
Idiotypic networks for evolutionary controllers in virtual creatures

Nicola Capodieci1, Emma Hart2 and Giacomo Cabri1

1University of Modena and Reggio Emilia
2Edinburgh Napier University

Abstract

We propose a novel method for evolving adaptive locomotive
strategies for virtual limbless creatures that addresses both
functional and non-functional requirements, respectively the
ability to avoid obstacles and to minimise spent energy. We
describe an approach inspired by artificial immune systems,
based on a dual-layer idiotypic network that results in a
completely decentralised controller. Starting from a system
initialised with five non-adaptive locomotion strategies, we
show that an adaptive controller can evolve that both min-
imises energy requirements and maximises distance covered
when compared to the initial strategies.

Introduction
In Blumberg and Galyean (1995) a virtual creature is
defined as an animate object, capable of goal-directed
and time-varying behaviour, situated within a simulated
environment with which it can interact. In this paper,
we will focus on how to provide the means for a virtual
creature to discover adaptive movement patterns; this will
be accomplished by applying a previously introduced design
methodology that merges artificial immune systems (AIS)
and autonomic computing (Kephart and Chess (2003)). AIS
takes inspiration from the biological immune system, in
order to extract algorithms and methodologies for designing
computational systems able to feature the same character-
istics of the biological immune system, such as scalability,
adaptivity, emerging cognition and decentralization. The
evolutionary features able to provide adaptivity in the
observed systems depends on which AIS related paradigm
is used for solving a specified computational problem
(De Castro and Timmis (2002)). In this instance, idiotypic
networks as theorized by Cohen (2000a,b) have been used,
due to their ability to show cognition. We are going to model
our creature as a collection of independent (autonomic)
units, with the aim of discovering new trajectories of move-
ment and detect/avoid obstacles while optimizing the energy
consumption of the virtual creature. This can be translated
into a distributed autonomic computing related problem due
to the composite morphologic nature of the creature itself
and its requirement to Self-Adapt over time. Adaptation

here is seen as the ability of the creature to combine known
movement patterns with no adaptive ability in order to
evolve new locomotion strategies able to keep the creature
in motion. Although there is a wealth of literature related to
the use of evolutionary methods for achieving control, our
work differs in two key aspects. Firstly, it considers both
functional and non-functional requirements of the creature,
achieving movement while minimising energy. Secondly,
our algorithm (that we name SelfEx) is completely dis-
tributed, in that every constituent unit of the virtual creature
is able to evolve independently, sharing the minimum
amount of information throughout the whole creature. An-
other difference compared to previous literature is the kind
of network(s) involved: using an idiotypic network instead
of a neural network (e.g. evolutionary morphologies as
in Miconi and Channon (2005)) has the potential to further
enrich the literature regarding evolutionary virtual creatures.

The paper is organized as follows: after presenting a re-
view of related work, a description of the components of
the virtual creature and its surrounding environment will be
provided. The SelfEx approach is presented by detailing the
modelling choices used. After the model is presented, all
the details regarding the simulations and experiments per-
formed and their related parameters will be given. The paper
is concluded with discussions about the obtained results and
related future research directions.

Related work
The vibrant field of Artificial life uses computer simulation
to investigate evolution of behavioural and cognitive mecha-
nisms in virtual creatures Sims (1994), potentially leading
to advances in both biology (e.g: Palyanov et al. (2012))
and robotics (e.g: Černỳ and Kubalı́k (2013)). We restrict
our review to work related to understanding the evolution
of movement strategies that might ultimately be applied to
the robotic field. A significant volume of work exists in
the evolutionary computing literature, summarised by Prez-
Moneo Surez and Rossi (2013) in relation to movement of
limbless creatures. Typically, evolution evolves centralised

