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Abstract 

 

The theory of series solutions for second-order linear homogeneous ordinary 

differential equation is developed ab initio, using an elementary complex integral 

expression (based on Herrera’ work [3]) derived and applied in previous papers 

[8, 9]. As well as reproducing the usual expression for the recurrence relations for 

second-order equations, the general solution method is straight-forward to apply 

as an algorithm on its own, with the integral algorithm replacing the manipulation 

of power series by reducing the task of finding a series solution for second-order 

equations to the solution, instead, of a system of uncoupled simple equations in a 

single unknown. The integral algorithm also simplifies the construction of 

‘logarithmic solutions’ to second-order Fuchs, equations. Examples, from the 

general science and mathematics literature, are presented throughout. 
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1.  Introduction 
 

In this paper, we continue the project [8, 9] of developing power series and 

Frobenius series solutions of ordinary differential equations (ODE) using a 

particular complex integration procedure. As before we find that the technique 

reduces the solution of the original ODE, through a complex integral trans-

formation, to a system of simple equations for the indices of the series coefficients 

that define the series recurrence relation. In fact, as well as presenting further 

examples of the technique, we apply the solution methodology to the general or 

abstract second-order linear homogeneous ODE (all suffixes below in brackets 

represent differentiation with respect to z) 
 

                               0)()()()()( )0()1()2(  zfzQzfzPzf                             (1.1) 

 

      In the case of (1.1) being a Fuchs’ equation, we assume that [10] 
 

                             )()()( 0 zPzzzp    and  )()()( 2
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are analytic functions of the independent variable ,z  with 0z  being a regular 

singular point of (1.1). In other words, we assume that 
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for given constants 

0}{ iip  and .}{ 0


iiq  In this case, when (1.1) is a Fuchs’ 

equation, we seek a Frobenius series solution of (1.1) about ,0z that is [10] 
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when the series coefficients, ,}{ 0

mma  are determined via the contour integral [9] 
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where 1ˆ2 i  and, following the notation of Ince [6], for positive integers k   
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      If 0z  is an ordinary point of (1.1), then )(zP  and )(zQ are analytic functions at 

0z  and we seek a power series solution of an ODE about ,0z that is [10] 
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In this case the series coefficients, ,}{ 0

mma  are, from (1.5) and (1.6) with ,0r

determined via [8] 
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      It is to be noted that in both (1.5) and (1.8) the contour C  is a closed contour, 

taken in the positive or anti-clockwise direction, encircling the point ,0z  but 

avoiding any (other) singularities. Further, regardless of the type of ODE (1.1) 

represents, we will consider (1.1) solved once the recurrence relation for the series 

coefficients, ,}{ 0

mma  is obtained. Finally, it is to be emphasised that the general  

methodology presented below, in sections 2,3 and 4, whereby (1.1) is solved, 

yields not only the general series solutions to (1.1), but also ‘expresses’ itself as 

an algorithm for the solution of arbitrary ODE of the form of (1.1). This is made 

clearer through the examples. 

      The paper is organized as follows. In section 2 we solve (1.1) for the case of  

0z  being an ordinary point and present the general series solution for )(zP  and 

)(zQ  arbitrary analytic functions; the algorithm is then exemplified using two 

problems requiring the solution of the Schrödinger equation [1, 11]. In section 3 

we solve (1.1) for the case of 0z  being a regular singular point and present the 

general Frobenius series solution; the algorithm is then exemplified, again, via a 

problem requiring the solution of the Schrödinger equation [5]. Next, in section 4, 

we examine the case where the second solution of (1.1), when 0z  is a regular 

singular point, does not yield a second Frobenius series; this time the algorithm is 

applied to the solution of the extended confluent hypergeometric equation [2]. 

      Note that the examples in sections 2, 3 and 4 are solved using the complex 

integral method as an algorithm; the general formulae ((2.5) and (3.5)/(3.6)) may 

also be used, but here are (implicitly) applied to provide a check on the results of 

using the complex integral algorithm directly. 

