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Abstract of Thesis 

Proteolytic degradation of the extracellular matrix (ECM) by overexpressed 

endoproteases, notably the matrix metalloproteinase MMP-9 and legumain (human 

asparaginyl endopeptidase), contributes to the invasive and migratory phenotype of 

cancer cells and promotes metastases. These proteases represent valid biological targets 

in cancer for diagnostic and therapeutic purposes.  

 

In this research programme, novel MMP-substrate oligopeptide prodrugs of potent 

anticancer agents have been rationally designed for activation selectively in the tumour 

microenvironment. Prodrugs of experimental colchicine-based cytotoxic and vascular 

disrupting agents, experimental anthraquinone-based agents or clinically-active drugs, 

including epirubicin, have been synthesised by both solution- and solid-phase peptide 

methods, and characterised. Results of the preliminary cytotoxic and DNA-binding 

properties of examples of active agents are reported.  

 

Furthermore, the approach has been extended to legumain, which is overexpressed in 

colon, breast and ovarian cancers and is capable of extracellular proteolytic activity. A 

series of novel substrates of legumain has been designed and characterised by high 

resolution mass spectrometry. The new peptide substrates have been developed as 

fluorogenic molecular probes of legumain for diagnostic applications in the early 

detection of cancer. The novel substrates exploit the proteolytic activity of legumain to 

cleave uniquely at the C-terminus of asparagine residues. The new peptide substrates, 

exemplified by prototype fluorogenic probe TL11 (FAM-Pro-Ala-Asn-Leu-PEG-AQ) 

are efficient FRET substrates in which fluorescein-based (donor) fluorescence is fully 

quenched by an aminoanthraquinone residue (acceptor). Proof of principle has been 

demonstrated by use of recombinant human legumain which cleaves the substrate 

library efficiently as shown by fluorescence spectroscopic methods. The tetrapeptide 

sequence pro-X-asn↓-leu was shown to be sensitive when X= ala, ser or thr (wherein 

↓indicates the legumain cleavage ‘hotspot’). The approach was also shown to be 

extendable to a therapeutic prodrug approach with the potential to selectively deliver 

potent agents to the tumour microenvironment.  
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Graphical Abstract Concept Diagrams 

Chapter 1. MMP9-Targeted Prodrugs and Fluorogenic Substrate Probes: Design 

Strategy 

Chapter 1 presents the results and discussion of experiments directed to the synthesis of 

Matrix Metalloproteinase (MMP)-activated fluorogenic substrate probes (in part) and 

principally, novel prodrugs of anticancer agents designed to release the active agents in 

the tumour microenvironment by exploiting the proteolytic action of overexpressed 

proteases. The active agents were either experimental colchicine-based vascular 

disrupting agents or clinically useful drugs, e.g. epirubicin.  

 

            
Figure P1. Design strategy for MMP9 fluorogenic probes (A) and prodrugs (B) 

In Figure P1, (A) illustrates that once a latent fluorogenic FRET probe(s) is cleaved by 

MMP9 at the preferred cleavage site, the fluorophore may then be released from its ‘dark’ 

(aminoanthraquinone) quencher with restoration of its fluorescence. Hence, the 

fluorescence would indicate the presence of tumour cells and protease markers for 

diagnostic purposes; (B) shows a therapeutic twin-prodrug approach in which released 

active agents may enter into tumour cells and lead to cell death after prodrug cleavage by 

MMP9 at its designed cleavage site.  

B

 

 A 

A 
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Chapter 2. Legumain-Targeted Prodrug and Molecular Probe Design 

Chapter 2 presents the results and discussion of a major study directed to the design, 

synthesis and characterisation of novel fluorogenic substrates of the tumour-associated 

endoprotease legumain, a putative cancer biomarker, for diagnostic applications in the 

early detection of cancer. The approach is also extendable to a therapeutic prodrug 

approach to selectively deliver potent agents to the tumour microenvironment. In each 

case, the design strategy relies upon exploiting the unique strict substrate specificity of 

legumain for cleavage at the C-terminus of asparagine residues.  

 
        A 

 
B 

Figure P2. General design of legumain fluorogenic substrate probes (A) and prodrugs (B) 

In Figure P2, (A) illustrates the general design strategy for activation of legumain 

fluorogenic probes. Once the latent fluorogenic FRET probe is cleaved at the C-terminus 

of asparagine, the released fluorescence will detect the biomarker or location of tumour 

cells; (B) shows the design of legumain specific prodrugs, with active agent and a capping 

group (which may be replaced by a second active agent) for tumour-specific targeting.   
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Chapter 3. DNA Binding Study on Novel Anthracenediones: Active agents (prodrug 

‘warheads’) and Dark Quenchers (in Fluorogenic Substrates)  

This study focuses on the synthesis and physicochemical properties of some 

anthraquinone amino acid conjugates which a members of a wider series, related to the 

anticancer drug mitoxantrone, and which were variously chosen to act as active agents 

and/or quenchers in the main aspects of the research; namely, the design of endoprotease-

activated protease prodrugs and substrates. 

 

 

      Figure P3. Ethidium bromide-DNA binding displacement study 

Various anthraquinone-based active agents, capable of incorporation as ‘warheads’ in 

either of the endoprotease-mediated activation of substrate probes or prodrugs (of MMPs 

or legumain) were compared by using an ethidium bromide-DNA binding displacement 

assay, as shown in Figure P3. DNA-ethidium complexes are fluorescent was replaced 

with anthraquinone derivatives, its fluorescence would decrease. Hence, by measuring 

the decease of DNA-bound ethidium fluorescence, it is possible to determine an active 

agent’s DNA binding ability within a closely related series.  
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Nomenclature 

The structures below represent the compounds prepared in this study in their simplest 

format.  
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R= H                .   [YD9] (5);

R= CH3              .. [YD36] (6);

R= (CH2)3NH2  .  [MB1] (7).

      

Figure P4. General structures of anthraquinone conjugates and colchicine derivatives 

The terms anthraquinone, anthra-9,10-quinone, anthracenedione and anthracene-9,10-

dione have been used interchangeably, since they are all in common usage. The 

anthraquinones (aminated anthraquinones or conjugates of amino acids or peptides) 

synthesised in this study are regarded fundamentally as anthraquinones i.e. 

anthraquinones substituted with amino (RNH- or R1R2N-) side-chains in either the 1- or 

2- position.  As such, anthraquinone amino acid/ peptide conjugates derived from simple 

aminoalkylamino spacer groups have been named as substituted anthraquinones, 

according to the numbering system shown in the figure. Aminoalkylamino groups have 

been abbreviated to, for example, ‘propyl’ or ‘propyl-spacer’ in terminology representing 

the species -NH-(CH2)3-NH- when set in the context of spacer linked conjugates and are 

convenient descriptors for the simpler spacer groups in these molecules. The spacer (or 

linker) groups have been further abbreviated for convenience (in chapter 1), for example, 

the species -NH-(CH2)3-NH- is denoted as APA (aminopropylamino); this system has 

been adopted to simplify the description of relatively complex prodrugs containing active 

agents connected to a peptide carrier via spacer groups (consistent with practices 

exemplified in the Literature). It is anticipated that the meaning of these descriptors 

facilitates communication and will be obvious from the context. 
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Example A: 4-hydroxy-1-[3-(N-tertiarybutoxycarbonylglycylamino)propylamino] 

anthraquinone 

O

O OH

NH NHCO NH O

O

CH3

CH3

CH3

 

4-hydroxy-1-(Boc-Gly-[Propyl Spacer])-AQ YD3 (16) [Chapter 3] 

More generally, the example may be described as ‘an N-protected, propyl-linked glycine 

conjugate’ wherein propyl is a shorthand description for the spacer moiety.   

Example B: 1-{2-[2-(2-(N-5(6)-carboxyfluoresceinylcarbonyl-L-prolyl-L-alanyl-L-

asparaginyl-L-leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione  

C

O

N
O

O
NH

O

O

NH2

O

CONH CONHCONHCONH

O

O

OHO OH  

5(6)-FAM-Pro-Ala-Asn-Leu-[PEG Spacer]-AQ [TL11] (3) [Chapter 2] 

In example B, descriptors for the aminoacyl residues derived from the component amino 

acids are conveniently used to describe B as: an L-prolyl-L-alanyl-L-asparaginyl-L-leucyl 

PEG spacer tetrapeptide conjugate. [The peptide is thus described conventionally, with 

the N-terminus ‘to the left’]. 
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Example C:  A ‘non-identical twin’ hexapeptide prodrug with colchicine- and 

anthraquinone- based active agents (showing piperazine and dimethylpiperazine spacer 

residues)  

 

YD36-DMPIP-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 42) (29) [Chapter 1] 

Note: During discussion of anthraquinone-oligopeptide conjugates of this type, 

particularly during enzyme studies of Example B, it was convenient to describe molecules 

as having residual amino acid fragments attached to the anthraquinone-spacer [AQ-SP] 

compounds, as in a (truncated) e.g. AQ-SP-Leu-Asn dipeptide conjugate, wherein it was 

understood that neither the amino acid sequence was altered nor the amino terminus 

reversed [i.e. that Asn was the amino terminus and that the correct interpretation would 

be unambiguous from the context in which these passages occurred].  

Note: With regard to the spacer group, EXAMPLES of convenient descriptors have been 

adopted: 

SPACER RESIDUE DESCRIPTOR 

 

 
APA (aminopropylamino) 

 

 

PEG (polyethylene glycol-like spacer) 

 

 

 

 

PIP (piperazinyl-spacer) 

 

 

 

 

 

DMPIP (dimethylpiperazinyl-spacer) 

 

 

 

SUCC (succinyl/succinate) 
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Abbreviations 

ADEPT   antibody-directed enzyme prodrug therapy 

AEP    asparaginyl endopeptidase (legumain) 

AMC    7-amino-4-methylcoumarin 

APMA    4-aminophenyl mercuric acetate 

AQ    anthraquinone 

Boc (or tBoc)   tertiarybutoxycarbonyl 

CEA    carcinoembryonic antigen 

CT    cytoplasmic tail 

DCC    dicyclocarbodiimide 

DCU    dicyclohexylurea 

DIPEA      N,N-diisopropylethylamine 

DMAP    4-(N,N-dimethylamino)pyridine 

DMF    N,N-dimethylformamide 

DMSO    dimethyl sulphoxide 

EB    ethidium bromide 

ECM     extracellular matrix 

EPR    enhanced permeability and retention 

ER                  estrogen receptor      

ESI    nanoelectrospray ionisation 

ETR    electron transfer reagent 

FAM    carboxyfluorescein 

FCS    foetal calf serum  

FITC    fluorescein isothiocyanate isomer I  

Fmoc    fluorenylmethoxycarbonyl 

FRET    fluorescence resonance energy transfer 

HBTU N,N,N′,N′-tetramethyl-O-(1H-benzotriazol-1-yl)uronium                      

hexafluorophosphate 

HE4    human epididymis protein 4 

HOBt    1-hydroxybenzotriazole 

HPLC    high-performance liquid chromatography 

IGF    insulin like growth factor 

INT 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium  

chloride 

IC50            lethal concentration, 50% 

LD50    lethal dose, 50% 

LDH    lactate dehydrogenase  

LEG-3 N-succinyl-β-alanyl-L-alanyl-L-asparaginyl-L-leucyl-

doxorubicin 

LEG-4    N-succinyl-L-alanyl-L-asparaginyl-L-leucyl-doxorubicin 

Leu-Epi   N-L-leucyl-Epirubicin 

Leu-Dox   N-L-leucyl-Doxorubicin 

LPS    lipopolysaccharide 

mAbs    monoclonal antibodies 

MCF-7    Michigan Cancer Foundation-7 (breast cancer cell line) 

MES    2-(N-morpholino)ethanesulfonic acid 

MM    multiple myeloma 

mmol    millimole(s) 

MMPs     matrix metalloproteinases 

MTD    maximum tolerable dose 
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MT-MMPs   membrane-type MMPs 

MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl) 

-2-(4-sulfophenyl)-2H-tetrazolium 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide 

NAD+    nicotinamide adenine dinucleotide 

NADH    nicotinamide adenine dinucleotide (reduced form). 

NMR    nuclear magnetic resonance 

NU:UB Napier University: University of Bradford (compound 

codes) 

OtBu    O-tert-butyl 

OPFP    O-pentafluorophenolate 

OSu    succinimidyl  

PBS    phosphate buffered saline 

PDEPT   polymer-directed enzyme prodrug therapy 

PEG    polyethylene glycol 

PFP    pentafluorophenyl 

PMS    phenazine methosulfate 

PMSF    phenylmethanesulphonyl fluoride 

ppm    parts per million 

pro    pro-domain 

PyBOP (benzotriazol-1-yloxy)tripyrrolidinophosphonium 

hexafluorophosphate 

Rf    retention factor 

RFU/I    relative fluorescence unit/intensity  

RT   room temperature 

SPPS    solid phase peptide synthesis 

ss    signal sequence 

TAMs    tumour associated macrophages 

TBTU O-(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium 

tetrafluoroborate  

TC    tetracycline 

TFA    trifluoroacetic acid 

TGF    transforming growth factor 

THF    tetrahydrofuran 

TLC    thin layer chromatography 

TMEAP   tumour microenvironment activated prodrug 

TM    transmembrane domain 

Trt    trityl 

TSTU O-(N-succinimidyl)-1,1,3,3-tetramethyluranium 

tetrafluoroborate 

VEGF    vascular endothelial growth factor 

VPE    vacuolar processing enzyme 

Z-AAN-AMC benzyloxycarbonyl-Ala-Ala-Asn-7-amido-4-

methylcoumarin 
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Chapter I. MMP9-Targeted Prodrugs and 

Fluorogenic Substrate Probes 

1.1 INTRODUCTION 

1.1.1 Aim 

The principal aim of this research is to design systems for the selective targeting of the 

microenvironment of tumours (and potentially, bacteria-infected tissues) using a prodrug 

approach and exploiting the proteolytic action of overexpressed enzymes (proteases) in 

the extracellular matrix (ECM); ultimately, to improve therapeutic index and reduce side 

effects for patients. 

 

Figure 1.1. General structure of prodrugs in this project 

Figure 1.1 outlines the general structure of prodrugs which were designed and 

synthesised in this project. Generally, these prodrugs have three parts: the oligopeptide 

carrier which can be cleaved off once the prodrug binds to proteolytically active forms of 

enzymes (proteases); the active agents on both ends of the prodrug are ideally twin active 

drugs (identical or non-identical) that can target tumours (or bacteria-infected tissues); 

and also the linker, usually an ester or amide-containing group, which connects the active 

agent onto the oligopeptide carrier. In these approaches, the targeted proteases are 

associated with the extracellular matrix (ECM). The main focus of the project is to 

incorporate vascular disrupting agents (VDAs) into novel substrates targeted to human 

MMP-9. 
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1.1.2 Extracellular matrix (ECM) 

The extracellular matrix (ECM) is a network of molecules separating and supporting 

tissues, which is constituted by structural components, for instance proteoglycans, 

glycoproteins and collagens. Timely degradation of the ECM is essential for 

reproduction, morphogenesis, and tissue resorption and remodelling. However, excessive 

degradation of the ECM may lead to various pathologies such as arthritis, cancer, chronic 

ulcers, fibrosis and cardiovascular diseases. Several kinds of proteinases are involved in 

ECM degradation, but matrix metalloproteinases (MMPs) are the primary enzymes in the 

degradation of the ECM (McCawley and Matrisian, 2000; Nagase et al., 2006; Vargová 

et al., 2012). Excess breakdown of the matrix is a crucial step of tumour progression 

[Figure 1.2].  

  

Figure 1.2. Process of tumour 

progression. (McCawley and 

Matrisian, 2000) 

 

A single tumour cell needs 

nutrients supply from 

angiogenesis for further growth. 

The tumour cell must pass 

through the basement membrane 

for its invasion and metastasis. It 

then enters the circulation to a 

distant site where it has to leave 

the circulation, pass through the 

host tissue, and penetrate the 

basement membrane again. 

Metastases are established if 

tumour cells can grow at this new 

distant site.  
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1.1.3 Matrix Metalloproteinases (MMPs) 

Matrix Metalloproteinases (MMPs), also called matrixins, are a family of secreted and 

membrane-associated zinc-dependent proteinases and peptide hydrolases, which once 

activated have the ability to degrade a variety components of the extracellular matrix 

(Birkedal-Hansen et al., 1993; Stetler-Stevenson, 1999; Hidalgo and Eckhardt, 2001; 

Tallant et al., 2010). Most MMPs have very low activities in the normal tissues; MMPs 

were first discovered a half century ago by Gross and Lapiere, who tried to explain how 

the tail came off from a metamorphosing tadpole (Gross and Lapiere, 1962). Since then 

a number of matrix metalloproteinases have been discovered in several physiological 

remodelling processes (i.e. embryonic development, bone and growth plate remodelling, 

ovulation, wound healing), and in some important disease processes such as tumour 

invasion (Woessner, 1991; Dufour and Overall, 2013).   

1.1.4 Human MMPs domain structure 

Twenty six human MMP enzymes have been found in the past four decades and they are 

classified in five groups (collagenases, gelatinases, stromelysins, membrane-type MMPs 

and others), which are based on their primary structure, substrate specificity and cellular 

location  (Birkedal-Hansen et al., 1993; Clark et al., 2008; Verma and Hansch, 2007; 

Vargová et al., 2012). 

There are three collagenases: MMP-1 (collagenases-1), MMP-8 (collagenases-2) and 

MMP-13 (collagenases-3). Propeptide, catalytic and hemopexin domains can be found in 

these three collagenases. The cooperation between catalytic and hemopexin domains is 

regarded as an essential part of these three collagenases’ collagenolytic activity. These 

collagenases can make a single cleavage to give ¾ and ¼ of the length of triple-helical 

collagen (Birkedal-Hansen et al., 1993; Chung et al., 2004; Tallant et al., 2010). 
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MMP-2 (gelatinase A) and MMP-9 (gelatinase B) are both type IV collagenases but 

because they perform much better in cleaving gelatin, they were named gelatinases. Both 

gelatinases have three repeats of a fibronectin type II motif for gelatin binding in the 

catalytic domain (Birkedal-Hansen et al., 1993). The size difference between the two 

gelatinases is gelatinase B (92kDa) has a longer hinge region than gelatinase A (72kDa) 

(DeClerck, 2000).  

Three stromelysins have been identified: MMP-3 (stromelysin-1) and MMP-10 

(stromelysin-2) have nearly the same function, degrading fibronectin, laminin, and gelatin 

of the ECM (Birkedal-Hansen et al., 1993). Although MMP-11 (stromelysin-3) has very 

weak activity toward ECM proteins (Murphy et al., 1993), it can degrade serpin (serine 

proteinase inhibitor) and antitrypsin (1-antiproteinase inhibitor) (Birkedal-Hansen et al., 

1993; Van Valckenborgh et al., 2004). Both MMP-3 and MMP-10 are secreted in the 

form of inactive proMMPs (zymogens) from the cells, while MMP-11 is activated by 

furin intracellularly and secreted as an active enzyme (Pei and Weiss, 1995).  

MMP-7 (matrilysin 1) and MMP-26 (matrilysin 2) do not have a hemopexin domain and 

MMP-7 is the smallest one (28kDa) among the MMP family. Research showed that it can 

digest ECM molecules and also degrade cell surface molecules into soluble forms. 

Different from other MMPs, MMP-7 is expressed by tumour cells other than stromal cells 

(Liu et al., 2007). MMP-26 is expressed in both carcinomas and normal epithelial cells 

and degrades ECM components (Marchenko et al., 2004).  

Membrane-type MMPs (MT-MMPs) are not secreted, but attached to the cell surface by 

24 amino acids from their transmembrane domain. MT-MMPs also have a short 

cytoplasmic domain that could help MT-MMPs move to the front edge of the cells (Lehti 

et al., 2000). There are two types of MT-MMPs: MMP-14,-15,-16 and -24 (type I 
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transmembrane proteins) and MMP-17 and -25 (glycosylphosphatidylinositol-anchored 

proteins). All MT-MMPs can activate proMMP-2, except MT4-MMP (MMP-17) 

(English et al., 2001). ProMMP-13 can be activated on the cell surface by MT1-MMP 

(MMP-14) (Knäuper et al., 1996).  

 

Figure 1.3. MMPs domain structure. signal sequence (ss); pro-domain (pro); transmembrane 

domain (TM); cytoplamic tail (CT) (Adapted from Zucker et al., 2002). 

Figure 1.3 shows the basic structure of MMPs, which typically have five domains (from 

the N terminus): a signal peptide domain, a propeptide domain that has a “cysteine 

switch”, a catalytic domain, a hinge region, and a hemopexin-like domain. However, there 

are some exceptions in the domain structure: there is no linker peptide and hemopexin-

like domain in MMP-7 (matrilysin 1), MMP-26 (matrilysin 2) and MMP 23; two 

additional inserts at the C terminus are found in MT-MMPs, which are transmembrane 

domain and cytoplasmic domains. Only MT-MMPs and MMP-11 contain the furin-

consensus sequence; MMP-2 and MMP-9 also have a fibronectin-like domain; a 

collagen-V-like domain can be found in MMP-9; MMP-23 also has cysteine rich and Ig 

domain (Zucker et al., 2002; Murphy and Nagase, 2008; Vargová et al., 2012).  

1.1.5 Activation of MMPs 

Most MMPs, apart from MT-MMPs and MMP-11, MMP-21, MMP-23, MMP-28, are 

secreted in inactive forms and are activated by dissociating the N-terminal propeptide 

domain (Yu and Woessner, 2000; Cunningham et al., 2005). The N-terminal prosequence, 
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also called propeptide domain, is about 80 amino acids large and performs as an internal 

inhibitor and keeps the enzyme in an inactivated form. In the inactive MMPs, the unpaired 

cysteine thiol group in the propeptide binds to a Zn atom in the active site. Upon 

activation, as shown in Figure 1.4, the cysteine-zinc bonding has to be disrupted by a 

water-zinc interaction (the cysteine switch) (Birkedal-Hansen, 1995). In vitro, MMPs can 

be activated by two general methods: applying proteolysis or chemical activators such as 

4-aminophenyl mercuric acetate (APMA). The propeptide domain which has cysteine 

residue can be degraded by proteolytic treatment. While in the activation with APMA, it 

can modify cysteine, hence APMA can disconnect cysteine-zinc bonding permanently 

(Van Wart and Birkedal-Hansen, 1990; Nagase and Woessner, 1999).    

 

Figure 1.4. Adapted from Birkedal-Hansen, 1995 

Some studies proved that gelatinase A (MMP-2) could be activated by a trimolecular 

complex of activated MT-MMP, TIMP-2 and progelatinase A. On the cell surface, TIMP-

2 binds to MT1-MMP, and then the C-terminal domain of progelatinase A binds to the C 

terminus of TIMP-2 to form a trimolecular complex. A second MT1-MMP on the cell 

surface can cleave progelatinase A; hence activate gelatinase A (MMP-2) (Butler et al., 

1998). TIMP-2 acts as an inhibitor or adaptor depending on its concentration vis-à-vis 

MT1-MMP and proMMP-2 (DeClerck, 2000; Hadler-Olsen et al., 2013).  
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1.1.6 Inhibition of MMPs 

Once activated, MMPs can be inhibited by some natural inhibitors, especially TIMPs 

(tissue inhibitors of matrix proteases) and 2-macroglobulin (2M) (Birkedal-Hansen et 

al., 1993). 

Water molecule entry responsible for hydrolysis of the peptide bond could be blocked by 

binding MMPs’ catalytic domains to the N-terminal domains of TIMPs (Chau et al., 

2003). Four TIMPs have been discovered so far and they are cross-linked by six disulfide 

bridges. TIMP-1 (28 kDa), TIMP-2 (21 kDa) and TIMP-4 (22 kDa) are soluble proteins 

and can be found in the body fluids, while TIMP-3 (24 kDa) is insoluble and can be found 

bound to the ECM. TIMP-1 has been found that it has a very poor ability to inhibit MT-

MMPs that are attached to the cell surface. TIMP-2 and TIMP-3 can inhibit all MMPs to 

different degrees. TIMP-4 has been reported to inhibit MMP-1, -2, -3, -7, and –9 

(Birkedal-Hansen et al., 1993; Liu et al., 1997). Although TIMPs can inhibit most MMPs, 

they have a short half-life (Curran & Murray, 2000). 

The other endogenous MMP inhibitor is 2-macroglobulin, which is a non-specific 

protease inhibitor produced by the liver. 2M is a large size protein, of 750kDa, that is 

normally spread throughout plasma and serum. Aspartyl-, cysteine-, metallo- and serine- 

proteases can all be inhibited by 2M. Because 2M usually functions in blood and tissue 

fluids, where the MMPs are often inactive in this environment, 2M has less effect on 

MMPs (Zucker et al., 1999). However, Kolodziej et al. (2002) three years later discovered 

that inactive MMPs could be captured by 2M as well. 

Endostatin is the third known natural inhibitor of MMPs, which is generated by type 

XVIII collagen during its cleavage. It has been found that the level of endostatin could be 

increased during cancer progression. This may be because of increases in MMPs’ 
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activities, but details are still unknown (Klein et al., 2004). In vitro, it has been proved 

that endostatin has the ability to inhibit proMMP-2 activation and MMP-2 activity and 

form a complex with MMP-2 (Kim et al., 2000).  

1.1.7 MMPs in Tumour Angiogenesis and Tumour Growth 

Angiogenesis is a process to form new blood vessels from existing vessels. It is essential 

for tumour growth and it can be found in primary and secondary tumours (Giavazzi and 

Taraboletti, 2001). Without further supply of oxygen and nutrients, tumour cells normally 

would not grow beyond 2mm3 (Zetter, 1998). As angiogenesis is a prerequisite for tumour 

growth and metastatic spread, it would be an advantage to deliver toxic agents selectively 

to attack newly formed vessels to the tumour or inhibit outgrowth of capillary sprouts. 

There are some benefits to attacking tumour vasculature instead of tumour cells: (1) as 

endothelial cells are more stable than tumour cells, so drug resistance could be decreased 

by attacking endothelial cells; (2) it would be easy for agents to reach tumour vasculature 

during circulation; (3) as antiangiogenic therapy focuses on tumour vasculature, so it 

could apply to many different kinds of tumours (Koop and Voest, 2002; Klein et al., 

2004).  

In order to form new blood vessels, initially MMPs are required to degrade the basement 

membrane of the ECM for the migration of endothelial cells (Moses, 1997). Among all 

MMPs, MMP-2 and MMP-9 have been studied the most in cancer and metastasis. MMP-

2 and –9 have been linked to increased metastasis and tumour stage in some studies. 

Vacca et al. (1999) discovered that in the patients with active multiple myeloma (MM), 

there was a bigger area of microvessels and a higher level of MMP-2 and MMP-9 than 

those with inactive MM. Endothelial cells separated from the bone marrow of MM 

patients secrete more MMP-2 and MMP-9 than human umbilical vein endothelial cells 
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(HUVECs) (Vacca et al., 2003). In the treatment of MM mice, SC-964, an MMP 

inhibitor, controlled angiogenesis—outgrowth of blood vessels was dramatically 

decreased. In this research project, prodrugs were initially designed against MMP-9 (see 

also section 1.1.10). 

During degradation of the basement membrane of the ECM, some growth factors, which 

are secreted and kept in an inactive form bound to the ECM, could be released to target 

their receptors. Hence, MMPs can also release or activate growth factors, like 

transforming growth factor (TGF)-, TGF- and insulin like growth factor (IGF). Imai 

et al. (1997) had proved that MMP-2, -3 and -7 can release TGF- during cleavage of the 

matrix molecule decorin. TGF- and IGF may also have the ability to cause the tumour 

to grow without angiogenesis (Klein et al., 2004; Hadler-Olsen et al., 2013). MMP-9 can 

release vascular endothelial growth factor (VEGF) from the ECM (Bergers et al., 2000) 

and generate tumstatin, an angiogenesis inhibitor, by degrading type IV collagen 

(Hamano et al., 2003).   

It also has been found that some fragments of ECM (e.g. tumstatin), fragments of 

plasminogen (e.g. angiostatin) and fragments of MMPs (e.g. PEX) could lead to a 

negative effect on tumour angiogenesis (Klein et al., 2004). Tumstatin was found capable 

of inhibiting tumour angiogenesis by inhibiting proliferation of endothelial cells and 

endothelial cell apoptosis promotion, while endostatin inhibited migration of endothelial 

cells (Sudhakar et al., 2003). MMP-3,-7,-9 and –12 can produce angiostatin from 

plasminogen and their activity was found to inhibit tumour angiogenesis (Vihinen and 

Kähäri, 2002). PEX, a noncatalytic MMP-2 fragment, has been found to inhibit activity 

and cell surface localization of MMP-2, which leads to a positive effect on inhibiting 

angiogenesis in vitro and in vivo (Cao, 2001; Brooks et al., 1998).  
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1.1.8 Development of MMP inhibitors 

Based on the studies of the relationship between MMP expression in tumour tissues and 

tumour progression, it suggested that tumour dissemination could be inhibited by using 

MMPs as pharmacological targets (Stetler-Stevenson, 1996). The imbalance between 

TIMPs and MMPs can cause degradation of the ECM. It has been reported that increased 

levels of TIMPs can decrease tumourigenicity and angiogenesis (Giavazzi and 

Taraboletti, 2001). As MMP-inhibition could lead to inhibition of angiogenesis, tumour 

growth, invasion and metastasis, and TIMPs are not suitable for clinical use because of 

their complex function and large molecular size, many research studies have been focused 

on developing small molecule MMP-inhibitors (or MMPIs). Many inhibitors of MMPs 

have been synthesised and have undergone clinical trials. In the MMPI structure, there 

should be a metal-binding group (a carboxyl, hydroxamate, sulphydryl or thiol), which 

can bind to the zinc atom at the active site of the MMPs (Drummond et al., 1999). Most 

synthetic MMP-inhibitors can be separated into four groups: collagen peptidomimetics; 

non-peptidomimetics; tetracycline derivatives; and bisphosphonates (Giavazzi and 

Taraboletti, 2001; Klein et al., 2004; Newby, 2012). Sulphonamides have also been 

suggested as a potentical class of MMPIs (Jain et al., 2013; Mori et al., 2013) 

Instead of focusing on designing MMP-inhibitors, in this project the focus was on 

exploiting MMPs’ peptide hydrolysis ability to activate newly designed and synthesised 

prodrugs in the tumour microenvironment.   

1.1.9 Prodrug strategies 

Prodrugs are compounds which are initially in inactive form, but after administration can 

be converted into the active form in the body by normal metabolic processes. They are 

typically very useful to solve problems such as poor membrane permeability, drug 
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toxicity, side effects, bad taste and instability (Patrick, 2009), but in this project, the 

prodrug is designed to be tumour-targeted. There are two basic targeting modes for 

prodrug strategies: active and passive targeting. Active targeting is based on the 

interaction between carrier-linked prodrugs and markers on the tumour cell surface. 

Passive targeting relies on the differences of physiology and biochemistry between 

normal healthy and tumour tissue (Kratz et al., 2008). 

1.1.9.1 Active targeting 

Active targeting depends on the differences of antigens or receptors on the cell surface 

between healthy and tumour tissues. Ideal active targeting carrier-linked prodrugs should 

be able to load and release drugs at specific targets; have long term circulation, high 

affinity to the antigen or receptor on the tumour cell surface, lower toxic and lower drug 

level in healthy tissue (Juillerat-Jeanneret and Schmitt, 2007; Lu et al., 2006).     

However, some drawbacks could affect the delivery of active targeting prodrugs: 1) Some 

antibodies and receptor-affinity ligands are not only just binding to tumour cells, but also 

reacting with normal tissue and may cause systemic toxicity (Kratz et al., 2008); 2) 

Because the inside of solid tumours, is normally poorly vascularised and blood flow is 

relatively slow, both factors could prevent macromolecular prodrugs reaching inner 

regions of tumours (Jain, 1999); 3) Tumour cells often express heterogeneity in the 

antigen or receptor, hence it could reduce active targeting prodrugs binding to tumour 

cells (Kratz et al., 2008); 4) Some antigens and receptors are secreted into the circulation, 

so they can bind to prodrugs in the circulation instead of on the surface of tumour cells, 

hence restrict the binding between prodrugs and tumour cells (Kratz et al., 2008); 5) Most 

active targeting prodrugs are evaluated based on human tumour translated mouse models. 
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However, even if the prodrugs can be activated effectively in mouse models, it does not 

mean they will have the same results in humans (Oriuchi et al., 1998).     

1.1.9.1.1 Antibody-directed enzyme prodrug therapy (ADEPT) 

Antibody-directed enzyme prodrug therapy (ADEPT) was introduced by Bagshawe and 

Senter et al. (Bagshawe, 1987; Senter et al., 1988) to overcome the above problems. 

ADEPT has a two-step mechanism which is outlined in Figure 1.5:  

1) Monoclonal antibodies (mAbs) and drug-activating enzyme conjugates are 

administered into patients i.v., then the mAbs of the conjugate will bind to a specific 

antigen that is expressed on the surface of the tumour cell;  

2) After nearly all conjugates have bound to the tumour cells, low-molecular-weight 

prodrugs are applied and activated by the enzyme from the mAbs-enzyme conjugates. 

Then cytotoxic drugs will be released and cause tumour cell death.  

 

Figure 1.5. ADEPT (Adapted from Kratz et al., 2008). 
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1.1.9.2 Passive targeting 

Passive targeting prodrugs usually apply large molecules (biopolymers or synthetic) or 

nanoparticles (nanospheres, liposomes) as inert carriers, which do not react with tumour 

cells but can accumulate in tumour tissue to influence the drug’s biodistribution.  

1.1.9.2.1 EPR effect (enhanced permeability and retention) 

New blood vessels that are formed during tumour angiogenesis process are always in an 

irregular shape and dilated and leaky. Widened intercellular spaces in tumour vessels, 

overlapping endothelial cells and absent or abnormal smooth-muscle layer make tumour 

tissue permeable to macromolecules and nanoparticles (Maeda et al., 2006; Kratz et al., 

2008). The diameter size of tumour microvessels has been reported between 100nm to 

1200nm (Yuan et al., 1995; Hobbs et al., 1998). However, in most healthy tissue, 

junctions between endothelial cells of microvessels are less than 2nm in diameter [except 

postcapillary venules (up to 6nm) and liver, spleen, and kidney (up to 150nm)] (Jang et 

al., 2003). Macromolecule carriers in macromolecular prodrugs are normally from 2nm 

to 10nm; hence prodrugs with macromolecule carriers could enter into tumour tissue 

instead of normal healthy tissue (Kratz et al., 2008). If the molecular weight is below 

40kDa, it could be cleared from the tumour very quickly, while large molecular entities 

are retained (Noguchi et al., 1998), this is because there is poor or no functional lymphatic 

drainage inside tumour tissue. So, the explanation for the accumulation of 

macromolecules in solid tumours is the combination of enhanced permeability and 

retention (EPR) as outlined in Figure 1.6 (Matsumura and Maeda, 1986).  
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Figure 1.6. The EPR effect (Adapted from Kratz et al., 2008). 