controllers in which performance is evaluated in terms of the
evolved trajectory and ability to avoid obstacles but does not
account for energy consumption of the movement, a relevant
factor if the motion is to be transferred to real robots. More-
over, our approach (SelfEx, named after the Self-* property
of a system to autonomously change its coordination pat-
tern during run time execution of tasks (Cabri and Capodieci
(2013)) uses a set of pre-coded movement strategies as base-
line behaviours to evolve. This is in contrast with known
evolutionary controllers in virtual creatures, since these lat-
ter ones rely on single atomic actions.
From the robotics perspective, a number of authors have ad-
vocated the use of immune-inspired control strategies, be-
ginning with Ishiguro et al. (1995) (autonomous naviga-
tion for a single robot). This work was more recently ex-
tended by Whitbrook et al. (2010), in which the authors de-
tailed how similar algorithms can be properly transferred in
real robots. In Capodieci et al. (2013a), the authors pro-
posed that ideas from autonomic computing could be com-
bined with immune-inspiration to provided distributed con-
trol. An idiotypic network algorithm was proposed and ap-
plied to selecting movement strategies in swarm foraging
task in Capodieci et al. (2013b). The model was formalised
into a framework (Capodieci et al. (2014)) but only consid-
ered functional requirements.

The creature

The virtual creature used for our simulations is depicted in
Figure 1 (left hand side). It is composed of 10 identical
constituent units, each a perfect cube shape. Each unit is
connected to its neighbouring unit(s) through a chain of uni-
versal joints, thus giving them complete freedom to rotate
along the X axis, while rotations along the other axes are
constrained by collisions with nearby units. The initial spac-
ing between two units is set to one fifth of the length of the
cube size. Trivially, the creature is simulated in a 3D envi-
ronment in which the three axis have the orientation shown
in Figure 1 (left hand side) and collision, friction and grav-
ity forces are present. Each unit is completely independent
— the only shared variable is an analogous to a biological
clock that ensures synchronised adaptation of units. This is
depicted in Figure 1 (right hand side) and is represented by a
periodic square wave in which we can identify two distinc-
tive phases, labelled as positive (P) and negative (N) phases.
The use of a common shared clock is common in the field of
virtual robotic creatures in attempting to imitate the oscilla-
tory and periodic locomotion activity cycles of many exist-
ing animals (e.g. see Ijspeert (2008) for a survey on the ex-
isting methods for implementing Central Pattern Generators
(CPGs)). The period of the clock can be adjusted according
to Teval.

Movements and related energy consumption
The functional objective of our creature is to keep mov-
ing and to discover new means of locomotion. In previous
work, movement has been achieved by use of fixed func-
tions, e.g. the serpenoid function as proposed by Hirose
and Morishima (1990), applied at junctions on the body.
However, this requires the use of an external and central-
ized controller. In the presented decentralised model, a
generic notation for representing a movement pattern is to
consider that during each clock phase, each unit indepen-
dently applies a force from the centre of its mass with mag-
nitude Mg ≤ 1 with a direction described as a vector in
which the unitary magnitude of the force can be distributed
among the three axes: (mgxex + mgyey + mgzez), given
|mgx|+ |mgy|+ |mgz| = Mg and where ex, ey, ez are the
canonical basis vectors in R3. The direction of each force
is always relative to the orientation of the unit. Movement
of the creature therefore results from physical interactions
between moving units; not all units are required to apply a
force (and consume energy) for movement to occur: push
or pulling behaviour of a unit can result from a force ap-
plied to a neighbouring unit. The energy spent by a single
unit during a single time interval is calculated by summing
the magnitudes of the applied force in both the positive and
negative phase of the clock, therefore a single unit, during a
time interval can show an energy consumption in the range
[0, 2]. The total energy consumed (related the whole creature
as indicated with EnCtot) during a time interval is trivially
calculated by summing the energy consumption experienced
by each constituent unit during each phase of the clock.

Movement patterns
A series of 5 initial pre-coded movement patterns are used
as starting points for evolution. A movement pattern is a
description of how the whole creature moves and it is ob-
tained by indicating magnitude and direction of the forces to
be applied to each of its constituent unit during each phase
of the clock. In the initial pre-coded movements, all forces
magnitude are 1 and they are applied to one of the possible
directions among [±X,±Y,±Z]. These movement patterns
are loosely based on how limbless creatures move in space
and are summarized in Table 1. In that table, for each unit
(identified by a number from 0 to 9), the direction in which
the force is applied is shown for each of the five pre-coded
movement patterns (from Type1 to Type5). Individual units
iterate the application of such forces as described in Table 1
during every time interval. Each initial pattern has an asso-
ciated energy consumption that is fixed through the duration
of an experiment. Moreover, the initial patterns do not en-
able obstacle avoidance or adaptation to external perturba-
tions that cause unexpected rotations of the unit(s) and thus
provide a baseline for evaluating whether these behaviours
can emerge.