       

 

2. Series Solutions about an Ordinary Point 

 

We consider, first, in this section the case where )(zP  and )(zQ are analytic at the 

point 0z  so that we may write 
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for given constants 

0}{ iip  and .}{ 0


iiq  In this case, we look for a power series 

solution of (1.1) of the form (1.7), with the coefficients given by (1.8). The 

procedure for obtaining the recurrence relation for the coefficients (1.8) of the 

series solution (1.7) is as follows. First, we substitute )(zP  and )(zQ from (2.1) 

into (1.1) and then divide through by 
1

0)(  nzz  to get  
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We now integrate through (2.2), with the integral being a contour integral round a 

closed-path, ,C  taken anti-clockwise and containing 0z  while avoiding any 

singularities of );()0( zf  this procedure leads to 
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Next, we compare the denominators in (2.3) with that of (1.8), term by term, to 

get three equations for the dummy index m  in terms of the dummy index ,n  one 

for each of the values of k (the order of the derivative of )(zf ) in each integral, 

(two, one and zero, respectively). So, we find that (2.3) yields the three equations 
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                     inminmkm  1101                                  (2.4c) 
 

Utilizing (1.7) and (1.8) again, with the results of (2.4) in hand, we see that 

equation (2.3) transforms, term by term, into  
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after cancellation and recalling that .00  , mam  

For comparative purposes, we change the dummy variable i  in the sum in (2.5a) 

to ,kn   when we get 
 

                0])1[()1)(2(
0

12  




n

k

kknkknn aqapkann                     (2.5b) 

 

 



On the procedure for the series solution                                                            177 

 

 

which is just equation (19) of chapter 5, section 27, of Simmons [10]. The 

recurrence relation (2.5) is the ‘in principle’ series solution to (1.1). 

      Before presenting a couple of examples involving the Schrodinger equation, 

we pause to point out that the index of the divisor, 1
0)(  nzz  above, sets 

thevalues of the subscripts in the recurrence relation for the series coefficients. 

To vary the value of the subscripts, we simply vary the value of the index of the 

divisor. So, for example, if we had divided through (1.1) by 
1

0)(  nzz  instead  of 

,)( 1
0

 nzz  then the overall effect would have been to subtract two from n  

wherever it occurred in (2.5). Alternatively, we could just subtract two from n  

wherever it occurred in (2.5) directly, which amounts to the same thing. The 

choice of 
1

0)(  nzz  was made so that the recurrence relation (2.5) would be 

exactly that of Simmons’ [10] and a direct comparison made possible without 

further manipulation (see below). 

      We look, now, at a couple of example of the series solution of second-order 

linear homogeneous ODE about an ordinary point. Instead of fitting the given 

equations into the straight-jacket of the formulae given above, we use the basic 

method used in the derivation of (2.5) as an (integral) algorithm. This is, of 

course, the usual way that series solutions of second-order linear homogeneous 

ODE are normally discovered. As a first example, we consider the following 

Schrödinger equation (Alhendi and Lashin [1]) 
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with gE ,,  and  l  independent of .z  We seek a basic power series solution of  

(2.6) about the origin ( 00 z ), so we divide through (2.6) by 
1nz  and then 

integrate through the resultant (in the same manner as before) to get 
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Next, we compare the denominators in (2.7) with that of (1.8), term by term, to 

get four equations for the dummy index m  in terms of the dummy index ,n  one 

for each of the values of k (the order of the derivative of )(zf ) in each integral, 

(two, zero, zero and zero, respectively). So, we find that (2.7) yields the four 

equations 
 

                            21121  nmnmkm                              (2.8a) 

                            nmnmkm  1101                                    (2.8b) 

                            21101  nmnmkm                              (2.8c) 
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                     lnmlnmkm 212101                              (2.8d) 
 