As there are extensive vascular areas in large tumours, so they have less EPR active than 

small tumours. On the other hand, at the pre-angiogenic stage, macromolecular prodrugs 

are hard to target on small metastases (Jang et al., 2003). Apart from the EPR effect, 

macromolecular prodrugs have been reported to have enhanced retention with longer 

plasma half-lives, because they cannot be cleared from kidneys easily. Venturoli and 

Rippe reported that negatively charged or uncharged macromolecules (>40kDa) could 

escape renal clearance successfully (Venturoli and Rippe, 2005). Many models showed 

tumour size-dependent accumulation. Smaller tumours have higher tumour localisation 

than larger tumours, and this may due to angiogenic activity is higher in smaller tumours, 

while in larger tumours, blood supply is reduced or absent in the hypoxic regions and 

tumour interstitial fluid pressure is higher than in smaller tumours (Duncan et al., 2013). 

1.1.9.2.2 Polymer-directed enzyme prodrug therapy (PDEPT) 

The basic passive targeting strategy PDEPT— polymer-directed enzyme prodrug therapy, 

as it illustrated in Figure 1.7, is similar to ADEPT, needs both administrations of 

macromolecular prodrug and polymer-enzyme conjugate which can combine with each 

other and hence release anti-cancer agent at the tumour site. The difference between 

ADEPT and PDEPT is that during polymer-directed enzyme prodrug therapy, the 

polymer-prodrug needs to be administrated into the patient’s body initially and after it 

reaches the tumour target site, then the polymer-enzyme conjugate is applied. Since the 
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polymeric prodrug only stays in plasma for a comparatively short time, the prodrug will 

not be activated until the polymer-enzyme conjugate is administrated and both polymer 

conjugates combine inside the tumour [Figure 1.7] (Satchi et al., 2001; Kratz et al., 

2008).   

 

Figure 1.7. PDEPT— polymer-directed enzyme prodrug therapy (Adapted from Kratz et al., 2008). 

Compared with ADEPT, PDEPT has two potential advantages: 

1) In ADEPT, an antibody-enzyme conjugate often has long plasma half-life which 

makes it difficult to design an optimal dosing schedule for the administration of 

prodrug subsequently. If a prodrug is administrated when there is still a high level 

of antibody-enzyme conjugate in the plasma, it would be activated in the normal 

tissue instead of tumour site (Bagshawe, 1994; Satchi et al., 2001). While, in 

PDEPT, due to passive accumulation of polymeric prodrug after initial 

administration, polymeric prodrug is only presents in plasma for a relatively short 

time. Following administration, the polymer-enzyme conjugate mostly binds and 

activates prodrug at the tumour site (Kratz et al., 2008). 

2) Compared to the antibody-enzyme conjugates in ADEPT, the polymer-enzyme 

conjugates in PDEPT could reduce potential enzymes’ immunogenicity (Satchi et 

al., 2001).  
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1.1.10 Design strategy of new prodrugs for activation by MMP 9 

1.1.10.1 Early development of MMP 9 prodrug substrates 
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Figure 1.8.  Structure of EV1-FITC (1) 

The above structure is the prototype (synthesised earlier in this laboratory) which forms 

the basis of the present study. The MMP 9-targeted prodrug EV1-FITC (1) [Figure 1.8], 

is an FITC-containing heptapeptide-1-(3-aminopropylamino)anthraquinone conjugate, 

for which it was shown that cleavage between glycine and norvaline by MMP 9, which 

was produced by 5T33MM vv murine myeloma cells, with the result of fluorescence 

release which indicated the activation of this prodrug. Van Valckenborgh et al. showed 

that in the 5T33MM mouse model, EV1-FITC (1) gave a higher fluorescence release by 

the MMP 9-rich isolated spleen and bone marrow (BM) cells of diseased animals 

compared to this prodrug in healthy animals. This suggested MMP 9-activatable prodrugs 

can be used to target multiple myeloma (MM), an incurable B-cell cancer located in the 

bone marrow (Van Valckenborgh et al., 2005). This proof of principle in the animal 

model is used as the starting point for extending the design of optimised MMP-targeted 

prodrugs in this project. 

1.1.10.2 Outline strategy for new prodrugs in this research project 

In this research project, a series of single agent or twin (identical or non-identical) 

prodrugs with optimised peptide sequences have been synthesised with the combination 
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of an oligopeptide as carrier and attached on each end: either dual antivascular agents 

(such as a colchicine series of compounds) or dual cytotoxic agents (such as a clinically-

used agent, like epirubicin (2)) or combined antivascular and cytotoxic agents. Illustrative 

examples are outlined below. 

 

Figure 1.9. YD9-DMPIP-SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 55) (3) 

Identical twin prodrug YD 55 (3) [Figure 1.9], has the same antivascular ‘warheads’ on 

both ends of the MMP9 substrate hexapeptide, and an MMP9 cleavage ‘hotspot’ at the 

Gly~Nva junction. Similar to EV1-FITC (1), the hexapeptide carrier was designed to be 

cleaved off between glycine and norvaline (the MMP9 cleavage ‘hotspot’) when this 

prodrug binds to MMP 9, hence to release double doses of colchiceinamide (the active 

cytoxic and vascular disrupting agent) to target tumour blood vessels.  
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Figure 1.10. Epi-SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 61) (4) 

Figure 1.10 outlines the structure of a non-identical twin prodrug YD 61 (4), which was 

designed similarly to identical prodrug YD 55 (3), and has the same hexapeptide 

sequence, the same colchiceinamide compound at one end, but clinically-used cytotoxic 

agent epirubicin (2) was chosen for the second active agent for this twin prodrug.  
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1.2 RESULTS AND DISCUSSION 

1.2.1 Target compounds 

The series of ‘twin prodrugs’ were designed with a combination of an oligopeptide as 

carrier and on its ends attaching: either dual antivascular agents (including colchicine 

series compounds) or dual cytotoxic agents (such as clinically-used agents, like 

epirubicin (2); experimental anticancer agents, including anthraquinone series 

compounds, like the NU:UB series of compounds) or antivascular and cytotoxic agents 

in combination. The general structure is shown in Figure 1.11: 

 

Figure 1.11. Structure of ‘twin drugs’ prodrug 

In the ‘traditional’ way, prodrugs are designed to solve problems such as poor membrane 

permeability, drug toxicity, side effects and instability (Patrick, 2009). Tumour targeting 

prodrugs are also designed to target particular enzymes or antigens which are over 

expressed on tumour tissue cells when compared with normal tissue cells (Han and 

Amidon, 2000), so that the active drugs would only be released at the tumour site; hence 

this could greatly increase selectivity and decrease side effects which active drugs would 

cause to normal tissue. This kind of ‘twin drug’ prodrugs [Figure 1.11], theoretically, 

can bind to MMPs and be cleaved at the ‘hot spot’, hence release active drugs from both 

ends. Thus, these kinds of prodrug can produce two doses of active drugs during one 

prodrug activation, hence it can increase the overall potency. Moreover, complementary 

agents may work by a synergistic mechanism. The ‘twin prodrugs’, which were 

synthesised in this laboratory, were composed of three crucial parts: 1) active drugs 

which have pharmacological effects on tumour cells; 2) two chemical linkers (often 
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ester, amine and thioether or thiourea bonds that can be metabolised easily in the body) 

that can connect active drugs with oligopeptide spacers; 3) the oligopeptide carrier which 

was designed to be enzymatically cleavable by specific proteases (focus on MMP9) to 

release the active drugs at the tumour site.  

1.2.1.1 Active drugs 

Three different kinds of combinations of active drugs or agents were used in this research 

project, they are: 

1) Antivascular agents, the colchicine compounds: colchiceinamide and N-

methylcolchiceinamide; 

2) Cytotoxic agents, such as clinically-used epirubicin (2) and experimental agents 

(with proven activity), notably:  anthraquinone compounds (such as: 1-(4-

hydroxypiperidyl)anthraquinone and 1-(3-aminopropylamino)anthraquinone, or 2-

piperazinylanthraquinone) or amino acid conjugates thereof; 

3) Antivascular and cytotoxic active drugs and agents in combination. 

1.2.1.2 Chemical linker 

Commonly, an ester is the first choice for simple prodrug design, not only because it is 

easy to synthesise, but also in the body, esterases are distributed widely. After 

administration, ester bonds are ready to be hydrolysed by esterases in the liver, blood 

and other organs. Different ester structures, as shown in Table 1.1, exhibit various 

stabilities in the body. Compared with carboxyl ester, carbonate ester and phosphate 

ester, carbamate ester is the most stable ‘ester’ bond in the body (Mahato et al., 2011). 

In general, linkers between active drugs and an oligopeptide should stay stable in the 

body until it reaches the target(s).  

 



20 

 

Table 1.1: Chemical structures of common ester bonds (Adapted from Mahato et al., 2011). 

The purposes of adding a ‘linker’ between active agent and oligopeptide are: 1) the linker 

compounds act as a ‘glue’ to link active drugs onto the oligopeptide. Oligopeptides at 

least at the N-terminus cannot add directly onto active amino-containing drugs, as two 

amine groups will not react, so it is necessary to make short linkers typically, 

pentafluorophenyl esters or succinate compounds for further reactions; 2) adding linkers 

between active drugs and an oligopeptide can make sure that the ‘twin drug’ conjugates 

are ‘masked’ peptides which will become less susceptible to spontaneous hydrolysis, 

hence to increase the stability of the prodrugs. Additionally, linkers are sometimes 

required to distance the drug from the peptide to make it easier for a protease to gain 

access to the cleavage site. 

1.2.1.3 Oligopeptide chain 

In order to reduce the side effects caused by active drugs attacking normal tissue cells, it 

requires active drugs or agents to be selectively released at tumour sites. Hence, the 

stability of oligopeptide chains in ‘twin drug’ prodrugs is very important for the design 

of this kind of prodrugs: the oligopeptide should be stable enough in the circulation to 

carry active drugs or agents till they reach tumour sites, and also should easily bind to 

and be cleaved off by MMPs once they are at tumour sites to release the active drugs.   

In Figure 1.12, to the left of the ‘cleavage hot-spot’— the scissile bond, the amino acid 

substrate residues are named P1, P2, P3 etc; to the right of scissile bond, they are named 

P1’, P2’, P3’ etc. Similarly, as the protein subsites (S), to the left of scissile bond, they 

Linker: Carbamate ester Carboxyl ester Carbonate ester Phosphate ester 

Structure: 
N O
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are non-primed (S1, S2, S3); to the right of scissile bond, they are primed (S1’, S2’, S3’) 

(Atlas et al., 1970). 

 

Figure 1.12. Relationship between substrate residues and protein subsites (Adapted from Atlas et al., 1970) 

As S1’ is a deep hydrophobic pocket, so both gelatinases (MMP-2 and -9) prefer a 

leucine (or isoleucine) residue at this position in natural substrates. In general, MMP-2 

favours more hydrophobic substrate residues at positions on the right of the scissile bond 

than the ones on the left (Massova et al., 1997). McGeehan et al. showed that the 

hydrophobic amino acids with long straight chain residues (such as unnatural norleucine 

or norvaline) would be the best choice for the S1’ pocket, or amongst the proteinogenic 

ones, the branched amino acids, such as Leu, Ile and Val; however, MMP-9 can also 

accept some branching at the β-carbon and the γ-carbon. S1 is a shallow pocket and not 

many residues can fit in, overall, glycine is the first choice for the S1 pocket (McGeehan 

et al., 1994). The S2’ pocket, the last important recognition site for substrate binding to 

MMP-9, has a small hydrophobic surface. It is very tolerant for most amino acids which 

have large hydrophilic or small hydrophobic side chains. The unique five-membered 

ring structure of Pro is preferred for the S3 pocket which has a cambered surface (Kridel 

et al., 2001). Chen et al. found in MMP-2, smaller amino acid residues would easily fit 

in the S2 pocket. The P2 position is the key distinct position of the substrate to separate 

MMP-2 and MMP-9 subsite preferences; if Glu is replaced by Asp at the P2 position, 

the original specific substrates for MMP-2 would be changed to that for MMP-9 instead 

(Chen et al., 2002; Chen et al., 2003). Research also showed that Arg can hardly be 

http://dict.cn/cambered%20surface
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found at the P2 position in MMP-2 substrates, so the selectivity might shift away from 

MMP-2 to MMP-9 by choosing Arg at the P2 position. Substrate Arg at the P2 position 

can significantly increase hydrolysis by MMP-9, but considerably decrease hydrolysis 

by MMP-2 (Chen et al., 2002).   

Table 1.2. MMP-substrate specificity table amongst the proteinogenic amino acids (Adapted from 

McGeehan et al., 1994; Kridel et al., 2001) 

1.2.2 Synthesis of ‘warheads’ (active agents) 

Colchicine (5) [Figure 1.13], an alkaloid extracted from plant Colchicum Autumnale, 

has been used as anti-inflammatory drug to treat gouty arthritis and familial 

Mediterranean fever (Cerquaglia et al., 2005). As an antimitotic drug, colchicine (5) has 

a high affinity to its principal cellular receptor tubulin, a subunit protein of microtubules 

 Substrate sequence 

 P3 P2 P1 P1’ P2’ 

MMP  

subsites 

properties 

Hydrophobic 

pocket 

Broad 

specificity 

Small, 

shallow 

surface. 

Straight chain 

residues are the 

best choice. 

Some 

specificity for 

braches at β 

and γ carbon. 

Very broad 

specificity for 

both 

collagenase 

and gelatinase, 

however, with 

exclusion of 

acidic amino 

acids and 

imino acids. 

MMP 2 

Preferred 

substrates 

Pro 
Ser/ Lys/ 

Ala/Glu 
Ala/Gly Leu/ Ile Val/ Leu/ Ile 

MMP 9 

Preferred 

substrates 

Pro Arg/ Asp 
Gly/ Ala/ 

Ser/ Thr 
Leu/ Ile Ser/ Thr 
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(Andreu and Timasheff, 1982; Farrell and Wilson, 1980). Most colchicine (5) biological 

functions are related to its binding with tubulin, hence leading to disruption of 

microtubule polymerization substoichiometrically (Uppuluri et al., 1993). Colchicine 

binds to a limited number of soluble tubulin dimers first, and then these colchicine-

tubulin dimer complexes attach to the assembling ends of microtubules during assembly 

and prevent further tubulin dimer addition (Margolis and Wilson, 1977). Colchicine and 

its active analogues can act as spindle poisons in cancer cells, hence the cell cycle can 

be impeded at the M-phase and lead to cell death (Jordan and Wilson, 1998). Although 

colchicine and its analogues showed positive antitumour properties in vitro, due to their 

extreme toxicities, there is no FDA approved drug available on the market that belongs 

to colchicine related microtubule-interacting agents (Raspaglio et al., 2005; Lee and 

Gewirtz, 2008).    

Microtubules, made of α- and β-tubulin heterodimers, are crucial polymers of eukaryotic 

cells and they are involved in several cellular functions, such as cell division, motility, 

polarity and signalling (Avila, 1990). Microtubule dynamics is very slow during 

interphase, however, it can be increased by 20- to 100-fold during mitosis. Hence, based 

on its crucial function during mitosis, microtubule processing is an attractive target for 

anti-cancer compounds development (Combeau et al., 2000).  

In its tricyclic chemical structure [Figure 1.13], colchicine (5) has a trimethoxyphenyl 

ring (A ring), a seven membered ring (B ring) which has an acetamide at the C-7 position 

and a tropolonic ring (C ring). The counterclockwise helicity form of A- and C-rings in 

the colchicine chemical structure as shown in Figure 1.13 presents biological activity.  
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Figure 1.13. Chemical structure of Colchicine (5). 

The binding of colchicine (5) to tubulin is a slow process that has a two-step mechanism. 

The first binding step is fast, reversible and shows low binding affinity by fitting its 

tropolone ring (C ring) into the tubulin binding site through hydrogen bonding or ring 

stacking. Then the initial binding process is followed by rearrangement of tubulin 

structure in order to form a proper position for the trimethoxyphenyl ring (A ring) to fit 

in place. The binding of the trimethoxyphenyl ring is slow and shows high binding 

affinity (Andreu and Timasheff, 1982; Medrano et al., 1989). Colchicine does not 

fluoresce in aqueous or organic solvent, however, once it binds with tubulin, 

fluorescence can be detected with an excitation maximum at 362nm and an emission 

maximum at 435nm. Based on this fact, fluorescence measurement offers a convenient 

method to detect derivatives of colchicine and whether they can bind to tubulin or not 

(Bhattacharyya and Wolff, 1974). Colchicine analogue studies showed both A- and C-

rings of colchicine structure are crucial for its high affinity binding to tubulin. However, 

several changes in the C-ring are tolerated, such as substitutions at the C-10 position or 

a change of the seven-membered ring to a six-membered ring (Bhattacharyya and Wolff, 

1974; Hastie, 1989). Three methoxy groups in the A-ring are crucial for binding to 

tubulin and demethylation would lead to decreasing binding affinity. The acetamide 

group at the C-7 position in the B-ring can be substituted by a range of amides and 

tubulin binding potency is retained. Removing the methoxy group at C-10 position in 

the C-ring causes inactivation; however, it can be replaced with SCH3 or NR2 to increase 

potency [Figure 1.14] (Cerquaglia et al., 2005).  
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Figure 1.14. Relationship of colchicine analogues’ structures and tubulin binding activity 

Guan et al. reported that even though demethylcolchiceinamide analogues do not have 

any antimitotic activity [Figure 1.14], they are a new class of DNA topoisomerase II 

inhibitors. The trihydroxy A-ring is a determinant for these novel topoisomerase II 

inhibitors having topoisomerase II inhibitory activity (Guan et al., 1998). 

Due to the fact that colchicine (5) has a very narrow therapeutic index, using colchicine 

as a therapeutic drug has been limited. It has been reported that when N-substituted 

colchiceinamides are compared to colchicine, they have more potency and less toxicity 

(Hartwell et al., 1952; Davis, 1981). So in this research programme, colchicine (5) was 

converted to N-substituted colchiceinamides. Crucially, this also provides a starting point 

(functional group) for the coupling of an oligopeptide carrier as a key part of the target 

prodrugs. 
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WHERE:

R1= H                .   [YD9] (6);

R1= CH3              .. [YD36] (7);

R1= (CH2)3NH2  .  [MB1] (8).  

Reagents and conditions: ammonia, DMF, RT, 4 days (YD 9); methylamine, RT, 15min (YD 36); 1,3-

diaminopropane, RT, 15min (MB1).  

Scheme 1.1. Synthesis of colchicine analogues YD 9 (6), YD 36 (7) and MB1 (8).  
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1.2.2.1 Synthesis of colchiceinamide (YD 9) (6) 

Colchiceinamide (6) has been shown to have similar potency to colchicine (5) 

(unpublished data from this laboratory in collaboration with the University of Bradford) 

as an antivascular agent with less toxicity when compared to N-methylcolchiceinamide 

(YD 36) (7) and colchicine (5) (Hartwell et al., 1952; Davis, 1981). In its chemical 

structure, it has a free amino group for attachment of peptide carriers.  

CH3O

CH3O

CH3O

NH2

O

NHCOCH3

 

Figure 1.15. Structure of colchiceinamide (YD 9) (6) 

The synthesis of YD 9 (6) [Figure 1.15] is outlined in Scheme 1.1. Colchiceinamide 

(YD 9) (6) was synthesised by reacting ammonia with a stirred solution of colchicine (5) 

in DMF. This reaction was very slow and could take three or four days at room 

temperature. Then, the reaction solution was evaporated to dryness to give a pale yellow 

solid compound.  

The structure of colchiceinamide (YD 9) (6) was confirmed by signals in its 1H-NMR 

spectrum, for example, three three-proton singlets at 3.42, 3.72 and 3.77ppm were 

assigned to C1, C2 and C3 methoxy protons. The amide proton at C7 was found at 

8.53ppm.   

1.2.2.2 Synthesis of N-methylcolchiceinamide (YD 36) (7) 

N-methylcolchiceinamide (YD36) (7) (Muller and Poittevin, 1966) was also considered 

as a suitable ‘warhead’ for antivascular prodrugs (having comparable potency to 

colchicine as a vascular disrupting agent). 
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Figure 1.16. N-methylcolchiceinamide (YD 36) (7) 

The synthesis of YD 36 (7) is shown in Scheme 1.1. Unlike the synthesis of 

colchiceinamide (6), the first step of the synthesis of N-methylcolchiceinamide (YD 36) 

(7) [Figure 1.16] was fast, taking 10-15 minutses to react instead of 3 to 4 days when 

compared with the synthesis of colchiceinamide (6). Also, during the reaction, there was 

no need of DMF as a solvent. The pale yellow precipitated solid was filtered and washed 

with ice-cold water, and then dried in vacuo. The structure of N-methylcolchiceinamide 

(YD 36) (7) was confirmed by the expected signals in its 1H-NMR spectrum which could 

all be assigned, for example, a three-proton doublet centred at 3.03ppm was assigned to 

the methyl protons from methylamino group. Three three-proton singlets at 3.56, 3.83 

and 3.88ppm were assigned to C1, C2 and C3 methoxy protons. A one proton quartet 

centred at 7.18ppm was assigned to the secondary amine proton from methylamino 

group. The amide proton can be found at 7.95ppm.    

1.2.2.3 Synthesis of 10-(3-aminopropyl)amino-10-demethoxycolchicine (MB1) 

(8) 

The ‘warhead’ MB1 (8) had an extended amino substituent compared to colchiceinamide 

(6). 
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Figure 1.17. 10-(3-aminopropyl)amino-10-demethoxycolchicine (MB1) (8) 
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The synthesis of MB1 (8) [Figure 1.17] is illustrated in Scheme 1.1. Colchicine (5) was 

mixed with 1,3-diaminopropane. The whole mixture was stirred well at room 

temperature for 3 hours, and then the whole reaction mixture was transferred to an 

evaporating basin to evaporate at room temperature. The dried mixture was re-dissolved 

in dichloromethane from which some white unknow compound could be precipitated 

from MB1 (8). The structure of MB1 (8) was confirmed by 1H NMR spectrum (in d6-

DMSO), which showed, for example, a two proton triplet centred at 1.70ppm was 

assigned to the primary amine protons and a one proton triplet centred at 7.78ppm was 

assigned to the secondary amine proton from aminopropylamino group. A six-proton 

broad singlet at 3.40ppm was assigned to the methanediyl group from 

aminopropylamino group. The colchicine protons were all successfully assigned; C1, C3 

and C2 methoxy protons gave three-proton singlets at 3.45, 3.74 and 3.81ppm 

respectively. The C5 and C6 protons were present at 1.95-2.20ppm and C7 proton can 

be found at 4.43ppm. The amide proton can be found at 8.53ppm.    
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1.2.3 Synthesis of ‘warhead’-spacer/ linker compounds 

[YD 9] (6)

Colchiceinamide N-methylcolchiceinamide

[YD 36] (7)

(i)

Colchiceinamide Dimethylpiperazine Spacer N-methylcolchiceinamide Dimethylpiperazine Spacer

[YD 39] (14)[YD 11] (10) (iii)

[YD 41] (16)[YD 33] (12)

N-chloroacetylcolchiceinamide N-chloroacetyl methylcolchiceinamide 

[YD 10] (9) [YD 38] (13)

(ii)
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O
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Reagents and conditions: (i) chloroacetyl chloride, NaHCO3, DMF was used as solvent in YD 10 (9) 

reaction and THF was used as solvent in YD 38 (13) reaction; (ii) trans-2,5-dimethylpiperazine, DMF was 

used as solvent in YD 11 (10) reaction and THF: DMSO (10:1) mixture was used in YD 39 (14) reaction; 

(iii) (Boc)2O, Dry methanol; (iv) TFA, RT, 30min. 

Scheme 1.2. Synthesis of colchiceinamide and N-methylcolchiceinamide spacer conjugates. 
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1.2.3.1 Synthesis of YD9-DMPIP (YD 11) (10) 

 

Figure 1.18. YD9-DMPIP (YD 11) (10) 

The synthesis of YD 11 (10) [Figure 1.18] is shown in Scheme 1.2: sodium bicarbonate 

was added into colchiceinamide (6) in DMF and the suspension was stirred over an ice 

bath for 10 minutes before adding chloroacetyl chloride drop wise. 24 hours later, after 

checking by TLC, the whole reaction mixture was transferred to an ice-water mixture 

dropwise. The new yellow target compound N-chloroacetylcolchiceinamide (YD 10) (9) 

immediately precipitated in the ice-water mixture once every drop of reaction mixture 

was added in. The precipitate was filtered and evaporated to dryness. N-

chloroacetylcolchiceinamide and trans-2,5-dimethylpiperazine were both dissolved in 

DMF separately, and the solution of N-chloroacetyl colchiceinamide was added into a 

well-stirred solution of trans-2,5-dimethylpiperazine drop wise and slowly to make sure 

that N-chloroacetyl colchiceinamide would only react with one secondary amine end of 

trans-2,5-dimethylpiperazine, instead of both sides. Then the reaction mixture was 

partitioned between chloroform and water. Diethyl ether was also applied finally to give 

a precipitate of the desired compound. It had been noticed that trans-2,5-

dimethylpiperazine would not easily dissolve in DMF. At room temperature, it would 

take up to 3 or 4 hours to dissolve. However, if the suspension mixture was warmed to 

40oC, trans-2,5-dimethylpiperazine dissolved in DMF very easily in less than 15 

minutes; consequently, this procedure was adopted. 

NHCO

NHCOCH3

CH3O
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CH3O
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1.2.3.2 Synthesis of YD9-DMPIP [TFA] (YD 33) (12) 

 

Figure 1.19. YD9-DMPIP [TFA] (YD 33) (12) 

Colchiceinamide dimethylpiperazine spacer YD 11 (10) was dissolved in dry methanol 

and the solution was kept stirring well at 0oC. Di-t-butyl-dicarbonate was dissolved in dry 

methanol separately, and then it was added into cooled, stirred YD 11 (10) solution drop 

wise slowly and the whole reaction mixture was kept in the dark. N-tBoc protected 

conjugate YD 31 (11) was purified by loading the concentrated reaction mixture onto a 

flash chromatography column. Dried chromatographically pure N-tBoc protected 

conjugate YD 31 (11) was treated with trifluoroacetic acid for 30 minutes at room 

temperature, and then the reaction solution was evaporated to near dryness and re-

evaporated with methanol twice. Addition of diethyl ether gave a precipitate of yellow 

final compound colchiceinamide dimethylpiperazine spacer N-terminal trifluoroacetate 

salt YD 33 (12) [Figure 1.19].   

1.2.3.3 Synthesis of YD36-DMPIP (YD 39) (14) 

 

Figure 1.20. YD36-DMPIP (YD 39) (14) 

Synthesis of YD 39 (14) [Figure 1.20] is illustrated in Scheme 1.2: chloroacetyl chloride 

was added dropwise into a cooled (0oC), well-stirred suspension mixture of sodium 
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bicarbonate and N-methylcolchiceinamide (YD 36) (7) in THF. For this reaction, at the 

first attempt, DMF was used as solvent, but the reaction was slow (several days) and in 

the end, on the TLC plate, it was a bit messy. When using THF as a solvent on the other 

hand, the reaction was faster (3 hours); there was only one yellow spot on the TLC plate; 

a high yield of final compound (over 90%) and also THF was easier to remove than 

DMF. As N-chloroacetylmethylcolchiceinamide (YD 38) (13) was also soluble in water, 

a method different from purification of N-chloroacetylcolchiceinamide was required; it 

cannot be purified by simply adding reaction mixture into ice-water mixture dropwise. 

N-chloroacetylmethylcolchiceinamide (YD 38) (13) reaction mixture was filtered to 

remove solid sodium bicarbonate, and then it was partitioned between chloroform and 

water to remove THF and extra chloroacetyl chloride. In the synthesis of N-

methylcolchiceinamide dimethylpiperazine spacer conjugate YD 39 (14), four different 

solvents were used and compared, and they were: DMF, THF, THF: DMSO (10:1) and 

CH3CN. Results showed using DMF and THF as solvent, both reactions were quite slow 

(five days reacting by using DMF and two days by using THF), and on TLC plates, both 

were quite messy mixtures of products. It seemed that by using THF: DMSO (10:1) and 

CH3CN as solvent the speed of this reaction could be improved. However, TLC plates 

showed complex mixtures by using CH3CN as solvent. So, THF: DMSO (10:1) was the 

best solvent for this reaction among the four different solvents. [Because DMSO has a 

very low melting point, if the room temperature is lower than 18oC, DMSO may form 

white/clear crystals in the N-methylcolchiceinamide dimethylpiperazine spacer 

conjugate YD 39 (14) reaction mixture]. 
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1.2.3.4 Synthesis of YD36-DMPIP [TFA] (YD 41) (16) 

F
F F

O O

CH3O

CH3O

O

NHCOCH3

CH3O

NCOCH3 N NH2

CH3

H3C  

Figure 1.21. YD36-DMPIP [TFA] (YD 41) (16) 

Di-t-butyl-dicarbonate was dissolved in dry methanol separately, and then it was added 

into cooled, stirred YD 39 (14) solution drop wise slowly and the whole reaction mixture 

was kept in the dark. N-tBoc protected N-methylcolchiceinamide spacer conjugate YD 40 

(15) was purified by loading the reaction mixture onto a flash chromatography column. 

Chromatographically pure dried YD 40 (15) was treated with trifluoroacetic acid for 45 

minutes at room temperature, and then the reaction solution was evaporated to near 

dryness and re-evaporated with methanol twice. Addition of diethyl ether gave a 

precipitate of yellow final compound colchiceinamide piperazine spacer N-terminal 

trifluoroacetate salt YD 41 (16) [Figure 1.21]. The structure of this 

methylcolchiceinamide spacer trifluoroacetate salt was confirmed by its ES(+) mass 

spectrum which gave a signal at m/z 553.4 for (M+H)+ and its ES(-) mass spectrum which 

had a base peak at m/z 113.0 for the presence of the trifluoroacetate anion.  

1.2.3.5 Synthesis of MB1-SUCC (YD 56) (17) 

Any warhead spacer or peptide conjugates that have primary or secondary amine ends 

can react with succinic anhydride in DMF under basic (DIPEA) conditions to give the 

required extended linkers [Scheme 1.3]. 
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Reagents and conditions: (i) succinic anhydride, DMF and DIPEA, RT, 12~48h. 

Scheme 1.3. Formation of succinate compounds 

Succinic acid has carboxylic acid ends on both sides (an α, -diacid), so it is an ideal 

linker for connecting warhead spacer and oligopeptide together from their amine ends. 

The reaction would take a small number of hours or typically at most one or two days, 

and extra succinic acid could be removed by washing with water or purifying the reaction 

mixture on a silica gel column. Litmus blue test paper and bromocresol green were 

applied to detect whether there was any succinic acid left in the compound mixture, 

because if any extra succinic acid was carried through to the next step, it would cause 

impurity, low yield and even react with the starting materials. When synthesising 

colchiceinamide spacer oligopeptide succinate compound YD 54 (18), it was noticed 

that YD 54 (18) could dissolve in dichloromethane while succinic acid could not. So if 

any succinate compounds were soluble in dichloromethane, excess succinic acid could 

be simply removed by filtering off from the compounds’ dichloromethane solutions.  

 

Figure 1.22. MB1-SUCC (YD 56) (17) 

MB1-SUCC (YD 56) (17) [Figure 1.22] was synthesised by reacting MB1 (8) with 

succinic anhydride in DMF under basic (DIPEA) conditions, following the general 

method outlined in Scheme 1.3. Overnight, after checking by TLC, the whole reaction 
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mixture was transferred to an evaporating basin to evaporate till dryness. As the 

succinate compound YD 56 (17) was soluble in water, excess succinic acid could not be 

washed away by water. On the TLC plate, it showed that even if it was eluted with 

dichloromethane: methanol (5:1), succinic acid would not be removed at all. So the 

succinate compound YD 56 (17) was then applied onto a very fine silica gel 

chromatography column, eluted with dichloromethane: methanol (5:1). After 

chromatography, YD 56 (17) was checked by TLC again; bromocresol green was 

applied on the starting line on the TLC plate for detecting any remaining succinic acid 

in the final compound. There was a bright yellow spot which showed up against a blue 

background which meant there was some succinic acid remaining in the mixture, so the 

whole final compound and remaining succinic acid mixture was put on a very fine silica 

gel chromatography column again. After re-chromatographing twice, when the YD 56 

(17) TLC plate was treated with bromocresol green, there was still a tiny yellow spot 

showed up against blue background, but it was very weak. Then the whole compound 

solution was evaporated to dryness to afford a sample sufficiently chromatographically 

pure for further use.  

1.2.3.6 Ile-PIP-AQ [TFA] NU:UB 234 (19) 

CO

O

O

NNH3N

F
FF

O O

 

Figure 1.23. Ile-PIP-AQ [TFA] NU:UB 234 (19) 

Spacer-linked anthraquinone-amino acid conjugate NU:UB 234 (19) [Figure 1.23] was 

designed in this laboratory (Mincher, Turnbull and Kay, 2003) as a topoisomerase 

inhibitor. In NU:UB 234 (19), the spacer group was chosen as a relatively rigid, 
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conformationally restricted, piperazine ring system; anthraquinone and isoleucine parts 

were attached to the piperazine via the nitrogen atoms in the 1- and 4-positions. 

Connection of the spacer to the anthraquinone was in the C-2 position. It has been shown 

that NU:UB 234 (19) is a dual topoisomerase I and II inhibitor and it can inhibit 

topoisomerase II α- and II β- mediated relaxation of DNA at concentration of 50µM. 

Topoisomerase cleavage assays indicated that NU:UB 234 (19) was inactive in 

topoisomerase I mediated DNA cleavage assay even with a concentration up to 100µM. 