In Figure 2 the movement pattern labelled as Type1 is rep-

Figure 1: A representation of the virtual creature and its shared biological clock.

Unit
0 1 2 3 4 5 6 7 8 9 EnCtot

P N P N P N P N P N P N P N P N P N P N
Type1 +X / +X / +X / +Y / +Y / +Y / +Y / +Y / -X +X -X +X 12
Type2 +X +Y +X / +X / +X -Z +Y -Z +Y -Z / -Z -X / -X / -X +Y 15
Type3 +X / +X / +Y / +Y / +Y / +Y / / -Z / -Z / -Z / -Z 10
Type4 +Y +Z +Y +Z +Y +Z +Y +Z / / / / +Z / +Z / +Z / +Z / 12
Type5 -Z / -Z / -Z / -Z / -Z / -X +Z -X +Z -X +Z -X +Z -X +Z 15

Table 1: Table of initial movements patterns, Type1-Type5, showing force applied to each unit at each clock phase (P,N).
EnCtot : total consumed energy during Teval. Example: in the movement pattern Type5, unit 0 applies a force of 1 magnitude
over the negative Z axes in the positive (P) phase; no forces applied during the negative (N) phase.

resented and resembles the locomotion strategies adopted by
caterpillars. Other movement patterns are based on rolling
and crawling, similar to snakes or worms1. It is important
to stress that different movement patterns result in differ-
ent outcomes both in terms of non-functional requirements
(see the last column of Table 1, the total energy consumption
EnCtot) and in terms of functional requirements (calculated
as the space distance the whole creature managed to travel
during a time interval). Regarding the distance travelled by
the creature, the performance varies according to the ori-
entation of the constituent units, therefore any perturbation
that causes the units to rotate from their original position
can drastically change its performance and even prevent the
creature to keep moving.

SelfEx: an idiotypic control model
Each constituent unit of the creature is seen as an au-
tonomous component and has an associated lymphnode lci .
Each lymphnode is consisting of an internal network of in-
terconnected antibodies. Additionally, an antibody in lci
may be connected by stimulatory or suppressive links to
antibodies inside neighbouring lymphnodes lci+1

and lci−1
,

forming an external network. Antibody concentration varies
over time according to the process outlined in Figure 3 and 4
and described in detail in the following sections. At the end
of each time interval, the unit will select the highest concen-

1All movement patterns are simulated for reference in a video
resource located at https://vimeo.com/89119516

Figure 3: On the left side the model of a single antibody is
shown. Example values are given to the action field (as ver-
ifiable from Table 1). The right part shows the connections
among antibodies inside a single lymphnode.

trated antibody, so to extract from it a computational equiv-
alent to an immunological response. Before describing the
details of this process, it is important to show how the virtual
antibodies are modelled.

Antibody Representation
An antibody is represented by a tuple
〈condition C, action Ac, expected utility Ut〉 and
has an associated concentration (see Figure 3). This generic
format was introduced in Capodieci et al. (2013b), and
its implementation is application dependent. Here, the
condition field is a quaternion in the form (s,−→v) repre-
senting a possible orientation of the cube/unit in the three

Figure 2: A graphical representation of the movement pattern “Type1”. Left part: positive phase P of the clock, Right Part:
negative phase N of the clock. Identifiers of the single units are also indicated in this picture.

Figure 4: An example situation of how stimulation and sup-
pression signals propagate in the external idiotypic network
among three lymphnodes. Green antibodies resulted in pos-
itive feedback, while the red one obtained a negative feed-
back. Green arrows correspond to the increase of affinity by
all the other unselected antibodies of neighbouring lymphn-
odes towards the green antibodies, while red arrows corre-
spond to the increase of affinity by the red antibody towards
all the other unselected antibodies.

possible directions of rotation. An action is a data-structure
that represents a component identifier, the identifier of a
movement pattern, and the magnitude and direction of the
forces to be applied to the component at each clock phase.
Finally, the utility field specifies two values corresponding
to the expected value of the functional and non-functional
measures. ∆S represents the functional utility and is simply
the Euclidean distance between the starting position of the
unit and its position at the end of a single time interval. The
non-functional quantity is the energy consumption EnC
(related to the single unit).

