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Why offshore wind turbines?

European Union climate & energy targets for 2020 (European
Union Directive 2009/28/EC:

20% total EU energy consumption from renewable resources

Offshore wind energy: SWOT analysis

° Strength: stronger and more stable wind conditions, higher capacity
factors, offshore sites:;

o Weaknesses: costs, technical challenges, harsh environmental
conditions, new foundation options;

° Opportunities: new research areas, investments, new jobs; potential
progress in technology, economic growth;

o Threat: long-term performance of offshore wind turbines

Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009
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Example of technical challenges in Atlantic Array project

NEWS/PRESS - -, N
ALWAYSAT THE LATEST STATE OFARE!

Essen/Swindon, 26 November 2013, RWE Innogy

Deutsch

RWE stops development on Atlantic Array due to technical challenges

making the project uneconomic at current time

e Technical challenges within the Bristol Channel Zone are significant. including substantially deeper
waters and adverse seabed conditions

» Costs to overcome such technical challenges are prohibitive in current market conditions
* RWE to focus on progressing more technically and economically viable offshore projects

o (w1 =
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Monopile foundations vs coventional pile foundations

Schematic representation
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00

P PV

_w_Mean sea level

ycf lv v 4 mmMud-line (foundation level)

w_Mean sea level

Mud-line (foundation level)

+«—NMonopile b Piles

Domenico Lombardi & Subhamoy Bhattacharya International Conference on Offshore Renewable Energy



Monopile foundations vs coventional pile foundations

Schematic representation

Offshore wind turbine Offshore jacket structure
M > Mean sea level
P P—/ v
yc lv v 4 mmMud-line (foundation level)

w_Mean sea level

Mud-line (foundation level)

+—Monopile -
Typical dimensions
D=35-60m [
L=20-30m D

Piles

Domenico Lombardi & Subhamoy Bhattacharya International Conference on Offshore Renewable Energy



Monopile foundations vs coventional pile foundations

Schematic representation

Offshore wind turbine Offshore jacket structure
M > Mean sea level
P P—/ v
— /
yc lv v 4 mmMud-line (foundation level)

w_Mean sea level

Mud-line (foundation level)

+«—NMonopile b Piles
Typical dimensions Typical dimensions
=3.5-6. D=15-3.0
D=35-6.0m £:578 m £:10_70
L=20-30m D L=60-110m D

Domenico Lombardi & Subhamoy Bhattacharya International Conference on Offshore Renewable Energy



Monopile foundations vs coventional pile foundations

Schematic representation

Offshore wind turbine Offshore jacket structure
M > Mean sea level
P P—/ v
yc lv v 4 mmMud-line (foundation level)

w_Mean sea level

Mud-line (foundation level)

+«—NMonopile b Piles
Typical dimensions Typical dimensions
=3.5-6. D=15-3.0
D=35-6.0m £:578 m £:10_70
L=20-30m D L=60-110m D

Rigid (or short pile) behaviour
Domenico Lombardi & Subhamoy Bhattacharya International Conference on Offshore Renewable Energy



Monopile foundations vs coventional pile foundations

Schematic representation

Offshore wind turbine Offshore jacket structure
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Flexible and rigid behaviour of laterally loaded piles

Rigid failure mode Flexible failure mode
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Rigid failure mode Flexible failure mode
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Flexible and rigid behaviour of laterally loaded piles
Flexible failure mode
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Rigid failure mode
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Simplified loading conditions
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Simplified loading conditions

Typical wind profile
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Simplified loading conditions

Typical wind profile
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Simplified loading conditions

Typical wind profile

Iy v

. Rotor frequency (1P)

Blade passing frequency (3P)

3P=1P x Number of blades‘
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Mean sea level
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Current design approach
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Current design approach

A
2 | wno
(n J
c |
o |
-o 1
1
[+ 1
p - 1
6 1
)
81\
m 1
1
= '
<%} [y
= \
&) \
\
D- A
A}
AY
AY
A}
A
\~
--------- -
o =
3 e
o -

Frequency [Hz]