On the other hand, the optimum concentrations of NU:UB 234 (19) that can stimulate 

topoisomerase II α- and II β- mediated DNA cleavage were 50µM and 5µM, respectively 

(Young, 2006).  

1.2.4 Synthesis of model compounds (model prodrugs) 

At the early stages of this research project, a few model compounds were synthesised 

first, in order to find the best reaction conditions for some later crucial reactions involving 

sensitive drugs, including epirubicin. 

During the synthesis of YD 20 (20) [Figure 1.24], it had been shown that epirubicin (2) 

can be successfully coupled onto an OPFP ester to form amide-linked derivatives. Later 

on, it proved that epirubicin (2) can be coupled successfully onto an OPFP ester which 

had a longer peptide during the synthesis of YD 67 (21) as well. And then, colchicine 

spacer conjugate MB1 (8) and 6-aminofluorescein (22) were both shown to react with the 

same OPFP ester YD 62 (23) by the same method. Hence, based on this discovery, the 

rest of the prodrugs synthesised in this project that contained epirubicin (2) were all 

achieved with the same method to couple epirubicin (2) with an OPFP ester critically at 

the last step of the synthesis.  
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1.2.4.1 Synthesis of Epi-SUCC-Pro-APA-AQ (YD 20) (20) 

O

O

O

OH
OH

OH

OH

O

OO

NH

OH
NHHN

O

C

O

C

O

C N

O

O

 

Figure 1.24. Epi-SUCC-Pro-APA-AQ (YD 20) (20) 

The motivation for synthesis of ‘twin prodrug’ YD 20 (20), as shown in Figure 1.24, 

was a trial experiment to find the optimum reaction conditions for coupling epirubicin 

(2) with anthraquinone ‘warhead’ compounds. As strong base cannot be used for the 

reaction with epirubicin (2), in the beginning, sodium hydrogen carbonate was used as 

base for this reaction. However, after 3 hours, it showed nothing had happened. So 

instead, one equivalent of DIPEA was introduced in this reaction [Scheme 1.4].  
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Epirubicin hydrochloride

OPFP ester

R=    succinyl peptide anthraquinone 
     or succinyl peptide colchicine derivative  

Reagents and conditions: (i) DMF, DIPEA, RT, 3 to 12h.  

Scheme 1.4. General synthesis of epirubicin (2) conjugates 

 

‘Twin prodrug’ YD 20 (20) was synthesised by reacting anthraquinone conjugate 

pentafluorophenyl ester YD 19 (24) with epirubicin hydrochloride in DMF with one 

equivalent of DIPEA as base by following the general method which is outlined in 

Scheme 1.4. Overnight, after checking by TLC, the solution was evaporated to almost 

dryness before it was applied onto a silica gel chromatography. The structure of YD 20 
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(20) was confirmed by both its ES(-) mass spectrum which had a a strong signal at m/z 

1001.3449 for the species (M-H)- and its ES(+) mass spectrum which had a strong peak 

at m/z 1025.3418 for (M+Na)+.  

1.2.4.2 Synthesis of Epi-SUCC-MB1 (YD 59) (25) 
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Figure 1.25. Epi-SUCC-MB1 (YD 59) (25) 

The motivation for the synthesis of dual prodrug YD 59 (25) [Figure 1.25] was another 

trial experiment to find out whether epirubicin (2) could be coupled with a colchicine 

succinate compound by the same reaction conditions as for dual prodrug YD 20 (20).  

Dual prodrug Epi-SUCC-MB1 YD 59 (25) was synthesised by reacting MB1-SUCC-

OPFP YD 57 (26) with epirubicin hydrochloride in DMF under basic (DIPEA) condition 

for overnight by following the general method outlined in Scheme 1.4. Because of the 

potential for YD 59 (25) to go into water layers during partition between 

dichloromethane and water, the whole reaction solution was evaporated to near dryness 

and purified by applying the residue onto thick-layer silica gel chromatography plates. 

Fractions containing the major product were combined, filtered and evaporated to afford 

the title compound. The structure of YD 59 (25) was confirmed by its ES(+) mass 

spectrum which gave, for example, a signal at m/z 1067.4127 for the species (M+H)+. 
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1.2.5 Synthesis of target prodrugs 

1.2.5.1 Synthesis of YD9-DMPIP-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ 

(YD 34) (27): a twin prodrug of active agents NU:UB 234 (19) and the 

colchiceinamide derivative (YD33) (12) 
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COCOHNCOHNCOHN COHNCOHNCOHN N N
CO

O

O

Figure 1.26. YD9-DMPIP-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 34) (27) 

The synthesis of YD 34 (27) [Figure 1.26] is illustrated in Scheme 1.5: 

  

Scheme 1.5. Synthesis of YD9-DMPIP-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 34) (27) 

 

 

‘Twin prodrug’ colchiceinamide spacer hexapeptide anthraquinone conjugate YD 34 

(27) was synthesised by reacting anthraquinone spacer oligopeptide conjugate succinate 

YD 30 (28) (already available as the hexapeptide succinate from the solution-phase 

sequential addition of amino acids onto an anthraquinone-spacer compound) with N-

NHCO

NHCOCH3

CH3O

CH3O

CH3O

N N

CH3

H3C

O

COCOHNCOHNCOHN COHNCOHNCOHN N N
CO

O

O

COCOHNCOHNCOHN COHNCOHNCOHN
HOOC

N N

O

O

NHCO

NHCOCH3

CH3O

CH3O

CH3O

N NH2

CH3

H3C

O

F
F F

O O

PyBOP
HOBt
DIPEA
DMF

YD 30 (28) 

 

YD 33 (12) 

 

YD 34 (27) 

 



40 

 

colchiceinamide spacer trifluoroacetate salt YD 33 (12), mixed with coupling reagents 

PyBOP and HOBt in DMF under basic conditions (DIPEA) for two hours, then the 

reaction solution was concentrated and purified by thick layer chromatography. The 

electrospray (+) mass spectrum of the chromatographically pure principal product gave 

a signals at m/z 1409.7136 for the presence (M+H)+ and at m/z 1431.7 for the species 

(M+Na)+. 

1.2.5.2 Synthesis of YD36-DMPIP-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 

42) (29): a twin prodrug of active agents NU:UB 234 (19) and the N-

methylcolchiceinamide derivative (YD41) (16) 
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Figure 1.27. YD36-DMPIP-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 42) (29) 

The synthesis of YD 42 (29), as shown in Figure 1.27, is outlined in Scheme 1.6: 
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Scheme 1.6. Synthesis of YD36-DMPIP-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 42) (29) 

‘Twin prodrug’ YD36-DMPIP-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 42) 

(29) was similar to the colchiceinamide spacer hexapeptide anthraquinone conjugate YD 

YD 30 (28) 

YD 41 (16) 

 

YD 42 (29) 
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34 (27), the only difference is that colchiceinamide was replaced by N-

methylcolchiceinamide in prodrug YD 42 (29). It was synthesised by reacting 

anthraquinone spacer oligopeptide conjugate succinate YD 30 (28) and N-

methylcolchiceinamide spacer trifluoroacetate salt YD 41 (16) with coupling reagents 

under basic conditions (DIPEA) in DMF for 3 hours. It was purified by loading onto a 

thick layer TLC plate. There were two orange bands on thick layer TLC plate. Both bands 

were collected and sent for mass spectrometry. Mass spectral results showed that only 

the second orange band (the lower one) was the right compound. On TLC, there was a 

tiny spot in the middle part of TLC plate, which could be seen under UV light was from 

compound YD 41 (16). After comparing with N-methylcolchiceinamide on TLC, it 

proved that the tiny spot from compound YD 41 (16) was N-methylcolchiceinamide (YD 

36) (7). The first orange band ran at nearly the same level as that tiny spot, so this may 

explain why the first orange band was not the right compound: NU:UB 363 (30) succinate 

could have reacted with N-methylcolchiceinamide (YD 36) (7) while reacting with YD 

41 (16). The structure of this dual prodrug was confirmed by its ES(+) mass spectrum 

which had a peak at m/z 1423.7272 for the species (M+H)+.  

1.2.5.3 Synthesis of MB1-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 58) 

(31): a twin prodrug of active agents NU:UB 234 (19) and the colchicine 

derivative (MB1) (8) 
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Figure 1.28. MB1-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 58) (31) 

In Scheme 1.7, is shown the first attempted synthesis of YD 58 (31) [Figure 1.28]: 
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Scheme 1.7 Attempted synthesis of MB1-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ YD 58 (31) 

This colchicine derivative spacer hexapeptide anthraquinone conjugate YD 58 (31) was 

similar to the previous two colchicine derivative spacer hexapeptide anthraquinone 

conjugates YD 34 (27) and YD 42 (29), the only difference is that colchicine derivative 

10-(3-aminopropyl)aminocolchiceinamide MB1 (8) was chosen in prodrug YD 58 (31). 

The synthesis of ‘twin prodrug’ YD 58 (31) [Scheme 1.7] was first attempted by reacting 

anthraquinone conjugate NU:UB 363 (30) and MB1-SUCC (YD 56) (17) in DMF with 

coupling reagents TBTU and HOBt under basic (DIPEA) condition. It was purified by 

silica gel chromatography, eluting with dichloromethane: methanol 7:1. However, the 

TLC showed that the compound collected from the chromatography column was just 

NU:UB 363 succinate. The mass spectrum result showed a very weak signal of YD 58 

(31), the strong signal was assigned to NU:UB 363 succinate. This was because after 

synthesising MB1-SUCC (YD 56) (17), excess succinic acid was very difficult to 

remove, so NU:UB 363 (30) reacted with succinic acid instead of MB1-SUCC (YD 56) 

(17) to create the linker between the warheads.  
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YD 58 (31) 
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Scheme 1.8. Synthesis of MB1-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 58) (31) 

However, ‘twin prodrug’ YD 58 (31) was sucessfully synthesised by coupling MB1 (8) 

with NU:UB 363 succinate YD 30 (28) in DMF at room temperature for 2 hours 

[Scheme 1.8]. The final product from the reaction mixture was purified using a thick 

layer chromatography plate which was eluted with dichloromethane: methanol 7:1. The 

ES(+) mass spectrum confirmed the structure of this ‘twin drug’ prodrug: a signal for 

the doubly charged ion [(M+2H)/2]2+ was found at m/z 656.8336. A signal at m/z 

1312.6671 was for the species (M+H)+ and a signal at m/z 1334.6471 was for (M+Na)+.  

1.2.5.4 Synthesis of YD9-DMPIP-SUCC-D-Ala-Ala-Ala-Leu-Gly-Leu-Nva-Gly-

PIP-AQ (YD 18) (32): a twin prodrug of active agents NU:UB 347 and the 

N-colchiceinamide derivative (YD11) (10) 
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Figure 1.29. YD9-DMPIP-SUCC-D-Ala-Ala-Ala-Leu-Gly-Leu-Nva-Gly-PIP-AQ (YD 18) (32) 

Scheme 1.9 illustrates the synthesis of YD 18 (32) [Figure 1.29]: 

YD 30 (28) 

MB1 (8) 

YD 58 (31) 
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Scheme 1.9. Synthesis of YD9-DMPIP-SUCC-D-Ala-Ala-Ala-Leu-Gly-Leu-Nva-Gly-PIP-AQ (YD 18) (32) 

The motivation for this synthesis of ‘twin drugs’ prodrug colchiceinamide spacer 

octapeptide anthraquinone conjugate YD 18 (32) was to synthesise an anticancer active 

agent that has two different ‘warheads’, one is the antivascular agent—a colchicine 

compound and the other one is a cytotoxic agent—the experimental anthraquinone 

compound. The ‘cleavage hot spot’ in the oligopeptide is between Gly and Leu. Once 

this prodrug has been cleaved by MMPs at the ‘hot spot’, both colchicine and 

anthraquinone compounds would be released.  

Colchicine and anthraquinone ‘twin drug’ prodrug YD 18 (32) was synthesised by 

reacting colchiceinamide spacer YD 11 (10) with anthraquinone oligopeptide compound 

YD 12 (33), using coupling reagents TBTU, HOBt and DIPEA in DMF. After three 

hours reaction, the compound was purified by column chromatography. Followed by 

further purification by the successful use of thick-layer (semi-preparative) TLC plates. 

The structure of this ‘twin drug’ prodrug was confirmed by its ES(+) mass spectrum at 

m/z of 1588.0 for the fragment of (M+Na)+ corresponding to a molecular mass of 1565 

Daltons. 

YD 12 (33) 

YD 11 (10) 

YD 18 (32) 
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1.2.5.5 Synthesis of YD9-DMPIP-SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-

YD9 (YD 55) (3): an identical twin prodrug of the N-colchiceinamide 

derivative (YD11) (10) 
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Figure 1.30. YD9-DMPIP-SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 55) (3) 

The motivation for synthesis ‘twin prodrug’ YD 55 (3), as shown in Figure 1.30, was to 

make a prodrug that had exactly the same antivascular ‘warheads’ on both ends of 

hexapeptide (‘identical twin’). The ‘cleavage hot spot’ on this hexapeptide was designed 

to be between Gly and Nva, as the S1’ pocket is very deep, so Nva should fit in easily; 

and the S1 pocket is very specific to bind with Gly. The S3 pocket is a curved pocket, 

so the Pro five-membered ring should fit in well. The synthesis of YD 55 (3) is outlined 

in Scheme 1.10: 
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Scheme 1.10. Synthesis of YD9-DMPIP-SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 55) (3) 

YD 54 (18) 

YD 33 (12) 

 

YD 55 (3) 
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‘Twin prodrug’ bis-(colchiceinamide-spacer)hexapeptide conjugate YD 55 (3) was 

synthesised by reacting N-colchiceinamide spacer trifluoroacetate salt YD 33 (12) and 

N-colchiceinamide spacer oligopeptide succinate compound YD 54 (18) in DMF with 

coupling reagents TBTU and HOBt under basic (DIPEA) condition. Due to its low yield, 

it was purified by chromatography on a thick-layer TLC plate. The structure of this dual 

vascular disrupting agent prodrug was confirmed by its ES(+) mass spectrum which had 

a signal at m/z 1701.8528 which corresponded to (M+H)+.  

1.2.5.6 Synthesis of MB1-SUCC-Ala-Gly-Leu-Pro-Ala-Ala-APA-AQ (YD 63) (34): 

a twin prodrug of Ala-APA-AQ and colchiceinamide derivative (MB1) (8) 
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Figure 1.31. MB1-SUCC-Ala-Gly-Leu-Pro-Ala-Ala-APA-AQ (YD 63) (34) 

The synthesis of YD 63 (34) [Figure 1.31] is outlined in Scheme 1.11: 

 

Scheme 1.11. Synthesis of MB1-SUCC-Ala-Gly-Leu-Pro-Ala-Ala-APA-AQ (YD 63) (34) 
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For the synthesis of the non-identical twin prodrug YD63, the anthraquinone conjugate 

pentafluorophenyl ester YD 62 (23) and 10-(3-aminopropyl)amino-10-demethoxy 

colchicine (MB1) (8) were dissolved in DMF; DIPEA was added into this reaction 

mixture afterwards [Scheme 1.11]. The reaction was relatively slow, two days later, 

some starting materials remained and it seemed it would not go any further, so the 

reaction mixture was partitioned between chloroform and water, the organic layer 

washed with saturated sodium bicarbonate solution and water, dried, filtered and 

evaporated to near dryness, and then purified by thick layer chromatography, eluting 

with chloroform: methanol 6:1. The lower red band was collected from the plate, washed 

with methanol, filtered and evaporated to dryness. The structure of this prodrug 

containing two experimental cytotoxics was confirmed by its ES(+) mass spectrum 

which had a signal at m/z 642.8182 for the species [(M+2H)/2]2+. 

1.2.5.7 Synthesis of AF-SUCC-Ala-Gly-Leu-Pro-Ala-Ala-APA-AQ (YD 64) (35): 

a FRET probe of 6-aminofluorescein (22) and its quencher APA-AQ 
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Figure 1.32. AF-SUCC-Ala-Gly-Leu-Pro-Ala-Ala-APA-AQ (YD 64) (35) 

 

The synthesis of a new FRET probe for MMP-9, YD 64 (35) [Figure 1.32] is shown in 

Scheme 1.12: 
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Scheme 1.12. Synthesis of AF-SUCC-Ala-Gly-Leu-Pro-Ala-Ala-APA-AQ (YD 64) (35) 

YD 64 (35) was designed as a new potential FRET probe of MMP-9 and as a test of the 

potential of this substrate sequence to be of use in later prodrug syntheses. Also, it 

represented a departure from labelling an amino group at the terminus of a peptide 

(typically with FITC or 5,6-FAM), by introducing a succinate linker to use 

aminofluorescein to label the peptide substrate at a free carboxylic acid terminus. YD 64 

(35) was synthesised by mixing anthraquinone conjugate pentafluorophenyl ester YD 62 

(23) and 6-aminofluorescein (22) in DMF with one equivalent DIPEA as base. After two 

days of reaction at room temperature, the reaction mixture was concentrated and re-

dissolved in methanol before applying onto thick-layer plates, eluted with chloroform: 

ethyl acetate: methanol (5:2:1). The dark brown band was collected, washed with 

methanol, and filtered. However, on TLC (eluted with chloroform: methanol 6:1), there 

were still traces of one purple spot on the top of the major product brown spot and a 

yellow spot on the bottom, so the product was re-chromatographed, eluting with 

chloroform: methanol (6:1). The brown product band from the middle of the plate was 

isolated in a chromatographically pure form. The structure of this FRET probe was 

confirmed by its ES(+) mass spectrum which gave a signal at m/z 1212.4 for the species 

of (M+Na)+ and one at m/z 1228.4 for (M+K)+. 

YD 64 (35) 

YD 62 (23) 

 

6-Aminofluorescein (22) 
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Prior to the synthesis of YD 64 (35) described above, two separate ‘mini’ reactions were 

carried out in ethanol and DMF on a 10 mg of YD 62 (23) scale. One hour later, it was 

found out that YD 62 (23) did not dissolve sufficiently well in ethanol and on TLC, the 

new product brown spot was weaker when compared with the one from the reaction in 

DMF. Although, ethanol could have been very easily evaporated, poor solubility for YD 

62 (23) and poor yield for the new compound dictated that DMF was chosen as solvent 

for the YD 64 (35) synthesis reaction.  

1.2.5.8 Synthesis of Epi-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (36): a twin 

prodrug of active agents NU:UB 234 (19) and epirubicin (2) 
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Figure 1.33. Epi-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 35) (36) 

The motivation for the synthesis of dual cytotoxic prodrug YD 35 (36), as shown in 

Figure 1.33, was to combine an experimental anticancer active agent 2-

piperazineanthraquinone and clinical anticancer drug epirubicin (2) together through a 

hexapeptide succinate linker.  

Epi-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 35) (36) was synthesised by 

reacting anthraquinone piperazine spacer hexapeptide succinyl OPFP ester YD 32 (37) 

with epirubicin hydrochloride in DMF; one equivalent DIPEA was added into the reaction 

solution afterwards, following the general method outlined in Scheme 1.4. Overnight, 

after checking by TLC, the reaction solution was partitioned between dichloromethane 

and water, purified by flash chromatography and thick-layer chromatography. The 
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structure of this dual prodrug was confirmed by its ES(+) mass spectrum which had a 

distinct signal at m/z 1431.6349 for the species (M+NH4)
+. 

1.2.5.9 Synthesis of Epi-SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 61) 

(4): a twin prodrug of active agents the N-colchiceinamide derivative 

(YD11) (10) and epirubicin (2) 
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Figure 1.34. Epi-SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 61) (4) 

The motivation for the synthesis of dual prodrug YD 61 (4) [Figure 1.34] was to 

combine a vascular disrupting colchicines derivative with the clinically used epirubicin 

to afford potentially a dual-acting agent with increased synergy (drugs working by two 

different mechanisms). The colchiceinamide conjugate pentafluorophenyl ester YD 60 

(38) and clinical anticancer active agent epirubicin (2) were linked together through a 

hexapeptide succinate linker. The hexapeptide is the same as the one successfully 

applied in the synthesis of YD 55 (3); from previous work, it was decided that the amine 

bond between Gly and Leu would provide an ideal concensus ‘cleavage hot spot’ for 

MMPs.  

‘Twin prodrug’ YD 61 (4) was synthesised by reacting the colchicine-derived conjugate 

pentafluorophenyl ester YD 60 (38) with epirubicin hydrochloride in DMF with basic 

conditions; DIPEA for two hours (following the general method outlined in Scheme 

1.4). After checking on TLC, DMF was evaporated to dryness, and then the compound 

was purified by applying onto a thick-layer chromatography plate. The dark red new 

product band was collected and washed with dichloromethane and methanol, and then it 
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was filtered and evaporated to dryness. The ES(+) mass spectrum confirmed the 

structure of this dual prodrug YD 61 (4): for example, a signal at m/z 1706.7479 for the 

species (M+H)+. 

1.2.5.10 Synthesis of Epi-SUCC-Ala-Gly-Leu-Pro-Ala-Ala-APA-AQ (YD 67) 

(21): a twin prodrug of active agents Ala-APA-AQ and epirubicin (2) 

 

Figure 1.35. Epi-SUCC-Ala-Gly-Leu-Pro-Ala-Ala-APA-AQ (YD 67) (21) 

This twin prodrug YD 67 (21) is similar to the prodrug YD 63 (34), the only difference 

is that epirubicin was chosen as an active agent in YD 67 (21) instead of colchiceinamide 

derivative MB1 (8) in prodrug YD 63 (34). Anthraquinone conjugate pentafluorophenyl 

ester YD 62 (23), which incorporated an alanine-anthraquinone conjugate cytotoxic 

agent and epirubicin hydrochloride were mixed together and dissolved in DMF. DIPEA 

was added into this reaction solution afterwards (following the same method outlined in 

Scheme 1.4). The product was isolated by thick layer chromatography using similar 

conditions to the above epirubicin-containing conjugates and the structure of this twin 

drug prodrug YD 67 (21) [Figure 1.35] was confirmed by its ES(+) mass spectrum 

which had a base peak at m/z 1386.5755 for the anticipated species (M+H)+. 
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1.2.5.11 Synthesis of Epi-SUCC-Pro-Ala-Gly-Leu-Ala-Ala-PIP-AQ (YD 75) (39): 

a twin prodrug of active agents Ala-PIP-AQ and epirubicin (2) 
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Figure 1.36. Epi-SUCC-Pro-Ala-Gly-Leu-Ala-Ala-PIP-AQ (YD 75) (39) 

The motivation for the synthesis of dual prodrug YD 75 (39), as shown in Figure 1.36, 

was to combine experimental anticancer active agent 2-piperazineanthraquinone and 

clinical anticancer drug epirubicin (2) together through the MMP-9 sensitive hexapeptide 

succinate linker. It is similar to dual prodrug YD 35 (36), but with a different peptide 

sequence.  

Pro-Ala-Gly-Leu-Ala-Ala-PIP-AQ [TFA] (HZ 14) (40) was reacted with succinic 

anhydride in DMF overnight at room temperature to form SUCC-Pro-Ala-Gly-Leu-Ala-

Ala-PIP-AQ (HZ 15) (41) by following the general method outlined in Scheme 1.3. The 

completion of this reaction was monitored by TLC, and then the reaction mixture was 

partitioned between dichloromethane and water to remove DMF and excess succinic 

acid. When the succinate compound HZ 15 (41) was almost dry, it was purified by 

chromatography. Pentafluorophenyl ester compound YD 74 (42) was synthesised by 

reacting the succinate ester HZ 15 (41) with pentafluorophenol, DCC and DMAP in 

dichloromethane. When the PFP-derivative was formed, with no further purification (of 

DCU), it was reacted with epirubicin hydrochloride by following the general method 

outlined in Scheme 1.4. The progress of synthesis of dual prodrug YD 75 (39) was 

monitored by TLC. When the synthesis was completed, the product was obtained in a 

chromatographically homogeneous form from thick-layer chromatography. The 
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structure of this dual prodrug YD 75 (39) was confirmed by its electrospray (+) mass 

spectrum which had a strong signal at m/z 1415.6036 corresponding to the species 

(M+NH4)
+.  

1.2.5.12 Synthesis of FITC-Ala-Nva-Gly-Leu-Pro-Aib-(oxypiperidine)-AQ (YD 

17) (43): a FRET probe of FITC and its quencher 1-(4-hydroxypiperidyl) 

anthraquinone (44) 
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Figure 1.37. FITC-Ala-Nva-Gly-Leu-Pro-Aib-(oxypiperidine)-AQ (YD 17) (43) 

The aim of the synthesis of an FITC-anthraquinone oligopeptide conjugate FRET probe, 

YD 17 (43) [Figure 1.37] was to test the quenching phenomenon in this prodrug model 

with an anthraquinone spacer quencher compound at one end before replacement of the 

fluorophore with another active agent. The anthraquinone residue in this conjugate, in 

addition to acting as a quencher of fluorescein fluorescence, would act as cytotoxic once 

it has been released at the tumour side. The pentapeptide acts as a linker to combine two 

‘warheads’ together, and in the middle of this pentapeptide, Gly-Leu is the preferred 

‘cleavage hot spot’ for MMPs. The peptide represented the smallest in this series, since 

typically hexa- or hepta-peptides had been used in earlier MMP substrates. The FITC 

label in this prodrug does not function as an active anticancer agent, but an indicator for 

the proteolytic cleavage of this pentapeptide and release of anthraquinone compound 

(model drug). Once the prodrug conjugate was cleaved by MMPs, the anthraquinone and 

FITC residues would no longer be combined together, hence fluorescence of the FITC 

label would be released which should be straightforward to detect (Van Valckenborgh 

et al., 2005). In addition to the shorter peptide sequence, this model system was 
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important because for the first time, a cyclic spacer was attached to the anthraquinone. 

Thus, model probe/prodrug YD 17 (43) was synthesised in order to determine if this Ala-

Nva-Gly-Leu-Pro pentapeptide would be cleavable by MMPs, and hence release the 

anthraquinone compound and free the fluorescence of the FITC label. Schemes 1.13, 

1.14, and 1.15 show the synthesis of this FRET probeYD 17 (43): 

O

OHC

O

NHO

NHO O

O

N

O

OC

O

NHO O

O

DCC
DMAP

Chloroform

TFA

O

O

N O C NH3OOCCF3

H3C CH3

O

1-(4-hydroxyiperidyl) anthraquinone

 

Scheme 1.13. Synthesis of Aib-(oxypiperidine)-AQ [TFA] YD 14 (46) 

N-tBoc-protected anthraquinone spacer conjugate YD 13 (45) was synthesised by 

reacting 1-(4-hydroxypiperidyl)anthraquinone (44) with N-α-t-Boc-α-aminoisobutyric 

acid (Boc-Aib), followed by adding coupling reagent dicyclohexylcarbodiimide under 

basic (DMAP) conditions in chloroform. Overnight, some white crystals of N,N’-

dicyclohexylurea (DCU) were filtered off from the reaction solution. The rest of the 

reaction solution was partitioned between chloroform and water, washed with saturated 

sodium bicarbonate solution and water, dried (MgSO4), filtered and evaporated to 

dryness. Then YD 13 (45) was treated with trifluoroacetic acid at room temperature for 

20 minutes to remove the Boc protecting group to form an N-terminal trifluoroacetate 

salt YD 14 (46). 

Boc-Aib 1-(4-hydroxypiperidyl) 

anthraquinone (44) 

YD 13 (45) 

YD 14 (46) 
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Scheme 1.14. Synthesis of Fmoc-Ala-Nva-Gly-Leu-Pro-Aib-(oxypiperidine)-AQ YD 15 (48) 

Then, this N-terminal trifluoroacetate salt YD 14 (46) was further reacted with Fmoc-

Ala-Nva-Gly-Leu-Pro-OH (47) in DMF with coupling reagents TBTU and HOBt under 

basic conditions (DIPEA) at room temperature for two hours. The reaction mixture was 

then partitioned between chloroform and water, and then evaporated to near dryness 

before it was loaded onto a silica gel chromatography column, which was eluted with 

chloroform: methanol (9:1).  
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Scheme 1.15. Synthesis of FITC-Ala-Nva-Gly-Leu-Pro-Aib-(oxypiperidine)-AQ (YD 17) (43) 
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After purification, the pentapeptide conjugate YD 15 (48) was dissolved in 20% (v/v) 

piperidine in DMF and kept stirred for 10 minutes, in order to remove the Fmoc 

protecting group. Once the compound was dry, it was reacted with fluorescein 

isothiocyanate in DMF in the presence of DIPEA for four hours. Then the reaction 

solution was partitioned between chloroform and water, and purified by flash 

chromatography. The structure of this anthraquinone FITC probe (model for a prodrug) 

was confirmed by its ESMS(-) mass spectrum which had a signal at m/z 1217.7 for the 

species (M-H)-. 

1.2.6 Synthesis of miscellaneous compounds including prodrug intermediates 

1.2.6.1 Synthesis of SUCC-D-Ala-Ala-Ala-Leu-Gly-Leu-Nva-Gly-PIP-AQ (YD 12) (33) 
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Figure 1.38. SUCC-D-Ala-Ala-Ala-Leu-Gly-Leu-Nva-Gly-PIP-AQ (YD 12) (33) 

YD 12 (33) is an N-trifluoroacetate salt of an octapeptide-anthraquinone conjugate 

required for the synthesis of some of the above-reported main synthetic targets of this 

project, namely the twin drug MMP substrate prodrugs. On treatment with base, the 

trifluoroacetate acid salt would be neutralised and the amine end would be exposed 

freely for further reaction. Because most warhead spacer conjugates have free amine 

ends too, in order to couple warhead spacer conjugates onto NU:UB 349 (50), succinic 

acid with two carboxyl acid ends was applied as a linker.  

Succinate compound YD 12 (33), as shown in Figure 1.38, was synthesised by reacting 

NU:UB 349 (50), an anthraquinone-spacer-octapeptide conjugate, with succinic 

anhydride in DMF under basic (DIPEA) conditions overnight by following the general 

method outlined in Scheme 1.3. After checking by TLC, the whole reaction mixture was 
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evaporated to dryness. Distilled water was added to the dry compound, the mixture was 

transferred to three 2mL eppendorf tubes with shaking for one hour, and then they were 

centrifuged. The water layer was checked by the litmus blue test paper. If the litmus blue 

test paper turned to pink, the compound was washed with further distilled water and 

centrifuged again until there was no colour change showed on litmus blue test paper. 

Evaporation to dryness afforded chromatographically pure YD12 (33) whose structure 

was confirmed by its ES(-) mass spectrum which gave a signal at m/z 1043.5 for the 

species (M-H)- which corresponded to the expected molecular mass of 1044 Da. 

1.2.6.2 Synthesis of PFPO-SUCC-Pro-APA-AQ (YD 19) (24) 
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Figure 1.39. PFPO-SUCC-Pro-APA-AQ (YD 19) (24) 
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Reagents and conditions: (i) DCC, DMAP, chloroform or dichloromethane, RT, 3h. 

Scheme 1.16: General synthesis of OPFP ester compounds 

The pentafluorophenolate succinyl proline anthraquinone conjugate YD19 (24) was an 

important model compound to establish both the conditions for making the OPFP ester 

from a succinate and also to explore the reactivity of the active ester towards important 

‘warheads’ like epirubicin. If good methods could be established with the model 

compound, it was considered this would provide the best starting point for the eventual 

synthesis of the target twin prodrugs containing longer peptide sequences. 
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Aside, because YD12 incorporated the aminopropyl-spaced anthraquinone proline 

conjugate – which is a known cytotoxic topoisomerase inhibitor – coupling to a second 

active agent would also afford a simple twin drug of some interest.  

DCC, DMAP, pentafluorophenol and NU:UB 354 (51) were mixed and dissolved in 

dichloromethane. The whole reaction was left reacting at room temperature overnight. 

The progress of this reaction was monitored by TLC. When it was finished, clear/white 

crystalline precipitate (DCU) in the reaction solution was filtered off. The remainder was 

evaporated to dryness and used without further purification.  

1.2.6.3 Synthesis of Fmoc-Pro-Ala-Gly-Nva-Phe-Ala-OH (YD 43) (52) 

O N CONH CONH CONH CONH CONH COOH
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Figure 1.40. Fmoc-Pro-Ala-Gly-Nva-Phe-Ala-OH (YD 43) (52) 

Fmoc-Pro-Ala-Gly-Nva-Phe-Ala-OH (YD 43) (52), as shown in Figure 1.40, was 

synthesised by using solid phase peptides synthesis (SPPS). 

1.2.6.4 Solid Phase Peptide Synthesis (SPPS) 

The simple idea of solid phase peptide synthesis was first introduced by Merrifield in 

1963. Solid phase peptide synthesis is based on adding N--protected-amino acids onto 

an insoluble polymeric support. 
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Scheme 1.17. Solid Phase Peptide Synthesis (SPPS) 

Dichloromethane (DCM) and N,N-dimethylformamide (DMF) are the better solvents 

used for resin deprotection, coupling and washing. Fmoc protected amino acids are used 

more popularly than Boc protected amino acids in SPPS. In Fmoc synthesis, the Fmoc 

protecting group can be removed by using 20% piperidine in DMF, and TFA is only used 

for the final cleavage of peptide from the resin. However, in Boc synthesis, the Boc 

protecting group has to be removed by very dangerous HF and using expensive laboratory 

equipment that are not available in most labs. 

Pre-loaded peptide 2-chlorotrityl resins (53) [Figure 1.41] were used for building peptide 

chains in this research.  

Opeptide

O

Cl

 

Figure 1.41. Pre-loaded peptide 2-chlorotrityl resin (53) 
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Using an SPPS method to synthesise particular peptide chains is fast, efficient and easy 

to carry out. However, if during coupling and de-protecting stages, the reaction is not 

totally completed, it will bring impurity problems and reduce the yield. So, the Kaiser test 

(for the detection of free amino groups) was introduced in SPPS to monitor the 

completeness during coupling and de-protecting reactions. The Kaiser test has been used 

widely because it is simple and quick. However, it cannot give a positive dark blue colour 

reliably when testing some free -amino acids (such as serine, asparagine, and aspartic 

acid) and proline which is a secondary amino acid. Scheme 1.18 outlines the general 

Kaiser test reaction: 

 

Scheme 1.18. Kaiser test (Friedman, 2004) 
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Proline pre-loaded 2-chlorotrityl resin was swelled in dichloromethane first, and then 

was reacted with N-Fmoc amino acid in the cycles of coupling and deprotection: 

Fmoc-Pro-Ala-Gly-Nva-Phe-Ala-OH (YD 43) (52) was synthesised by following 

sequences:  

 1st  cycle: N-Fmoc-L-phenylalanine 

 2nd cycle: N-Fmoc-L-norvaline 

 3rd  cycle: N-Fmoc-L-glycine 

 4th  cycle: N-Fmoc-L-alanine 

 5th  cycle: N-Fmoc-L-proline 

After coupling five N-Fmoc-protected amino acids onto pre-loaded resins in sequence, 

the hexapeptide was cleaved off from resin without further purification.  