Initialisation and pre-experiments
Typically, initial antibodies populations in both AIS and evo-
lutionary algorithms are created randomly. Instead, we seed
the lymphnodes of each unit with a population of antibodies
from information learned during a pre-experimental phase:
each of the movement patterns described earlier are tested
for a variable length of time (in terms of multiples of Teval)
to determine utility values. During this phase, external per-
turbations are applied randomly to the creature in order to

obtain a large interval of rotations as condition field of the
antibodies. All antibodies are then initialised with concen-
tration cinit. In the subsequent sensing phase, in each lym-
phnode lci , the distance between the orientation specified by
each antibody in the lymphnode (q) and the current orienta-
tion of the unit (q′) is determined according to equation 1(a).
Within each lymphnode lci, antibodies are ordered accord-
ing to distance and assigned a fitness fi according to equa-
tion 1(b), where ∆Si and EnCi are expected functional and
non-functional utilities according to the utility field. Using
a fitness proportionate selection method based on these fit-
ness values, an antibody is chosen and its action applied to
the relevant component (testing phase). It is important to
notice that, since this very first step of the algorithm, each
unit/lymphnode of the creature can choose actions related to
different movement patterns, hence the search for alterna-
tive trajectories begins in the first time interval. The testing
phase is followed by an evaluation phase in which the adap-
tation mechanisms take place.

(a) d(q, q′) = 2(1− |q · q′|)

(b) fi =
∆Si

1 + EnCi

(1)

Adaptation
This is the adaptation phase in which the original movement
patterns evolve to optimise the functional and non-functional
requirements of the creature. New antibodies are created
that combine and/or adapt components of the 5 initial move-
ment patterns into new strategies (see algorithm 1).

Affinity At the end of the evaluation phase, within each
lymphnode, the currently active antibody ab∗ (as the last
selected antibody) discriminates between situations that
lead to positive or negative feedback. Positive feedback
is received whenever the obtained ∆So is greater or equal
to the expected ∆Sexp stored in the currently selected
antibody; negative feedback is received otherwise. Within
each internal network, each antibody ab ∈ l increases its
affinity to ab∗ if positive feedback is received. In case

(a)
∆c′i
∆t

= Kp

N∑
j=0

rj,icicj −Kn

N∑
k=0

ri,kcick +KD
d(q, q′)

1 + EnCi
−Kdci

(b) ri,j =
Tni + Tpj
Ti,j

(1 + |∆So −∆Sexp|)

(c)
∆ci
∆t

= KintCiint
+KextCiext

(2)

of a negative feedback, the previously selected antibody
ab∗ will increase its affinity towards the other unselected
antibodies ab ∈ l. Affinities are used for calculating the
variation of concentration for the antibodies, as shown in
equation 2(a). Affinity ri,j between generic antibodies i
and j are calculated according to equation 2(b). The same
mechanisms are also applied to the external network, as
shown in the example situation depicted in Figure 4. The
purpose of the external network is to share experiences
throughout the creature: if, for instance, lymphnode lci
obtained a negative feedback, the reason for it could be
ascribed to the neighbouring units that did not push/pulled
in the right direction; vice-versa, if the same lymphnode
obtained a positive feedback, the other neighbouring units
should be aware of that, even if they experienced a negative
result. The SelfEx algorithm should be able to find a
balance between these situations.

Equation 2(b) is borrowed directly from Ishiguro et al.
(1995) and forces selection of the same antibody in a subse-
quent similar situation (in the case of positive feedback) and
vice-versa. Tpj corresponds to the total number of evalua-
tion periods over which abj received positive feedback and
Tni are the total number of times abi received a penalty;
Ti,j is the number of times both antibodies i and j have
been activated. In contrast to Ishiguro et al. (1995) we multi-
ply the quantity representing the ratio of positive to negative
feedback by a term proportional to the difference between
obtained and expected distance travelled to represent func-
tional utility.

