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Abstract 

 

The complex integral method for solving ordinary differential equations in series 

[3, 7, 8] is extended to cover the series solution of partial differential equations 

also. The means of this extension is straightforward, with both ‘ordinary’ and 

‘Frobenius’ multiple variable power series being dealt with. Standard examples of 

the application of the extended method(s) to first-order, second-order, third-order 

and simultaneous partial differential equations are provided throughout. Examples 

also include the series solution of a non-linear partial differential equation and the 

consideration of series solutions with negative powers. 
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1. Introduction 
 

In this paper we extend the application of the complex integral method for solving 

ordinary differential equations (ODE) in series [3, 7, 8] to cover the power series 

solution of partial differential equations (PDE) also. The means of this extension,  
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from the single independent variable to the several independent variables case, is 

quite straightforward, as we simply apply the procedure variable by variable to the 

particular assumed multiple variable series format in each case, with both the 

‘ordinary’ and ‘Frobenius’ multiple variable series being dealt with. The method, 

as it is developed, is used to provide series solutions to first-order, second-order 

and third-order PDE and, in addition, we consider the solution of simultaneous 

PDE. As an added point of interest, we extend the method, when required, to the 

consideration of series solutions with negative powers. 

      There are, of course, certain differences when we enter the realm of PDE. For 

a start, it is of the nature of the complex integral method to produce particular 

solutions [7, 8]. Also, there is the problem of accounting for boundary or initial  

conditions; these must be dealt with in a manner consistent with the complex 

integral method itself. In addition to these general points, there is the practical 

difficulty that the recurrence relations determining the coefficients of the series 

solutions will be multi-variable and multi-term. And, then, if a series solution is 

possible, there is the ever-present (multi-variable) convergence problem. These 

points aside, the actual ‘mechanics’ of the solution process remains the same as in 

the ODE case: the PDE is effectively replaced by a system of (uncoupled) simple 

equations in one (discrete) variable, through a purely formal process. 

      The paper is organized as follows. In section 2 we develop the complex 

integral method for the solution in series of PDE in two independent variables 

about two ordinary points. This is followed, in section 3, by some standard 

examples of first-order PDE, including a nonlinear PDE and simultaneous PDEs 

in two independent variables, while, in section 4, we solve some standard 

examples of second-order PDE in two independent variables. In section 5 we 

develop the complex integral method for the solution of PDE in series with three 

independent variables and apply it to obtain a particular solution of Laplace’s 

equation. The complex integral method for solution in series of PDE with two 

independent variables is itself extended, in section 6, to the case of Frobenius 

series in two independent variables, including the case of PDE where a series 

solution with negative powers is required, and used in the solution of certain 

standard examples. The paper is rounded-off with a short conclusions and 

discussion section, section 7. 

 

2. The Basic Formalism for Two Independent variables 
 

When seeking series solutions to ODE, using the complex integral method [3], we  

consider that the solution )(zf  may be expressed as an infinite series about an 

ordinary point, ,0z  of the form [4] 
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with C  an appropriate closed contour [3] and where, following Ince [4], we write 
 

                                  )1()2)(1(][  kmmmmm k                                 (2.3) 
 

where ,,3,2,1,  kkkkm  and .,3,2,1,0 k  

      When seeking to extend the complex integral method to PDEs, it is necessary 

to apply the basic complex integration process, successively, variable by variable. 

To see how this works, suppose that we seek a series solutions to a PDE with two  

variables, that is, we assume that the solution of our PDE, ),,( 21 zzf  may be 

expressed as an infinite series about two ordinary points, 01z  and ,02z  of the form 
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and ),,(),( 2121
)0,0( zzfzzf   we can differentiate (2.3) to get 
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Finally, dividing through (2.6b) by 
1

022
1

011 )()(   nkm zzzz  and integrating 

round appropriate closed contours, 2C  and ,1C  with respect to 2z  and then ,1z  we 

find that 
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where (2.6) follows from the standard result [7] that, if   is an integer and 1ˆ2 i  
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where z  is a complex variable and 0z  a fixed point within the closed contour .C  

Looking back, we see that ,,3,2,1,  kkkkm .,3,2,1,0 k  and 

,,3,2,1,  n .,3,2,1,0    

      Apparently, if we have higher-order (than second-order) PDE, the formula 

(2.7) expands accordingly, in an obvious manner (see section 5 below). 