After each coupling and deprotection steps, it was noticed that Kaiser test was not suitable 

for this peptide synthesis for some reasons. As after removing N-Fmoc protecting group, 

the Kaiser test should give a positive result—resin beads should turn to dark blue, while 

during this peptide synthesis, after heating at 80oC for three minutes, only the solution 

turned into blue colour, resin beads still remained colourless. This may suggest that during 

the Kaiser test, peptides were cleaved off from the resin beads. So, during each 

deprotection step, a solution of 20% (v/v) piperidine in DMF was added into SPPS 

reaction vessel for 4, 5 times, 10-15min each time, to make sure the N-Fmoc protecting 

group was fully removed. Also, an anthraquinone compound (54) (prepared and 

developed in-house) was introduced to replace the Kaiser test.  

O

O OH

NH O C

O

NH

HN COOHC

O

O

 
Figure 1.42. Colour test N-Fmoc protected anthraquinone compound (54) 
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In this anthraquinone compound (54), as shown in Figure 1.42, there was an N-Fmoc-

protected amino acid with a free acid end, so with coupling reagents and under basic 

condition, it could react with free amino end from a peptide on resin beads after the N-

deprotection step. As the anthraquinone compound was dark blue, because of its 4-

hydroxyl-anthraquinone part, so after this anthraquinone compound (54) coupling with 

peptide on resin beads, produced a dark blue colour, to give a positive result. The structure 

of this N-Fmoc protected peptide YD 43 (52) was confirmed by its ES(+) mass spectrum 

which had a signal at m/z 800.3979 for the species of (M+NH4)
+. 

During attempts to couple the N-Fmoc protected oligopeptide YD 43 (52) onto 

colchiceinamide piperazine spacer N-terminal trifluoroacetate salt YD 33 (12) in DMF 

with PyBOP and HOBt coupling reagents under basic (DIPEA) condition, even after two 

days, no new products were found. However, if one amino acid, like alanine, was coupled 

onto colchicine compound YD 33 (12) first, and then coupled to YD 43 (52) with coupling 

reagents under basic condition, the reaction proceded with no difficulty. The ES(+) mass 

spectrum displayed a signal at m/z 1374.6753 corresponding to (M+H)+, which proved 

its structure was correct.  

1.2.6.5 Synthesis of D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ [TFA] (NU:UB 363) (30) 

F

O O

F F

CO

O

O

NNCONHCOHNCOHNCOHNCOHNH3N

 
Figure 1.43. D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ [TFA] (NU:UB 363) (30) 

The motivation for the synthesis of anthraquinone spacer oligopeptide conjugates of the 

type represented by the trifluoroacetate salt NU:UB 363 (30) [Figure 1.43] was to 

combine the experimental anticancer agent anthraquinone compound onto a hexapeptide 

conjugate which theoretically can bind and be cleaved at the ‘hot spot’ by MMPs, hence 

release active anticancer agent.  
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 In MMP-9, the S1 subsite is a very shallow pocket, so glycine at the P1 position is 

the preferred fit in MMPs’ S1 pocket, while, in contrast, the S1’ subsite is a long 

deep pocket, so isoleucine (or leu or long straight chains, e.g. nva or nle) at the P1’ 

can fit well inside the S1 position. Once the oligopeptide binds with MMPs, the 

amine bond between glycine and isoleucine would be an ideal ‘cleavage hot spot’.  

 The piperazine substituent on the anthraquinone provided the secondary amino group 

as an anchor point for constructing the oligopeptide with the required MMP9-

sensitive cleavage site.    

 Finally, the whole anthraquinone oligopeptide conjugate was further modified to an 

N-trifluoroacetate salt for further coupling with other active anticancer agents, either 

experimental or clinical agent.  

The synthesis of NU:UB 363 (30) is shown in 1.18: 

O

O

NNCONHBoc

NU:UB 234 Boc (55)

(i) (ii)

Piperazine Spacer AQIleGlyBoc

NU:UB 359 Boc (56)

Piperazine Spacer AQIleGlyLeuBoc

NU:UB 360 Boc (57)

Piperazine Spacer AQIleGlyLeuAlaBoc

NU:UB 361 Boc (58)

Piperazine Spacer AQIleGlyLeuAlaAlaBoc

NU:UB 362 Boc (59)

Piperazine Spacer AQIleGlyLeuAlaAlaAlaDBoc

NU:UB 363 Boc (60)

(i) (iii)

(i) (iv)

(i) (iv)

(i) (v)

(i)

O

O

NNCOCONHCONHCONHCONHCONHH3N

F
FF

O O

NU:UB 363 (30)

 

Reagents and conditions: (i) TFA, RT, 30min. (ii) Boc-Gly-OSu, DIPEA, DMF, RT, 4h. (iii) Boc-Leu-

OSu, DIPEA, DMF, RT, 4h. (iv) Boc-Ala-OSu, DIPEA, DMF, RT, 2h. (v) Boc-D-Ala-OH, TBTU, HOBt, 

DIPEA, DMF, RT, 2h.  

Scheme 1.19. Synthesis of NU:UB 363 (30) 
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The anthraquinone-hexapeptide conjugate N-trifluoroacetate salt NU:UB 363 (30) was 

synthesised (by solution methods) from N-tBoc protected NU:UB 234 (55) [Scheme 1.19] 

by a repeating sequence of deprotection of the N-tBoc protecting group by treating 

compounds with TFA for around 30min, and then coupling the next N-tBoc protected 

amino acid OSu ester (in sequence: Boc-Gly-OSu, Boc-Leu-OSu, Boc-Ala-OSu, Boc-

Ala-OSu, Boc-D-Ala-OSu) under basic (DIPEA) condition without any coupling 

reagents. The sequential intermediates were purified by flash chromatography before 

deprotection of N-tBoc group. However, during the last step, when the N-trifluoroacetate 

salt NU:UB 362 (61) was reacted with Boc-D-Ala-OSu, it barely reacted even after 24h. 

This could have been because the Boc-D-Ala-OSu was not very fresh; some of it may 

have decomposed. So, instead, fresh Boc-D-Ala-OH was used to couple with NU:UB 362 

(61) by using coupling reagents TBTU, HOBt and DIPEA. The structure of this 

trifluoroacetate salt was confirmed by its ES(+) mass spectrum which gave a strong signal 

at m/z 789.4277 for the cation (M+H)+ and its ES(-) mass spectrum which had a strong 

signal (base peak) at m/z 113.0 for the trifluoroacetate anion.  

1.2.6.6 Synthesis of SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 30) (28) 

COCOHNCOHNCOHN COHNCOHNCOHN
HOOC

N N

O

O  

Figure 1.44. SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 30) (28) 

This hexapeptide spacer anthraquinone succinate conjugate YD 30 (28) was coupled with 

different colchiceinamide derivatives in the syntheses of twin prodrugs YD 34 (27) 

[Scheme 1.5], YD 42 (29) [Scheme 1.6] and YD 58 (31) [Scheme 1.8]. 

By the same method as the synthesis of succinate compound YD 12 (33), in order to 

couple N-trifluoroacetate salt NU:UB 363 (30) with an amine containing ‘warhead spacer 
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conjugate’ to form a new ‘twin drugs’ prodrug, succinic anhydride was applied as a linker 

between these two compounds.  

The hexapeptide spacer anthraquinone succinate conjugate YD 30 (28), as shown in 

Figure 1.44, was synthesised by reacting NU:UB 363 (30), an anthraquinone-spacer-

octapeptide N-trifluoroacetate salt, with succinic anhydride in DMF under basic (DIPEA) 

conditions overnight, following the general method outlined in Scheme 1.3, Upon 

completion of the reaction, the whole mixture was evaporated to dryness. YD 30 (28) did 

not dissolve in water, thus, excess succinic acid was washed out with copious amounts of 

water until a negative litmus test was obtained. The succinate was used for further reaction 

without further purification. 

1.2.6.7 Synthesis of PFPO-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 32) (37) 

 

Figure 1.45. PFPO-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 32) (37) 

Because epirubicin (2) is unstable under the general peptide (basic) reaction conditions, 

in order to couple epirubicin (2) with hexapeptide spacer anthraquinone succinate 

conjugate YD 30 (28) to form the twin prodrug YD 35 (36) [Figure 1.33], YD 30 (28) 

had to be converted into its OPFP ester YD 32 (37). 

PFPO-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 32) (37) [Figure 1.45] was 

synthesised by reacting succinate compound YD 30 (28) with pentafluorophenol and 

coupling reagents DCC, DMAP in chloroform by following the general synthesis of 

OPFP ester compounds outlined in Scheme 1.16. The first time, the attempted synthesis 

of YD 32 (37) was tried in dichloromethane with 10% DMF, but YD 30 (28) did not 
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dissolve in dichloromethane very well, so a bit more DMF was applied to help YD 30 

(28) to dissolve in the solution. However, the mass spectrum result showed that the 

isolated product was not YD 32 (37); it was the unproductive, rearrangement product 

intermedia N-acylurea compound.  

N CO

C

NH

O
CONH CONH CONH CONH CONH CONH CO N N

O

O

 

Figure 1.46. Intermediate N-acylurea compound (62) 

This is because in the solution of DMF, it would be more likely to happen that the re-

arrangement of the O-acylisourea compound (63) by intramolecular reaction than further 

reaction of O-acylisourea compound (63) by external nucleophiles as expected 

(Montalbetti and Falque, 2005). This unproductive N-acylurea compound (62) [Figure 

1.46] was confirmed by its ES(+) mass spectrum which had a peak at m/z 1095.6221 for 

the species (M+H)+. 

 

 

Scheme 1.20. Formation of O-Acylisourea (63) and N-Acylurea (62) 

So, the choice of solution became a crucial feature in this reaction. In the synthesis of 

OPFP ester YD 32 (37), three solutions had been tested. In the beginning, 

dichloromethane was chosen. It took hours to dissolve YD 30 (28), and in the end there 

were two spots on the TLC plate, the lower one was stronger than the upper one. So a 
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mini reaction of the impure compound and YD 41 (16) was carried out. The TLC plate 

showed the upper spot disappeared and a new spot could be found lower than the original 

second spot. This could suggest that the upper spot was the pentafluorophenolate ester 

and the lower one was the less reacted N-acylurea compound (62). And then, the YD 32 

(37) formation was repeated in chloroform. It took 1.5 hours to dissolve 90% of YD 30 

(28), and there were two spots on the TLC plate as well, but the upper one was much 

more intense than the lower one. This could suggest that in chloroform, the desired O-

acylisourea compound of this reaction would be more likely to react with external 

nucleophiles to form the desired pentafluorophenolate ester. Lastly, acetonitrile was 

chosen for this reaction, but unfortunately, no reaction took place. The activation of DCC 

was very dependent on the choices of solvent. Dichloromethane or chloroform were 

preferred. Windridge and Jorgensen (1971) also suggested that mixing the acid and DCC 

at 0oC first, and then adding the amine into the reaction mixture could diminish the side 

reaction. Also, selected nucleophiles (such as DMAP and HOBt) could prevent the side 

reaction, as they can react faster with DCC than the acyl transfer, and form an 

intermediate for further reaction.  

1.2.6.8 Synthesis of Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 [TFA] (YD 53) (64) 
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Figure 1.47. Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 [TFA] (YD 53) (64)  

In the beginning, it was attempted to react N-trifluoroacetate salt YD 33 (12) with YD 43 

(52) (an N-Fmoc group protected hexapeptide conjugate synthesised by solid phase 

peptide synthesis) to form Fmoc-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9, but somehow, 
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even after a few days, it still would not react very well. It seemed that the N-

trifluoroacetate salt YD 33 (12) barely reacted with N-Fmoc group protected hexapeptide. 

Because of this unsuccessful attempt to make this Fmoc-Pro-Ala-Gly-Nva-Phe-Ala-

spacer-colchiceinamide, so hexapeptide spacer colchiceinamide derivative 

trifluoroacetate YD 53 (64) was synthesised by using solution phase peptide coupling 

method to add each amino acid in sequence onto a pre-formed colchiceinamide spacer 

derivative (trifluoroacetate) YD 33 (12). 

The rationale of the design for N-trifluoroacetate salt YD 53 (64) [Figure 1.47] was 

similar to N-trifluoroacetate salt NU:UB 363 (30). Instead of using a cytotoxic agent 

anthraquinone compound, the antivascular disrupting agent colchicine analogue was 

applied in this synthesis.  

 Colchicine was initially converted into N-colchiceinamide (6). As both 2,5-

dimethylpiperazine and N-colchiceinamide (6) have a free amino group, so 

chloroacetyl chloride was used to introduce a linker, in order to couple the ‘warhead 

agent’ with the spacer compound.  

 The P3 position was occupied by proline, it’s five-membered ring structure can fit 

well in the round shape S3 pocket; glycine and norvaline can fit in shallow S1 pocket 

and long deep hydrophobic S1’ pocket respectively (McGeehan, 1994).  

The synthesis of YD 53 (64) is shown in Scheme 1.21: 
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ColchiceinamideDimethylpiperazine Spacer

[YD33] (12)

TFA 

(i)

(ii)

ColchiceinamideDimethylpiperazine Spacer

[YD48] (65)

AlaF3CCOOH3N

(iii)

(ii)

ColchiceinamideDimethylpiperazine Spacer

[YD49] (66)

AlaPheF3CCOOH3N

(iv)

(ii)

ColchiceinamideDimethylpiperazine Spacer

[YD51] (67)

AlaPheNvaF3CCOOH3N

(v)

(ii)

ColchiceinamideDimethylpiperazine Spacer

[YD52] (68)

AlaPheNvaGlyAlaF3CCOOH3N

(vi)

(ii)

[YD53] (64)
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Reagents and conditions: (i) Boc-Ala-OSu, DIPEA, DMF, RT, 4h. (ii) TFA, RT, 30min. (iii) Boc-Phe-

OSu, DIPEA, DMF, RT, 4h. (iv) Boc-Nva-OSu, DIPEA, DMF, RT, 4h. (v) Boc-Ala-Gly-OSu, DIPEA, 

DMF, RT, 4h. (vi) Boc-Pro-OSu, DIPEA, DMF, RT, 4h.   

Scheme 1.21. Synthesis of Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 [TFA] (YD 53) (64) 

Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 [TFA] (YD 53) (64) was synthesised from N-

colchiceinamide spacer N-trifluoroacetate salt YD 33 (12) by repeating coupling with Boc 

protected amino acid or Boc protected amino acid OSu ester compounds (in sequence 

followed by Boc-Ala-OSu, Boc-Phe-OSu, Boc-Nva-OH, Boc-Ala-Gly-OSu, Boc-Pro-

OH), purifying by loading onto a flash chromatography column, and deprotecting by 

using TFA for typically 30 minutes. The structure of this trifluoroacetate salt YD 53 (64) 

was confirmed by its ES(+) mass spectrum which gave a signal (base peak) at m/z 

1081.5708 for the species of (M+H)+. 
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It seemed N-trifluoroacetate salt YD 33 (12) barely reacted with N-Fmoc group protected 

hexapeptide YD 43 (52). It suggested that maybe because of the piperazine ring in YD 

33 (12) compound acted as a weak base, so the solution of YD 33 (12) in DMF would act 

as a 20% (v/v) solution of piperidine in DMF in the deprotection of N-Fmoc protecting 

group, then it could remove the Fmoc group from YD 43 (52) instead of coupling with 

YD 43 (52). A mini test reaction was carried out to prove this suggestion. YD 33 (12) and 

YD 43 (52) were mixed together in DMF without coupling reagents. However, after a 

few days, TLC still showed that no reaction took place. Both YD 33 (12) and YD 43 (52) 

could be found on TLC plates separately, no other new spot(s) were detected.  

 

Scheme 1.22. Synthesis of Fmoc-Pro-Ala-Gly-Nva-Phe-Ala-Ala-DMPIP-YD9 (YD 50) (69) 

 

So, it was repeated, by reacting N-Fmoc group protected hexapeptide conjugate YD 43 

(52) with N-trifluoroacetate salt YD 48 (one amino acid, Ala, attached to the colchicine 

compound) (65) by using coupling reagents in DMF under basic (DIPEA) condition, as 

illustrated in Scheme 1.22. Within two hours, a new spot was found by TLC. The mass 

spectrum result confirmed this structure, ES(+) m/z: 1374.6753 (M+H)+. So it suggested 
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that the colchicine compound might have difficulty to react with the Fmoc-protected 

compound directly because of the two methyl groups on the piperazinyl ring possibly 

blocking access to the carboxyl acid end of hexapeptide conjugate YD 43 (52). However, 

if one amino acid was coupled onto the colchiceinamide piperazine spacer compound 

first, it would be more straightforward to couple with the Fmoc-protected oligopeptide. 

Coupling one alanine on to N-colchiceinamide piperazine conjugate YD 48 (65) will 

prolong the distance between the methyl groups and the carboxyl acid end of YD 43 (52), 

hence increase the likely success of coupling the oligopeptide onto a colchiceinamide 

spacer conjugate. 

1.2.6.9 Synthesis of SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 54) (18) 
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Figure 1.48. SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 54) (18) 

This succinyl hexapeptide spacer colchiceinamide (YD 54) (18) was applied in the 

synthesis of bis-(colchiceinamide-spacer)hexapeptide conjugate (YD 55) (3) [Scheme 

1.10]. SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 54) (18) [Figure 1.48] was 

synthesised by reacting N-trifluoroacetate salt YD 53 (64) with succinic anhydride in 

DMF under basic (DIPEA) condition, following the general method outlined in Scheme 

1.3. Three days later, after checking on the TLC plate, then the reaction mixture was 

evaporated to dryness. YD 54 (18) compound was dissolved in dichloromethane, as extra 

succinic acid would not be dissolved in dichloromethane, so it was simply filtered off 

from YD 54 (18) dichloromethane solution. Then YD 54 (18) compound was evaporated 

to dryness.  
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1.2.6.10 Synthesis of MB1-SUCC-OPFP (YD 57) (26) 
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F F

F

FF  

Figure 1.49. MB1-SUCC-OPFP (YD 57) (26) 

MB1-SUCC-OPFP YD 57 (26), as shown in Figure 1.49, was used to couple with 

epirubicin (2) to form the model compound Epi-SUCC-MB1 (YD 59) (25) [Figure 1.25]. 

This OPFP ester was synthesised by mixing colchiceinamide derivative succinate 

compound YD 56 (17) and DCC in dichloromethane first, and then followed by adding 

pentafluorophenol and DMAP, following the general synthesis of OPFP ester compounds 

outlined in Scheme 1.16. This reaction took nearly two days to react. White solid 

compound - DCU was filtered out from the YD 57 (26) dichloromethane solution. As 

pentafluorophenolate ester was not steady, so no further purification was needed to apply 

for YD 57 (26).  

Balalaie et al. (2008) reported that a traditional method to synthesise carboxylic acid 

esters with DCC/ DMAP was slow, often in low yield and sometimes could not prevent 

side reactions. They had found using TBTU as an efficient coupling reagent could speed 

up the esterification of carboxylic acids with alcohols and phenols at room temperature, 

and as no DCC had been used, so there would be no N-acylurea compound in the product. 

Using TBTU instead of DCC/ DMAP could give high yield and the by-product HOBt is 

water-soluble, which are the other two advantages of this new application.  
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Scheme 1.23. Synthesis of PFPO-SUCC-Pro-APA-AQ (YD 19) (24) 

Before using Balalaie’s method to synthesis YD 57 (26), a mini test reaction was carried 

out by using Balalaie’s method to synthesis YD 19 (24). When compared with the original 

YD 19 (24) compound, the new OPFP ester compound YD 19 (24) was identical. So this 

suggested Balalaie’s method may be suitable for pentafluorophenyl ester YD 57 (26) 

reaction as well. However, when a mini reaction was carried on for YD 57 (26) synthesis 

by using Balalaie’s method, nothing happened. There was only a barely weak spot on 

TLC plate even after two days reaction. This may suggest that Balalaie’s method was not 

suitable for colchicine compound reaction to form pentafluorophenyl ester.    

1.2.6.11 Synthesis of PFPO-SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 

60) (38) 
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Figure 1.50. PFPO-SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 60) (38) 

In order to synthesise the twin prodrug YD 61 (4), epirubicin (2) has to couple with this 

colchiceinamide spacer hexapeptide succinyl OPFP ester YD 60 (38) [Figure 1.50] that 
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54 (18) and DCC in dichloromethane first, and then mixed with pentafluorophenol and 

DMAP, following the general synthesis of OPFP ester compounds outlined in Scheme 

1.16. This reaction took nearly 4 hours to react significantly. White solid compound DCU 

was filtered out from YD 60 (38) dichloromethane solution. The whole reaction solution 

was evaporated to dryness and used without any further purification. 

1.2.6.12 Synthesis of PFPO-SUCC-Ala-Gly-Leu-Pro-Ala-Ala-APA-AQ (YD 62) (23) 
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Figure 1.51. PFPO-SUCC-Ala-Gly-Leu-Pro-Ala-Ala-APA-AQ (YD 62) (23) 
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Scheme 1.24 Synthesis of PFPO-SUCC-Ala-Gly-Leu-Pro-Ala-Ala-APA-AQ (YD 62) (23) 

In Scheme 1.24, it outlines that 1-[(3-aminopropyl)amino]anthraquinone oligopeptide 

succinate compound C6 (70) was synthesised by reacting N-trifluoroacetate salt C5 (71) 

and succinic anhydride in DMF under basic (DIPEA) condition, following the general 

method outlined in Scheme 1.3.  

C5 (71) 

C6 (70) 

YD 62 (23) 
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Pentafluorophenyl ester YD 62 (23) [Figure 1.51], which was required in the syntheses 

of twin prodrugs colchicine succinyl hexapeptide anthraquinone YD 63 (34) [Scheme 

1.11], epirubicin succinyl hexapeptide anthraquinone YD 67 (21) [Figure 1.35] and 

FRET probe 6-aminofluorescein succinyl hexapeptide anthraquinone YD 64 (35) 

[Scheme 1.12], was synthesised by dissolving 1-[(3-aminopropyl)amino]anthraquinone 

oligopeptide succinate compound C6 (70) and DCC in DMF at 0oC first, then DMAP and 

pentafluorophenol were added into this reaction mixture. Montalbetti and Falque 

suggested that if mixing acid and DCC in DMF at 0oC first, then adding amine/ OPFP 

could minimise N-acylurea formation (Montalbetti and Falque, 2005) (following the 

general synthesis of OPFP ester compounds outlined in Scheme 1.16). Four hours later, 

the whole reaction solution was partitioned between chloroform and water, then the 

organic layer was washed with saturated sodium bicarbonate solution and water, dried, 

filtered and evaporated to dryness, to afford the target conjugates. 
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1.3 CONCLUSION 

In this research project, three ‘prodrug warheads’ have been made, two model compounds 

and twelve target prodrugs have been designed, synthesised and characterised by 

spectroscopic methods, including mass spectrometry and NMR spectroscopy.  

Prodrugs, which were designed and synthesised in this project, are ‘twin prodrugs’ that 

have either two identical or non-identical potent active agents binding onto designed 

oligopeptides. The synergy of the two active agents from ‘twin prodrug’ would offer 

greater effect in tumour chemotherapy than using prodrugs which only have one active 

agent. 

During the synthetic stages, some conditions and methods have been improved in order 

to make compounds easier to synthesise and achieve higher yields of chromatographically 

pure products. For instance, during epirubicin (2) coupling stages, it was found if 

epirubicin (2) were reacted with an OPFP ester compound, these methods proved superior 

to in situ coupling methods. The strategy of designing and synthesising the active agents 

(‘warheads’) has been extended from potent cytotoxic agents, such as anthraquinone 

compounds, to antivascular agents, in the colchicine class of compounds. Hence the 

prodrugs which were made in this project, not only have the potential to cause a cytotoxic 

effect on tumours cells, but also can potentially target and shrink tumour blood vessels in 

order to cut off the oxygen and nutrition supplies to tumour cells, as a consequence of 

their vascular disrupting properties.  
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1.4 FUTURE WORK 

Immediate future work, in conjunction with collaborating laboratories, should focus on 

in vitro testing of prodrug activation in a panel of cancer cell lines which express MMP-

9 and, for any promising conjugates, preliminary in vivo work. In vitro metabolism studies 

could be carried out using recombinant MMP-9, cell lysates or tumour homogenates by 

HPLC-MS methods. 

In new work, it would be of interest to determine whether or not the prodrug approach 

can be translated (from cancer) to the delivery of potent antibacterials to define a preferred 

oligopeptide carrier sequence containing cleavage ‘hotspots’ for bacterial proteases, 

similar to but distinct from the human equivalent and to determine the biological potency 

of active agents and their respective prodrug forms against a panel of bacterial proteases.  

In infected mammals, surface-located or soluble extracellular proteases are crucial in the 

process of bacterial resistance against the immune system. Bacterial proteases (in 

common with mammalian MMPs) can degrade host structures, such as the extracellular 

matrix; hence, bacteria can migrate in the host without barriers (Haiko et al., 2009).  

PgtE is an endoprotease and an important factor for survival of Salmonella in the host; 

Ramu et al. showed that removal of PgtE can decrease the survival of bacterial in murine 

macrophages and human serum (Ramu et al., 2007, Ramu et al., 2008). The Salmonella 

surface protease PgtE has been found have the ability to degrade gelatin and also can 

activate human proMMP-9 (Haiko, 2009).  

Based on above observations, it would be very interesting to clone the salmonella derived 

cell surface protease and to screen a library of potential MMP-9 substrate prodrug 

compounds (containing antibacterial agents in latent form) for their cleavage sensitivity 

towards PgtE protease.  
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1.5 STRUCTURE LIBRARY 

1.5.1 ‘Warheads’ (active agents) 
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1.5.2 ‘Warheads’-spacer/ linker compounds 
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YD36-DMPIP-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 42) (29) 
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Epi-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 35) (36) 

 

 
Epi-SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 61) (4) 
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1.5.5 Miscellaneous compounds including prodrug intermediates 
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Fmoc-Pro-Ala-Gly-Nva-Phe-Ala-Ala-DMPIP-YD9 (YD 50) (69) 
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PFPO-SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 60) (38) 
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1.6 EXPERIMENTAL 

1.6.1 General Techniques 

1.6.1.1 Chromatography 

1.6.1.2 TLC 

Kieselgel 60 F254 pre-loaded aluminium sheets (Merck company product) were used for 

thin layer chromatography (TLC). Most compounds synthesised absorb in the visible 

region, additional visualisation where required, was by short-wave U.V. light. 

Additionally, colour tests were occasionally used where bromocresol green showed a 

bright yellow spot against dark blue background as a positive test for a carboxylic acid 

and ninhydrin showed the presence of a primary amine as a blue spot. 

1.6.1.3 Thick Layer TLC 

Thick-layer chromatography plates were prepared by mixing silica gel 60 PF254 (100g) 

with water (300mL), after stirring well, the slurry was applied evenly to a depth of 1mm 

on 20cm20cm glass plates. The TLC plates were dried in an oven at 60oC for 24h. Then 

TLC plates were stored in a cool and dark place.  

The crude compound was dissolved in a small amount of chloroform or methanol before 

loading onto thick TLC plates, which were eluted using a suitable solvent system. The 

band containing the major compound was collected from the plate, eluted from the silica 

with chloroform and methanol, and then evaporated to dryness.  

1.6.1.4 Fine silica gel column chromatography 

Kieselgel 60 F254 silica gel was used in silica gel column chromatography. A small pump 

was applied on the top of the glass column to supply air pressure in the column when 

necessary.  
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1.6.1.5 Nuclear Magnetic Resonance 

NMR spectra were recored on either a Bruker AC300 or a Bruker AC400 NMR 

Spectrometer (at 300MHz or 400MHz for 1H; 75MHz for 13C) in d6-DMSO or CDCl3.     

1.6.1.6 Mass spectrometry 

High resolution electrospray mass spectra were recored on Thermofisher LTQ Orbitrap 

XL.  

Low resolution nano-electrospray mass spectra were recored on Waters ZQ4000.  

1.6.2 General Synthetic Chemistry 

1.6.2.1 Method A: General method for the synthesis of succinate compounds 

The amine component (1 equivalent), succinic anhydride (3 equivalents) were dissolved 

in DMF. DIPEA (1 equivalent) was added into the reaction solution. After 12h, a mini 

extraction was carried out and the progress of the reaction was checked by TLC. The 

reaction solution was evaporated to dryness, and then extracted with water. Litmus blue 

test paper was applied to check whether excess succinic acid was washed out or not. 

Also, bromocresol green could be applied to check if there was a bright yellow spot 

(succinic acid) against a blue background on the TLC plate. If necessary, further 

purification was carried out by silica gel column chromatography. Fractions containing 

the major product were combined, filtered and evaporated to dryness.  

1.6.2.2 Method B: General method for the deprotection of N-

tertiarybutoxycarbonyl (tBoc) protected compounds 

The tBoc protected compound (0.5g) was dissolved in trifluoroacetic acid (7mL) at RT. 

After 30min, the progress of this reaction was checked by TLC. After the reaction was 

complete, trifluoroacetic acid was then evaporated and the residual solid was re-
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evaporated with methanol (35mL), where necessary. Diethyl ether (50mL) was added 

to give a precipitate of the deprotected compound at 4 oC. The N-terminal trifluoroacetate 

salt was filtered off and dried in vacuo.     

1.6.2.3 Method C: General method for coupling an N--protected amino acid/ 

peptide with free carboxyl terminus to an amine component using in-situ 

coupling reagents 

The amine component (1equivalent), N--protected amino acid with free carboxyl 

terminus (1.1 equivalents), HOBt (1.1 equivalents), TBTU or PyBOP (1.1 equivalents) 

were all dissolved in DMF, and then N,N-diisopropylethylamine (3.2 equivalents) was 

added into this reaction mixture, which was stirred for 2-8h at RT. The progress of the 

reaction was checked by TLC. The compound was partitioned between chloroform and 

water (1:2, 150mL), dried (MgSO4), filtered, and evaporated to a very low volume before 

applying onto a silica gel chromatography column. Fractions from the chromatography 

column containing the major product were combined, filtered and evaporated to dryness.  

1.6.2.4 Method D: General method for the deprotection of N--

fluorenylmethoxycarbonyl (Fmoc) protected compounds 

The Fmoc protected compound (0.15g) was dissolved in a solution of 20% (v/v) 

piperidine in DMF (4mL) and stirred for 15-30 min. Once the reaction was finished 

(checking by TLC), the mixture was partitioned between chloroform and water (1:2, 

150mL), and washed with water (350mL), dried (MgSO4), filtered and evaporated to a 

low volume before applying onto a silica gel chromatography column. Fractions 

containing the major product were combined, filtered and evaporated to dryness.  
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1.6.2.5 Method E: General method for forming a pentafluorophenolate ester 

N,N’-dicyclohexylcarbodiimide (1.1 equivalents), 4-dimethylaminopyridine (1.1 

equivalenta) and pentafluorophenol (1.1 equivalents) were added into a stirred solution 

of the succinate compound (1 equivalent) [from method A] in dichloromethane (or 

chloroform). On completeion, the precipitated dicyclohexylurea was filtered off and the 

compound was used without further purification. 

1.6.2.6 Method F: solid phase peptide synthesis (SPPS) 

1.6.2.6.1 Swelling 

In order to enlarge the surface area of resin to a maximum, resins need to be swelled well 

first. Resins were weighed and transferred to a SPPS reaction vessel. Dry 

dichloromethane (~10mL/g of resin) was added and the SPPS vessel was put onto an 

orbital shaker and kept shaking for one hour. Then dichloromethane was drained off and 

resins were washed with DMF (3 ~10mL/g of resin).  

1.6.2.6.2 Coupling 

Fmoc protected amino acid (1 equivalent), TBTU (1.9 equivalents) and HOBt (1.9 

equivalents) were dissolved in DMF (~20mL/g of resins), and then DIPEA (4 

equivalents) was added into this solution. The mixture was split into two portions and 

each portion was added into an SPPS reaction vessel separately and kept shaking for 

30min. Then the solution was drained off and the resin were washed with DMF (3 

~10mL/g of resin).   

1.6.2.6.3 Deprotection 

A solution of 20% (v/v) piperidine in DMF was added into the SPPS reaction vessel 

(3~10mL/g resin) and the vessel was kept shaking for 15 min, and then the solution 

was drained away and the resin was washed with DMF (3 ~10mL/g of resin).   
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1.6.2.6.4 Kaiser Test 

After each coupling and deprotection, a Kaiser test was carried out to make sure each 

step was complet. Three solutions need to be prepared for Kaiser test: ninhydrin (1g) 

was dissolved in ethanol (20mL) and kept in the dark; liquified phenol (16g) was 

dissolved in ethanol (4mL) and kept in the dark; aqueous solution of potassium cyanide 

(0.001M, 400l) was added into pyridine (19.6mL). 

After coupling or deprotection and washing with DMF three times, a few beads were 

transferred from SPPS vessel to a micro tube and one drop of each of the three Kaiser 

test solutions were added, and then the micro tube was heated at ~80oC for 3-5min. The 

result should be positive (for NH2): beads should be dark blue or purple; negative (no 

NH2): beads should be clear or pale yellow. 

1.6.2.6.5 Cleavage 

A solution of 1-5% trifluoroacetic acid (TFA) in dichloromethane (~10mL/g of resin) 

was added into the SPPS vessel and kept shaking for 2min. Then the solution was 

drained. Resin was washed with the 1-5% TFA solution up to 10 times, the progress was 

checked by TLC (dichloromethane: methanol 6:1). Then resin was washed with 

dichloromethane (3), methanol (3), dichloromethane (3). All filtrates were combined 

and evaporated to a very low volume, and then diethyl ether was added to precipitate the 

peptide. The solid peptide was filtered and dried in vacuo.  

1.6.3 ‘Warheads’ (active agents) 

1.6.3.1 Synthesis of colchiceinamide (YD 9) (6) 

Ammonia (5mL) was added into a stirred solution of colchicine (5) (1g, 2.5mmol) in 

DMF (5mL). The reaction mixture was stirred at RT and kept in the dark for 3 days. 
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TLC (chloroform: methanol 7:1); Rf 0.50 (yellow) product. The reaction mixture was 

evaporated to dryness to give yellow solid compound. Yield (0.997g). The purity of YD 

9 (6) was confirmed by its homogeneous character on TLC and by its 1H-NMR spectrum. 