Domenico Lombai Subhamoy Bhattacharya

International Conference on Offshore Renewable Energy



Current design approach
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Current design approach

V100 2.0 MW turbine with an operational interval 9.3-16.6 rom
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Current design approach

V100 2.0 MW turbine with an operational interval 9.3-16.6 rom
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Current design approach

V100 2.0 MW turbine with an operational interval 9.3-16.6 rom
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Current design approach

V100 2.0 MW turbine with an operational interval 9.3-16.6 rom
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Current design approach

V100 2.0 MW turbine with an operational interval 9.3-16.6 rom
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Design challenges

@ Accurate assessment of natural frequency of the turbine is required;

o Natural frequency is dependent on the support condition (i.e.
foundation flexibility);

@ Degradation in soil stiffness leads to variation in foundation flexibility
and consequently change in natural frequency of the turbine;

@ Potential resonance phenomena must be avoided throughout the
operational life of the turbine, typically 25 years (107-108 cycles of
loading);

@ Occurrence of resonance phenomena would amplify the dynamic
response leading to larger tower deflection and/or rotations;

@ Long-term performance may be jeopardised,;
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Foundation flexibility: simplified models

Simplified dynamic model

Springs model the
soil-foundation stiffness
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Foundation flexibility: simplified models

Simplified dynamic model Winkler approach
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Variation of foundation flexibility

o Foundation flexibility (i.e. spring stiffness) relies on the
stiffness of the surrounding soil;

o When soil is subjected to cyclic loading (for a typical
OWT 107 - 108 cycles), spring stiffness may change as a
consequence of soil softening;

e As a result of the variation in spring stiffness, the natural
frequency of the turbine may change over its operational
life;

e Monitoring of a limited number of monopile supported
wind turbines has indicated a departure of the overall
system dynamics from the design requirements;

o If the natural frequency comes close to any forcing
frequencies, resonance phenomena may occur leading to
amplification of the system response;
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Geotechnical physical modellin

Prototype

Physical model

. Scaling laws Prediction of
‘ Experiments (standard tables) prototype
h

Understanding the Carry out numerical
physics/mechanics or analytical study
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Non-dimensional analysis: scaling laws

Real prototype
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Non-dimensional analysis: scaling laws

Real prototype ——> Simplified prototype

v
= mean sea level

mud-line

G kn %
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Non-dimensional analysis: scaling laws

Real prototype ——3> Simplified prototype = ——3> Non-dimensional analysis
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—P—)> System dynamics ;—/
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Scaling laws: average strain
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Scaling laws: average strain
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Scaling laws: average strain
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Scaling laws: average strain
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Scaling laws: average strain
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Scaling laws: average strain
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Experimental results
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Experimental results and soil stiffness degradation

Stress-strain relationship
Gm.u

Shear stress

G,.x Maximum shear modulus

Shear strain V4
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Experimental results and soil stiffness degradation

Stress-strain relationship
G
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Shear stress

G,.x Maximum shear modulus

G, Secantshear modulus
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Shear strain V4
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Experimental results and soil stiffness degradation

Stress-strain relationship Secant shear modulus
reduction curve

Shear stress

G,.x Maximum shear modulus

G, Secantshear modulus

see "
Shear strain V4
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Experimental results and soil stiffness degradation

Stress-strain relationship Secant shear modulus
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Experimental results and soil stiffness degradation

Stress-strain relationship Secant shear modulus
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Experimental results and soil stiffness degradation

Stress-strain relationship Secant shear modulus
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Volumetric shear strain threshold
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Model tests showed no degradation W =0.07%
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Conclusions

e The dynamic response of the physical model is very
sensitive to the flexibility of the foundation;

o The natural frequency of a monopile-supported wind
turbine founded on clayey soil may change with the
number of cycles of repeated loading;

e For clay soils, a decrease in natural frequency is expected
depending on the strain level in the soil next to the
monopile, which was taken into by P/GD?;

o The non-dimensional group P/GD? suggests that the
higher the diameter D of the monopile, the lower is the
average strain in the surrounding soil;

o Lower average strain in the soil reduce the tendency of soil
degradation and therefore change in natural frequency;
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