      With PDE, the boundary or initial conditions play an active role in the solution 

process and it will prove necessary, following [2, 5, 6], to transform the boundary 

or initial conditions along with the PDE. To do this we assume that the boundary 

or initial conditions are analytic functions of the variables and use the complex 

integral formulas (2.2) or (2.7) or their logical extension (when necessary) to 

transform them along with the PDE. As mentioned, this process follows [2, 5, 6] 

and becomes more transparent as the examples presented below are worked-

through. 

      Before we move-on to the next section, it is convenient, at this point, to recall 

the definition of the Kronecker delta function, which we write in our notation as 

,, ji  with 
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The Kronecker delta function plays a not insignificant role in what follows. 

 

3. First-Order PDE with Two Independent Variables 

 

In this and the following section, we present a number of examples, including 

some from the literature involving the differential transform method, which acts 

as benchmark or comparison for the current method, involving PDE with two 

independent variables. We transform the original notations into the standard 

notation we have introduced above and assume, henceforth, that .00201  zz  

      For our first example, we consider the first-order linear PDE [2] 
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We now divide through (3.1) by 
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 ji zz  and integrate round appropriate closed 

contours, 2C  and ,1C  with respect to 2z  and then ,1z  to get (using (2.8)) 
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The next step is to compare the integrands of (3.3) with the general result (2.7), 

when we find that (3.3) is transformed into  
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or, from (2.7) and (3.2) 
 

                                           00, ia   and  0,0 ja                                              (3.6) 

 

With (3.4) and (3.6) we have effectively recovered the solution of Chen and Ho 

[2], and it is a straightforward matter to check that (by mathematical induction) 
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and 0, jia  otherwise, so that the solution of (3.1) subject to (3.2) is 
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      For our next example, we consider the first-order nonlinear PDE [5] 
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We now divide through (3.9) by 
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 ji zz  and integrate round appropriate closed 

contours, 2C  and ,1C  with respect to 2z  and then ,1z  to get (using (2.4)) 
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Comparing the integrands of (3.11) with the general result (2.7), we find that 

(3.11) is transformed into  
 

                            0)1()1(
0 0

,1,1,  
 



j

s

i

r

sjrisrji ariaaj                    (3.12) 

 

Meanwhile, from the conditions (3.10a) we get 
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and condition (3.10b) is then an identity. Substituting (3.13) into (3.12), we find 

that 
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so that, on combining (3.13) and (3.14), the solution of our difference problem 

(3.12) with (3.13) is 
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Finally, from (3.15) the solution of (3.9), subject to the conditions (3.10), is 
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in agreement with Jang et al [5] (and (3.9) and (3.10)). 

      The complex integral method may be applied to systems of PDE with equal 

facility as its application to individual PDE. Consider the following system of 

first-order PDE [6] 
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      The complex integral method is applied as above. Starting with (3.17a) and 

(3.17b), we divide through by ,
1

2
1

1
 ji zz  integrate round appropriate closed 

contours, 2C  and ,1C  with respect to 2z  and then ,1z  and then compare the 

resulting integrands with the general result (2.7), when we find that equations 

(3.17a) and (3.17b) are transformed into  
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integrand with the general result (2.7), when we find that equations (3.18a) and 

(3.18b) are transformed into  
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Equations (3.19) and (3.20) correspond to equations (7) to (10) of Ravi Kanth and 