1H-NMR spectrum (d6-DMSO, 200 MHz) δ: 1.80 (3H, s, NHCOCH3); 1.85-2.20 (4H, 

m, C5-CH2, C6-CH2); 3.42 (3H, s, C1-OCH3); 3.72 (3H, s, C3-OCH3); 3.77 (3H, s, C2-

OCH3); 4.31 (1H, m, C7-CH); 6.69 (1H, s, C4-CH); 6.84 (1H, d, C11-CH); 7.03 (1H, d, 

C12-CH); 7.08 (1H, s, C8-CH); 8.53 (1H, d, NHCOCH3). 

1.6.3.2 Synthesis of N-methylcolchiceinamide (YD 36) (7) 

Colchicine (5) (1g, 0.0025mol) was dissolved in methylamine (8mL) and stirred for 

15min at RT. The precipitated solid was filtered and washed with ice-cold water, dried 

in vacuo. TLC (dichloromethane: ethyl acetate: methanol 7:2:1); Rf 0.54 (yellow) product 

(homogeneous on TLC). Yield (0.735g, 74%). 

1H-NMR spectrum (CDCl3, 200 MHz) δ: 1.80-1.98 (4H,s+m, NHCOCH3 + C6-CH); 

2.10-2.46 (3H, m, C5-CH2 + C6-CH); 3.03 (3H, d, NHCH3); 3.56 (3H, s, C1-OCH3); 3.83 

(3H, s, C3-OCH3); 3.88 (3H, s, C2-OCH3); 4.62 (1H, m, C7-CH); 6.48 (1H, s, C4-CH); 

6.52 (1H, d, C11-CH); 7.18 (1H, q, NHCH3);7.37 (1H, s, C8-CH); 7.44 (1H, d, C12-CH); 

7.95 (1H, d, NHCOCH3). 

1.6.3.3 Synthesis of 10-(3-aminopropyl)amino-10-demethoxycolchicine (MB1) (8) 

Colchicine (5) (0.5g, 1.25mmol) was mixed with 1,3-diaminopropane (5mL). The 

solution was stirred at RT for 3h. TLC (dichloromethane: methanol 5:1); Rf 0.30 

(yellow) product. The reaction mixture was transferred to an evaporating basin to 

evaporate in the fume cupboard. Then the dried mixture was re-dissolved in 

dichloromethane and filtered to remove the white imputity, the yellow pure 

(chromatographically homogeneous) MB1 (8) dichloromethane solution was partitioned 
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between dichloromethane and water (1:2, 150mL), dried (MgSO4), filtered and 

evaporated to dryness.  

Yield (0.5g, 90%).  

1H-NMR spectrum (d6-DMSO, 300 MHz) δ: 1.70 (2H, t, -(CH2)3NH2); 1.85 (3H, s, 

NHCOCH3); 1.95-2.20 (4H, m, C5-CH2, C6-CH2); 3.40 (6H, s, -(CH2)3NH2); 3.45 (3H, 

s, C1-OCH3); 3.74 (3H, s, C3-OCH3); 3.81 (3H, s, C2-OCH3); 4.34 (1H, m, C7-CH); 6.65 

(1H, d, C11-CH); 6.82 (1H, s, C4-CH); 7.07 (1H, s, C8-CH); 7.18 (1H, d, C12-CH); 7.78 

(1H, t, C10-NH); 8.53 (1H, d, NHCOCH3). 

1.6.4 ‘Warheads’-spacer/ linker compounds 

1.6.4.1 Synthesis of N-chloroacetylcolchiceinamide (YD 10) (9) 

Colchiceinamide (5) (0.4g, 1mmol) was dissolved in DMF (6mL). Sodium bicarbonate 

(0.84g, 10mmol) was added and the suspension was stirred over an ice bath for 10min, 

then to the solution chloroacetyl chloride (96.6L, 1.2mmol) was added. The mixture 

was allowed to rise to RT and left for 24h to react. A mini extraction was carried out and 

the progress of the reaction was checked by TLC (chloroform: methanol 9:1); Rf 0.28 

(yellow) product. The whole reaction solution was then added drop-wise to excess water. 

The precipitate was filtered and dried.  

Yield (0.22g, 46%). Compound YD 10 (9) was chromatographically homogeneous 

(single spot on TLC).    

1H-NMR spectrum (d6-DMSO, 200 MHz) δ: 1.90 (3H, s, NHCOCH3); 2.05-2.45 (4H, 

m, C5-CH2, C6-CH2); 3.55 (3H, s, C1-OCH3); 3.75 (3H, s, C3-OCH3); 3.85 (3H, s, C2-

OCH3); 4.15 (2H, s, CH2Cl); 4.60 (1H, m, C7-CH); 6.45 (1H, s, C4-CH); 6.70 (1H, d, 

C7-NHCOCH3); 7.35 (1H, d, C12-CH); 7.50 (1H, s, C8-CH); 8.85 (1H, d, C11-CH); 10.30 

(1H, s, C10-NHCO). 
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1.6.4.2 Synthesis of YD9-DMPIP (YD 11) (10) 

N-chloroacetyl colchiceinamide YD 10 (9) (0.22g, 0.48mmol) was dissolved in DMF 

(4mL). Trans-2,5-dimethyl-piperazine (0.27g, 2.37mmol) was dissolved in DMF (6mL), 

separately, stirred well, to which the solution of N-chloroacetyl colchiceinamide (9) was 

added drop wise. Overnight, a mini extraction was carried out and the progress of the 

reaction was checked by TLC (chloroform: methanol 5:1); Rf 0.30 (yellow) product. The 

reaction solution was partitioned between chloroform and water (1:5, 60mL), dried 

(MgSO4), filtered and evaporated to dryness. YD 11 (10) was deemed sufficiently pure 

for use without further purification.  

Yield (0.22g, 85%).  

1.6.4.3 Synthesis of YD9-DMPIP-Boc (YD 31) (11) 

Colchiceinamide dimethylpiperazine-spacer compound YD 11 (10) (0.9g, 0.0017mol) 

was dissolved in dried methanol (5mL) at 0oC and stirred. Di-t-butyl-dicarbonate (0.73g, 

0.0033mol) was dissolved in dried methanol (5mL), separately, and then the mixture 

was added drop wise into cooled, stirred solution of YD 11 (10). TLC (dichloromethane: 

ethyl acetate: methanol 16:4:1); Rf 0.56 (yellow) product. The solution was evaporated 

a very low volume and then re-dissolved in chloroform before applying onto a silica gel 

chromatography column (2.2cm15cm), and eluted with dichloromethane: ethyl acetate: 

methanol (16:4:1). Fractions containing the major product were combined, filtered and 

evaporated to dryness.  

1.6.4.4 Synthesis of YD9-DMPIP [TFA] (YD 33) (12) 

N-tBoc protected YD 31 (11) was treated with TFA (4mL) and left reacting at RT for 

30min [following method B]. TLC (chloroform: methanol 7:1); Rf 0.35 (yellow) product.  

Yield (0.69g, 62.2%). 



95 

 

1.6.4.5 Synthesis of N-chloroacetylmethylcolchiceinamide (YD 38) (13) 

YD 36 (7) (0.3g, 0.75mmol) was dissolved in THF (4mL). Sodium bicarbonate was 

added (0.63g, 7.54mmol) and the suspension was stirred over an ice bath for 10min. 

Chloroacetyl chloride (0.073mL, 0.9mmol) was added. This reaction mixture was 

allowed to rise to RT. Four hours later, the progress of this reaction was checked by TLC 

(dichloromethane: ethyl acetate: methanol 7:2:1); Rf 0.66 (yellow) product. The excess 

sodium bicarbonate was filtered off. The reaction solution was partitioned between 

chloroform and water (1:2, 150mL), dried (MgSO4), filtered, and evaporated (no heat) 

until nearly dry, then diethyl ether was added to give a precipitate of the yellow 

compound which was filtered and dried in vacuo.  

Yield (0.32g, 89%). 

1.6.4.6 Synthesis of YD36-DMPIP (YD 39) (14) 

N-chloroacetylmethylcolchiceinamide (YD 38) (13) (0.3g, 0.63mmol) was dissolved in 

THF/DMSO (10:1, 8mL total volume). Trans-2,5-dimethyl-piperazine (0.43g, 3.8mmol) 

was dissolved in a solution (5mL) of (THF/DMSO 10:1), to which the solution of YD 

38 (13) was added drop wise, with stirring. One and half days later, the progress of this 

reaction was checked by TLC (dichloromethane: ethyl acetate: methanol 7:2:1); Rf 0.05 

(yellow) product. The reaction solution was filtered and THF was evaporated. The 

compound in DMSO was partitioned between dichloromethane and water (1:2, 60mL), 

the organic layer was dried (MgSO4), filtered, and evaporated until nearly dry, and then 

diethyl ether was to precipitate the compound which was filtered and dried in vacuo.  

Yield (0.234g, 67%). 

1.6.4.7 Synthesis of YD36-DMPIP-Boc (YD 40) (15) 

YD36-DMPIP (YD 39) (14) (0.2g, 0.36mmol) was dissolved in dried methanol (2mL) 

at 0oC and stirred. Di-t-butyl-dicarbonate (0.16g, 0.72mmol) was dissolved in dried 
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methanol (2mL) and was slowly added drop wise to a cooled, stirred YD 39 (14) 

solution. Three hours later, a mini extraction was carried out and checked by TLC 

(dichloromethane: methanol 12:1); Rf 0.4 (yellow) product. The reaction solution was 

evaporated then re-dissolved in chloroform before appling to a silica gel chromatography 

column (2.2cm15cm), eluted with chloroform: methanol (15:1). Fractions containing 

the major product were combined, filtered, and evaporated to dryness.    

1.6.4.8 Synthesis of YD36-DMPIP [TFA] (YD 41) (16) 

TFA (3mL) was added to the N-tBoc protected compound YD 40 (15) and left for 45min 

at RT [following method B]. TLC (chloroform: methanol 7:1); Rf 0.29 (yellow) product. 

The purity of YD 41 (16) was confirmed by its homogeneous character on TLC and by 

its mass spectrum. 

Yield (0.147g, 61%).  

ESMS(+) m/z: 553.4 (96%) (M+H)+; ESMS(-) m/z: 113.0 (100%) trifluoroacetate anion. 

1.6.4.9 Synthesis of MB1-SUCC (YD 56) (17) 

MB1 (8) (0.1g, 0.23mmol) and succinic anhydride (0.068g, 0.68mmol) were dissolved 

in DMF (2mL). DIPEA (0.04mL, 0.23mmol) was added into this reaction mixture 

[following method A]. TLC (dichloromethane: methanol 5:1) Rf 0.59 (yellow) product. 

Compound was put on silica gel chromatography column (2.2cm15cm) twice, each 

time eluted with dichloromethane: methanol (5:1), to remove extra succinic acid. Then 

it was left to evaporate to dryness.  

1.6.5 Model compounds (Model prodrugs) 

1.6.5.1 Synthesis of Epi-SUCC-Pro-APA-AQ (YD 20) (20) 

Epirubicin hydrochloride (2) (0.056g, 0.096mmol) and anthraquinone spacer 

pentafluorophenyl ester YD 19 (24) (0.064g, 0.1mmol) were dissolved in DMF (15mL), 
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followed by adding DIPEA (0.016mL, 0.094mmol) into this stirred reaction solution. A 

mini extraction was carried out and the progress of this reaction was checked by TLC 

(butanol: acetic acid: water 4:5:1); Rf 0.75 (red) product. The compound was partitioned 

between dichloromethane and water (1:2, 210mL), dried (MgSO4), filtered and 

evaporated to dryness before it was applied onto a silica gel chromatography column 

(2.2cm15cm), eluted with dichloromethane (then increasing gradient to 

dichloromethane: methanol 19:1  9:1). Fractions containing the major product were 

combined, filtered and evaporated to dryness. Purity of the final compound was checked 

by TLC (dichloromethane: methanol 9:1); Rf 0.72 (red) product. 

Yield (0.0491g, 51%). Mp: 174-176oC. 

ESMS(-) m/z: 1001.3449 (35%) (M-H)-; ESMS(+) m/z: 1025.3418 (100%) (M+Na)+. 

1.6.5.2 Synthesis of Epi-SUCC-MB1 (YD 59) (25) 

MB1-SUCC-OPFP (YD 57) (26) (0.032g, 0.0450mmol) and epirubicin hydrochloride 

(0.017g, 0.029mmol) were dissolved in DMF (3mL). DIPEA (0.005mL, 0.029mmol) 

was added into this reaction mixture. A mini extraction was carried out and the progress 

of this reaction was checked by TLC (dichloromethane: methanol 7:1); Rf 0.20 (red) 

product. The compound was evaporated to dryness before it was applied onto thick TLC 

plates, eluted with dichloromethane: methanol (7:1). The red bands containing the major 

product were combined, washed with dichloromethane and methanol, filtered and 

evaporated to dryness. TLC (dichloromethane: methanol 7:1); Rf 0.20 (red) product. The 

purity of Epi-SUCC-MB1 (YD 59) (25) was confirmed by its homogeneous character 

on TLC and by its high resolution mass spectrum. 

Yield (0.005g, 16%). 

ESMS(+) m/z: 1067.4127 (15%) (M+H)+.   
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1.6.6 Target prodrugs 

1.6.6.1 Synthesis of YD9-DMPIP-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ 

(YD 34) (27): a twin prodrug of active agents NU:UB 234 (19) and the 

colchiceinamide derivative (YD33) (12) 

The anthraquinone spacer oligopeptide succinate compound YD 30 (28) (0.02g, 

0.0225mmol), trifluoroacetate salt YD 33 (12) (0.0162g, 0.025mmol), PyBOP (0.013g, 

0.025mmol) and HOBt (0.0038g, 0.025mmol) were dissolved in DMF (2mL). Followed 

by adding DIPEA (0.0125mL, 0.072mmol) into this reaction solution [following method 

C] and reacted for 2h. The progress of this reaction was checked by TLC 

(dichloromethane: ethyl acetate: methanol 4:1:1); Rf 0.65 (orange) product 

(homogeneous on TLC).  

Yield (0.029g, 91%). 

ESMS(+) m/z: 1431.7 (5%) (M+Na)+. 

1.6.6.2 Synthesis of YD36-DMPIP-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ 

(YD 42) (29): a twin prodrug of active agents NU:UB 234 (19) and the N-

methylcolchiceinamide derivative (YD41) (16) 

The anthraquinone spacer oligopeptide succinate compound YD 30 (28) (0.01g, 

0.0113mmol), trifluoroacetate salt YD 41 (16) (0.0083g, 0.0125mmol), TBTU (0.0040g, 

0.0125mmol) and HOBt (0.0019g, 0.0124mmol) were dissolved in DMF (2mL). DIPEA 

(0.0063mL, 0.0362mmol) was added into this reaction solution afterwards [following 

method C]. The progress of this reaction was checked by TLC (dichloromethane: ethyl 

acetate: methanol 5:2:1); Rf 0.15 (orange) product. The DMF was evaporated to dryness 

in the fume cupboard and the compound was re-dissolved in chloroform before applying 

onto a thick TLC plate which was eluted with dichloromethane: ethyl acetate: methanol 
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(5:2:1). The second orange band from the thick TLC plate was collected. Final product 

was washed off from silica gel using methanol, and evaporated to dryness. The purity of 

(YD 42) (29) was confirmed by its homogeneous character on TLC and by its high 

resolution mass spectrum.    

Yield (0.009g, 56%). 

ESMS(+) m/z: 1423.7272 (84%) (M+H)+. 

1.6.6.3 Synthesis of MB1-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 58) 

(31): a twin prodrug of active agents NU:UB 234 (19) and the colchicine 

derivative (MB1) (8) 

The first attempt was unsuccessful, so YD 58 (31) was synthesised by reacting MB1 (8) 

(0.016g, 0.037mmol) with NU:UB 363 (30) succinate compound YD 30 (28) (0.03g, 

0.034mmol), TBTU (0.0119g, 0.037mmol) and HOBt (0.0057g, 0.037mmol) were 

dissolved in DMF (2mL). Then DIPEA (0.0188mL, 0.108mmol) was added into this 

reaction mixture. Two hours later, the progress of this reaction was checked on TLC 

plate. TLC (dichloromethane: methanol 7:1); Rf 0.45 (orange) product. After 

evaporating DMF, YD 58 (31) was purified by applying onto a thick –layer TLC plate, 

eluted with dichloromethane: methanol (7:1). A dark orange band corresponding to the 

new product was collected, washed with dichloromethane and methanol and dried to 

afford YD 58 (31). The purity of YD 58 (31) was confirmed by its homogeneous 

character on TLC and by its high resolution mass spectrum. 

Yield (0.04g, 91%). Mp: 183-185oC. 

ESMS(+) m/z (z=2): 656.8336 (53%)[(M+2H)/2]2+; m/z: 1312.6671 (3%)(M+H)+, 

1334.6471 (5%)(M+Na)+.  
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1.6.6.4 Synthesis of YD9-DMPIP-SUCC-D-Ala-Ala-Ala-Leu-Gly-Leu-Nva-Gly-

PIP-AQ (YD 18) (32): a twin prodrug of active agents NU:UB 347 and the 

N-colchiceinamide derivative (YD11) (10) 

Colchiceinamide dimethylpiperazine-spacer compound YD 11 (10) (0.027g, 0.05mmol), 

succinate compound YD 12 (33) (0.0534g, 0.05mmol), TBTU (0.0164g, 0.05mmol), and 

HOBt (0.0078g, 0.05mmol) were dissolved in DMF (12mL), followed by adding DIPEA 

(0.027mL, 0.15mmol) into this reaction mixture. The reaction solution was stirred for 3 

hours. The coupling reaction was carried out by following method C. The progress of 

this reaction was checked by TLC (butanol: acetic acid: water 4:5:1); Rf 0.77 (orange) 

product. The product was purified by a silica gel chromatography column 

(2.2cm15.5cm) eluted with chloroform: methanol (19:1). Fractions containing the 

major product were combined and evaporated to a low volume before applying onto two 

thick-layer chromatography plates (20cm20cm, 1mm thick silica gel layer), eluted with 

(butanol: acetic acid: water 4:5:1, 150mL). The darker orange bands were collected and 

washed with methanol. The compound solution was evaporated to a very low volume. 

Diethyl ether (100mL) was added to help to precipitate YD 18 (32) from solution 

(overnight at 4C) and collected.  

Yield (0.019g, 24.4%). Mp: 204-206oC.         

ESMS(+) m/z: 1588.0 (100%)(M+Na)+.     

1.6.6.5 Synthesis of YD9-DMPIP-SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-

YD9 (YD 55) (3): an identical twin prodrug of the N-colchiceinamide 

derivative (YD11) (10) 

YD 33 (12) (0.015g, 0.023mmol), YD 54 (18) (0.025g, 0.02mmol), TBTU (0.0075g, 

0.023mmol) and HOBt (0.0036g, 0.024mmol) were dissolved in DMF (1.5mL). DIPEA 
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(0.011mL, 0.064mmol) was added into this reaction mixture afterwards [following 

method C]. It was left to react overnight. TLC (dichloromethane: methanol 7:1) showed 

Rf 0.55 (pale yellow) product. The product was purified by thick-layer chromatography, 

eluted with dichloromethane: methanol (7:1). The upper yellow band was collected and 

the product was recovered by washing with methanol, then evaporated to dryness.  

Yield (0.021g, 58%).  

ESMS(+) m/z: 1701.8528 (4%) (M+H)+. 

1.6.6.6 Synthesis of MB1-SUCC-Ala-Gly-Leu-Pro-Ala-Ala-APA-AQ (YD 63) (34): 

a twin prodrug of Ala-APA-AQ and colchiceinamide derivative (MB1) (8) 

YD 62 (23) (0.05g, 0.049mmol) and MB1 (8) (0.0215g, 0.049mmol) were dissolved in 

DMF (5mL). DIPEA (0.0017mL, 0.039mmol) was then added. Two days later, the 

progress of this reaction was checked by TLC (chloroform: methanol 6:1); Rf 0.32 

(purple) product. The reaction solution was evaporated to near dryness, and then re-

dissolved in chloroform before applying onto a thick-layer chromatography plate, which 

was eluted with chloroform: methanol 6:1. The lower purple band from the plate was 

collected and washed with chloroform and methanol, and then it was filtered and 

evaporated to dryness. The purity of YD 63 (34) was confirmed by its homogeneous 

character on TLC and by its high resolution mass spectrum. 

Yield (0.019g, 31%). 

ESMS(+) m/z: 642.8182 (100%)[(M+2H)/2]2+. 

1.6.6.7 Synthesis of AF-SUCC-Ala-Gly-Leu-Pro-Ala-Ala-APA-AQ (YD 64) (35): a 

FRET probe of 6-aminofluorescein (22) and its quencher APA-AQ (72) 

YD 62 (23) (0.09g, 0.088mmol) and 6-aminofluorescein (22) (0.031g, 0.088mmol) were 

dissolved in DMF (5mL). DIPEA (0.015mL, 0.088mmol) was then added. Two days 
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later, the progress of this reaction was checked on TLC (chloroform: ethyl acetate: 

methanol 5:2:1); a new product spot was detected. Rf 0.08 (brown) product. The reaction 

mixture was evaporated to near dryness, and then re-dissolved in methanol before 

applying onto two thick-layer chromatography plates, eluted with chloroform: ethyl 

acetate: methanol (5:2:1). The brown bands were collected from both plates combined, 

and re-chromatographed on fresh plates, eluted with chloroform: methanol (6:1). The 

brown bands were collected, washed with methanol, filtered and evaporated to dryness. 

The title compound was isolated in solid form (homogeneous on TLC) with the aid of 

diethyl ether.  

Yield (0.0095g, 9%).  

ESMS(+) m/z: 1212.4 (7%) (M+Na)+, 1228.4 (8%) (M+K)+. 

1.6.6.8 Synthesis of Epi-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 35) (36): 

a twin prodrug of active agents NU:UB 234 (19) and epirubicin (2) 

Pentafluorophenyl ester YD 32 (37) (0.08g, 0.076mmol) and epirubicin hydrochloride 

(0.04g, 0.069mmol) were dissolved in DMF (8mL). DIPEA (0.012mL, 0.069mmol) was 

then added; with overnight stirring. A mini extraction of the reaction solution was carried 

out and the progress of this reaction was checked by TLC (dichloromethane: ethyl 

acetate: methanol 7:2:1); Rf 0.17 (orange) product. The reaction mixture was partitioned 

between dichloromethane and water (1:2, 360mL), dried (MgSO4), filtered and 

evaporated to a very low volume before applying onto a silica gel chromatography 

column (3.2cm18cm), eluted with dichloromethane: methanol (12:1, increasing 

gradient 12:1  9:1). Fractions containing the major product were combined and 

evaporated to a low volume again, then applied onto two thick-layer chromatography 

plates eluted with dichloromethane: methanol (9:1). The lower orange band from each 
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plate were collected and washed with methanol and dichloromethane, and evaporated to 

dryness to afford the title compound (homogeneous on TLC).  

Yield (0.091g, 84.6%). Mp: 195-197oC. 

ESMS(+) m/z: 1431.6349 (55%) (M+NH4)
+. 

1.6.6.9 Synthesis of Epi-SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 61) 

(4): a twin prodrug of active agents the N-colchiceinamide derivative 

(YD11) (10) and epirubicin (2) 

Epirubicin hydrochloride (0.01g, 0.0172mmol) and dried YD 60 (38) were dissolved in 

DMF (3mL), and then DIPEA was added. Two hours later, the reaction was complete, 

on TLC (dichloromethane: methanol 6:1); Rf 0.38 (orange) product. The reaction 

solution was concentrated and applied in dichloromethane to a thick-layer plate which 

was eluted with dichloromethane: methanol 6:1. The dark red band was collected and 

extracted with dichloromethane and methanol, and then evaporated to dryness to afford 

the title compound (homogeneous on TLC).  

Yield (0.0218g, 74.2%).   

ESMS(+) m/z: 1706.7479 (20%) (M+H)+.  

1.6.6.10 Synthesis of Epi-SUCC-Ala-Gly-Leu-Pro-Ala-Ala-APA-AQ (YD 67) 

(21): a twin prodrug of active agents Ala-APA-AQ (72) and epirubicin (2) 

YD 62 (23) (0.045g, 0.044mmol) and epirubicin hydrochloride (0.025g, 0.044mmol) 

were mixed together and both dissolved in DMF (4mL) under basic conditions by using 

DIPEA (0.0076mL, 0.044mmol). After overnight reaction at RT, the progress of this 

reaction was checked by TLC (chloroform: methanol 6:1), Rf 0.35 (red) product. The 

whole reaction solution was transferred into an evaporating basin to evaporate till totally 

dry. Then, the solid compound was re-dissolved in a small amount of chloroform and 
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methanol before it was loaded onto a thick-layer chromatography plate, which was 

eluted with chloroform: methanol (6:1). The second red band from bottom was collected, 

washed with methanol, filtered and evaporated. Diethyl ether (15mL) was applied to 

precipitate pure (chromatographically homogeneous on TLC) YD 67 (21) which was 

dried in vacuo.  

Yield (0.0112g, 18.5%). Mp: 175-177oC. 

ESMS(+) m/z: 1386.5755 (100%) (M+H)+. 

1.6.6.11 Synthesis of Epi-SUCC-Pro-Ala-Gly-Leu-Ala-Ala-PIP-AQ (YD 75) (39): 

a twin prodrug of active agents Ala-PIP-AQ and epirubicin (2) 

Dual prodrug YD 75 (39) was synthesised by reacting epirubicin hydrochloride (0.029g, 

0.0505mmol) with pentafluorophenyl ester YD 74 (42) (0.0524g, 0.0505mmol), 

followed by adding DIPEA (0.0088mL, 0.0506mmol). After overnight reaction, the 

progress of this reaction was checked on TLC (dichloromethane: methanol 9:1) Rf 0.32 

(orange). However, there was still some unreacted epirubicin hydrochloride on TLC, so 

an additional equivalent of DIPEA was added and upon completion, the product was 

purified by thick-layer chromatography, eluted with dichloromethane: methanol 9:1. 

The middle dark red band was collected, washed with dichloromethane and methanol, 

filtered and evaporated to dryness to afford the title compound.  

Yield (0.0432g, 61.3%). 

ESMS(+) m/z: 1415.6036 (100%) (M+NH4)
+. 

1.6.6.12 Synthesis FITC-Ala-Nva-Gly-Leu-Pro-Aib-(oxypiperidine)-AQ (YD 17) 

(43): a FRET probe of FITC and its quencher 1-(4-hydroxypiperidyl) 

anthraquinone (44) 

Anthraquinone oligopeptide conjugate YD 16 (49) (0.09g, 0.11mmol) and fluorescein 

isothiocyanate (0.047g, 0.12mmol) were dissolved in DMF (5mL), followed by adding 
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DIPEA (0.057mL, 0.33mmol). The mixture was kept stirring for 4h. A mini extraction 

was carried out and the progress of the reaction was checked by TLC (chloroform: 

methanol 4:1) Rf 0.6 (yellow) product. The mixture was partitioned between chloroform 

and water (1:2, 240mL), dried (MgSO4), filtered and evaporated to a low volume before 

applying onto a silica gel chromatography column (2.2cm17cm), eluted with 

chloroform: methanol (19:1). The fractions containing major product were combined 

and evaporated to dryness.  

Yield (0.034g. 26%). Mp: 184-186oC. 

ESMS(-) m/z: 1217.7 (100%) (M-H)-. 

1.6.7 Miscellaneous compounds including prodrug intermediates 

1.6.7.1 Synthesis of SUCC-D-Ala-Ala-Ala-Leu-Gly-Leu-Nva-Gly-PIP-AQ (YD 12) (33) 

NU:UB 349 (50) (0.09g, 0.084mmol) and succinic anhydride (0.01g, 0.1mmol) were 

dissolved in DMF (2mL). DIPEA (0.029mL, 0.17mmol) was added into this reaction 

mixture [following method A]. TLC showed a new product (chloroform: methanol 3:2) 

Rf 0.89 (orange). Due to poor aqueous solubility of succinate compound YD 12 (33) it 

was separated and transferred into three 2mL eppendorfs. Distilled water was added into 

each eppendorf and filled up to 2mL levels. The eppendorfs were then kept shaking for 

one hour, then centrifuged and the water layer was checked by litmus blue test paper. 

Succinate compound YD 12 (33) was further washed with distilled water until there was 

no colour change on litmus blue test paper. The title compound was air-dried at RT.  

Yield (0.063g, 72%). 

ESMS(-) m/z: 1043.5 (100%)(M-H)-.  

1.6.7.2 Synthesis of Boc-Aib-(oxypiperidine)-AQ (YD 13) (45) 

N,N’-Dicyclohexylcarbodiimide (DCC) (0.74g, 3.59mmol) and 4-

dimethylaminopyridine (DMAP) (0.02g, 0.163mmol) were added to a cooled, stirred 
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solution of 1-(4-hydroxypiperidyl)anthraquinone (44) (1g, 3.26mmol) and Boc-Aib 

(0.73g, 3.59mmol) in chloroform (40mL). The precipitated dicyclohexylurea (DCU) was 

filtered off and the solution was partitioned between chloroform and water (1:1, 100mL), 

washed with saturated sodium bicarbonate solution (250mL) and water (250mL), 

dried (MgSO4), filtered and evaporated to dryness. The residual solid was dissolved in 

toluene, applied onto a silica gel chromatography column (2.2cm16cm), and eluted 

with toluene: ethyl acetate (4:1). Fractions containing the major product were combined, 

evaporated, and then ethyl acetate was added. The whole mixture was cooled (4oC 

overnight) and filtered to remove any remaining DCU. The product was isolated by 

evaporation to dryness. TLC (toluene: ethyl acetate 4:1); Rf 0.27 (purple) product; 

homogeneous on TLC.   

Yield (0.41g, 26%). 

1.6.7.3 Synthesis of Aib-(oxypiperidine)-AQ [TFA] (YD 14) (46) 

The tBoc protected compound YD13 (45) (0.35g, 0.71mmol) was deprotected by using 

trifluoroacetic acid [following method B]. The progress of this deprotection was checked 

by TLC (butanol: acetic acid: water 14:5:1); Rf 0.50 (purple) product; homogeneous on 

TLC.   

Yield (0.24g, 67%).  

1.6.7.4 Synthesis of Fmoc-Ala-Nva-Gly-Leu-Pro-Aib-(oxypiperidine)-AQ (YD 15) (48) 

N-terminal trifluoroacetate salt YD 14 (46) (0.136g, 0.27mmol), N-Fmoc-Ala-Nva-Gly-

Leu-Pro-OH (47) (0.2g, 0.295mmol), TBTU (0.095g, 0.296mmol), and HOBt (0.045g, 

0.295mmol) were dissolved in DMF (9mL) and stirred well, then DIPEA (0.15mL, 

0.863mmol) was added. The coupling reaction was carried out by following method C. 

A silica gel chromatography column (2.2cm15.5cm) was used for purification, eluted 
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with chloroform: methanol (9:1). The purity of the final compound was confirmed by its 

homogeneous character on TLC (butanol: acetic acid: water 14:5:1); Rf 0.8 (purple) 

single product spot.  

Yield (0.22g, 77.5%).  

1.6.7.5 Synthesis of Ala-Nva-Gly-Leu-Pro-Aib-(oxypiperidine)-AQ (YD 16) (49) 

Fmoc protected YD 15 (48) (0.15g, 0.143mmol) was dissolved in 20% (v/v) piperidine 

in DMF solution (3.75mL) and kept stirring for 10min. This deprotection reaction was 

carried out by following method D. The progress of this deprotection was checked by 

TLC (chloroform: methanol 9:1); Rf 0.1 (purple) product. A silica gel column 

(2.2cm16cm) was for flash chromatography, eluted with chloroform: methanol (19:1, 

increasing gradient 19:1  5:1  3:1  3:2). 

Yield (0.1027g, 87%). Compound YD 16 (49) was used for subsequent reaction without 

further purification. 

1.6.7.6 Synthesis of PFPO-SUCC-Pro-APA-AQ (YD 19) (24) 

N,N’-dicyclohexylcarbodiimide DCC (0.025g, 0.123mmol), 4-dimethylaminopyridine 

DMAP (0.015g, 0.123mmol) and pentafluorophenol (0.0225g, 0.122mmol) were added 

into a stirred solution of NU:UB 354 (51) (0.05g, 0.11mmol) in dichloromethane 

(20mL). The reaction was carried out by following method E for overnight. The progress 

of this reaction was checked by TLC (dichloromethane: methanol 9:1) showed a major 

product; Rf 0.94 (purple). A silica gel chromatography column (2.2cm15.5cm) was 

used for purification with chloroform: methanol (19:1 increasing gradient 19:1  9:1). 

Fractions containing the major product were combined, filtered and evaporated to 

dryness.  

Yield (0.065g, 91%). 
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1.6.7.7 Synthesis of Ile-PIP-AQ [TFA] (NU:UB 234) (19) 

Impure N-tBoc protected NU:UB 234 (55) was deprotected by treating with TFA 

[following method B] for 30min. TLC (dichloromethane: methanol 9:1); Rf 0.34 

(orange) product; homogeneous on TLC.  

1.6.7.8 Synthesis of Boc-Gly-Ile-PIP-AQ (NU:UB 359 Boc) (56) 

NU:UB 234 (19) (1.2g, 0.0023mol) and Boc-Gly-OSu (0.69g, 0.0025mol) were 

dissolved in DMF (15mL) with stirring, this followed by adding DIPEA (0.804mL, 

0.0046mol) [following method C] and reacted for 6h. A mini extraction was carried out 

and the progress of this reaction was checked by TLC (dichloromethane: methanol 9:1); 

Rf 0.74 (orange) product. During purification, the compound was loaded onto a silica gel 

column (3.2cm20cm) and eluted with chloroform: methanol (15:1).  

1.6.7.9 Synthesis of Gly-Ile-PIP-AQ [TFA] (NU:UB 359) (73) 

N-tBoc-protected NU:UB 359 (56) was treated with TFA (10mL) [following method B] 

for 35min. TLC (dichloromethane: methanol 9:1); Rf 0.64 (orange) product; 

homogeneous on TLC. 

