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Abstract 
 
We present an alternative approach to the discussion of Bessel equations and 
Bessel functions, through an elementary factorization method. The various Bessel 
equations are represented by a single parameterized form and, after a standard 
transformation of the dependent variable, a transformed parameterized (Bessel) 
equation is factorized in terms of raising and lowering ladder-operators. Once 
constructed, the ladder-operators for the transformed parameterized equation 
determine the ladder-operators that factorize the various Bessel equations and 
enable the determination of the various recurrence relations between the Bessel 
functions. In particular the construction of the Rayleigh formulae for the Bessel 
functions becomes particularly straightforward. However, ‘starting’ Bessel 
functions for the ladder operators and iterative and Rayleigh formulae must still 
be obtained as series solutions of particular Bessel equations. 
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1.  Introduction 
 
Arising from many important problems in science and engineering, the Bessel 
equations form one of the linchpins of the theory of special functions [4]. It is  
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usual for the various Bessel functions, and their properties, arising from the 
solution of the Bessel equations to be developed either from the well-known series 
solutions of the Bessel equations [6], or their complex integral representation [4]. 
Here, however, we offer an alternative approach to the solution of the various 
Bessel equations, and the properties of the resultant Bessel functions, through an 
application of a factorization technique. 
      To describe the basic idea, we represent the generic Bessel function by 

)(xZn and consider the generic Bessel equation to be of the form 
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with n  an integer and x  a real variable. The constants ,a ,b c  and k  determine the  
particular type of Bessel equation (and Bessel function) and are defined when 
each Bessel equation is encountered below, in sections 3 and 4. 
      The general method is developed as follows. If )(xZn  is one of the Bessel  
functions, then we consider a Lommel transformation of the dependent variable in 
the corresponding Bessel equations of the form [2, 6] 
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which transforms the generic Bessel equation (1.1) into another generic form 
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provided 
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Note that we could have taken 1−=b  from the start. However, the fact that the 
transformation requires ,1−=b  makes our starting point marginally more general. 
Equation (2.3) is now rewritten as  
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which form suggest that we assume that (1.3) can be written in  factorized forms, 
in terms of raising and lowering operators [3].. This programme is developed  
below, in subsequent sections. 
      Finally, before we consider the details of the method, we note that the Riccati-
Bessel equation 
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reduces to the spherical Bessel equation when )(xZn  is replaced with )(xxZn±  [1] 
and will not be considered further here.   
 
 
2. The General Method 
 
Our discussion above suggests looking for raising and lowering operators (with 
the s'ϕ  independent of x ) 
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when we assume that (1.3) can be written in the factorized forms [3] 
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By comparing (1.5) with (2.2), we hope to determine the unknown functions ),(xp  

),(xq ,+nϕ  and .−nϕ  We find that the following sets of consistency conditions must 
be satisfied: 
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It is apparent that we may eliminate between (2.3a) and (2.3c) and between (2.3a) 
and (2.3d) to get two Riccati equations, one for )(xp  and one for ),(xq  that is 
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It is a straightforward matter to pick-out particular solutions to equations (2.4), 
especially when we keep (1.5) and (2.3a) and (2.3b) in mind. The general 
solutions, should they be required, can then be written down straight away [6]. 
Indeed, by inspection, we find equations (2.4a,b) satisfied identically if 
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      We now have the transformed Bessel equation, (1.3), in  factorized form(s), 
(2.2), and have developed a ladder-operator formalism, (2.1), for the  
corresponding transformed Bessel functions, ).(xwn  To complete the factorization 
or ladder-operator formalism for the original Bessel equation, (1.1), and its 
corresponding Bessel function, ),(xZn  we  
   (a)  substitute back using (1.2) and obtain the formalism in terms of the original    
         set-up, and 
   (b) determine a particular solution )(xZn for any integer n  (usually .0=n ) 

      The ladder-operator formalism enables us to find all other )(xZn from the 
given particular function (which particular function will be a solution in series). 
Further, the ladder-operator formalism enables the development of other relations 
between the Bessel functions, like the three-term recurrence relations and the 
Rayleigh formulae, and so on. Note that each individual Bessel equation has two 
fundamental particular solutions associated with it for each value of ,n so each 
ladder-operator representation has two starting points: one starting point for each 
set of fundamental particular solutions. In addition, other functions defined in 
terms of the two fundamental particular solutions, the Hankel functions say 
[4],will also satisfy the same fundamental relations as the defining Bessel 
functions. 
      The series solution to (1.3) is easy to obtain. However, all that we require is 
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with the coefficients rd  given by 
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From (2.6b) and (2.6c), we see that all odd-numbered coefficients vanish and we 
are left with even-numbered coefficients only. If we shift the dummy index r  
down two units and replace r  with ,2m  then the non-zero coefficients satisfy the 
adjusted recurrence relation 
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with the initial coefficient, ,0d  remaining as an arbitrary coefficient.  
      Interestingly, k  takes on the two values 1 and 2  only (see sections 3 and 4 
below). When ,1=k  (2.7) becomes 
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while for ,2=k  (2.7) becomes 
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Now, when 1=k  we make the conventional choice of 10 =d  to find, from (2.8a) 
 

K1,2,3,m     ,
)!(2

)(
222 =

−
=

m
ad m

m

m                         (2.9a) 

 

and then 
 

∑
∞

=

−
==

0
22

2

00 )!(2
)()()(

m
m

mm

m
xaxZxw                             (2.9b) 

 

On the other hand, when 2=k  the conventional choice of 10 =d  in  (2.8b) gives 
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and then 
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The second solutions corresponding to (2.9b) and (2.10b), along with other 
relevant functions, are obtained in a standard manner as discussed, briefly in 
section 5 below. 
 