Dynamics The concentration ci of an antibody i deter-
mines its ability to compete against other antibodies to be
able to execute its action and is dependent on its affinity with
other antibodies. We apply an equation very similar to the
differential equation suggested by Ishiguro et al. (1995) to
modify concentration, given in equation 2(a). As visible in
equation 2(a), we can identify four components and each
component is controlled by a constant value. The first term
represents stimulation of an antibody, the second term sup-
pression, the third term the stimulation of the antibody from
the environment (proportional by the distance between con-
ditions and inversely proportional by the energy consump-
tion measure), and the final term is a decay term represent-

ing the tendency of antibodies to die if not stimulated. In
order to calculate the concentration of an antibody due to
its internal network, Ciint

, the equation is applied over the
Ni antibodies in the lymphnode of antibody i. The concen-
tration of the i due its external network Ciext is calculated
by applying the equation over the Ne antibodies in its ex-
ternal network. Finally, its total concentration its calculated
by weighting the contributions from the internal and exter-
nal network as in (c) where Kint and Kext are constants.
The final value of concentration is then stabilized through a
squashing function as defined in Ishiguro et al. (1995).

Meta-dynamics Meta-dynamic processes create new
antibodies which can become integrated into the network.
In contrast to previous meta-dynamic models (e.g. Ishiguro
et al. (1995)), in our SelfEx model, the creation of new
antibodies is not a continuous process but is triggered
by stagnation in the network. Specifically, mutation is
triggered whenever more than one antibody converges
to the same concentration, a condition that (according to
initial experiments) occurs when the creature becomes
stuck over a prolonged period of time. The α mutation
operator, triggered when two or more antibodies reach the
same concentration level, creates a new antibody in which
the condition field is set to the current unit orientation and
all other fields are averaged among all the antibodies that
share the same concentration value. To better understand
what averaging the action field of an antibody means, we
can consider an example situation in which two antibodies
(i and j) share the same highest concentration value: let
us suppose that the action during the positive phase of i is
(0,0,-1) while in j is (0,1,0) then the new antibody k will
feature an action during the positive phase of (0,0.5,-0.5).
As a result, new antibodies enable the unit to move though
composite directions, hence providing the single unit with
the basis to create new movement patterns.

A second mutation operator refines new antibodies in or-
der to generate new obstacle avoidance strategies. Mutation
β occurs according to a probability Pβ as described in equa-
tion 3. M is the current number of antibodies and it increases
whenever an α mutation occurs, while N is the initial num-
ber of antibodies. Ka is a constant that regulates how often
this kind of mutation can occur. As soon as M − N > 0,

there is a non-zero probability that a new antibody will be
created featuring the same condition and expected utility
field as the last selected antibody. The action field is calcu-
lated by detecting the dominant direction of the last antibody
and then inverting its direction. For example, if the positive
phase of the last selected antibody i featured an action rep-
resented as (0.8,0.2,0), then the newly generated antibody k
will feature an action in the positive phase represented as (-
0.8,0,0). Once a β mutation occurs, N is set to M and all
the affinity and concentration values are reset to their initial
values.

Pβ =
M −N
Ka

(3)

Experiments and Results
After the pre-experimental phase, the same initial values of
inter-antibodies affinities and concentrations are assigned to
all the antibodies. The mechanism used in the experiment is
shown in algorithm 1.

Algorithm 1: mechanisms of adaptation
Data: Initial population of antibodies after pre-experiments
Executed by: each lymphocyte i;
Sensing: current orientation → Select antibody → action;
TEST: while (t < teval) do

test the selected action;
end
performance = evaluate(∆S, Enc);
updated affinities and concentrations;
if αMutationCondition is true then

applyMutationα;
if βMutationCondition is true then

applyMutationβ;
end
add newly generated antibodies to list of antibodies;
select newly generated antibody;

end
else

Select highest concentrated antibody;
end
goto: TEST;