1.6.7.10 Synthesis of Boc-Leu-Gly-Ile-PIP-AQ (NU:UB 360 Boc) (57) 

DIPEA (0.905mL, 0.0052mol) was added into a well stirred solution of NU:UB 359 (73) 

(1.5g, 0.0026mol) and Boc-Leu-OSu (0.94g, 0.0029mol) in DMF (20mL) [following 

method C]. Three hours later, TLC showed formation of the product (dichloromethane: 

methanol 9:1); Rf 0.86 (orange) product. For purification, the compound was loaded onto 

a silica gel column (3.2cm18cm) and eluted by chloroform: methanol (15:1).  
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1.6.7.11 Synthesis of Leu-Gly-Ile-PIP-AQ [TFA] (NU:UB 360) (74) 

N-tBoc-protected NU:UB 360 (57) was treated with TFA (10mL) [following method B] 

for 50min. TLC (dichloromethane: methanol 9:1); Rf 0.625 (orange) product; 

homogeneous on TLC.  

1.6.7.12 Synthesis of Boc-Ala-Leu-Gly-Ile-PIP-AQ (NU:UB 361 Boc) (58) 

Trifluoroacetate salt NU:UB 360 (74) (1.8g, 0.0026mol) and Boc-Ala-OSu (0.822g, 

0.0029mol) were dissolved in DMF (10mL). DIPEA (0.908mL, 0.0052mol) was added 

into this well stirred reaction solution [following method C] and reacted for 2h. The 

progress of this reaction was checked by TLC (dichloromethane: methanol 9:1); Rf 0.625 

(orange) product. The product was obtained in a chromatographically pure form from a 

silica gel column (3.2cm23cm) and eluted by chloroform: methanol (10:1).  

1.6.7.13 Synthesis of Ala-Leu-Gly-Ile-PIP-AQ [TFA] (NU:UB 361) (75) 

N-tBoc-protected NU:UB 361 (58) was treated with TFA (12mL) [following method B] 

for 40min. TLC (dichloromethane: methanol 9:1); Rf 0.44 (orange) product; 

homogeneous on TLC.  

1.6.7.14 Synthesis of Boc-Ala-Ala-Leu-Gly-Ile-PIP-AQ (NU:UB 362 Boc) (59) 

Trifluoroacetate salt NU:UB 361 (75) (1.8g, 0.0024mol) and Boc-Ala-OSu (0.75g, 

0.0026mol) were dissolved in DMF (15mL), followed by adding DIPEA (0.824mL, 

0.0047mol) into the well stirred reaction solution [following method C] and reacted for 

1.5h. The reaction was monitored by TLC (dichloromethane: methanol 9:1); Rf 0.62 

(orange) product. The chromatographically pure product was isolated by silica gel 

column chromatography (3.2cm22cm) eluted with chloroform: methanol (12:1).  
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1.6.7.15 Synthesis of Ala-Ala-Leu-Gly-Ile-PIP-AQ [TFA] (NU:UB 362) (61) 

N-tBoc-protected NU:UB 362 (59) was treated with TFA (4.5mL) [following method B] 

for 40min. TLC (dichloromethane: methanol 9:1); Rf 0.38 (orange) product; 

homogeneous on TLC.  

1.6.7.16 Synthesis of Boc-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (NU:UB 363 Boc) (60) 

Trifluoroacetate salt NU:UB 362 (61) (1.5g, 0.0018mol) and Boc-D-Ala-OSu (0.57g, 

0.0020mol) were dissolved in DMF (10mL). DIPEA (0.628mL, 0.0036mol) was added 

into this stirred well reaction solution [following method C]. After 2h, TLC showed 

(dichloromethane: methanol 7:1); Rf 0.64 (orange) product. Chromatography on a silica 

gel column (3.2cm19cm) eluted with chloroform: methanol (10:1) afforded 

chromatographically pure product.  

1.6.7.17 Synthesis of D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ [TFA] (NU:UB 363) (30) 

N-tBoc-protected NU:UB 363 (60) was treated with TFA (15mL) [following method B] 

for 40min. TLC (dichloromethane: methanol 7:1); Rf 0.3 (orange) product; 

homogeneous on TLC. 

Yield (1.55g).  

ESMS(+) m/z: 789.4277 (100%) (M+H)+; ESMS(-) m/z: 113.0 (100%) trifluoroacetate 

anion. 

1.6.7.18 Synthesis of SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 30) (28) 

Trifluoroacetate salt NU:UB 363 (30) (0.5g, 0.55mmol) and succinic anhydride ( 0.17g, 

1.663mmol) were dissolved in DMF (5mL) followed by adding DIPEA (0.0964mL, 

0.5545mmol [following method A]. The reaction was left for 2 days. A mini extraction 

was carried out and the progress of this reaction was checked by TLC (butanol: acetic 
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acid: water 4:5:1); Rf 0.88 (orange) product. Because YD 30 did not dissolve in water, 

washing with water was continued until no more succinic anhydride was detected, and 

then the chromatographically pure product (homogeneous on TLC) was dried in vacuo.  

Yield: (0.38g, 77%).  

1.6.7.19 Synthesis of PFPO-SUCC-D-Ala-Ala-Ala-Leu-Gly-Ile-PIP-AQ (YD 32) (37) 

The anthraquinone spacer oligopeptide succinate compound YD 30 (28) (0.1g, 

0.1127mmol) was suspended in chloroform (55mL), then N,N’-

dicyclohexylcarbodiimide (0.026g, 0.126mmol), 4-dimethylaminopyridine (0.015g, 

0.123mmol) and pentafluorophenol (0.023g, 0.125mmol) were added into this well-

stirred reaction solution [following method E]. TLC (dichloromethane: ethyl acetate: 

methanol 7:2:1) indictaed a new product spot; Rf 0.46 (orange) product.  

1.6.7.20 Synthesis of Fmoc-Pro-Ala-Gly-Nva-Phe-Ala-OH (YD 43) (52) 

Alanine pre-loaded resin with a 2-chlorotrityl linker (0.5g, 0.31mmol/g) was swollen in 

dichloromethane (5mL) for 1h. Coupling and deprotection cycles were carried on as 

follows: 

1st cycle: N-Fmoc-L-phenylalanine (0.12g, 2 equivalents), TBTU (0.095g, 1.9 

equivalents), and HOBt (0.037g, 1.9 equivalents) were dissolved in DMF (10mL), and 

then DIPEA (0.11mL, 4 equivalents) was added into this solution [following SPPS 

coupling and deprotection methods].   

2nd cycle: N-Fmoc-L-norvaline (0.105g, 2 equivalents), TBTU (0.095g, 1.9 equivalents), 

and HOBt (0.037g, 1.9 equivalents) were dissolved in DMF (10mL), and then DIPEA 

(0.1078mL, 4 equivalents) was added into this solution [following SPPS coupling and 

deprotection methods]. 



112 

 

3rd cycle: N-Fmoc-L-glycine (0.092g, 2 equivalents), TBTU (0.095g, 1.9 equivalents), 

and HOBt (0.037g, 1.9 equivalents) were dissolved in DMF (10mL), and then DIPEA 

(0.1078mL, 4 equivalents) was added into this solution [following SPPS coupling and 

deprotection methods]. 

4th cycle: N-Fmoc-L-alanine (0.0965g, 2 equivalents), TBTU (0.095g, 1.9 equivalents), 

and HOBt (0.037g, 1.9 equivalents) were dissolved in DMF (10mL), and then DIPEA 

(0.1078mL, 4 equivalents) was added into this solution [following SPPS coupling and 

deprotection methods]. 

5th cycle: N-Fmoc-L-proline (0.1046g, 2 equivalents), TBTU (0.0945g, 1.9 equivalents), 

and HOBt (0.0368g, 1.9 equivalents) were dissolved in DMF (10mL), and then DIPEA 

(0.1078mL, 4 equivalents) was added into this solution [following SPPS coupling and 

deprotection methods]. 

After coupling five N-Fmoc-protected amino acids onto pre-loaded resins in sequence, 

the hexapeptide was cleaved off from the resin [following SPPS cleavage method]. 

Yield: (0.115g). 

ESMS(+) m/z: 783.3711 (39%) (M+H)+, 800.3979 (100%) (M+NH4)
+. 

1.6.7.21 Synthesis of Ala-DMPIP-YD9 [TFA] (YD 48) (65) 

N-tBoc protected alanine colchiceinamide spacer conjugate was treated with TFA (5mL) 

for 30min [following method B]. TLC (dichloromethane: ethyl acetate: methanol 6:2:1); 

Rf 0.125 (pale yellow) product; homogeneous on TLC.  

Yield (0.55g, 83%). 

1.6.7.22 Synthesis of Phe-Ala-DMPIP-YD9 [TFA] (YD 49) (66) 

YD 48 (65) (0.g, 0.575mmol) and Boc-Phe-OSu (0.313g, 0.86mmol) were dissolved in 

DMF (4mL). DIPEA (0.22mL, 1.27mmol) was added into this well-stirred reaction 
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solution [following method C] for 48h. The product was purified on a silica gel 

chromatography column (2.2cm15cm) eluted with dichloromethane: ethyl acetate: 

methanol (6:2:1). TLC (dichloromethane: ethyl acetate: methanol 6:2:1); Rf 0.62 (pale 

yellow) product. Then the product was treated with TFA (5mL) for 45min [following 

method B]. TLC (dichloromethane: ethyl acetate: methanol 6:2:1); Rf 0.44 (pale yellow) 

product; homogeneous on TLC. 

Yield (0.46g, 93%). 

1.6.7.23 Synthesis of Fmoc-Pro-Ala-Gly-Nva-Phe-Ala-Ala-DMPIP-YD9 (YD 50) (69) 

Ala-DMPIP-YD9 [TFA] (YD 48) (65) (0.097g, 0.133mmol), Fmoc-Pro-Ala-Gly-Nva-

Phe-Ala-OH YD 43 (52) (0.0951g, 0.122mmol), PyBOP (0.0696g, 0.1338mmol) and 

HOBt (0.0205g, 0.1340mmol) were dissolved in DMF (2mL), followed by adding 

DIPEA (0.0677mL, 0.3894mmol). Compound YD 50 (69) was used for subsequent 

reaction without further purification. 

ESMS(+) m/z: 1374.6753 (50%) (M+H)+.   

1.6.7.24 Synthesis of Nva-Phe-Ala-DMPIP-YD9 [TFA] (YD 51) (67) 

Phe-Ala-DMPIP-YD9 [TFA] (YD 49) (66) (0.45g, 0.52mmol), Boc-Nva-OH (0.124g, 

0.57mmol), PyBOP (0.3g, 0.57mmol), and HOBt (0.087g, 0.57mmol) were dissolved in 

DMF (4mL). DIPEA (0.29mL, 0.0017mol) was added into this well-stirred reaction 

solution [following method C]. Following overnight reaction and silica gel column 

(2.2cm17cm) chromatography, eluted by dichloromethane: ethyl acetate: methanol 

(6:2:1) the product was obtained in a chromatographically pure form. TLC 

(dichloromethane: ethyl acetate: methanol 6:2:1); Rf 0.48 (pale yellow) product. 

Chromatographically pure product was treated with TFA (5mL) for 45min [following 
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method B]. TLC (dichloromethane: ethyl acetate: methanol 6:2:1); Rf 0.32 (pale yellow) 

product; homogeneous on TLC.  

Yield (0.41g, 82%). 

1.6.7.25 Synthesis of Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 [TFA] (YD 52) (68) 

Nva-Phe-Ala-DMPIP-YD9 [TFA] (YD 51) (67) (0.4g, 0.413mmol) and Boc-Ala-Gly-

OSu (0.212g, 0.62mmol) were dissolved in DMF (3mL). DIPEA (0.16mL, 0.91mmol) 

was added [following method C]. Overnight reaction and silica gel column 

chromatography (2.2cm15cm) in dichloromethane: ethyl acetate: methanol (6:2:1) 

afforded the product. TLC (dichloromethane: ethyl acetate: methanol 6:2:1); Rf 0.47 

(pale yellow) product. N-tBoc-protected product was treated with TFA (3mL) for 45min 

[following method B]. TLC (dichloromethane: ethyl acetate: methanol 6:2:1); Rf 0.08 

(pale yellow) product; homogeneous on TLC.  

Yield (0.32g, 70%). 

1.6.7.26 Synthesis of Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 [TFA] (YD 53) (64) 

Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 [TFA] (YD 52) (68) (0.3g, 0.27mmol), Boc-Pro-

OH (0.088g, 0.41mmol), PyBOP (0.213g, 0.41mmol), HOBt (0.063g, 0.41mmol) were 

dissolved in DMF (2mL). DIPEA (0.17mL, 0.96mmol) was added with stirring 

[following method C]. The reaction was maintained overnight. Silica gel column 

(2.2cm17cm) chromatography afforded the product, eluting with dichloromethane: 

ethyl acetate: methanol (6:2:1). TLC (dichloromethane: ethyl acetate: methanol 6:2:1); 

Rf 0.46 (pale yellow) product. N-tBoc-protected YD 53 (70) was treated with TFA (3mL) 

for 45min [following method B]. TLC (dichloromethane: ethyl acetate: methanol 6:2:1); 

Rf 0.07 (pale yellow) product; homogeneous on TLC. 

Yield (0.27g, 83%). 
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ESMS(+) m/z: 1081.5708 (100%) (M+H)+. 

1.6.7.27 Synthesis of SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 54) (18) 

Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 [TFA] (YD 53) (64) (0.1g, 0.084mmol) and 

succinic anhydride (0.025g, 0.25mmol) were dissolved in DMF (2mL), then DIPEA 

(0.015mL, 0.084mmol) was added [following method A]. TLC (dichloromethane: 

methanol 6:1) Rf 0.45 (pale yellow) product.  

Yield (0.033g, 34%). 

1.6.7.28 Synthesis of MB1-SUCC-OPFP (YD 57) (26) 

MB1-SUCC (YD 56) (17) (0.135g, 0.25mmol) was dissolved in dichloromethane 

(20mL) first, and then DCC (0.057g, 0.27mmol) was added into this well-stirred 

solution. DMAP (0.034g, 0.27mmol) and OPFP (0.051g, 0.27mmol) were added into 

this reaction solution [following method E].  

1.6.7.29 Synthesis of PFPO-SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 

60) (YD 60) (38) 

SUCC-Pro-Ala-Gly-Nva-Phe-Ala-DMPIP-YD9 (YD 54) (18) (0.04g, 0.035mmol) and 

DCC (0.0079g, 0.038mmol) were dissolved in dichloromethane first, and then 

pentafluorophenol (0.007g, 0.038mmol) and DMAP (0.0047g, 0.039mmol) were added 

into this reaction mixture [following method E]. Four hours later, the progress of this 

reaction was checked on TLC (dichloromethane: ethyl acetate: methanol 5:1:1); Rf 0.49 

(yellow) product. White solid DCU was filtered off and the solution was evaporated to 

dryness. The residue was used without further purification.   
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1.6.7.30 Synthesis of PFPO-SUCC-Ala-Gly-Leu-Pro-Ala-Ala-APA-AQ (YD 62) (23) 

C6 (70) (0.150g, 0.17mmol) and DCC (0.04g, 0.19mmol) were dissolved in chloroform 

and kept at 0oC first, and then DMAP (0.023g, 0.19mmol) and pentafluorophenol 

(0.035g, 0.19mmol) were added into this reaction mixture [following method E]. After 

48h, the progress of this reaction was checked on TLC (chloroform: methanol 4:1); Rf 

0.37 (purple) product. The reaction mixture was partitioned between chloroform and 

water (1:3, 120mL), washed with saturated sodium bicarbonate solution (50mL) and 

water (50mL), dried (Na2SO4), filtered and evaporated to dryness. Addition of diethyl 

ether (30mL) gave a precipitate of YD 62 (23). This OPFP compound was filtered off 

and dried in vacuo.  

Yield (0.145g, 81%). 

1.6.7.31 Synthesis of PFPO-SUCC-Pro-Ala-Gly-Leu-Ala-Ala-PIP-AQ (YD 74) (42) 

SUCC-Pro-Ala-Gly-Leu-Ala-Ala-PIP-AQ (HZ 15) (41) (0.1g, 0.115mmol) and DCC 

(0.026g, 0.126mmol) were dissolved in dichloromethane and kept at 4°C for five 

minutes, and then pentafluorophenol (0.0232g, 0.126mmol) and DMAP (0.0154g, 

0.126mmol) were added [following method E]. The progress of this reaction was 

monitored by TLC (dichloromethane: methanol 9:1), Rf 0.52 (orange) product. DCU 

was filtered off from the reaction solution, and then the whole reaction mixture was 

evaporated to a solid residue which was used without further purification.  
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Chapter II. Legumain-Targeted Prodrug 

and Molecular Probe Design 

2.1 INTRODUCTION 

2.1.1 Legumain 

Legumain, also called asparaginyl endopeptidase (AEP), was named by Kembhavi et al., 

who isolated and characterised this endopeptidase from moth bean (Vigna aconitifolia) 

(Kembhavi et al., 1993). Legumain is well conserved in plants, parasites and mammals. 

In plants, legumain is known as vacuolar processing enzyme (VPE) which is associated 

with maturation/activation of different vacuolar proteins (Shimada et al., 2003). Acidic 

conditions are required to activate legumain and studies have shown that legumain, the 

only known AEP, has a restricted specificity cleavage site at the carboxyl end of 

asparagine, which is absolutely required at the P1 position of a substrate sequence 

(Kembhavi et al., 1993; Chen et al., 2000; Clerin et al., 2008). Mammalian legumain, 

which has been discovered and studied in the past two decades, is a lysosomal protease 

that belongs to the C13 family of cysteine endopeptidases (Chen et al., 1997; Chen et al., 

2000). The first mammalian legumain was purified from pig kidney by Chen et al. (1997) 

and it has been proved that it exists in various mammalian tissues, for example, kidney, 

spleen, liver, placenta and testis. Among these organs, kidney and placenta have higher 

specific activity of legumain. Mammalian legumain has also been shown to require acidic 

conditions (pH 3-6) for activation, and it specifically hydrolyses asparaginyl bonds. The 

enzymic activity of mammalian legumain can be inhibited by both human cystatin C and 
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chicken egg-white cystatin (Chen et al., 1998). In normal tissues, legumain can be found 

intracellularly in endosome and lysosome systems and is associated with intracellular 

protein degradation. In kidney, legumain is mainly expressed in proximal tubules and it 

acts as an intracellular lysosomal protein (Yamane et al., 2002; Wu et al., 2006; Liu, 

2008).  

2.1.2 Prolegumain activation 

 

Figure 2.1. The structure of prolegumain domains 

Prolegumain [Figure 2.1] consists of a signal peptide (Met1-Ala17) which can be cleaved 

during secretion, an N-terminal propeptide (Val18-Asp25), the legumain domain (Gly26-

Asn323) and a C-terminal prodomain (Asp324-Tyr433) (Chen et al., 1997). Chen and 

colleagues pointed out that after C13 cells were extracted with pH 7.2 lysis buffer, 

legumain maintains as an inactive pro-form which has a mass of 56 kDa in the lysate. If 

the lysate was incubated at 30oC for 3 hours at pH 5.8, the pro-form of legumain would 

be converted into the 47 kDa intermediate form which is also inactive, whereas if the 

lysate was incubated at pH 4.5 for 4 hours, both inactive forms of legumain 56 kDa and 

47 kDa can be converted into the 46 kDa active form of legumain which reveals an 

increased enzyme activity by 15-fold. The authors also claimed that because the N-

terminal peptide showed the same sequence in all 56, 47 and 46 kDa legumain forms, 
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activation of prolegumain was required by single cleavage after Asn323 from the C-

terminal of inactive forms of legumain (Chen et al., 2000). However, 3 years later, Li and 

colleagues pointed out that there is an 8 residue difference at the N-terminal between the 

47 and 46 kDa forms. Also, the subsequent cleavage after Asp25 from the N-terminal 

peptide can only happen when the pH is lower than 5.0 and it is the key activating 

cleavage to convert the 47 kDa intermediate form into the 46 kDa active form (Li et al., 

2003). However, Dall and Brandstetter proved that the N-terminal propeptide Val18-Asp25 

does not inhibit enzymatic activity and upon lowering the pH from 5.0 to 4.5, the Gly26-

Asn323 form (widely accepted as the active form of legumain) only reached 50% of the 

highest activity for legumain that was incubated at pH 4.0 at 37oC (Dall and Brandstetter, 

2012). Further autocleavage of the 46 kDa active form by other lysosomal peptidases at 

pH 4.5 would generate a mature active form of 36 kDa legumain, which shows similar 

activity to the 46 kDa form. Even though legumain is insensitive to the cysteine protease 

inhibitor E-64, this conversion of 46 kDa protease to the 36 kDa form can be inhibited by 

E-64 and leupeptin (Chen et al., 2000). Dall and Brandstetter also confirmed that at 37oC, 

at pH 4.0 a further autocatalytic cleavage happened at the sites of Asp303 or Asp309 from 

the C-terminus which would release the maximal activity of legumain both in vitro and 

in vivo (Dall and Brandstetter, 2012).  

2.1.3 Dependence of legumain activity upon temperature and substrates 

It has been shown that by using the same buffer system, at 25oC, pig legumain maximal 

activity was found at pH 6.4; and at 30oC, the maximal activity was occurred at pH 5.8 

and no enzymatic activity survived at pH 6.0 during two hours incubation. Hence, it 

suggested that at higher pH values of 6.0 or above, legumain activity was strongly 



128 

 

dependent on temperature (Chen et al., 1997). Dall and Brandstetter also showed that at 

37oC, at pH 5.5, legumain activity favours substrates with Asn at the P1 position and at 

pH 4.0, it favours substrates with Asp (aspartic acid) at the P1 position (although this is 

unlikely to be a therapeutically relevant pH). Thus, legumain activity is substrate-

dependent as well (Dall and Brandstetter, 2012).  

2.1.4 Legumain expression and tumours 

It has been shown that legumain can encourage cell migration, and overexpressed 

legumain is associated with enhanced tissue invasion and metastasis. Recent studies have 

found that legumain is highly expressed on the surface of tumour associated macrophages 

(TAMs) and tumour angiogenic endothelial cells, where it is co-localised with integrins 

(Murthy et al., 2005). The presence of legumain can be found in the majority of tumours, 

notably breast, ovarian, colon and prostate tumours; and also in a few central nervous 

system neoplasms (Liu et al., 2003; Liu, 2008). Nevertheless, legumain expression is very 

limited in normal tissues from which tumours are generated due to legumain’s 

requirement for acidic conditions to be functionally active, which can be provided in the 

tumour microenvironment. Hence, if any legumain escaped from the tumour 

microenvironment, it would stay inactive as it would be quickly inactivated by neutral (or 

slightly alkaline) pH conditions in plasma and normal tissues (Liu, 2008).  

Liu proved that αvβ3 integrin [(a vitronectin receptor that can interact with vitronectin, 

fibronectin and MMP2, therefore, it associates with cell migration, tumour invasion and 

angiogenesis (Felding-Habermann and Cheresh, 1993; Hermann et al., 1999)] not only 

helps legumain to locate onto invasive cell surfaces, but also it is a very important co-
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factor for legumain that would regulate legumain enzymatic activity and its dependence 

on acidic conditions. The higher concentration of αvβ3 integrin protein, the more 

enzymatic activity of legumain had been noted. Legumain amidolytic activity can be 

increased up to almost 100-fold when legumain binds with αvβ3 integrin. Also, the 

complex of legumain: αvβ3 integrin can still be active at around pH 7; a condition, in 

which legumain would be inactivated. The expressions of legumain and αvβ3 integrin 

were both very limited under normal conditions in cell culture, however, when they were 

under hypoxia, dramatically increased levels of legumain and αvβ3 integrin had been 

observed on the cell surface. Complexes of legumain and a few integrin subtypes, for 

instance β1, αvβ3 and α5β1, were highly expressed in human breast and pancreatic tumours, 

also the complex of legumain and integrin is very important in invasive tumour growth 

and is crucial for angiogenesis (Liu, 2008). Wu et al., proved that legumain can be found 

extracellularly in the tumour microenvironment as well and it has connections with both 

extracellular matrix and cell surfaces (Wu et al., 2006). This finding is particularly 

relevant to this research project.  

Very recently, Wang et al., had confirmed that in ovarian cancer, the legumain level was 

found five-fold higher when compared with those in normal ovarian tissues. The authors 

also pointed out that cancer cell proliferation and apoptosis cannot be affected by 

overexpressed legumain in ovarian tumours, however, in vitro it had been noticed that 

cancer cell migratory and invasive activities had been enhanced. Hence they suggested 

this could be due to the regulation of extracellular matrix remodelling by legumain (Wang 

et al., 2012).  
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2.1.5 Activation of pro-MMP2 by legumain 

Cells that can overexpress legumain show increased invasive and migratory abilities (Liu 

et al., 2003). These abilities may be due to the activation of MMP2, which plays an 

important role in extracellular matrix degradation, and also the activation of MMP2 

requires cleavage of an asparaginyl bond in the inactive proform of MMP2, which is a 

universal cleavage ‘hot spot’ for legumain. Both Chen and Liu had proved that legumain 

is capable of converting MMP2 72 kDa inactive form into its 62 kDa active form. When 

the concentration of legumain was doubled during incubation, more 62 kDa active form 

was formed. No enhanced MMP2 activity was shown when legumain was absent. This 

activation can be inhibited by cystatin, a legumain inhibitor, but unaffected by E-64 (a 

broad-spectrum cysteine peptidase(s) inhibitor, which has no inhibitory action on 

legumain) (Chen et al., 1997) or 1,10-phenanthroline (an inhibitor of metallopeptidases) 

or phenylmethanesulphonyl fluoride (PMSF, a serine protease inhibitor). These 

observations provided good evidence that the activation of pro-MMP2 was carried out by 

legumain. However, on the other hand and interestingly, very little or no pro-MMP9 was 

converted to its active form during incubation with legumain in despite of being a very 

functionally similar (to MMP2) gelatinase overexpressed in tumours (Chen et al., 2001; 

Liu et al., 2003). 

2.1.6 Legumain-activated prodrugs 

LEG-3 (N-succinyl-β-alanyl-L-alanyl-L-asparaginyl-L-leucyl-doxorubicin) (1) [Figure 

2.2], a cell-impermeable doxorubicin prodrug was designed to be activated by legumain 

exclusively in the low pH of the tumour microenvironment (Wu et al., 2006).      
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Figure 2.2. LEG-3 (1)  

LEG-3 (1) was almost noncytotoxic to control cells that do not express legumain, but it 

showed very high cytotoxicity to cells that were transfected with legumain cDNA and 

hence can express legumain on the cell surface. When added into cell cultures, LEG-3 (1) 

did not enter cells and showed a lack of cytotoxicity, whereas doxorubicin (the active 

drug) entered cells very quickly. However, when added into legumain expressing cells in 

culture, LEG-3 (1) was degraded to doxorubicin which can be found in cells. This 

indicated that LEG-3 (1) was activated extracellularly. Prodrug LEG-3 (1) activation can 

be inhibited by the legumain inhibitor cystatin. In cytotoxicity study, when legumain-

expressing cells were treated with LEG-3 (1) and cystatin together, a significant cell 

survival rate was observed. In vivo toxicity studies showed LEG-3 (1) had a significantly 

higher maximum tolerable dose (MTD) and greater LD50 than doxorubicin. When 

HT1080 fibrosarcoma, a fast-growing tumour and a common sensitive model used in 

doxorubicin therapy, was treated with LEG-3 (1), the prodrug showed significant 

tumouricidal activity. However, when MDA-PCa-2b prostate carcinoma, a doxorubicin 

resistant tumour, was treated with LEG-3 (1), the prodrug still showed positive results 

and efficiently prolonged the life span of MDA-PCa-2b tumour bearing mice (Wu et al., 

2006). However, most succinates can breakdown on average with half-lives of around 2h. 
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The better aspect about succinates is that because they will be negatively charged 

carboxylates at pH 7.2, they should not penetrate cells. If succinates are designed to be 

activated extracellularly, then this designing strategy could be an advantage. Nevertheless, 

succinates are not good capping groups because they introduce an unhindered (non-bulky) 

group at the N-terminus that still has a very accessible amide bond – which may be 

susceptible to cleavage by other endoproteases (capping with a fluorophore like 

fluorescein is unlikely to suffer this fate due to its bulk). Trouet et al., reported that after 

incubating in blood for just one hour, 99% of ‘uncapped’ substrate N-L-alanyl-L-leucyl-

L-alanyl-L-leucyl-doxorubicin would be degraded by blood peptidases, however, N-β-

alanyl-L-leucyl-L-alanyl-L-leucyl-doxorubicin is relatively insensitive to blood peptidases 

(Trouet et al., 2001). This may be because β-alanine is not an alpha amino acid; hence, it 

should be less recognisable to proteases. This is the same idea as introducing a D-amino 

acid for the same reason that it works to some extent, but tends to slow rather than abolish 

degradation. It is true that the succinate prodrug LEG-3 (1), like all carboxylates will be 

negatively charged at physical pH and therefore not get into cells (ensuring extracellular 

activation), but the downside is that LEG-3 (1) can be degraded in blood easily in a very 

short time before it can reach its target site. In other words, the suspicion is that much of 

the antitumour activity may well have been due to premature release of doxorubicin via 

decomposition. 

Stern and co-workers synthesised a novel legumain cleavable prodrug carbobenzyloxy-

Ala-Ala-Asn-ethylenediamine-etoposide (2) [Figure 2.3].  
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Figure 2.3. Chemical structure of carbobenzyloxy-Ala-Ala-Asn-ethylenediamine-etoposide (2)  

The authors claimed that after being cleaved by legumain, this etoposide prodrug (2) 

would release active agent. However, from the HPLC analysis data it showed that after 

incubating with rh-legumain for 24h, this etoposide prodrug (2) did not release the active 

agent etoposide, instead it was (an inactive) ethylenediamine-etoposide conjugate. 

Ethylenediamine, an amide-linked spacer in this prodrug, cannot be liberated from active 

agent etoposide. This explains why they could not find the expected IC50 value when this 

prodrug was incubated with 293 HEK-Leg cells (human embryonic kidney cells stably 

transfected to overexpress legumain), even though this prodrug can be 100% cleaved with 

3h incubation (Stern et al., 2009).  

In the examples above, an unstable N-terminus capping group [LEG-3 (1)] and inability 

to release active agent from spacer after cleavage by legumain [etoposide prodrug (2)] 

highlight two major problems in legumain anti-cancer prodrug(s) development. In order 

to design a better legumain prodrug, the novel prodrug has to be stable in blood while 

being delivered to its target site and has to be able to release active agent after cleavage 

by legumain. Hence, in this research project, a capping group was applied to ensure the 
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stability of the prodrug (by conferring resistance to N-terminal degradation by 

aminopeptidases) and no spacer was applied between peptide and active agent to 

overcome those problems that have been found in previous studies.  

2.1.7 Weakness of current biomarkers for ovarian and breast cancer 

Antigen CA125, a widely studied serum biomarker for ovarian cancer, has been shown 

to have poor sensitivity and specificity for early stage detection (Sengoku et al., 1994; 

van Haaften-Day et al., 2001) and may lead to misdiagnosis. Anderson and co-workers 

pointed out that the concentrations of CA125, human epididymis protein 4 (HE4) and 

mesothelin (three potential ovarian cancer biomarkers) started to rise 3 years before 

patients were diagnosed, however, the concentrations for all three biomarkers cannot be 

detected until the final year before most patients were diagnosed with advanced-stage 

cancer (Anderson et al., 2010). Among the first identified tumour antigens, 

carcinoembryonic antigen (CEA) has been shown to be of limited clinical value for breast 

cancer detection due to lack of diagnostic sensitivity and specificity (Cheung et al., 2000; 

Wang et al., 2012). However, due to being overexpressed by the majority of tumour cells 

and its specific cleavage site at the carboxyl end of asparagine, legumain can be a 

promising biomarker for detection with novel fluorogenic probes (in addition to being a 

target of anti-cancer prodrug therapy).  
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2.2 AIM 

The principal aim of this project is to design sensitive chemical probes and fluorimetric 

procedures for use in the diagnosis and prognosis of breast (and other forms of) cancer 

by exploiting the proteolytic action of legumain. The novel probes are fluorogenic – i.e. 

latently fluorescent until activated by the cancer biomarker. The extent of fluorescence 

release should correlate with patient biomarker levels and an aggressive cancer 

phenotype. 

 

Figure 2.4. Biomarker probe design for TL11 (3) 

In Figure 2.4 is shown a tetrapeptide substrate sequence designed for cleavage by 

legumain, the figure shows that fluorescence of the fluoro group, a fluorescein-based 

moiety silenced by ‘dark quencher’ anthraquinone AQ, will be released once the 

fluorogenic probe is cleaved by legumain strictly on the C-terminal side of asparagine. 

The concept exploits the principle of FRET (fluorescence resonance energy transfer) and 

which in this project takes advantage of exceptionally good overlap between the 

absorption spectrum of the aminoanthraquinone quencher (acceptor) and the emission 

spectrum of the fluorescein-based fluorophore (donor) [Figure 2.5].  
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Figure 2.5. Fluorescence Resonance Energy Transfer  

FRET involves a process of transferring energy from one chromophore to the other by 

intermolecular non-radiative dipole-dipole interaction and it is very sensitive to the 

centre-to-centre separation distance which is from 10Å to 100Å (Clegg, 1995).  

 

Figure 2.6. Mechanism of Cell-Impermeable Tumour Microenvironment Activated Prodrug 

(TMEAP) activation in the tumour microenvironment (Adapted from Liu, 2008).   

Figure 2.6 shows the concept of the intended activation mechanism (cell-impermeable 

tumour microenvironment activated prodrug or TMEAP) in the protease-rich tumour 

microenvironment. Prodrugs or probes made in this project are designed to target 
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legumain which can be found on the surface of tumour cells and tumour associated 

macrophages, in addition to the lysosomes. In the tumour microenvironment, the 

conditions are both acidic and hypoxic, under which legumain can be activated in order 

to cleave peptides at the carboxyl end of asparagine. With the follow-on help of 

aminopeptidase and carboxypeptidase actions which can further hydrolyse the peptide 

bond of an amino acid residue at the amino-terminal end and carboxy-terminal end 

respectively. A fluorescein residue and active drug would then be released. A fluorescein 

label would be helpful to indicate the presence of overexpressed protease biomarkers of 

tumours cells in tumour diagnosis. On the other hand, release of active drug would afford 

entry into tumour cells, for example, if it were a DNA-targeting agent, cause DNA 

damage and eventually kill tumour cells or it would enter tumour associated macrophages 

and finally cause cell death. Given that growth factors, such as VEGF, which are secreted 

by tumour associated macrophages (TAMs), reduced TAMs would lead to a dramatically 

decreased number of tumour growth factors which support tumour cell immortalisation 

(Liu, 2008).   