 
3. The Basic Bessel Equations 
 
Suppose the Bessel function )(zZn  is a particular solution of a Bessel equation of 
order ,n  or 
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with 1=a  giving the standard Bessel equation and 1−=a  giving the modified 
Bessel equation. Following our discussion in sections 1 and 2, we compare (3.1) 
with (1.1) and note that for (3.1) 0=c  and ,1=k  so the functions  
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satisfy the differential equation (see, also, Bernardini and Natalini [2]) 
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To find the ladder-operators for (3.3), we substitute 1=k  into equations (2.4) and 
solve the resulting two Riccati equations to get, in particular, from (2.5) 
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in agreement with the results of Bernardini and Natalini [2].  
      The differential recurrence relations (3.4), on substituting )()( xZxxw n

n
n
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from (3.2), reduce to their ‘usual’ forms [6]  
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where we have replaced n  with 1−n  in the final form of equation (3.5b). We may 
now factorize the Bessel’s equation of (integral) order n, since, from equations (3.5), it 
follows that equation (3.1) is identical to (for example)  
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      We may infer further relations from equations (3.5). For example, on 
eliminating the derivative terms from equations (3.5), we find that 
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which is the ‘usual’ [6] three term recurrence relation for Bessel functions. Or, 
again, if we examine (3.5a) we have, by mathematical induction 
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which, by (3.2), becomes 
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and (3.8) is the Rayleigh formula for the Bessel function(s). 
      The question remains of finding the starting function(s), ),(0 xZ  from which 
we may generate the ),(xZn using either of equations (3.5 a) or (3.8). In this, with  
(3.9) in mind, we set 0=n  in equation (3.3) and look for a solution in series. Of 
course, the well-known series solution(s) for )(0 zZ  is obtained from (2.9b) as 
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and we are finished, or, at least, this is as far as we are going here. 
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4. The Spherical Bessel Equations 
 
Suppose, )(xZn  is a spherical Bessel function, that is, )(xZn  is a particular solution 
of the spherical Bessel equation of order ,n  or 
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with 1=a  giving the standard spherical Bessel equation and 1−=a  giving the 
modified spherical Bessel equation. Following our discussion in sections 1 and 2,  
we compare (3.1) with (1.1) and note that for (3.1) 1−=c  and ,2=k  so the  
functions  
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satisfy the differential equation 
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To find the ladder-operators for (4.3), we substitute 2=k  into equations (2.4) and 
solve the resulting two Riccati equations to get, in particular, from (2.5) 
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      The differential recurrence relations (4.4), on substituting from (4.2), reduce to their 
‘usual’ forms [1] for )(xZn  
 

     )()()(
1 xaZxZ

x
n

dx
xdZ

nn
n

+=+−                              (4.5a) 

and 

)()(1)(
1 xZxZ

x
n

dx
xdZ

nn
n

−=
+

+                               (4.5b) 
 

where we have replaced n  with 1−n  in the final form of equation (4.5b).  
      We may now factorize the spherical Bessel’s equation of (integral) order ,n  since, 
from equations (4.5), it follows that equation (4.1) is identical to (for example) 
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      Further, as before, eliminating the derivative terms from the equations (4.5), 
we find that 
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which is the ‘usual’ [1] three term recurrence relation for spherical Bessel 
functions. And again, from (4.4a) and mathematical induction, we have 
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which, by (3.2), becomes the Rayleigh formula 
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      The question remains, again, of finding the starting function, ),(0 xZ  from 
which we may generate the ,1 ),(  ≥nxZn using equation (4.8a).  In this case, it is  
necessary to set 0=n  in equation (4.3) and look for a solution in series. Of 
course, the well-known series solution for )(0 zZ is obtained from (2.10b) as 
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and we are finished. 
 
 
5.  Conclusions and Brief Discussion 
 
We have presented an alternative factorization method for the various Bessel  
functions, denoted generically here by ),(xZn  and provided we start with the most 
basic infinite series representation – that of )(0 xZ  – the rest of the series  
representations and relationships between the )(xZn  follow directly. Now, while  
we have developed ‘starting’ functions for the usual ‘first’ solutions to the Bessel  
equations, the construction of the ‘second’ solutions from the first solutions is 
well-known [4, 6] and, given both particular solutions to any Bessel equation, the 
construction of the various ‘higher-order’ Bessel functions follows immediately 
also [4, 6]. 
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      The method presented here has been developed as an alternative to two other  
ladder-operator approaches in the literature: that of Bernardini and Natalini [2]         
and the direct operator factorization of the Mexican school, represented, for 
example in Reyes  et al [5]. Bernardini and Natalini [2] start from a general 
theorem ‘in the abstract’ and apply it to the Bessel equation and the modified 
Bessel equation. However, Bernardini and Natalini [2] are forced to take one of  
their ladder-operators from the manipulation of the series solution for, in the 
standard notation [4], )(xJn  ( )(xIn ), but our sole use of series solutions is to start  
the ladder-operations off, the various recurrence relations following from the 
general method, independent of the series solutions to the Bessel equations. 
      Reyes  et al [5] factorize the Bessel equation directly, when it is written 
expressly as 
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This direct factorization of (5.1), which results in the same ladder-operators as in 
section 3 (with 1=a ), is a special case of the general method [5] of the Mexican 
school for factorizing the differential equations specifying the special functions 
and, of course, can be applied to the other types of Bessel equation also. However, 
even the approach of Reyes et al [5] requires a series representation of a particular 
Bessel function to start it off. There is no escape from a series solution somewhere 
‘in the mix’.  
      Overall, by way of comparison, the main advantage of the process presented 
here, for factorizing the Bessel equation and developing the standard relations 
between Bessel equations, is probably the basic simplicity of its approach. 
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