Utilizing (1.7) and (1.8) again, with the results of (2.8) in hand, we see that 

equation (2.7) transforms, term by term, into (after cancellation) 
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which, with a switch of subscript ( ,2 nn   etc.) reduces to Alhendi’s [1] 

recurrence formula, that is   
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      As a second example, we take the Schrödinger equation solved by Taşeli [11] 
 

                             0)(][
12

)( )0(2)1()2( 


 zzE
z

z 


                        (2.10) 

 

with E  and    independent of .z  For comparative purposes, we follow Taşeli [11] 

and make the standard transformation of (2.10), that is we set 
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and (2.10) is transformed into the following equation for ),()0( zf that is 
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      As before, we seek a basic power series solution of (2.12) about the origin, so 

we divide through (2.12) by 
1nz  and then integrate through the resultant, to get 
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Following our previous procedure, we get from (2.13) four equations (again) for 

,m  one for each value of k (two, one, one and zero, respectively) 
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                          11111  nmnmkm                                (2.14c) 

                               1101  nmnmkm                               (2.14d) 
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Utilizing (1.7) and (1.8) again, with the results of (2.14) in hand, we see that 

equation (2.13) transforms, term by term, into (after cancellation and re-

arrangement) 
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Finally, setting ,12  sn  (2.15) may be rewritten as 
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It is apparent that the series determined by the recurrence relation (2.16) will 

terminate whenever the eigenvalues are determined by [11] 
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3. Series Solutions About a Regular Singular Point 

 

In this section we consider the case where (1.1) represents the general second-

order linear homogeneous Fuchs equation. On seeking a Frobenius series solution 

(1.4) of (1.1), we substitute )(zP  and )(zQ from (1.3) into (1.1) and then divide 
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We now integrate through (3.1), with the integral being a contour integral round a 

closed-path, ,C  taken anti-clockwise and containing 0z  while avoiding any other 

singularities of );()0( zf  this procedure leads to 
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Next, we compare the denominators in (3.2) with that of (1.5), term by term, to 

get three equations for the dummy index m  in terms of the dummy index ,n  one 

for each of the values of k (the order of the derivative of )(zf ) in each integral, 

(two, one and zero, respectively). So, we find that (2.4) yields the three equations 
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Utilizing (1.4) and (1.5) again, with the results of (3.3) in hand, we see that 

equation (3.2) transforms, term by term, into  
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after cancellation and recalling that .00  , mam  

      At this point, as in section 2, we make the substitution kni   for 

comparative purposes and (3.4a) transforms to 
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Finally, collecting all terms involving na  together, we see that (3.4b) becomes 
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which is just equation (4) of chapter 5, section 29, of Simmons [10]. 

      Setting 0n  in (3.5), we get the indicial equation for (1.1), that is 
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as ,00 a  by hypothesis [10]. (3.5) in combination with (3.6) is the ‘in principle’  

Frobenius solution to (1.1), when (1.1) represents the general second-order linear 

homogeneous Fuchs equation. 

      As with the series solution of (1.1) about an ordinary point the divisor 

,)( 1
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 rnzz  used to derive the Frobenius series solution of (1.1) about a regular 

singular point, was chosen for comparison purposes (with the solution quoted in 

Simmons [10]). If we vary the index in ,)( 1
0

 rnzz  then we simply shift the 

value of n  in the recurrence relation. Indeed, for comparison purposes, in our next 

example, involving a series about the origin, we use 
1rnz  as our divisor. 