Aruna [6], so that the solutions of equations (3.17a) and (3.17b), subject to the 

conditions (3.18a) and (3.18b), are [6] 
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4. Second-Order PDE with Two Independent Variables 

 

In the theory of PDE the equation 
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plays a role analogous to the defining equation for the exponential function in the 

theory of ordinary differential equations (ODE) [1]. As our first problem in this 

section, we seek a solution of (4.1) about the origin, subject to (4.2), using the 

complex integral method.  
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The next step is to compare the integrands of (4.3) with the general result (2.7), 

when we find that (4.3) is transformed into  
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so that the solution of (4.1), subject to (4.2), is (as is well known) 
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   For our second problem, we solve the diffusion equation 
 

                                       0),(),( 21
)1,1(

21
)1,0(  zzfzzf                                    (4.8) 

 

subject to the condition that 
 

                    












 











2
sin

!)!12(

)1(
)sin()0,(

0

1

0

12
1

11
)0,0( i

i

z

i

z
zzf

i

i

i

ii

                      (4.9) 

 

      Again, the complex integral method is applied (4.8) and (4.9) and we find that 

equations (4.8) and (4.9) are transformed into  
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respectively. Now, if we solve (4.10) subject to (4.11), we find that we get the 

coefficients in the expansion of ),( 21
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so that, the solution of (4.8) subject to (4.9) is 
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Naturally, we can obtain the solutions of the last two examples by separation of 

variables, a much easier proposition in these cases. 

      Our third example [2] involves the solution of the second-order PDE 
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Once again, the next step is to compare the integrands of (4.16) with the general 

result (2.7), when we find that (4.16) is transformed into  
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or, from (2.8) and (4.15) 
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2121 3),( zzzczzzzf                                   (4.20) 
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      For our last example in this section, following [2] again, we consider the 

second-order PDE 
 

                       121
)0,0(

121
)0,2(

21
)2,0( ),(),(),( zzzfzzzfzzf                     (4.21) 

 

subject to the conditions 
 

                0)0,(
0

10,1
)0,0( 



i

i
i zazf   and  0)0,(

0

11,1
)1,0( 



i

i
i zazf            (4.22) 

  

Following the previous procedure, we find that (4.21) and (4.22) transform into 

the difference equation 
 

                   0,1,,21,2, )1)(2()1)(2( jijijiji aaiiajj                (4.23) 

 

subject to the conditions that 
 

                                               00, ia   and  01, ia                                         (4.24) 

 

It is straightforward to check that the first few nonzero coefficients are  

 

                                   ,
2

1
2,1 a  

120

1
6,1 a  and 

24

1
4,3 a                                (4.25) 

 

in agreement with [2] again, so that the first few terms of the solution of the initial 

value problem (4.21)/(4.22) are [2] 
 

                                    
120242

),(
6
21

4
2

3
1

2
21

21

zzzzzz
zzf                              (4.26) 

 

5. Second-Order PDE with Three Independent Variables 

 

We assume that the solution, ),,,( 321 zzzf  of our PDE with three independent 

variables may be expressed as an infinite series about three ordinary points, ,01z  

02z  and ,03z  of the form 
 

                













0 0 0

033022011,,321 )()()(),,(
i j l

lji
lji zzzzzzazzzf            (5.1) 

 

Then, with 

                                





321

321
321

),,( ),,(
),,(

zzz

zzzf
zzzf

kh

kh
kh








                             (5.2) 
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and ),,,(),,( 321321
)0,0,0( zzzfzzzf   we can differentiate (5.1) to get 

 














 
hi kj l

lkjhi
jikh

kh zzzzzzaljizzzf





 )()()(][][][),,( 033022011,321
),,(                 

                                                                                                                     ---------- (5.3a) 

or 
 

   



   pknhm

pnmkh
kh zzzzzzapnmzzzf )()()(][][][),,( 033022011,,321

),,(
 

         












 
mhi nkj pl

lkjhi
jikh zzzzzzalji




 )()()(][][][ 033022011,    (5.3b) 

