shape factor) which accounts for any additional increase of

S/V as a result of variations of the (footprint and slenderness) aspect ratios.

In mathematical terms:

S
V
¼ Smin

V
S

Smin
¼ b(V)g(r, k), (4:25)

where b(V ) is derived by dividing the right-side term in equation (4.5) by V, whereas g(r, k) is that

already given in equation (4.24). Therefore:

b(V) ¼ 3 3

ffiffiffiffi
4

V

r
and g(r, k) ¼ 1

3 3
ffiffiffi
4
p 2rk þ rþ 2k

3
ffiffiffiffiffiffiffiffi
r2k2
p

� �
: (4:26)
5. Results and discussion
A plot of the shape factor as a function of footprint and slenderness aspect ratios has been numerically

generated and shown in figure 2. The surface function g(r, k) reaches its global minimum, g ¼ 1, when

r ¼ 1 and k ¼ 0.5—see equations (4.13) and (4.19)—i.e. when the cuboid takes the shape of a semi-cube.

The same function g is shown in figure 3, mapped in the r–k plane, where the numerical values

labelled on the level curves indicate the corresponding g value at that curve. Each level curve defines

the set of pairs (r, k)—that is to say, the set of building shapes—for which a certain compactness

(shape factor) is being achieved, therefore making such a graphical representation practically useful for

building design purposes.

A valuable insight provided by figure 3 in this regard is that, in the vicinity of the semi-cube solution

(i.e. for g � .1), the shape factor g increases at a small rate, whereas a higher rate of increase is found for g

as we move away from the optimum. For example, a shape with footprint aspect ratio r ¼ 2 and

slenderness ratio k ¼ 1 (i.e. twice the optimal values r ¼ 1; k ¼ 0.5) has a shape factor g � 1.05 (i.e. only

�5% higher than the optimal). On the other hand, a shape with footprint aspect ratio r ¼ 4 and

slenderness ratio k ¼ 2 (i.e. four times the respective optimal values) has a shape factor g � 1.26

(i.e. about 26% higher than the optimal). A practical implication of this observation is that there exists

a wide range of geometrically different shapes to choose from, which are only slightly less efficient

than the theoretically optimal semi-cube shape.
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5.1. Reciprocal footprint aspect ratios
It should be noted that for a given shape factor (level curve) there always exist two distinct pairs of

variables (r, k) representing exactly the same shape—or more precisely: one cuboid can be obtained by

applying a 908 rotation and a (uniform) scaling to the other cuboid (figure 4).

In particular, given a shape factor g*, there exist two pairs of values (r0, k0) and (r1, k1):

g� ¼ g(r0, k0) ¼ g(r1, k1), (5:1)

such that the footprint aspect ratios r0 and r1 are reciprocal:

r1 ¼
1

r0
: (5:2)

To avoid considering the same building shape twice when looking at the graph g(r, k) it is sufficient to

consider only the part of level curves for r � 1, or vice-versa, only the level curves for r � 1.
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5.2. Equivalent slenderness aspect ratios
Restricting the domain of the g(r, k) function to r � 1, it can be shown that given a value of footprint

aspect ratio r*, there exist two different values of slenderness aspect ratio k (e.g. k0 and k1) such that:

g(r�, k0) ¼ g(r�, k1): (5:3)

Meaning that for a given shape factor there exist two cuboids whose shapes only differ in terms of

slenderness. Such an equivalence between slenderness aspect ratios is graphically illustrated in figure 5.
5.3. Surface-to-volume ratio
As discussed in §§4–4.3, the surface-to-volume ratio, S/V, of cuboid-like building shapes can be

decomposed in two separate terms: a scale-dependent size factor, b (measurable in m2 m23), and a

dimensionless shape factor, g. A graphical representation of the function S/V ¼ b(V )g is provided in

figure 6, based on equation (4.26), for shape factor values ranging from 1 to 2. The plot clearly shows

that the surface-to-volume ratio decreases as the building volume increases.

It can be seen that the shape factor g has greater influence over the scale factor for smaller volumes, due

to the slope of the S/V function decreasing as the volume increases. However, in relative terms, things

are different, since for a volume of 200 m3, the minimum S/V ratio (i.e. for g ¼ 1) is 0:9 m2 m�3 which

increases by 88% for a shape factor g ¼ 2. If we consider the 5000 m3 instead, a S/V ratio of circa

0.3 m2 m23 is found for g ¼ 1, which increases by 100% when a shape factor g ¼ 2 is assumed.
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6. Case studies
To demonstrate the practical usefulness of the metric developed, we have utilized a number of case

studies. Following the same order in which the theoretical and mathematical findings have been

presented, we start by focusing on buildings with any given shape and show how to use the shape
factor g. This is graphically shown in figure 7. Seven buildings in London and Edinburgh have been

chosen that would constitute a good mix of different shapes and sizes. Details of the location for each

building are provided in the figure, and basic geometric characteristics have been obtained from GIS

data and then post-processed to calculate surfaces and volumes.

The building on the far left-hand side of the figure was intentionally chosen to (1) demonstrate the

existence of buildings with highly optimal forms and to (2) serve as a reference benchmark for other

building shapes. Moving from left to right, it can be seen how the shape factor increases leading to

forms with values that are very far from optimality. It is not hard to imagine that during the initial

design stages of these six buildings—which are incidentally all placed in areas that would have

allowed slightly different footprints—the information on the degree of the (un)optimality of the shape
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could have driven the design team towards better forms while providing the same function (i.e. floor area

or internal volume).