      So, as our only example in this section, we consider the Schrödinger equation 

solved by Kościk and Okopińska [5] 
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Again, we seek a basic Frobenius series solution of (3.7) about the origin, so we 

divide through (3.7) by 
1rnz  and then integrate through the resultant (in the  

same manner as before), to get 
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Following the usual comparison procedure, but this time with equation (1.5), we 

get from (3.8) four equations (again!) for ,m  one for each value of k (two, zero, 

zero and zero, respectively) 
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Utilizing (1.4) and (1.5) again, with the results of (3.9) in hand, we see that (after 

cancellation and rearrangement) equation (3.8) transforms, term by term, into  
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(where we take 0 ,0  mam ). Setting 0n  in (3.10), we get the indicial 

equation for our Frobenius solution of (3.7), that is 
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as 00 a  by hypothesis. The recurrence relation (3.10) is identical to equation (8)  

of Kościk and Okopińska [5], the superficial difference being due the sum in  

 

(3.10) being performed in ‘the opposite direction’ to that of Kościk and 

Okopińska [5] (set )kni  . 

 
4. Frobenius Series: The Second Solution 

 

As well as delivering the basic Frobenius solution, the current methodology can 

also be used to find a logarithmic solution, when such is required [7]. All that is 

necessary is for us to re-express the formalism of the previous section in such a  

http://www.youtube.com/user/Piotrkoscik
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manner that we bring it into line with the standard formalism presented in text-

books, in particular [7]. It will then be possible simply to quote the required 

results and apply the formalism of section 3 to an appropriate example. First, we 

define, as usual [7], the linear operator L  via 
 

                              )()()()()()]([ )0()1()2( zfzQzfzPzfzfL                     (4.1) 

 

Next, we note that the Frobenius solution (1.4) to (1.1) has recurrence relation 

(3.5), which is just the coefficient of 
rnzz  )( 0  in the infinite series expansion of  

.0)]([ zfL  That is, on extracting the 0n  term, we may write 
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kknknn zzaqprkaqprnrnrn (4.2) 

 

and 0)]([ zfL  whenever r  is a solution of (3.6). Now, in the standard discussion 

of the second solution [7], we choose (in (4.2)), as before, for any r  and 1n   
 

       0])[(])()1)([(
1

0

00  





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kknknn aqprkaqprnrnrn       (4.3) 

 

which is the recurrence relation (3.5) for 1,n   so that (4.2) with (4.3) in mind 

becomes, for arbitrary r  
 

                                 
rzzaqrprrzfL )(])1([)]([ 0000                           (4.4) 

 

The relations (4.3) and (4.4) form the foundations of the standard discussion of 

the ‘second solution’ to (1.1) in the Fuchs case [7] (for real r  at this point) and, as 

stated above, we will now simply quote the results. 

            If we denote the Frobenius solution to (1.1), for the larger or equal root, as 

),(1 zf  then the second solution to (1.1), for the smaller or equal root (shown, 

again, as r ), may be taken as [7, 10] 
 

                                         )()()ln()( 102 zgzfzzczf                                 (4.5a) 

with  

                                             
rm

m

m zzbzg 
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

  )()( 0

0

                                     (4.5b) 
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with the coefficients c  and 

0}{ mmb  to be determined. In fact, if we consider the 

general second-order Fuchs equation (1.1), then substitution of (4.5a) into (1.1) 

produces the following ODE for the unknown )(zg  (following [7]) 
 

          )()()()()( )0(2)1(2)2(2 zgzQzzgzPzzgz    

                                                                          )(2)()](1[
)1(

1
)0(

1 zczfzfzzPc             (4.6) 
 

The point of the coefficient c  is that, in some cases [10], 0c  and the second 

solution does not contain a logarithmic term; otherwise we take .1c To 

determine whether or not 0c  a careful examination of (4.3) is required, so we 

leave it at that and continue-on to an example of a logarithmic second solution. 