 

Finally, dividing through (5.3b) by  

 

                                     
1

033
1

022
1

011 )()()(   pknhm zzzzzz   

 

and integrating round appropriate closed contours, ,3C 2C  and ,1C  with respect to 

,3z  2z  and then ,1z  we find that 
 

        
1 2 3

1
033

321
),,(

31
022

11
011 )(

),,(

)(

1

)(

1

C C C
l

kh

knhm zz

zzzf
dz

zz
dz

zz 



 

                                                                      pnmkh apnmi ,,
3 ][][][)ˆ2(           (5.4)          

 

where (5.4) follows from the standard result (2.8). Equation (5.4) is a straight-

forward generalization of equation (2.7).  

      We restrict ourselves to the single example of solving a PDE with three 

independent variables; we consider Laplace’s equation 
 

               0),,(),,(),,( 321
)2,0,0(

321
)0,2,0(

321
)0,0,2(  zzzfzzzfzzzf            (5.5) 

 

subject to the condition 
 

                                                    1)0,0,0()0,0,0( f                                            (5.6) 
 

As before, we now take ,0030201  zzz  and following the basic method, we 

divide through (5.5) by 1
3

1
2

1
1

 lnm zzz , and integrate to get 
 

               

1 2 3

1
3

321
)0,0,2(

31
2

11
1

),,(11

C C C
lnm z

zzzf
dz

z
dz

z
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                       


1 2 3

1
3

321
)0,2,0(

31
2

11
1

),,(11

C C C
lnm z

zzzf
dz

z
dz

z
 

                               0
),,(11

1 2 3

1
3

321
)2,0,0(

31
2

11
1

    
C C C

lnm z

zzzf
dz

z
dz

z
               (5.7) 

 

which, on comparison with (5.4), reduces to 
 

           0)1)(2()1)(2()1)(2( 2,,,2,,,2   ljiljilji allajjaii        (5.8) 

 

Now, from (5.1) we see that (5.6) becomes 
 

                                                          10,0,0 a                                                    (5.9) 

 

and, by inspection, we see that the solution of (5.8), subject to (5.9), is 
 

                                        ,3,2,1,0,,   ,
!

1

!!

1

   
,,  lji

lj

i

i
a lji                              (5.10) 

 

and recognize, via (5.1), that the solution of (5.5), subject to (5.6), is 
 

                                              321
321 ),,(

zzz
ezzzf


                                      (5.11) 

 

As in two previous examples, the solution (5.11) of (5.5), subject to (5.6), is a 

variable separable solution. 

 

 

6. Solution of PDE Using Frobenius Series 

 

In this section we consider the extension of the complex integral method to the 

solution of PDE in two independent variables through (initially) the assumption 

that the solution of the PDE has the form of a ‘double’ Frobenius series, that is 
 

                              








 
0 0

022011,21 )()(),(
i j

sjri
ji zzzzazzf                    (6.1) 

 

where, by an analogous argument to that of section 2, we find that 
 

nmk

C C
sn

k

krm
asnrmi

zz

zzf
dz

zz
dz ,

2

1 2

1
022

21
),(

21
011

1 ][][)ˆ2(
)(

),(

)(

1







  
  (6.2) 
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      As a first example of this approach to the solution of PDE, we consider, again 

equation (4.1) [1] (written slightly differently)        
 

                                          ),(),( 21
)0,0(

21
)1,1( zzfzzf                                       (6.3) 

 

Applying the usual integration approach with ,00201  zz  but dividing (6.3) by 

1
2

1
1

 sjri zz  this time, we integrate through (6.3) to get 
 

                    


1 2

1
2

21
)0,0(

21
1

1

1 2

1
2

21
)1,1(

21
1

1 ),(),(

C C
snrm

C C
snrm z

zzf
dz

z

dz

z

zzf
dz

z

dz
         (6.4) 