We want to further demonstrate the usefulness of our metric in the case of both domestic and non-

domestic buildings that fall within the cuboids category. These case studies have also been retrieved and

measured through GIS data. Figure 8 shows three examples of domestic buildings (blocks of flats) with

varying degrees of a shape factor. Being cuboids, it is now possible to precisely place them in the r–k plane

(figure 3). Case study (c) in figure 8 has a much better form than (a) and (b). Similarly to the case of the

buildings shown in figure 7, knowing the exact g at the design stage would have allowed us to drive

design efforts towards a better form, closer to optimality. In this case, however, the exact information

on where each building sits in the r–k plane also enables us to understand which ‘interventions’

would be beneficial. For the case study (c), for instance, a reduction in the value of r would have

moved the building onto a curve level characterized by a lower g value. It is worth noting that this is

not true for the case studies (a) and (b) as they belong to the region of the r–k plane where level

curves are increasing towards their peak of k. For buildings (a) and (b) it would have been necessary

to reduce the slenderness ratio (k) to move them on to the adjacent level curve characterized by a

lower g value.

A similar application of our metric in the case of non-domestic buildings is shown in figure 9. Case

study (c) is the very optimal building already shown in figure 8, whereas (a) and (b) are two non-

domestic buildings located in Edinburgh. Contrary to what was shown in figure 8, in this specific

case, a reduction of the footprint aspect ratio (r) would have been beneficial to both buildings.

However, a reduction of k would have been beneficial to building (a) only since building (b) is in an

area of the r–k plane where a reduction of k would have moved the building onto the adjacent level

curve which is characterized by a higher g value.

We have therefore shown that, with simple information and basic calculations which are

instantaneous in contemporary digital design tools, it is possible to grasp a quick understanding of
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the optimality of a built form. This metric can be useful for buildings of any given shape (figure 7) as well

as cuboids (figures 8 and 9). In the latter case, our metric provides much richer information since it

allows us to place the building on an exact point of the r–k plane, making the variations of the design

of the building form that would be beneficial instantly recognisable.
7. Implications for research and practice
While the aim of this work has been mainly theoretical, some implications for both research and practice

have arisen. On the research side, it appears that the current focus on greater operational efficiency of

buildings as well as the materials employed neglects the importance of the building shape itself for

the overall whole-life impact of buildings. Sustainability-oriented research could therefore move to a

more holistic approach where the level of analysis goes from single materials, components or life cycle

stages to a comprehensive assessment of the building as a whole.

Practically, the scale-independent metric developed here can provide support to real-world

building design as we have shown in the case studies section. For instance, many ( parametric

modelling based) software tools can now calculate surfaces and volumes of any arbitrarily

complex shape. Yet, this information is not then used to understand how far from a theoretical

optimality that particular shape is. Our proposed (scale-independent) compactness measure can be

easily programmed into such software tools, to instantly provide information on the optimality of

the shape at hand and suggest potential directions (e.g. increased slenderness or increased

footprint) in order to reduce the whole-life energy/carbon/resource impacts. We have also shown

the possibility of utilizing our metric for non-cuboidal shapes, again as a rapid ‘feeler’ for the

goodness of any building shape. We want to stress that our intention is not to prescribe design or

reduce freedom and creativity, but rather to enable more awareness of choices made at the design

stage and increase consciousness of their implications.
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8. Conclusion

In this work, we have investigated the relationships between the envelope surface and the indoor spaces

in buildings to establish which forms embed inherent sustainability. In doing so, we have considered the

envelope surface (walls plus roof) as the key element to define buildings’ shapes, for it is the main cause

of thermal transfer with the outdoors—thus creating energy demand and carbon emissions—and it also

requires a substantial amount of materials produced form finite natural resources, that are often replaced

multiple times throughout a building’s service life.

Under the realistic assumption that most buildings are rectangular, we have analytically

demonstrated which is the optimal form that minimizes the envelope surface, that is a semi-cube.

Given that a single form is of little use in practice, we have used that as a benchmark to develop a

scale-independent metric (shape factor) to measure the compactness of building forms as a function of

their shape—parametrized in terms of footprint and slenderness aspect ratios.

In practice, this materializes into a useful tool to quantify, and thus understand, how much a given

building form deviates from a theoretical optimality, regardless of its size. Additionally, our graphic tool

could also point towards alternative forms that are instead closer to optimality.

We have demonstrated that the surface-to-volume ratio of any building can be expressed by a product

of two distinct parameters: a scale-dependent term (what we called a size factor) and a scale-independent

term (the shape factor).

While this article is chiefly theoretical in nature, its findings can support the design process of

buildings, particularly at early stages when the room for improvement is at its maximum with little or

no extra cost. By being able to quantitatively measure the degree of optimality of building forms, it is

hoped that future designs will take this into account and contribute towards a greater sustainability of

our built environments. We have demonstrated the practical usefulness of our metric in a number of

case studies of real buildings.

The findings from this paper also constitute a valuable theoretical basis for further research. We have

limited our investigation to the envelope surface, for it is a recognized key element that drives energy

consumption and carbon emissions in buildings. However, there are certainly other factors that can

play an additional role in the overall performance of a building. These could be taken into account in

future works, to understand how optimality changes when more criteria are factored in.
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