      As an example of the logarithmic second solution, we consider the extended 

confluent hypergeometric equation (following Campos [2]) 
 

0)()]()()()( )0(

1

)1()2(  


zfzAzfzzzf i
M

i

i                       (4.7) 

 

with  ,  and the  

M
iiA 1}{   independent of .z  We seek a Frobenius power series 

solution of (4.7) about the origin, so, as before, we divide through (4.7) by 
1rnz   

and then integrate through the resultant, to get 
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Following the usual comparison procedure, again with equation (1.4), we get  

five equations for ,m  one for each value of k  (two, one, one, zero and zero, 

respectively) 

1121  nmrnrmkrm                      (4.9a) 

11111  nmrnrmkrm                      (4.9b) 

nmrnrmkrm  111                           (4.9c) 

nmrnrmkrm  1101                           (4.9d) 

inmirnrmkrm  1101                      (4.9e) 
 

Utilizing (1.4) and (1.5) again, with the results of (4.9) in hand, we see that (after 

cancellation and rearrangement) equation (4.8) transforms, term by term, into  
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
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ininn aAarnarnrn             (4.10) 

where we have changed .1 nn  

      Setting 0n  in (4.10), we get the indicial equation for our Frobenius 

solution, that is, as 00 a  by hypothesis 
 

0)1( rr                                                 (4.11) 
 

      The recurrence relation (4.11) is identical to that of Campos [2], from whom 

we have taken this example. Unless ,0M  the recurrence relation (4.10) is of an 

order higher than two and it proves necessary to encode the procedure. 

      On examining the indicial equation, (4.11), Campos [2] shows that in some 

cases a ‘logarithmic solution’ of the form (4.5) (with 00 z ) is required, as the 

second root fails to deliver a basic series solution. Specifically, from the original 

ODE (4.7), we get, on substituting (4.5a) in (4.7), the following equation for )(zg  
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The solution procedure for (4.12) is just the same as before: we divide through 

(4.12) by 
1rnz  and then integrate through (in the usual manner) to get 
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Following the usual comparison procedure, again with equation (1.5), we get from 

(4.13) eight (five plus three) equations for ,m  one for each value of k (two, one,  

one, zero and zero, respectively, on the left of (4.13) – for the sb'  – and zero, zero 

and one, respectively on the right of (4.13) – for the sa' ) 
 

nmrnrmkrm  1121                          (4.14a) 

nmrnrmkrm  111                          (4.14b) 

11111  nmrnrmkrm                     (4.14c) 

1101  nmrnrmkrm                     (4.14d) 

1101  inmirnrmkrm                (4.14e) 
 

and 

1101  nmrnrmkrm                      (4.14f) 
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nmrnrmkrm  1101                          (4.14g) 

nmrnrmkrm  111                          (4.14h) 
 

Utilizing (1.4)/(4.5b) and (1.5) again, with the results of (4.14) in hand, we see 

that (after cancellation and rearrangement) equation (4.13) transforms, term by 

term, into  
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1)122(  nn caarnc          (4.15) 

 

in agreement with equation (20a) ( 1 nn ) of Campos [2], in case .1c  

      Naturally, we may apply the usual procedure to the more general case of (4.6). 

 

5. Discussion and Conclusions 

 

There are a couple of obvious points that need mentioning, before we go on to 

some more general points of discussion: the existence of complex conjugate roots 

and the possibility of tackling inhomogeneous ODE with the present method. 

      Naturally, being a quadratic equation, it is possible that the indicial equation 

may give rise to complex conjugate roots. We make the existence of this real 

possibility the subject of our next example [6]. So, following Neuringer [6], we 

consider the second-order ODE 
 

                                0)()2()()( )0()1()2(2  zfzzzfzfz                            (5.1) 
 

Applying the complex integration method about the origin (divide through by 

1rnz  and integrate round an appropriate closed contour) we find that the  

recurrence relation for our equation (5.1) is 
 

                         02)()1)(( 1  nnnn aaarnarnrn                        (5.2) 
 

Setting 0n  in (5.2), we get the indicial equation as 
 

                                        0222)1( 2  rrrrr                                  (5.3) 
 

with complex conjugate solutions ,ˆ1 ir   with ,1ˆ2 i  and the recurrence 

equation (5.2) reduces to 
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Apparently, then, the case of complex conjugate roots of the indicial equation 

leads to complex coefficients in the Frobenius series. For further discussion of this 

complex conjugate roots case, see Neuringer [6]. 