 

which, on comparison with (6.2), reduces to 
 

                                          jiji aasjri ,1,1)1)(1(                               (6.5a) 

or 

                                               1,1,))((  jiji aasjri                                  (6.5b) 

 

Equation (6.5b) is the recurrence relation for our assumed Frobenius series 

solution (6.1). To get the associated indicial equation, we set 0 ji  in (6.5b) 

and, with ,00,0 a  we see that the indicial equation for (6.3) is 
 

                                                                0rs                                                  (6.6) 
 

so that either 0 sr  (covered already), or 0r  while s  is arbitrary, or 0s   

while r  is arbitrary. Following [1], we may take it that the general solution will, in 

some way, follow as a linear superposition of all three possible solution types. As 

we have considered the 0 sr  case already, we look next at the 0s  while r  is  

arbitrary case. From (6.5b) with ,0s  we get 
 

                                                     
jri

a
a

ji
ji

)(

1,1
,





                                                (6.7) 

 

so that we get the first few coefficients, recursively, as 
 

                          ,0,0a   ,
1).1(

0,0
1,1

r

a
a


   ,

2.1).2)(1(

0,0
2,2

rr

a
a


                   (6.8)   

                      

      At this point we are at liberty to choose particular forms for 0,0a  and ,r  so we 

follow Chaundy [1] and choose ,
1

0,0

a
a

r   when (4.8) becomes 
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                        ,
1

a
  ,

1).1(

1
1,1




aa
a   ,

2.1).2)(1(

1
2,2




aaa
a                   (6.9) 

 

and the first few terms of a particular solution of (6.3) are then 
 

                       








2.1).2)(1(1).1(
),(

2
2

2
12

1
11

21
aaa

zz

aa

zz

a

z
zzf

aaa

a                   

(6.10) 
 

      When we consider the other option, with 0r  while s  is arbitrary, we get a 

(third) series which, on choosing ,
1

0,0

b
a

s   can be written as  

 

                       








)2)(1(.2.1)1(.1
),(

2
2

2
1

1
212

21
bbb

zz

bb

zz

b

z
zzf

bbb

b                     (6.11) 

 

It follows that linear superposition of (4.7) ( 0 sr ), (6.10) and (6.11) will 

produce a more general solution of the linear PDE (6.3).  

      Sometimes we require a Frobenius series with decreasing powers [1], for 

example 
 

                             








 
0 0

022011,21 )()(),(
i j

sjri
ji zzzzazzf                  (6.12) 

 

where, by an analogous argument to that of section 2, we find that 
 

 nmk

C C
sn

k

krm
asnrmi

zz

zzf
dz

zz
dz ,

2

1 2

1
022

21
),(

21
011

1 ][][)ˆ2(
)(

),(

)(

1







  
  

                                                                                                                                     ---------- (6.13) 

      As an example of the application of (6.12) and (6.13), we consider, again, the 

diffusion equation 
 

                                        0),(),( 21
)0.2(

21
)1,0(  zzfzzf                                (6.14) 

 

Dividing through (6.14) by 
1

2
1

1
 sjri zz and integrating through as usual we find 

that (6.14) becomes 
 

             0
),(),(

1 2

1
2

21
)0,2(

21
1

1

1 2

1
2

21
)1,0(

21
1

1     
C C

sjri
C C

sjri
z

zzf
dz

z

dz

z

zzf
dz

z

dz
       (6.15) 

 

which equation, on comparison with (6.13), reduces to the recurrence relation 
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                               1,,2 )1()1)(2(   jiji asjariri                    (6.16a) 

or 

                                 1,2, )1()1)((  jiji asjariri                       (6.16b) 

 