The algorithm is tested in an arena represented by a
room that is confined between 4 walls. The algorithm
is implemented in Javatm (jdk v. 1.7.0 45) using JOGL
(http://jogamp.org/jogl/www/) for visualization purposes
and jinngine as physics engine (Silcowitz-Hansen (2010)).
After the pre-experimental phase (performed just once be-
fore the experiments), each unit in the creature is initialised
with a population of 50 antibodies; each antibody is then set
to the initial concentration ci = 0.5. Parameters that were
fixed during the experiments were Ka = 3, Kd = 0.25,
Teval = 2s while all the other parameters undergo a process
of search in order to find their best combinations resulting in
settings of Kp = 1, Kn = 0.85, KD = 0.5, Kint = 0.45

Figure 5: 50 time interval experiment in which all the trajec-
tories caused by the pre-coded movement patterns (in black)
are compared to SelfEx (in blue).

and Kext = 0.55. Experiments are repeated 10 times with
the total energy consumed and average distance covered (per
single time interval) over varying time intervals; both these
indicators are averaged throughout the whole creature. Ex-
perimental goals are to: (a) investigate whether pre-coded
movement patterns can be combined in order to show dif-
ferent movement trajectories; (b) optimise distance travelled
(c) optimise energy consumption.

Indicative results showing trajectories over a single run
are depicted in Figure 5 and Figure 6. The y axis indicates
movement over time, thus stationary behaviour is observed
whenever there is no change in the XZ plane.

In Figure 5 shows that the evolved SelfEx trajectory dif-
fers from the single pre-coded movement patterns in that ini-
tially it makes slow progress, but once movement is estab-
lished it continues throughout the experiment in a different
trajectory.

In Figure 6 obstacle avoidance in addition to continuous
movement is clear, as the plot shows how the creature man-
age to step back from walls.

In Figure 7 total energy consumption over time is shown,
compared to the least costly single movement pattern
(Type3) and the most costly (Type2, Type5). Over 10 runs,
the average energy consumption is 10.11 (standard deviation
σ = 0.128), while the average distance covered per single
time interval is avg∆S = 0.38 (σ = 0.129). The com-
parison with the 5 pre-coded movement patterns is shown
in Table 22. Our SelfEx algorithm was able to discover
new trajectories by combining pieces of pre-coded move-

2Do note that the outcomes of the pre-coded patterns are deter-
ministic.

Figure 6: SelfEx trajectory over the XZ plane during 190
time intervals; walls are indicated in red.

MP EnCtot avg∆S
Type1 12 0.26
Type2 15 0.21
Type3 10 0.21
Type4 12 0.33
Type5 15 0.25
SelfEx 10.11 0.38

Table 2: Average perfomance

ment patterns starting from the very first time interval of
the experiment. This is an implication of the fact that each
unit/lymphnode selects actions related to different move-
ment patterns, thus creating new locomotion strategies even
before starting generating new antibodies. The generation
of new antibodies occurs whenever mixing the pre-coded
strategies still does not cause movement to the creature;
moreover the fitness function used during the sensing phase
(equation 1(b)) and the third term of eq. 2 (a) forces the
unit to constantly take into account its energy consumption,
since the increment of the concentration value is inversely
proportional to the energy cost of the movement: even if an
antibody caused a positive feedback, the increase of the an-
tibody concentration will not be substantial if the consumed
energy is high; as an implication of this, less energy con-
suming actions are always selected.

Conclusions and future work
The paper has presented a modified version of an idiotypic
network algorithm to evolve movement in a virtual creature.
The algorithm was inspired by early work in robotic control
by Ishiguro et al. (1995) and extends previous work in
which a modified version of this algorithm was used to

Figure 7: Energy consumption of SelfEx compared to Type1
(low energy), and Type3/Type5 (high energy).

select coordination patterns in swarm robotic applica-
tions (Capodieci et al. (2013b)). The presented control
system is fully distributed, adaptive, and accounts for
both functional and non-functional requirements. By only
sharing a biological clock and by relying on a dual idiotypic
network, the creature minimizes energy consumption and
at the same time, discovers new movement trajectories
and obstacles avoidance behaviours. Its novelty lies in
the use of a 2-layer network, where antibodies interact in
both internal and external networks, trading off unit-control
against shared behaviours. Furthermore, the algorithm
generates novel locomotion patterns in two ways: by
combining fragments of existing patterns and by generating
new patterns by mutating existing ones. As for future
work, applying the same dual immune network for creating
evolutionary morphologies for the creature is definitely
an interesting development to be exploited in the near future.