 

 

 

 

 

 



138 

 

2.3 RESULTS AND DISCUSSION 

This section describes the design, synthesis and preliminary biological evaluation of a 

series of novel peptide fluorogenic substrates of legumain. An overview of the library of 

compounds is shown in Table 2.1. The fluorophore in these compounds was variously 

fluorescein isothiocyanate isomer I (FITC) (4) or 5(6)-carboxyfluorescein (FAM) (5) 

[Figure 2.7] and the acceptor molecule was an aminoanthraquinone derivative with a 

spacer group consisting of a short hydrophobic chain or a more hydrophilic PEG-like 

structure. 

Table 2.1. Library of legumain substrates. 

O

O

OHO OH

C

O

OH

O

O

OHO OH

N C S

FITC (4) 5(6)-Carboxyfluorescein (5)  

Figure 2.7. Chemical structures of FITC (4) and 5(6)-carboxyfluorescein (5) 

The reasons why 5(6)-FAM (5) and PEG-spacer were chosen for later legumain probe 

design and syntheses are: 

1) By using both 5(6)-FAM (5) and PEG-spacer can improve probes solubility 

during synthesis when compared with FITC labelled probes FF and MK8; 

CODE Fluorophore P3 P2 P1 P1
 P2

 SPACER TEMPLATE 

FF (6) FITC ala ala asn leu  -HN-(CH2)3-NH-  
          
        

MK8 (7) FITC ala ala asn ala  -HN-(CH2)3-NH- 

TL11 (3) FAM pro ala asn leu  -HN-(CH2)2-O-(CH2)2-O-(CH2)2-NH- 

AD17 (8) FAM pro gly asn leu  -HN-(CH2)2-O-(CH2)2-O-(CH2)2-NH- 

AD20 (9) FAM pro ser asn leu  -HN-(CH2)2-O-(CH2)2-O-(CH2)2-NH- 

VG (10) FAM pro thr asn leu  -HN-(CH2)2-O-(CH2)2-O-(CH2)2-NH- 

PN11 (11) FAM  ala asn leu ala -HN-(CH2)2-O-(CH2)2-O-(CH2)2-NH- 

O

O

[SPACER]
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2) Unlike the thiocyanate group in FITC (4), 5(6)-FAM (5) has a carboxylic acid 

group which can easily form an amide bond with the other amine, hence, this 

makes 5(6)-FAM (5) more biocompatible than FITC (4); 

3) 5(6)-FAM (5) can be used not only in solution phase peptide synthesis, but in solid 

phase peptide synthesis as well. However, FITC (4) is restricted for being used 

for solid phase peptide synthesis; because the FITC labelled peptides can undergo 

a cyclisation during cleavage stage [Figure 2.8] (Edman, 1956; Jullian et al., 

2009).  

 

Figure 2.8. FITC (4) cyclisation during SPPS cleavage stage to form fluorescein thiazolinone (12) and 

fluorescein thiohydantion (13). 

2.3.1 Design of legumain fluorogenic probe TL11 (3) 

There is a lack of sensitive methods for legumain detection in biological matrices, and in 

order to meet this need, a novel FRET (Fluorescence Resonance Energy Transfer) 

technology was designed in this project. The chemical synthesis of a novel legumain 

substrate fluorogenic probe (TL11) (3) was performed by using solution phase peptide 
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chemistry and fluorophore/quencher conjugation. 5(6)-Carboxyfluorescein (5) was used 

to label the N-terminus of a tetrapeptide legumain substrate: Pro-Ala-Asn-Leu, and the 

C-terminus was occupied by an aminoanthraquinone ‘dark’ or ‘black hole’ quencher 

group. Spectrofluorimetry was used to demonstrate quenching of the fluorogenic probe 

and to determine fluorescence release upon incubation with human recombinant legumain. 

C

O

N

O

O

OHO OH

O
O

NH

O

CONH CONHCONHCONH
O

O

NH2

P3 P2 P1 P1'

Cleavage 'hot spot'

 

Figure 2.9. Structure of TL11 (3) and its cleavage ‘hot spot’ 

The fluorogenic probe TL11 (3) [Figure 2.9] contains 5(6)-carboxyfluorescein (5) 

(replacing an N-FITC group (4) in a prototype) at the N-terminus of the tetrapeptide and 

a dark (‘black-hole’) anthraquinone-spacer quencher group at the carboxyl terminus. The 

critical asparagine residue was put into the P1 position, and a P3 proline was introduced 

to make an effective fit into the active site of legumain; this decision was based on an 

observation of a note in the literature which indicated proline was favourable in the P3 

position of an activity-based probe (Sexton et al., 2007). The latter class of probe is not 

fluorogenic, but carries a label and is designed to bind to and inhibit the enzyme. 

Nevertheless, given that it is important for both inhibitors and substrates to make a good 

fit into the active site of the enzyme, it was decided to introduce this feature (P3 Pro) into 

the substrate TL11 (3). The tetrapeptide was designed with the sequence: Pro-Ala-Asn↓-



141 

 

Leu that contains a cleavage ‘hot spot’ at the carboxyl end of asparagine (indicated by the 

arrow).  

The complete synthesis of TL11 (3) is shown in the abbreviated form in Scheme 2.1 

[TL1] (14) 

(i)

LeuBoc Spacer AQ

[TL2] (15)

LeuF3CCOOH3N Spacer AQ

[TL3] (16)

LeuAsn(Trt)Fmoc Spacer AQ

[TL4] (17)

LeuAsn(Trt)H2N Spacer AQ

[TL5] (18)

LeuAsn(Trt)AlaFmoc Spacer AQ

[TL6] (19)

LeuAsn(Trt)AlaH2N Spacer AQ

[TL7] (20)

LeuAsn(Trt)AlaProFmoc Spacer AQ

[TL8] (21)

LeuAsn(Trt)AlaProHN Spacer AQ

[TL9] (22)

LeuAsn(Trt)AlaProFAM Spacer AQ5(6)

[TL10] (23)

(ii)

(iii)

(iv)

(v)

(iv)

(vi)

(iv)

(vii)

(viii)

C

O

N
O

O
NH

NH2

O

CONH CONHCONHCONH

O

O

OHO OH

O

O[TL11] (3)

O
O

NH O

O

H2N

5(6) FAM            Pro                 Ala                Asn                Leu                         Spacer                                AQ

Legumain cleavage site

 

 

Reagents and conditions: (i) Boc-Leu-OSu, DIPEA, DMF, RT, 2.5h. (ii) TFA, RT, 30min. (iii) Fmoc-

Asn(Trt)-OH, TBTU, HOBt, DIPEA, DMF, RT, 3h. (iv) 20% piperidine in DMF, RT, 30min. (v) Fmoc-

Ala-OH, TBTU, HOBt, DIPEA, DMF, RT, 3h. (vi) Fmoc-Pro-OH, TBTU, HOBt, DIPEA, DMF, RT, 3h. 

(vii) 5(6)-FAM, TBTU, HOBt, DIPEA, DMF, 24h. (viii) TFA, RT, 4h. 

Scheme 2.1. Synthesis of legumain fluorogenic probe TL11 (3) 

The following sub-sections describe in detail some of the key steps leading to probe TL11 (3). 
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2.3.1.1 Synthesis of [PEG Spacer]-AQ [TL1] (14) 

O

O

NH
O

O
H2N

 

Figure 2.10. Chemical structure of [PEG Spacer]-AQ TL1 (14)  

This [PEG Spacer]-anthraquinone compound, TL1 (14) [Figure 2.10], was synthesised 

by mixing 1-chloroanthraquinone with 2-[2-(2-aminoethoxy)ethoxy]ethan-1-amine in 

DMSO, and then the reaction mixture was heated over a water bath for 4 hours. It had 

been noticed that within 5 minutes, the yellow compound 1-chloroanthraquinone was 

changed to a typical dark red colour. The process of this reaction was monitored by TLC, 

and once it was finished, the whole reaction mixture was poured into water slowly in 

order to let the [PEG Spacer]-anthraquinone compound TL1 (14) precipitate from 

solution. Usually, the spacer compound was used without further purification or could be 

purified easily by column chromatography in a mixture of chloroform and methanol. The 

TL1 TFA salt 1H NMR spectrum showed a 2-proton multiplet signal at 3.00ppm and a 2-

proton multiplet signal at 3.20ppm which were assigned to CH2NH2
 and OCH2CH2NH2 

respectively. Signals for the 4-proton multiplet found between 3.60 and 3.70ppm were 

assigned to OCH2CH2O. Signals for the methylene protons next to the anthraquinone 

amino group can be found between 3.70 and 3.80ppm. Two double doublet signals at 7.30 

and 7.40ppm were assigned to the H-2 and H-4 protons respectively. Signals for H-5 and 

H-8 protons can be found between 8.10 and 8.20ppm. The anthraquinone amino group 

proton gave a triplet at 9.75ppm.   

TL1 (14)  
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2.3.1.2 Synthesis of H-Leu-[PEG Spacer]-AQ trifluoroacetate salt [TL3] (16) 

O

O

NH
O

O
COHNF3CCOOH3N

 

Figure 2.11. Chemical structure of H-Leu-[PEG Spacer]-AQ trifluoroacetate salt TL3 (16)  

This H-Leu-[PEG Spacer]-anthraquinone trifluoroacetate salt, TL3 (16) [Figure 2.11], 

was synthesised by coupling Boc-Leu-OSu onto the free amino group of [PEG Spacer]-

anthraquinone TL1 (14) [Figure 2.10] to form an N-tBoc group protected Boc-Leu-[PEG 

Spacer]-anthraquinone conjugate TL2 (15), which was purified by silica gel 

chromatography, and then followed by treating TL2 (15) with trifluoroacetic acid to 

remove the Boc protecting group to form the trifluoroacetate salt TL3 (16) [Scheme 2.1].   

The structure of TL2 (15) was determined by its 1H NMR spectrum which showed, for 

example, a 6-proton double doublet at 0.90ppm that was assigned to two methyl groups 

protons in leucine. Two signals for a 1-proton singlet and an 8-proton singlet at 1.45ppm 

confirming the prescence of the tBoc group (as observed for several Boc group signals in 

other examples of amino acid anthraquinone conjugates from this laboratory, in contrast 

to a 9-proton singlet). A multiplet signal at 4.15ppm was assigned to the proton at the α-

carbon. The doublet signal of the amide proton next to the α-carbon was found at 5.0ppm. 

A triplet signal at 9.90ppm was given to anthraquinone amino proton, together with full 

assignment of all other proton signals.  

TL3 (16)  
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The structure of TL3 (16) was confirmed by its 1H NMR spectrum which showed, for 

example, a triplet signal of 6 protons at 0.85ppm was assigned to the methyl protons at 

the two δ carbons in the leucine side-chain. A multiplet signal for the 3-proton at the β 

and γ carbons in leucine can be found between 1.45 and 1.65ppm. The ethylene group in 

between two oxygens in the spacer gave a 4-proton multiplet between 3.55 and 3.65ppm. 

Two triplet signals at 8.55 and 9.75ppm were assigned to the amide proton and the amino 

proton on the anthraquinone, respectively, together with full assignment of all other 

proton signals (apart from the terminal amino protons in the leucine residue which were 

unresolved, presumably due to proton exchange).  

2.3.1.3 Synthesis of H-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL5] (18) 

O

O

NH
O

O
COHNCOHNH2N

NH

O

 
Figure 2.12. Chemical structure of H-Asn(Trt)-Leu-[PEG Spacer]-AQ TL5 (18)  

To assemble an H-Asn(Trt)-Leu dipeptide conjugate TL5 (18), Fmoc-Asn(Trt)-OH was 

coupled onto trifluoroacetate salt TL3 (16) [Figure 2.11] by following normal amino acid 

coupling procedure (TBTU, HOBt, DIPEA) to give an N-Fmoc protected dipeptide 

spacer-anthraquinone compound TL4 (17), which was purified by silica gel 

chromatography. After purification, the Fmoc protecting group was removed from TL4 

(17) to give the final product dipeptide spacer-anthraquinone TL5 (18), as shown in 

Figure 2.12 [Scheme 2.1]. 

TL5 (18)  
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2.3.1.4 Rationale for the side-chain N-protection of asparagine 

Free primary amide in the side chain of asparagine would undergo a side reaction during 

reaction [Scheme 2.2]. Furthermore, unprotected side chain asparagine has very poor 

solubility; hence, it may slow down coupling rates. 

 

Scheme 2.2. Dehydration of asparagine 

This dehydration of asparagines would change the primary amide structure in the side 

chain to a nitrile group; hence it would not be asparagine in the final peptide sequence, 

and would be unproductive in this project as legumain can only recognise and cleave at 

the carboxyl end of asparagine. So, N-trityl protection was applied during this coupling 

stage. The primary amide was protected by the trityl (Trt) group in the side chain because 

it was very stable during normal peptide coupling synthesis and Fmoc removal basic 

conditions. Trityl protecting groups can be removed by treating with 95% TFA in 

dichloromethane for typically 1 to 3h and the by-product triphenylmethanol can be simply 

filtered off from the TFA solution.     

2.3.1.5 Synthesis of H-Ala-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL7] (20) 

O

O

NH
O

O
COHNCOHNCOHN

NH

O

H2N

 

Figure 2.13. Chemical structure of H-Ala-Asn(Trt)-Leu-[PEG Spacer]-AQ TL7 (20)  

TL7 (20)  
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Tripeptide spacer-anthraquinone conjugate, TL7 (20) [Figure 2.13], was synthesised by 

coupling Fmoc-Ala-OH onto the free amine end of dipeptide spacer-anthraquinone 

conjugate TL5 (18) [Figure 2.12] by following normal amino acid coupling procedures, 

and then the Fmoc protected compound TL6 (19) was purified by silica gel 

chromatography. After purification, the Fmoc protecting group was removed from the 

amine end of TL6 (19) to give the final product TL7 (20) [Scheme 2.1]. 

2.3.1.6 Synthesis of H-Pro-Ala-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL9] (22) 

O

O

NH
O

O
COHNCOHNCOHN

O

NH

COHNHN

 

Figure 2.14. Chemical structure of H-Pro-Ala-Asn(Trt)-Leu-[PEG Spacer]-AQ TL9 (22)  

This H-Pro-Ala-Asn(Trt)-Leu-[PEG Spacer]-anthraquinone TL9 (22) [Figure 2.14]  

was synthesised by coupling tripeptide spacer-anthraquinone compound TL7 (20) 

[Figure 2.13] with Fmoc-Pro-OH following normal amino acid coupling procedure to 

form an Fmoc group protected tetrapeptide spacer-anthraquinone conjugate TL8 (21), 

which was then treated with 20% piperidine in DMF for 30min to remove the Fmoc 

protecting group from the protected tetrapeptide spacer-anthraquinone conjugate. The 

crude product TL9 (22) was washed with water to remove extra piperidine and DMF 

mixture and then purified by loading onto a silica gel chromatography column which was 

eluted with dichloromethane: ethyl acetate: methanol (7:2:1) [Scheme 2.1].  

TL9 (22)  
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2.3.1.7 Synthesis of 5(6)-FAM-Pro-Ala-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL10] (23) 

O

O

NH
O

O
COHNCOHNCOHN

O

NH

COHNNC

O

O

O

O

HO OH  

Figure 2.15. Chemical structure of 5(6)-FAM-Pro-Ala-Asn(Trt)-Leu-[PEG Spacer]-AQ TL10 (23)  

This trityl protected 5(6)-FAM-labelled tetrapeptide spacer-anthraquinone product TL10 

(23) [Figure 2.15] was synthesised by mixing TL9 (22) [Figure 2.14] and 5(6)-

carboxyfluorescein (5) together in DMF, along with coupling reagents TBTU, HOBt and 

base DIPEA. This reaction was covered with foil and kept in the dark at room temperature 

for 24 hours. Once the reaction was completed (confirmed by TLC), the reaction mixture 

was extracted between chloroform and water, and then purified by silica gel 

chromatography running with a solvent mixture of chloroform: ethyl acetate: methanol 

(5:2:1) [Scheme 2.1].  

2.3.1.8 Synthesis of 5(6)-FAM-Pro-Ala-Asn-Leu-[PEG Spacer]-AQ probe [TL11] (3) 
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Figure 2.16. Chemical structure of 5(6)-FAM-Pro-Ala-Asn-Leu-[PEG Spacer]-AQ probe TL11 (3)  

In order to synthesise the final legumain fluorogenic probe TL11 (3) [Figure 2.16], the 

N protecting group triphenylmethyl (trityl) has to be removed from the asparagine side 

chain. So, TL10 (23) [Figure 2.15] was treated with trifluoroacetic acid for four hours. 

TL10 (23) 

TL11 (3) 
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The progress of this reaction was checked by TLC. Once the reaction was finished, the 

reaction mixture was evaporated to dryness and this crude product was purified by loading 

onto a silica gel chromatography column which was eluted with dichloromethane: ethyl 

acetate: methanol (5:2:1).  

2.3.1.9 Mass Spectral Characterisation of TL11 (3) 

The pure (chromatographically homogeneous) target FRET substrate TL11 (3) was 

analysed by nanoelectrospray ionisation in the negative mode. It was found that negative 

ion mode was preferred to positive ion mode for TL11 (3), probably due to the case with 

which an ion could be generated from the phenolic OH group in the fluorescein structure.  

 

 

Figure 2.17. Mass Spectrum of TL11 (3) 

The structure of TL11 (3) was confirmed by its nanoelectrospray negative ionisation mass 

spectrum which had a peak at m/z 1106.4143 for the species (M-H)-, at m/z 552.7033 for 

the doubly charged ion [(M-2H)/2]2- and also there was good agreement between the 

(M-H)- 

[(M-2H)/2]2- 
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theoretical isotope model and the observed data which proved probe TL11 (3) had the 

correct structure [Figure 2.17].  

2.3.2 Design of legumain fluorogenic probes AD17 (8), AD20 (9), VG (10) and 

PN11 (11) 

Based on the success of designing and synthesising legumain probe TL11 (3), four further 

probes were designed and synthesised by altering one or two amino acids in the substrate 

peptide sequence, whereas the fluorophore and spacer-AQ were kept constant in all four 

probes’ chemical structures [Scheme 2.3].  

Spacer AQ

Spacer AQ

Spacer AQ

[AD17] (8)

[AD20] (9)

[VG] (10)

Spacer AQ [TL11] (3)

[TL1] (3)

O
O

NH O

O

H2N

5(6)

5(6)

5(6)

Spacer AQ

AsnSerProFAM Leu

AsnThrProFAM Leu

LeuAsnAla AlaFAM [PN11] (11)

(i)

(ii)

(iii)

(iv)

AsnGlyProFAM Leu

5(6) AsnAlaProFAM Leu

P3      P2      P1      P1'      P2'     

Cleavage site

5(6)

Scheme 2.3 General synthesis for legumain fluorogenic probes AD17 (8), AD20 (9), VG (10) and 

PN11 (11). 

Notes; Reagents and conditions: Syntheses for four legumain fluorogenic probes were very similar to the 

synthesis of TL11 (3). The only differences were:  

(i) Fmoc-Pro-Gly-OH, TBTU, DIPEA, DMF, RT, 1h. Thus substituting Gly for Ala at the P2 position 

of TL11 (3).   

(ii) Fmoc-Ser(tBu)-OSu, DIPEA, DMF, RT, 1h. Thus substituting Ser for Ala at the P2 position of 

TL11 (3). It should be noted that the side-chain primary OH group of serine required O-tBu 

protection during peptide synthesis and protection was removed by TFA treatment in parallel with 

removal of the Asn trityl protecting group.  

(iii) Fmoc-Thr(tBu)-OH, HOBt, TBTU, DIPEA, DMF, RT, 1h. Thus substituting Thr for Ala at the P2 

position of TL11 (3). It should be noted that the side-chain secondary OH group of threonine 

required O-tBu protection during peptide synthesis and protection was removed by TFA treatment 

in parallel with removal of the Asn trityl protecting group.  
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(iv) Fmoc-Ala-OH, HOBt, TBTU, DIPEA, DMF, RT, 2h. Alanine substitution was used twice in the 

whole procedure, to introduce initially a P2  ́Ala and later a P2 Ala residue. With respect to TL11 

(3), the sequence: Ala-Asn-Ala was preserved but proline was deleted at the N-terminus and Ala 

was added to the C-terminus.  

2.3.2.1 Rationale for selection of amino acids in positions of the legumain peptide 

substrate library 

The most conserved feature of the probe library was the leucine residue joined to the 

anthraquinone quencher template, connecting it to the carboxylic acid group of the Asn 

residue, thus at the amino end of the scissile bond marked for legumain cleavage. 

In part, the choice of leucine was based upon published work on the known simple 

prodrug of doxorubicin, known as leucyl-doxorubicin (a leucyl conjugate of the amino 

group of the sugar moiety in the drug doxorubicin).  

Many studies have shown that prodrug N-L-leucyl-doxorubicin (Leu-Dox) is relatively 

stable in serum (Trouet et al., 1982) and only 25% of this prodrug can be converted into 

free doxorubicin in heart, muscle and liver tissues in mice (de Jong et al., 1992). Hence, 

Leu-Dox shows lower cardiotoxicity when compared with free doxorubicin. Nevertheless, 

prodrug Leu-Dox can be selectively converted to doxorubicin in tumours; Huang and 

Oliff suggested that this conversion may be performed by the cathepsin family of 

proteases (Huang and Oliff, 2001). Based on previous studies about Leu-Dox and also for 

future work (intended here) to introduce Leu-Dox or Leu-Epi into legumain probes, 

leucine was chosen for the P1’ positions in TL11 (3), AD17 (8), AD20 (9), VG (10) and 

PN11 (11) probes. Legumain can only cleave at the carboxyl end of asparagine, hence, in 
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all legumain probes, asparagine was chosen for the P1 position. Sexton and colleagues 

suggested that the P3 position is favoured by proline in legumain activity-based (i.e. 

inhibitor-based) probes (Sexton et al., 2007), so proline was chosen at the P3 position in 

TL11 (3), AD17 (8), AD20 (9) and VG (10) probes. The only uncertain site in legumain 

substrate peptides is the P2 position. According to the MEROPS database (Rawlings, 

Barrett and Bateman, 2012), among currently reported legumain active probes, 10 of them 

had threonine at the P2 position, 6 of them had serine, 5 had alanine and 4 had glycine. 

Apart from threonine, the other 19 common amino acids have similar probability for 

being at the P2 position. Serine has a similar structure to threonine, they both have one 

hydroxyl group in the side chain, but one is primary hydroxyl group and the other is a 

secondary hydroxyl, respectively. Alanine and glycine are similar and both small amino 

acids when compared with others. Thus, alanine, glycine, serine and threonine were 

chosen for P2 position in TL11 (3), AD17 (8), AD20 (9) and VG (10) probes individually, 

based on their size and/or functional group similarities and on their frequency of 

representation in the sequences of published legumain substrates. 

Currently, in this project most legumain active substrate probes were designed containing 

tetrapeptides spanning the P3 to P1’ positions which is in common with some simple 

sequences reported in the literature, including the commercially available coumarin-

labelled fluorogenic probe (Mathieu et al., 2002). There is no report describing if an extra 

amino acid is introduced at the P2’ position or if one amino acid is missing at P2, it would 

lead to any significant legumain cleavage activity changes when this kind of probe is 
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incubated with activated legumain. Hence, in PN11 (11), one additional substituent 

residue, alanine was introduced at the P2’ position and proline was removed at the P3 

position when compared with the tetrapeptide starting sequence in TL11 (3).     

2.3.2.2 Synthesis of 5(6)-FAM-Pro-Gly-Asn-Leu-[PEG Spacer]-AQ probe 

[AD17] (8) 

C

O

O

O

OHO OH

O

CONH CONHCONH CONH
O

O
NH

N

NH2

O

O

Legumain cleavage site

[AD17]

5(6)-FAM             Pro                Gly               Asn              Leu                           Spacer                                AQ  

Figure 2.18. Chemical structure of 5(6)-FAM-Pro-Gly-Asn-Leu-[PEG Spacer]-AQ probe AD17 (8)  

The whole synthesis procedure of legumain probe AD17 (8) was very similar to the 

synthesis of probe TL11 (3). The only difference was that the dipeptide Fmoc-Pro-Gly-

OH was applied during the synthesis of AD17 (8) to simultaneously insert the amino acids 

in the P3-P2 positions, but its coupling method was still the same as the one applied during 

the synthesis of TL11 (3) (reagents and conditions summarised in outline in Scheme 2.3 

above and in detail in Scheme 2.1, earlier). 

2.3.2.2.1 Mass Spectral Characterisation of AD17 (8) 

AD17 (8) was characterised by using nanoelectrospray ionisation in the positive mode. 
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Figure 2.19. Mass Spectrum of AD17 (8) 

The structure of AD17 (8) was confirmed by its nanoelectrospray positive ionisation mass 

spectrum, in which it had a doubly-charged signal at m/z 547.7100 (z=2) for the species 

[(M+2H)/2]2+, a signal at m/z 1094.4139 which indicated the species (M+H)+, a signal at 

m/z 1116.3958 for the species (M+Na)+, and also the observed data matched the 

theoretical isotope pattern which proved that probe AD17 (8) had the correct structure 

[Figure 2.19].  

[(M+2H)/2]2+ 

(M+H)+ 

(M+Na)+ 
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2.3.2.3 Synthesis of 5(6)-FAM-Pro-Ser-Asn-Leu-[PEG Spacer]-AQ probe 

[AD20] (9) 

C

O

O

O

OHO OH

O

CONH CONHCONH CONH
O

O
NH

N

NH2

O

O

OH

Legumain cleavage site

[AD20]

5(6)-FAM             Pro                 Ser                Asn               Leu                         Spacer                                AQ
  

Figure 2.20. Chemical structure of 5(6)-FAM-Pro-Ser-Asn-Leu-[PEG Spacer]-AQ probe AD20 (9) 

The only difference between probes TL11 (3) and AD20 (9) is that during the synthesis, 

alanine at the P2 position in TL11 (3) was replaced by serine. Due to the presence of an 

alcohol group side chain in serine, during the synthesis, Fmoc-Ser(tBu)-OSu was applied 

to prevent dehydration side reaction. This O-tert-butyl side chain protection group in 

serine was removed by TFA at the very last stage, i.e. during the trityl deprotection from 

asparagine. 

2.3.2.3.1 Mass Spectral Characterisation of AD20 (9) 

As for the prototype probe TL11 (3), nanoelectrospray ionisation (ESI) was used for 

AD20 (9). However, the conjugate gave a satisfactory result in the positive ion mode upon 

first analysis and so, negative ion mode was not used.  
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Figure 2.21. Mass Spectrum of AD20 (9) 

The structure of AD20 (9) was confirmed by its nanoelectrospray positive ionisation mass 

spectrum, in which it showed a signal at m/z 1124.4249 for the species (M+H)+ and a 

doubly-charged signal at m/z 562.7153 (z=2) for the species [(M+2H)/2]2+, and also the 

observed data matched the theoretical isotope pattern which proved that probe AD20 (9) 

had the correct structure [Figure 2.21].  

2.3.2.4 Synthesis of 5(6)-FAM-Pro-Thr-Asn-Leu-[PEG Spacer]-AQ probe [VG] 

(10) 

C

O

O

O

OHO OH

O

CONH CONHCONH CONH
O

O
NH

N

NH2

O

O

OHH3C

Legumain cleavage site

[VG]

5(6)-FAM             Pro                 Thr                Asn               Leu                         Spacer                                AQ
  

Figure 2.22. Chemical structure of 5(6)-FAM-Pro-Thr-Asn-Leu-[PEG Spacer]-AQ probe VG (10)   

The synthesis of VG (10) was similar to the synthesis of TL11 (3) as well. The only 

difference is that alanine at the P2 position in probe TL11 (3) was replaced with threonine. 

As for serine, in threonine, there is a (secondary) alcohol group in the side chain. In order 

(M+H)+ 

[(M+2H)/2]2+

2 
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to prevent side reaction, the -OH group was protected by O-tert-butyl protection group 

during synthesis, which was removed by TFA at the end of the synthesis at the same time 

when the trityl group was removed from the asparagine.  

2.3.2.4.1 Mass Spectral Characterisation of VG (10) 

The threonine containing substrate VG (10) was successfully characterised also by using 

nanoelectrospay positive ionisation mass spectrometry.  

 

Figure 2.23. Mass Spectrum of probe VG (10) 

In the probe VG (10) nanoelectrospray positive ionisation mass spectrum, there were a 

signal at m/z 1138.4398 which indicated the species (M+H)+ and a doubly-charged signal 

at m/z 569.7234 (z=2) for the species [(M+2H)/2]2+, also there was a good match between 

the theoretical isotope model and the observed data which proved probe VG (10) had the 

correct structure [Figure 2.23].  

 

 

(M+H)+ 

[(M+2H)/2]2+ 
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2.3.2.5 Synthesis of 5(6)-FAM-Ala-Asn-Leu-Ala-[PEG Spacer]-AQ probe 

[PN11] (11) 

      

O

O
C

O

O

O

OHO OH

NH2

O

CONH CONHCONHNH CONH
O

O
NH

Legumain cleavage site

[PN11]

5(6)-FAM             Ala                 Asn                Leu               Ala                         Spacer                           AQ  
Figure 2.24. Chemical structure of 5(6)-FAM-Ala-Asn-Leu-Ala-[PEG Spacer]-AQ probe PN11 (11)   

The differences between probes TL11 (3) and PN11 (11) are 1) in PN11 (11), there is an 

extra alanine at the P2’ position in its substrate peptide; 2) proline is missing from PN11 

(11) substrate peptide sequence when compared with TL11 (3). The reason for designing 

this substrate peptide sequence is in order to see whether one extra amino acid at the P2’ 

position and one amino acid missing at the P3 position would lead to any kind of 

significant alteration (positive or negative) in cleavage sensitivity during incubation with 

activated legumain.  

2.3.2.5.1 Mass Spectral Characterisation of PN11 (11) 

Probe PN11 (11) was successfully characterised by using nanoelectrospay negative 

ionisation mass spectrometry.  

 
Figure 2.25. Mass Spectrum of PN11 (11) 

(M-H)- 
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In this negative ionisation mass spectrum, there was a signal at m/z 1080.3934 for the 

species (M-H)- which confirmed a molecular mass of 1081.   

2.3.3 Design of legumain fluorogenic probes FF (6) and MK8 (7) 

Before design and syntheses of 5(6)-FAM-labelled legumain fluorogenic probes [Table 

2.1], two FITC-labelled legumain fluorogenic probes FF (6) and MK8 (7) [Table 2.1] 

were designed as model compounds in order to discover a better synthesis method for this 

series of legumain fluorogenic probes, and also to establish whether or not these probes 

can be successfully cleaved by activated legumain at the carboxyl end of asparagine.  

Based on the successful synthesis of FITC-labelled MMP9 fluorogenic probe EV1-FITC 

(Van Valckenborgh et al., 2005), fluorescein isothiocyanate (FITC) (4) and propyl spacer 

were chosen as fluorophore and spacer for both probes FF (6) and MK8 (7) to target 

activated legumain.  

Spacer AQ

Spacer AQ

[FF] (6)

[MK8] (7)

H2N NH O

O

AsnAlaAlaFITC Leu

AsnAlaAlaFITC Ala

(i)

(ii)

P3      P2      P1      P1'          

Cleavage site

Scheme 2.4 General synthesis for FITC-labelled legumain fluorogenic probes FF (6) and MK8 (7) 

Notes; Reagents and conditions: Syntheses for FITC labelled legumain fluorogenic probes FF (6) and 

MK8 (7) were very similar with only one difference at the P1’ position:  

(i) Boc-Leu-OSu, DIPEA, DMF, RT, 1h. Hence Leu at the P1’ position of MK8 (7) 

(ii) Boc-Ala-OH, TBTU, HOBt, DIPEA, DMF, RT, 2h. Hence Ala at the P1’ position of FF (6).  
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2.3.3.1 Rationale for selection of amino acids in positions of the legumain peptide 

substrate library 

Based on the success of synthesis of FITC-labelled MMP9 fluorogenic probes FITC (4) 

had been chosen as fluorophore for both probes FF (6) and MK8 (7). In the legumain 

commercial substrate, benzyloxycarbonyl-Ala-Ala-Asn-7-amido-4-methylcoumarin (Z-

AAN-AMC) (24) [Figure 2.26] two alanines occupied the P3 and P2 positions (R&D 

systems, 2012), so they were chosen at the same positions here in both of the experimental 

probes FF (6) and MK8 (7).  

O NH

O

NH

O

NH

O

NH

H2N

O

O

O

O

     Z                            Ala            Ala           Asn                       AMC    

  Legumain 
cleavage site

P3              P2             P1

 

Figure 2.26. Chemical structure of legumain commercial substrate Z-AAN-AMC (24)  

Due to the fact that legumain can only cleave at the carboxyl end of asparagine, 

asparagine was incorporated at the P1 position in both FF (6) and MK8 (7) probes. The 

only difference in the peptide sequence between probes FF (6) and MK8 (7) is at the P1’ 

position: leucine was chosen for probe FF (6), (the same reason as described in section 

2.3.2.1), while alanine was chosen for probe MK8 (7). FITC can perform a cyclisation 

under strong acid conditions, including with TFA [Figure 2.8], so the trityl protecting 

group on the side chain of asparagine had to be removed before the FITC coupling stage 

in the syntheses of both probes FF (6) and MK8 (7). This is different from the syntheses 

of 5(6)-FAM labelled probes, in which, the trityl group on the side chain of asparagine 
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was removed after the coupling of 5(6)-FAM onto tetrapeptide-[PEG Spacer]-AQ 

conjugate. 

2.3.3.2 Synthesis of FITC-Ala-Ala-Asn-Leu-[Propyl Spacer]-AQ probe [FF] (6) 

O

O

OHO OH

NH C

S

NH CONH CONH CONH CONH

NH2

O

NH O

O

Legumain cleavage site

FITC                      Ala            Ala           Asn          Leu             Spacer                  AQ

[FF]

 

Figure 2.27. Chemical structure of legumain probe FF (6) 

Because FITC (4) was known to have restricted use in solid phase peptide synthesis (side 

reactions and complex and difficult to purify reaction products), so the tetrapeptide-

[Propyl Spacer]-AQ conjugate was synthesised by solution phase methods. Also, in order 

to avoid cyclisation happening for the thio-urea derived from FITC-labelled peptides, the 

trityl protecting group was removed from asparagine before the coupling of FITC onto 

tetrapeptide-[Propyl Spacer]-AQ conjugate.  