Setting 0 ji  in (6.16b), we get, with ,00,0 a  the indicial equation  
 

                                                         0)1( rr                                               (6.17) 
 

so that 0r  or ,1r  with s  arbitrary. To get the first series solution to (6.14), we 

set 0r  in (6.16b) and, with ,10,0 a  we solve (6.16b) recursively find that the 

first few terms of the first solution (6.12) to (6.14) are 
 










  3
2

6
1

 

2
2

4
1

 

1
2

2
1

 
221

!6

)2)(1)((

!4

)1)((

!2

)(
)( ssss zz

sss
zz

ss
zz

s
z,zzf

                                                                                                            ---------- (6.18) 
 

with the full series being given by Chaundy [1]. Similarly, to get the second  

Frobenius series solution to (6.14), we set 1r  in (6.16b) and, with ,10,0 a  we  

solve (6.16b) recursively find that the first few terms of the second solution (6.12) 

to (6.14) are 
 










  3
2

7
1

 

2
2

5
1

 

1
2

3
1

 
2121

!7

)2)(1)((

!5

)1)((

!3

)(
)( ssss zz

sss
zz

ss
zz

s
zz,zzf

                                                                                                            ---------- (6.19) 
 

with (again) the full series being given by Chaundy [1], who also exposes the 

relationship between the two series (6.18) and (6.19). 

 

 

 

7. Discussion and Conclusions 

 

Herrera’s complex integral method appears to have sufficient flexibility to enable 

its generalization to the production of (power) series solutions to most types of 

differential equation. The extension processes appear ‘natural’ and the overall 

(formal) simplicity of the ‘reduction’ of the original equation or equations to a 

system of uncoupled simple equations in one variable is maintained throughout 

the various types of extension. The three main problems of the method, con-

vergence of the series, solution of the recurrence relation and the provision of 

particular solutions only, are endemic to the power series approach anyway, and 

are shared by all other power series approaches to the solution of differential 

equations, for example, the differential transform method [2, 5, 6]. 
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      Many of the examples considered here were taken from papers using the 

differential transform method of solution of differential equations [2, 5, 6]. While 

both the differential transform method and the complex integral method yield the 

same answers in the situations where the differential transform method applies, 

the complex integral method is, I feel, easier to use, the methodology springing, as 

it does, from the general properties of the (complex) integral, as well as the basic 

integral ‘Herrera’ results (2.2), (2.7) and so on. In addition, the complex integral 

method generalizes, in an obvious manner, to encompass solutions of PDE 

inFrobenius series and series with negative powers. Indeed, Herrera’s complex 

integral representation of the derivative of a function [3] seems like a natural 

generalization of the basic idea of the differential transform concept also. 

 

      Some general remarks on the applications considered above seem appropriate 

at this point in the discussion. First, the conditions accompanying the PDE that we 

solved in sections three to six were all quite simple, with the problems all being 

initial value problems. As shown in Jang et al [5], who apply the differential 

transform method, boundary value problems are amenable to the series methods 

considered here as well. Secondly, the complex integral method is quite capable 

of handling PDE with an arbitrary number of independent variables and general-

order derivatives. The generalization of the formulae presented here is quite 

straightforward, as we have already pointed out. Thirdly, when tackling PDE it 

may often be the case that a search for similarity variables will prove fruitful. For 

example, in solving the diffusion equation, (6.14), in section 6, it is useful to 

know of the existence of the similarity variable 12 / zz  or, as was actually 

assumed, ./ 1
2
2 zz   

 

      In conclusion, we have extended the complex integral method for solving 

ordinary differential equations in series [3, 7, 8] to cover the series solution of 

partial differential equations also. We have presented examples of the application 

of the extended method(s) to first-order, second-order, third-order, non-linear and 

simultaneous partial differential equations. Examples [1] involving the Frobenius’ 

series solution of PDE, including the consideration of series solutions with 

negative powers, were also presented. A brief comparison with the differential 

transform method [2, 5, 6] has been given and the possibility of further 

applications of the complex integral method mentioned. 
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