Acknowledgement
The work is partially supported by the ASCENS project (EU
FP7-FET, Contract No. 257414)

References
Blumberg, B. M. and Galyean, T. A. (1995). Multi-level direction

of autonomous creatures for real-time virtual environments.
In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 47–54. ACM.

Cabri, G. and Capodieci, N. (2013). Runtime change of collabora-
tion patterns in autonomic systems: Motivations and perspec-
tives. In Advanced Information Networking and Applications
Workshops (WAINA), 2013 27th International Conference on,
pages 1038–1043.

Capodieci, N., Hart, E., and Cabri, G. (2013a). Designing self-
aware adaptive systems: from autonomic computing to cog-
nitive immune networks. In Proceedings of the 3rd Workshop
on Challenges for Achieving Self-Awareness in Autonomic
Systems, Philadelphia, USA.

Capodieci, N., Hart, E., and Cabri, G. (2013b). An immune
network approach for self-adaptive ensembles of autonomic
components: a case study in swarm robotics. In Advances in
Artificial Life, ECAL, volume 12, pages 864–871.

Capodieci, N., Hart, E., and Cabri, G. (2014). Artificial immune
system in the context of autonomic computing: integrating
design paradigms. Proceedings of Genetic and Evolutionary
Computation Conference, GECCO 2014, (-):to appear.

Černỳ, J. and Kubalı́k, J. (2013). Co-evolutionary approach to de-
sign of robotic gait. In Applications of Evolutionary Compu-
tation, pages 550–559. Springer.

Cohen, I. R. (2000a). Discrimination and dialogue in the immune
system. In Seminars in Immunology, volume 12, pages 215–
219. Elsevier.

Cohen, I. R. (2000b). Tending Adam’s Garden: evolving the cog-
nitive immune self. Academic Press.

De Castro, L. N. and Timmis, J. (2002). Artificial immune systems:
a new computational intelligence approach. Springer.

Hirose, S. and Morishima, A. (1990). Design and control of a mo-
bile robot with an articulated body. The International Journal
of Robotics Research, 9(2):99–114.

Ijspeert, A. J. (2008). Central pattern generators for locomotion
control in animals and robots: a review. Neural Networks,
21(4):642–653.

Ishiguro, A., Watanabe, R., and Uchikawa, Y. (1995). An im-
munological approach to dynamic behavior control for au-
tonomous mobile robots. In Intelligent Robots and Systems
95. Human Robot Interaction and Cooperative Robots’, Pro-
ceedings. 1995 IEEE/RSJ. IEEE.

Kephart, J. and Chess, D. (2003). The vision of autonomic com-
puting. Computer., 36(1):41–50.

Miconi, T. and Channon, A. (2005). A virtual creatures model for
studies in artificial evolution. In Evolutionary Computation,
2005. The 2005 IEEE Congress on, volume 1, pages 565–
572. IEEE.

Palyanov, A., Khayrulin, S., Larson, S. D., and Dibert, A. (2012).
Towards a virtual c. elegans: A framework for simulation and
visualization of the neuromuscular system in a 3d physical
environment. In silico biology, 11(3):137–147.

Prez-Moneo Surez, D. and Rossi, C. (2013). A comparison be-
tween different encoding strategies for snake-like robot con-
trollers. In Applications of Evolutionary Computation, vol-
ume 7835 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg.

Silcowitz-Hansen, M. (2008-2010). Jinngine, a physics engine
written in java.

Sims, K. (1994). Evolving 3d morphology and behavior by com-
petition. Artificial life, 1(4):353–372.

Whitbrook, A. M., Aickelin, U., and Garibaldi, J. M. (2010).
Real-world transfer of evolved artificial immune system be-
haviours between small and large scale robotic platforms.
Evolutionary Intelligence, 3(3-4):123–136.

