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Why offshore wind turbines?

European Union climate & energy targets for 2020 (European
Union Directive 2009/28/EC:

20% total EU energy consumption from renewable resources

Offshore wind energy: SWOT analysis

Strength: stronger and more stable wind conditions, higher capacity
factors, offshore sites;

Weaknesses: costs, technical challenges, harsh environmental
conditions, new foundation options;

Opportunities: new research areas, investments, new jobs; potential
progress in technology, economic growth;

Threat: long-term performance of offshore wind turbines

Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009
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Example of technical challenges in the Atlantic Array project

Press release from: www.rwe.com

Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009
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Flexible and rigid behaviour of laterally loaded piles
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Flexible and rigid behaviour of laterally loaded piles
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Simplified loading conditions
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Simplified loading conditions

Typical wind profile 
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Current design approach
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Design challenges

Accurate assessment of natural frequency of the turbine is required;

Natural frequency is dependent on the support condition (i.e.
foundation flexibility);

Degradation in soil stiffness leads to variation in foundation flexibility
and consequently change in natural frequency of the turbine;

Potential resonance phenomena must be avoided throughout the
operational life of the turbine, typically 25 years (107-108 cycles of
loading);

Occurrence of resonance phenomena would amplify the dynamic
response leading to larger tower deflection and/or rotations;

Long-term performance may be jeopardised;
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Foundation flexibility: simplified models
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Variation of foundation flexibility

Foundation flexibility (i.e. spring stiffness) relies on the
stiffness of the surrounding soil;

When soil is subjected to cyclic loading (for a typical
OWT 107 - 108 cycles), spring stiffness may change as a
consequence of soil softening;

As a result of the variation in spring stiffness, the natural
frequency of the turbine may change over its operational
life;

Monitoring of a limited number of monopile supported
wind turbines has indicated a departure of the overall
system dynamics from the design requirements;

If the natural frequency comes close to any forcing
frequencies, resonance phenomena may occur leading to
amplification of the system response;
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Geotechnical physical modelling

Prototype
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Geotechnical physical modelling
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Geotechnical physical modelling
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Non-dimensional analysis: scaling laws

Real prototype
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Non-dimensional analysis: scaling laws
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Non-dimensional analysis: scaling laws
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Scaling laws: average strain
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Scaling laws: average strain
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Scaling laws: average strain
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Experimental results
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Experimental results and soil stiffness degradation
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Model tests showed no degradation 2DG
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= 0.07%

Domenico Lombardi & Subhamoy Bhattacharya International Conference on Offshore Renewable Energy



Conclusions

The dynamic response of the physical model is very
sensitive to the flexibility of the foundation;

The natural frequency of a monopile-supported wind
turbine founded on clayey soil may change with the
number of cycles of repeated loading;

For clay soils, a decrease in natural frequency is expected
depending on the strain level in the soil next to the
monopile, which was taken into by P/GD2;

The non-dimensional group P/GD2 suggests that the
higher the diameter D of the monopile, the lower is the
average strain in the surrounding soil;

Lower average strain in the soil reduce the tendency of soil
degradation and therefore change in natural frequency;
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