      As to the second point, at first sight it does appears that we use can the present 

methodology to tackle inhomogeneous ODE. Indeed, when seeking a logarithmic 

second solution that is exactly what, formally, we have done. However, although 

the contour integration method will work in finding particular solutions to 

inhomogeneous ODE, the mechanics of the calculation become more involved. 

For example, consider the case, where the right-hand-side of the inhomogeneous  

ODE is an analytic function, that is (with the coefficients 

0}{ iic  given) 
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where )(zf p  is the required particular integral. Applying the contour integration 

method of section 2 to (5.5) yields the recurrence relation 
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with, as usual, 0a  and 1a  arbitrary constants. However, to solve the recurrence 

equation (5.6) for ),(zf p  we must have particular values for 0a  and ,1a  as ),(zf p   

being a particular integral, can have no arbitrariness about it. 

      As an example, consider the second-order inhomogeneous ODE 
 

                                              
z

pp ezfzf 2)()( )0()2(                                          (5.7) 

with particular integral (by sight) .)( z
p ezf   Applying the contour integration 

method of section 2 to (5.7) yields the recurrence relation 
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with, of course, 0a  and 1a  arbitrary constants. But, how to choose 0a  and ?1a  

In this case, if we set ,01 aa   then the recurrence relation (5.8) becomes (after 

close inspection) 
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when we have 
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 and we can determine 0a  by substitution in 

the original equation (5.7) (the usual ‘try’) and get .10 a  The problem with this 

is that the choice of 0a  and 1a  in the above example was ‘goal oriented’, there 

being no obvious logical reason for setting 01 aa   and continuing as we did; the 

choice was based on knowing the answer already. However, as 0a  and 1a  are both 

arbitrary, we are at liberty to search for a solution as best we can .  

      Moving on, on a more general note, the question of solving higher-order 

ODEs arises. In principle, the complex integral method should still be useful when 

solving higher-order ODEs, there being simply ‘more of the same’ involved. 

Naturally, though, the calculations become more involved and the type of 

solution, especially in the Frobenius series case, more involved also [4]. We leave 

this matter at this point, but it is to be noted that, on a case-by-case basis, any 

particular higher-order linear homogeneous ODE will yield an appropriate series 

solution on applying the complex integral methodology, in the same manner as in 

sections 2 and 3 above. (in fact, so will first-order linear homogeneous ODE [8]). 

      There are certain topics that we have not discussed. here. As our procedure 

has been essentially formal, we have not discussed convergence of the solutions. 

This is covered, for real roots of the indicial equation, in standard textbooks [7, 

10]; for the complex roots case, see Neuringer [6]. Also, we have not touched on 

the concept of ‘the point at infinity’; again, the reader is referred to a standard 

textbook [10] for a discussion of this topic. Finally, we have stopped our 

discussion, in general, at the point where the recurrence relations has been 

obtained. The solution of recurrence relations is a major independent problem, but 

in the case of the examples presented here the solutions of the recurrence relations  

and the actual series solutions can be obtained from the original papers from  

which the present examples were sourced [1, 2, 5, 6, and 11]. (See, also [7].) 

      In conclusion, we have presented a complex integration approach to the 

problem of finding series solution of the general form of the second-order linear 

homogeneous ODE, along with the solution of some typical examples from 

mathematical physics, especially examples involving the Schrödinger equation. 

The complex integral method reduces the solution process of the ODE to the 

solution of simultaneous, but independent, simple equations for the subscripts of 

the recurrence relation defining the infinite series solution’s coefficients. The 

usual recurrence relations [10] for both the case of the ordinary point and the 

regular singular point have been determined, in a much simpler and direct manner 

than is generally supposed possible. In the case of Frobenius solutions to Fuchs’ 

class of second-order ODE, if a logarithmic solution exists, then the method 

extends, in an elementary manner, to this type of solution also.  
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