2.3.3.2.1 Mass Spectral Characterisation of FF (6) 

Both nanoelectrospray ionisation in positive and negative modes had been applied for 

probe FF (6) characterisation.   
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Figure 2.28. Nanoelectrospray positive ionisation mass spectrum of probe FF (6) 

In the probe FF (6) nanoelectrospray positive ionisation mass spectrum [Figure 2.28], 

signals at m/z 1039.3634 indicated the species (M+H)+, and at m/z 1061.3466 indicated 

the species (M+Na)+ both suggested a molecular weight of 1038 Da for the probe FF (6).  

 
Figure 2.29. Nanoelectrospray negative ionisation mass spectrum of probe FF (6) 

In the probe FF (6) the nanoelectrospray negative ionisation mass spectrum [Figure 2.29], 

signal at m/z 1037.3506 indicated the species (M-H)-.  

Hence, both positive and negative mass spectra confirmed the correct structure of probe 

FF (6).  

(M+H)+ 

(M+Na)+ 

(M-H)- 
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2.3.3.3 Synthesis of FITC-Ala-Ala-Asn-Ala-[Propyl Spacer]-AQ probe [MK8] (7) 

O

O

OHO OH

NH C

S

NH CONH CONH CONH CONH

NH2

O

NH O

O

Legumain cleavage site

FITC                      Ala            Ala           Asn          Ala             Spacer                  AQ

[MK8]

 

Figure 2.30. Chemical structure of legumain probe MK8 (7) 

The synthesis of probe MK8 (7) was similar to the synthesis of probe FF (6) and the trityl 

protecting group was removed before the FITC coupling stage as well. The only 

difference between these two FITC labelled probes is that leucine at the P1’ position in 

probe FF (6) was replaced with alanine.  

2.3.3.3.1 Mass Spectral Characterisation of MK8 (7) 

This FITC-labelled probe MK8 (7) was successfully characterised by nanoelectrospay 

negative ionisation mass spectrometry.  

 

Figure 2.31. Mass spectrum of probe MK8 (7) 

A signal at m/z 995.3019 in the nanoelectrospray negative mass spectrum [Figure 2.31] 

corresponded to the expected molecular mass and a signal at m/z 497.1478 indicated the 

(M-H)- 

[(M-2H)/2]2- 
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species [(M-2H)/2]2-. And also, there was good correlation between the observed data and 

the theoretical isotope model for (M-H)-. Hence, it can be confirmed that probe MK8 (7) 

has the correct target structure. 

During the syntheses of FITC-labelled probes FF (6) and MK8 (7), it had been noticed 

that both compounds had poor solubility and were difficult to purify to remove unreacted 

FITC (4). Hence, later both fluorophore and spacer had been changed to 5(6)-FAM (5) 

and the anthraquinone-PEG-spacer to improve compounds’ solubility, and also this 

permitted the trityl group to stay on to protect the side chain of asparagine till the last 

synthesis step, hence, to improve syntheses yields.  

2.3.4 Legumain probes activity study 

Before any in vitro tests were carried out for TL11 (3), a FRET study and fluorescence 

spectroscopy assay (see sections 2.3.4.1 and 2.3.4.2) for probe TL11 (3) was applied to 

demonstrate that the anthraquinone-spacer part does indeed quench fluorescence from 

fluorophore 5(6)-carboxyfluorescein (5) very well. This would rule out the possibility that 

any fluorescence observed in further in vitro tests was not due to background fluorescence 

from probe TL11 (3). Then, a fluorimetric assay (section 2.3.4.3) was developed, so that 

the rh-legumain incubations determined whether or not the probes TL11 (3), VG (10) and 

PN11 (11) [Table 2.2] are activated. Legumain enzyme kinetics assays were applied for 

three different probes TL11 (3), VG (10) and PN11 (11) [Table 2.2] to determine which 

substrate binds to legumain better than others (section 2.3.4.4). 
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CODE Fluorophore P3 P2 P1 P1
 P2

 SPACER TEMPLATE 

TL11 (3) FAM pro ala asn leu  -HN-(CH2)2-O-(CH2)2-O-(CH2)2-NH- 

 

VG (10) FAM pro thr asn leu  -HN-(CH2)2-O-(CH2)2-O-(CH2)2-NH- 

PN11 (11) FAM  ala asn leu ala -HN-(CH2)2-O-(CH2)2-O-(CH2)2-NH- 

Table 2.2. Library structures of probes TL11 (3), VG (10) and PN11 (11). 

Preliminary cytotoxicity and proliferation assays were applied to determine whether the 

probe TL11 (3) or its cleavage product were cytotoxic (section 2.3.4.5). 

2.3.4.1 FRET study between fluorophore 5(6)-FAM (5) and its quencher TFA-

Leu-Spacer-AQ [TL3] (16) 

 

 
Figure 2.32. A, TFA-Leu-Spacer-AQ [TL3] (16) (50µM in legumain assay buffer, pH 5.0) absorption 

spectrum; B, 5(6)-FAM (5) (0.5µM in legumain assay buffer, pH 5.0) fluorescence intensity spectrum, 

λex 492nm; C, FRET concept diagram (simulation) for TL3 (16) and 5(6)-FAM (5) 

O

O

[SPACER]

A B 

C 
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The FRET study for TL11 (3) probe fluorophore and its quencher component was applied 

to find out whether the absorption spectrum of TFA-Leu-Spacer-AQ quencher [TL3 (16) 

(acceptor)] would overlap well with the emission spectrum of 5(6)-carboxyfluorescein (5) 

(donor).  

From the UV-Vis absorption spectrum of TFA·Leu-Spacer-AQ compound TL3 (16) 

(50µM) [Figure 2.32 A], it showed that the wavelength at maximum absorbance was 

514nm, and in the fluorescence emission spectrum of 5(6)-carboxyfluorescein (5) (0.5µM) 

[Figure 2.32 B], the wavelength at maximum fluorescence intensity was 518nm. 

According to these two overlapped absorbance and fluorescence spectra, it could easily 

be predicted that in theory, TL3 (16) can perfectly quench the fluorescence released from 

5(6)-carboxyfluorescein (5) [Figure 2.32 C], hence there should be no or very little 

fluorescence detected from probe TL11 (3).  

In order to evaluate legumain substrates that have been designed and synthesised in this 

lab, during their enzyme kinetics studies, they were compared with the legumain 

commercial substrate benzyloxycarbonyl-Ala-Ala-Asn-7-amido-4-methylcoumarin (Z-

AAN-AMC) (24) [Figure 2.26] (Stern et al., 2009; R&D systems, 2012). Unlike 

legumain substrates made in this project which have 5(6)-carboxyfluorescein (5) or FITC 

(4) as fluorophore, the fluorophore in this commercial substrate Z-AAN-AMC (24) is 7-

amino-4-methylcoumarin (AMC) which requires measurement at excitation λ = 360nm 

and emission λ = 460nm (Stern et al., 2009). Also this commercial fluorimetric probe is 

not a FRET model like all fluorimetric probes designed and synthesised in this project, 

the silencing of fluorescence from Z-AAN-AMC (24) is due to the amide bond formation 

between the amino group of 7-amino-4-methylcoumarin (AMC) when capped with a 
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peptide, not because the absorption spectrum of the Z-group can overlap the emission 

spectrum of AMC. More result details are shown in legumain substrates fluorimetric 

assay and enzyme kinetics assay sections.  

2.3.4.2 Fluorescence Spectroscopy Assay 

The ability of the anthraquinone chromophore to quench the fluorescence emission of the 

fluorophore in the probe TL11 (3) was determined by fluorescence spectroscopy.  

In Figure 2.33, data from fluorophore quenching studies showed that the relative 

fluorescence intensity of the fluorogenic probe TL11 (3) was nearly 70 fold lower than 

the fluorophore 5(6)-carboxyfluorescein (5), even when the concentration of TL11 (3) 

was 10 times higher than 5(6)-carboxyfluorescein (5) during the test.  

 

Figure 2.33. Comparison of relative fluorescence intensities of 5(6)-carboxyfluorescein (5) (0.5µM) 

and fluorogenic probe TL11 (3) (5µM) in legumain assay buffer, pH 5.0, λex 492nm. 

The data in Figure 2.33 indicates that there is efficient quenching of fluorescein 

fluorescence by the anthraquinone ‘dark quencher’.  
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2.3.4.3 Fluorimetric Assay 

The ability of activated rh-legumain to cleave the probe at the designed cleavage site, the 

carboxyl end of asparagine, in order to release a fluorescent fluorescein-labelled peptide 

fragment during incubation, was determined by fluorimetric assay.   

2.3.4.3.1 TL11 (3) Fluorimetric Assay 

TL11 (3) (10µM) was incubated with legumain (40ng) at 37oC. Fluorescence was 

released from TL11 (3) immediately when TL11 (3) was mixed with legumain. During 

the first 20 minutes incubation, the relative fluorescence intensity maintained a consistent 

rate increase. Then, the graph of fluorescence intensity over time levelled-out and the 

relative fluorescence intensity reached maximum after 100 minutes incubation [Figure 

2.34].   

 

Figure 2.34. Relative fluorescence intensity release with time during the incubation of fluorogenic 

probe (TL11 (3), 10µM) with recombinant human legumain (40ng) in legumain assay buffer, pH 

5.0, λex 492nm, λem 520nm (Mean values ± SD from triplicates from one experiment are presented) 
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After fluorimetric assay, the TL11 (3) legumain incubation solution was extracted with 

chloroform. On a TLC plate, the chloroform extract showed a red spot for the free base 

of the H-Leu-[PEG Spacer]-AQ compound (25) [Figure 2.35]. The result showed the 

extract had an Rf value identical to an authentic sample (available as an intermediate in 

TL11 (3) synthesis), confirming legumain had cleaved the tetrapeptide of TL11 (3) 

selectively at the carboxyl side of asparagine successfully.   

O
O

NH
CONH

O

H2N
O

 

Figure 2.35. Residue isolated post-cleavage: H-Leu-[PEG Spacer]-AQ (25) 

After cleavage by legumain, TL11 (3) was separated into two parts: fluorescently-labelled 

tripeptide, 5(6)-FAM-Pro-Ala-Asn-OH (26) and H-Leu-[PEG Spacer]-AQ (25), the 

anthraquinone-leucine conjugate. A synthesised sample of authentic 5(6)-FAM-Pro-Ala-

Asn-OH residue (26), the first-formed fluorophore, released when the fluorogenic 

substrate is cleaved was subjected to fluorimetric assay so that a standard curve could be 

generated. In in vivo incubations or experiments with cell lysates, the first-formed 

fluorescent tripeptide might be further degraded but here, the use of recombinant 

legumain may be expected to stop at the initial cleavage product.  

 

 

H-Leu-[PEG Spacer]-AQ (25) 
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2.3.4.3.2 5(6)-FAM-Pro-Ala-Asn-OH (26) Fluorimetric Assay 

 

Figure 2.36. Mean variation of fluorescence emission with concentration of the fluorophore 5(6)-FAM-

Pro-Ala-Asn-OH (26) (1 to 12.5µM) in legumain assay buffer, pH 5.0, λex 492nm, λem 520nm (n=3)  

The fluorimetric assay for this fluorophore 5(6)-FAM-Pro-Ala-Asn-OH (26) (1 to 

12.5µM) was conducted for 110 minutes. As time passed by, each average relative 

fluorescence intensity from different fluorophore concentrations decreased slightly. This 

may due to fluorophore 5(6)-FAM-Pro-Ala-Asn-OH (26) might have come out of 

solution and adhered onto the wall of each well or (more probably) after a period of time 

a photobleaching effect of this fluorophore residue took place.  

2.3.4.3.3 Z-AAN-AMC (24) Fluorimetric Assay 

In order to compare the TL11 (3) fluorimetric assay result, the legumain commercial 

substrate Z-AAN-AMC (24) (10µM) was incubated with legumain (40ng) at 37oC for 

110 minutes during its fluorimetric assay [Figure 2.37] which was under the same 

conditions as TL11 (3) but the wavelengths for excitation and emission were reset as 

355nm and 460nm, respectively.   
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Figure 2.37. Relative fluorescence intensity release with time from the incubation of legumain commercial 

substrate Z-AAN-AMC (24) (10µM) with recombinant human legumain (40ng) in legumain assay buffer, 

pH 5.0, λex 355nm, λem 460nm (Mean values ± SD from triplicates from one experiment are presented) 

When compared, both graphs from TL11 (3) [Figure 2.34] and (above) Z-AAN-AMC 

(24) fluorimetric assays, looked quite similar to each other, but the same concentration of 

Z-AAN-AMC (24) (10µM) gave higher fluorescence intensity than TL11 (3) after the 

same period of incubation with legumain. However, when comparing the fluorescence 

intensities from wells which only contained assay buffer and substrate alone, it had been 

noticed that after subtracting the fluorescence intensity from assay buffer, commercial 

substrate Z-AAN-AMC (24) released more background fluorescence than TL11 (3).     

2.3.4.3.4 AD17 (8) Fluorimetric Assay 

Legumain probe AD17 (8) was incubated with rh-legumain at 37oC for 110min during its 

fluorimetric assay [Figure 2.38] which was under the same conditions as for TL11 (3).  
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Figure 2.38. Relative fluorescence intensity release with time from the incubation of legumain 

probe AD17 (8) (10µM) with recombinant human legumain (40ng) in legumain assay buffer, pH 

5.0, λex 492nm, λem 520nm (Mean values ± SD from triplicates from one experiment are presented) 

Fluorimetric assay indicated that probe AD17 (8) can be successfully cleaved by activated 

legumain as had been expected. From Figure 2.38, it showed that after one hour 

incubation with activated legumain, the increase of fluorescence intensity started to slow 

down and almost reached the maximum after 100min.  

2.3.4.3.5 AD20 (9) Fluorimetric Assay 

Under the same conditions as TL11 (3), legumain probe AD20 (9) was incubated with 

legumain at 37oC for 110 minutes during its fluorimetric assay [Figure 2.39].  

 

Figure 2.39. Relative fluorescence intensity release with time from the incubation of legumain 

probe AD20 (9) (10µM) with recombinant human legumain (40ng) in legumain assay buffer, pH 

5.0, λex 492nm, λem 520nm (Mean values ± SD from triplicates from one experiment are presented) 
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AD20 (9) fluorimetric assay showed similar results to TL11 (3); this indicated that AD20 

(9) can also be cleaved by activated legumain to release fluorescence. However, it had 

been noticed that when compared with TL11 (3) [Figure 2.34], the maximum 

fluorescence that had been released from AD20 (9) incubation with activated legumain 

was 3000 RFU, which was almost 700 RFU higher than the one from TL11 (3) 

fluorimetric assay result when assayed simultaneously. Also, when comparing both 

graphs’ slopes during the first 10 minutes, the slope from AD20 (9) incubation is 1.3-fold 

greater than the slope from TL11 (3) incubation. This may suggest that replacing alanine 

with serine at the P2 position would improve the rate of conversion to its fluorescent 

product by the same amount of activated legumain under the same conditions.  

2.3.4.3.6 VG (10) Fluorimetric Assay 

Legumain probe VG (10) was incubated with legumain at 37oC for 110 minutes during 

its fluorimetric assay [Figure 2.40] which was under the same conditions as TL11 (3).  

 

Figure 2.40. Relative fluorescence intensity release with time from the incubation of legumain 

probe VG (10) (10µM) with recombinant human legumain (40ng) in legumain assay buffer, pH 5.0, 

λex 492nm, λem 520nm (Mean values ± SD from triplicates from one experiment are presented) 
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VG (10) fluorimetric assay result was very similar to AD17 (8). From Figure 2.40, it can 

be clearly noticed that after 30 minutes incubation with activated legumain, the increase 

of fluorescence intensity released from VG (10) started to slow down very quickly and 

reached its maximum around 1750 RFU after 50 minutes incubation. When compared 

with TL11 (3) the maximum fluorescence intensity released from VG (10) was 350 RFU 

lower than the one released from TL11 (3) fluorimetric assay result when assayed 

simultaneously. It was noted that the release of fluorescence from VG (10) was linear 

over 20 minutes, which could make it a suitable probe.        

2.3.4.3.7 PN11 (11) Fluorimetric Assay 

Under the same conditions as TL11 (3) fluorimetric assay, legumain probe PN11 (11) 

was incubated with legumain at 37oC for 110min during its fluorimetric assay [Figure 

2.41].  

 

Figure 2.41. Relative fluorescence intensity release with time from the incubation of legumain 

probe PN11 (11) (10µM) with recombinant human legumain (40ng) in legumain assay buffer, pH 

5.0, λex 492nm, λem 520nm (Mean values ± SD from triplicates from one experiment are presented) 
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Result from PN11 (11) fluorimetric assay showed that this rationally designed probe with 

one extra alanine at the P2’ position and a ‘missing’ P3 position in the tetrapeptide can 

still be successfully cleaved by activated legumain. When comparing both graphs from 

probes PN11 (11) and TL11 (3) during the first 10 minutes incubation, they both showed 

quite similar slopes.  

After comparing the slopes for all 5(6)-FAM labelled probes (TL11 (3), AD17 (8), AD20 

(9), VG (10) and PN11 (11)) during the first 10 minutes incubation with legumain, it 

suggests a slight preference for the P2 position in the legumain substrates is 

Ser>Ala>Thr≥Gly.  

2.3.4.3.8 FF (6) Fluorimetric Assay 

By applying the same method as TL11 (3) fluorimetric assay, legumain probe FF (6) was 

incubated with legumain at 37oC for 120 minutes during its fluorimetric assay [Figure 

2.42].  

 

Figure 2.42. Relative fluorescence intensity release with time from the incubation of legumain 

probe FF (6) (10µM) with recombinant human legumain (40ng) in legumain assay buffer, pH 5.0, 

λex 492nm, λem 520nm (Mean values ± SD from triplicates from one experiment are presented) 
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Result from FF (6) fluorimetric assay showed that the cleavage rate of FF (6) did not 

reach its maximum but showed a sign of slowing down after 2h incubation with activated 

legumain. And also, the fluorescence released from probe FF (6) during this 2h incubation 

was low.   

2.3.4.3.9 MK8 (7) Fluorimetric Assay 

Probe MK8 (7) was incubated with activated legumain at 37oC for 120 minutes during its 

fluorimetric assay [Figure 2.43] by applying the same method used for probe TL11 (3).  

 

Figure 2.43. Relative fluorescence intensity release with time from the incubation of legumain 

probe MK8 (7) (10µM) with recombinant human legumain (40ng) in legumain assay buffer, pH 5.0, 

λex 492nm, λem 520nm (Mean values ± SD from triplicates from one experiment are presented) 

The graph in Figure 2.43 is very similar to the one for TL11 (3) fluorimetric assay; 

however, it showed much less fluorescence intensity. MK8 (7) fluorimetric assay 

indicated that after 30 minutes incubation with activated legumain, the cleavage rate of 

MK8 (7) had slowed down significantly, and after one hour incubation, the cleavage rate 

reached its maximum.  
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2.3.4.4 TL11 (3), PN11 (11) and VG (10) probes Enzyme Kinetics Assay 

In order to find out which substrate peptide among TL11 (3), PN11 (11), VG (10) these 

three probes and legumain commercial substrate Z-AAN-AMC (24) can be cleaved faster 

by activated legumain and also which one has the higher binding affinity to legumain, an 

enzyme kinetics assay was carried out for probes TL11 (3), PN11 (11) and VG (10). The 

Michaelis-Menten equation υ=Vmax[S]/(Km+[S]), proposed by Michaelis and Menten and 

further improved by Briggs and Haldane (Johnson and Goody, 2011), is very important 

to enzyme kinetics. The equation has two constants: Vmax, the maximum velocity that an 

enzyme could achieve; and Michaelis-Menten constant Km which can indicate the binding 

strength of the enzyme to its substrate. From enzyme kinetics studies of these three probes, 

it would reveal which substrate can be converted into product by legumain faster than 

others and which one has higher binding affinity onto legumain.  

2.3.4.4.1 TL11 (3) Enzyme Kinetics Assay 

TL11 (3) and legumain were incubated at 37oC and emission spectra were recorded every 

2 minutes on a FluoStar Omega multi-mode Microplate Reader using carboxyfluorescein 

excitation and emission analytical wavelengths of 485nm and 520nm, respectively. 

Relative fluorescence intensities in triplicate wells D3~F9 were adjusted by subtracting 

relative fluorescence intensities from corresponding TL11 (3) concentration in wells 

A3~C9 (see section 2.7.5.1) (any background fluorescence). According to the equation y 

= 2864.6x + 237.99 which was obtained by plotting fluorescence intensity versus various 

concentrations of 5(6)-FAM-Pro-Ala-Asn-OH (the cleavage product from the incubation 
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of TL11 (3) with legumain) in Figure 2.36, relative fluorescence intensities were 

converted to its corresponding 5(6)-FAM-Pro-Ala-Asn-OH (26) concentration, which is 

also equal to the concentration of TL11 (3) that had been cleaved by legumain. Although 

the fluorophore cleavage products from PN11 (11) and VG (10) were 5(6)-FAM-Ala-

Asn-OH and 5(6)-FAM-Pro-Thr-Asn-OH, respectively, structurally different from 5(6)-

FAM-Pro-Ala-Asn-OH (26), equation y = 2864.6x + 237.99 from Figure 2.36 was still 

applied for both PN11 (11) and VG (10) enzyme kinetics assays. Therefore the 

relationship between fluorescence intensity and concentration is an approximation for 

PN11 (11) and VG (10). This approximation was deemed valid since the composition of 

the substrates was unlikely to have significant effects on the intensity of fluorescence 

from fluorescein labels, particularly in the early time points. Clearly, to afford 

comparisons with greater accuracy, authentic samples of each unique FAM-tripeptide 

would be required by synthesis. SigmaPlot 12 software was applied to analyse final data 

and plot a non-linear regression curve [Figure 2.44]. Vmax and Km were calculated by the 

enzyme kinetics tool in SigmaPlot 12. 

 

Figure 2.44. Non-linear regression curve of TL11 (3) reaction rates against various concentrations 

of TL11 (3) in legumain assay buffer, pH 5.0, λex 492nm, λem 520nm (n=3)   
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Parameters of TL11 (3) enzyme kinetics assay: 

 Value ± Std. Error 95% Conf. Interval 

Vmax 7.206×10-2 (µM/min) 3.879×10-3 6.384×10-2 to 8.028×10-2 

Km 1.4749 (µM) 0.4682 0.4822 to 2.4675 

Table 2.3. Parameters from TL11 (3) enzyme kinetics assay 

According to the recombinant human legumain/asparaginyl endopeptidase protocal 

(R&D systems, 2012), compound specific activity of legumain can be calculated by using 

following equation: 

𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜 𝐀𝐜𝐭𝐢𝐯𝐢𝐭𝐲 (𝐩𝐦𝐨𝐥/𝐦𝐢𝐧/µ𝐠) =
 𝑽𝒎𝒂𝒙 (µ 𝐌 𝐦𝐢𝐧⁄ ) × 𝐕 (µ𝐋)

𝐚𝐦𝐨𝐮𝐧𝐭 𝐨𝐟 𝐞𝐧𝐳𝐲𝐦𝐞 (µ𝐠) 
 

So, TL11 (3) specific activity of recombinant human legumain was 180.15 (pmol/min/µg). 

2.3.4.4.2 PN11 (11) Enzyme Kinetics assay 

Most literature reports, whenever discussing legumain substrates, despite different 

peptide sequences, they all have a few views in common: 1) asparagine is always at the 

P1 position due to the specific cleavage site of legumain; 2) peptide sequences in different 

legumain substrates always contain four amino acids from the P3 to P1’ positions. So, is 

it necessary to place one amino acid at the P3 position or will it still have the same enzyme 

activity with one amino acid that fits the P2’ position? With these questions in mind, the 

other legumain substrate PN11 (11) [Figure 2.45] was designed and synthesised.  
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Figure 2.45. Chemical structure of PN11 (11) 

PN11 (11) enzyme kinetics was carried out using the same method as TL11 (3). PN11 

(11) enzyme kinetics study result is shown in Figure 2.46.  

 

Figure 2.46. Non-linear regression curve of PN11 (11) reaction rates against various concentrations 

of PN11 (11) in legumain assay buffer, pH 5.0, λex 492nm, λem 520nm (n=3)   

Parameters of PN11 (11) enzyme kinetics assay: 

 Value ± Std. Error 95% Conf. Interval 

Vmax 4.092×10-2 (µM/min) 4.080×10-3 3.238×10-2 to 4.946×10-2 

Km 19.4982 (µM) 3.7909 11.5635 to 27.4328 

Table 2.4. Parameters from PN11 (11) enzyme kinetics assay 

PN11 (11) specific activity of recombinant human legumain can be calculated by using 

the specific activity equation as shown earlier. Hence, PN11 (11) specific activity of 

recombinant human legumain was determined as 102.3 (pmol/min/µg). 
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Wu et al. pointed out that although LEG-3 (1), succinyl-β-Ala-Ala-Asn-Leu-Dox [Figure 

2.2], has been proved to be a highly efficient legumain-activated prodrug, whereas its 

similar compound LEG-4 (27), succinyl-Ala-Asn-Leu-Dox [Figure 2.47] which is one 

alanine shorter, was ineffective. An In vivo study showed that after incubating with 

leguamin, LEG-4 (27) was not cleaved by legumain and hence it showed no antitumour 

activity at all (Wu et al., 2006).  
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Figure 2.47. Chemical structure of LEG-4 (27) 

Both PN11 (11) and LEG-4 (27) lack P3 position substituents in their peptide sequences, 

but PN11 (11) has one extra alanine at the P2’ position while LEG-4 (27) does not, so 

this gives PN11 (11) four amino acids in its peptide to fit in the P2, P1, P1’ and P2’ 

positions compared with LEG-4 (27) with three amino acids in its peptide from the P2 

position to the P1’ position. Further studies showed that after incubating with legumain, 

PN11 (11) can be cleaved by this asparagine endopeptidase while LEG-4 (27) stays 

inactive. This may indicate that the P3 and the P2’ positions in the legumain substrate do 

not necessarily require occupation by amino acids, as long as asparagine is at the P1 

position and the whole peptide has at least four amino acids, then this substrate should be 

able to be cleaved by legumain.  



181 

 

2.3.4.4.3 VG (10) Enzyme Kinetics assay 

Based on the success of probe TL11 (3), a new probe was designed with slightly modified 

substrate peptide sequence. According to the MEROPS database website (Rawlings, 

Barrett and Bateman, 2012), the most popular amino acid at the P2 position is threonine. 

In order to find out whether threonine at the P2 position can improve substrate specific 

activity or not, in VG (10) [Figure 2.48], the sequence was kept the same as TL11 (3); 

just simply replaced alanine with threonine at the P2 position.  
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Figure 2.48. Chemical structure of VG (10) 

VG (10) enzyme kinetics assay followed the same protocol as TL11 (3) enzyme kinetics 

assay; the result is shown in Figure 2.49.  

 

Figure 2.49. Non-linear regression curve of VG (10) reaction rates against various concentrations of 

VG (10) in legumain assay buffer, pH 5.0, λex 492nm, λem 520nm (n=3)   

Parameters of VG (10) enzyme kinetics assay: 
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 Value ± Std. Error 95% Conf. Interval 

Vmax 2.138×10-2 (µM/min) 1.955×10-3 1.724×10-2 to 2.553×10-2 

Km 10.7329 (µM) 2.6160 5.1872 to 16.2786 

Table 2.5. Parameters from VG (10) enzyme kinetics assay 

The specific activity equation was used to calculate VG (10) specific activity of 

recombinant human legumain. Hence, VG (10) specific activity of recombinant human 

legumain is 53.45 (pmol/min/µg). 

 P3 P2 P1 P1’ P2’ Vmax(µM/min) Km(µM) 

Specific 

Activity 

(pmol/min/µg) 

TL11 (3) Pro Ala Asn Leu  0.072 1.47 180 

PN11 (11)  Ala Asn Leu Ala 0.041 19.50 102  

VG (10) Pro Thr Asn Leu  0.021 10.73 53 

Table 2.6. Structure and enzyme kinetics assay parameters of TL11 (3), PN11 (11) and VG (10) 

Enzyme kinetics assay revealed that TL11 (3) was the best legumain substrate when 

compared with PN11 (11) and VG (10), due to TL11 (3) specific activity of legumain 

(180pmol/min/µg) was almost 1.8 times greater than PN11 (11) which had a specific 

activity value of 102 (pmol/min/µg) and approximately 3.4-fold greater than VG (10) 

(53pmol/min/µg). TL11 (3) and PN11 (11) are very alike legumain substrates; both have 

5(6)-carboxyfluorescein (5) as fluorophore and the same AQ-spacer. However, PN11 (11) 

does not have an amino acid that is placed at the P3 position in the peptide sequence 

whereas TL11 (3) has proline fitted in the same position, and also PN11 (11) has an extra 

alanine at the P2’ position which is absent in TL11 (3). This could indicate that having 
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proline at the P3 position of a legumain substrate, can increases specific activity by almost 

2-fold. The only difference between TL11 (3) and VG (10) is the amino acid at the P2 

position. From the enzyme kinetics assay, it indicated that alanine at the P2 position can 

improve legumain substrate specific activity by more than 3-fold when compared with 

threonine at the P2 position.  

In enzyme kinetics assay, Vmax indicates the rate that a substrate can be converted into 

product(s) once bound to the enzyme. Hence from data in Table 2.6, it shows that TL11 

(3) can be cleaved by legumain to release fluorescence 1.8-fold faster than substrate PN11 

(11) and > 3-fold than VG (10). This may suggest a preference for the P2 position: 

Ala>Thr in substrates. Km is the concentration of substrate at which ½ Vmax is achieved 

and it represents the concentration of substrate at which half of the enzyme active sites 

have been filled with substrate. Hence, Km indicates how effectively the enzyme would 

bind with substrate. So, in order to bind with the same amount of enzyme, the 

concentrations of substrate PN11 (11) and VG (10) were almost 13 fold and 7 fold higher 

than the concentration that was needed for TL11 (3) respectively.  

When one compares Vmax for substrate PN11 (11) and VG (10), it was shown that PN11 

(11) can be converted into products by legumain almost twice as fast than VG (10), 

however, the Km value for both substrates indicated that PN11’s (11) legumain affinity is 

only about 50% of VG (10) legumain affinity.  

According to the R&D systems recombinant human legumain/asparaginyl endopeptidase 

protocol, the specific activity for commercial (fluorogenic, but non-FRET) substrate, Z-

AAN-AMC (24) is greater than 250 (pmol/min/µg) (R&D systems, 2012). So, from 
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Table 2.6, the data shows that none of those substrates synthesised in this laboratory have 

better specific activity for recombinant human legumain, than commercial substrate Z-

AAN-AMC (24). However, Mathieu and colleagues reported that Km value for Z-AAN-

AMC (24) binding with recombinant human legumain is 80±6 µM, while in Table 2.6 it 

clearly shows that all Km values for those three substrates designed and synthesised are 

much smaller than 80±6 µM (Mathieu et al., 2002). This could suggest that all three 

substrates designed and synthesised in this laboratory, especially TL11 (3), have much 

higher affinity with recombinant human legumain than Z-AAN-AMC (24). Hence, 

adding Leu at the P1’ position in substrate can improve substrate’s affinity for legumain. 

The commercial substrate is unsuitable for working in biological matrixes (cells; tissues) 

because the matrix infers with the spectral properties of the fluorogenic probe. A major 

advantage of the FRET-based probes here is that methods for studying fluorescein 

fluorescence from biological matrixes is well established in molecular biology. 

2.3.4.5 TL3 (16) and TL11 (3) Cytotoxicity and Proliferation Assays 

In cytotoxicity and proliferation assays, several methods can be used to check the number 

of viable cells. The most reliable and direct method is treating the sample cells with a 

vital dye, for instance, trypan blue followed by using a hemocytometer and microscope 

to count the remaining viable cells at the end of an assay. Due to it is quite time consuming, 

it is not suitable for a large number of samples (Riss and Moravec, 1996). Luminescence 

and colorimetric based assays would allow viable cells counting directly by using ELISA 

plate reader or a microtiter plate reader (Weyermann et al., 2005).  
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Scheme 2.5. LDH Assay 

Quantitative lactate dehydrogenase (LDH), shown in scheme 2.5, a stable cytosolic 

enzyme that can be released during cell lysis, was measured in the LDH assay. In culture 

supernatants, released LDH was measured with a half an hour coupled enzymatic assay, 

which involves two steps. First, the released LDH from lysed cells catalyse conversion of 

lactate to pyruvate, from which NAD+ is reduced to NADH. Then, diaphorase, a catalyst 

transfers H (hydride) from NADH to a tetrazolium salt 2-(4-iodophenyl)-3-(4-

nitrophenyl)-5-phenyltetrazolium chloride (INT), which results a red formazan 

compound. The amount of red formazan product that had been generated could be used 

to indicate the number of lysed cells.  

 

Scheme 2.6. MTS assay 

The MTS assay is a colorimetric method that is applied to determine the amount of viable 

cells in chemosensitivity or proliferation assays. During cellular metabolism [Scheme 
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2.6], NAD+ would be reduced by dehydrogenase enzymes to NADH, which can donate 

electrons to an electron transfer reagent (ETR) phenazine methosulfate (PMS). Reduced 

ETR then can reduce tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS), into a 

deeply coloured formazan product which is soluble in tissue culture medium (Riss and 

Moravec, 1996). 

The toxicity of probes TL11 (3) and TL3 (16), the product from TL11 (3) after cleavage 

by legumain, were tested in both cytotoxicity and proliferation assays.  

 

Figure 2.50. TL3 (16) and TL11 (3) LDH Assay (measured at 492nm, n=3) 

From Figure 2.50, the data illustrated that during an LDH cytotoxicity assay, after 4h 

incubation with MCF-7 breast cancer cells, both TL3 (16) and TL11 (3) acted quite 

similarly. Lower concentrations (0.01~10µM) of both compounds showed very low 

cytotoxicity to MCF-7 breast cancer cells, however, at high concentration of 100µM, TL3 

(16) revealed over 8 fold cytotoxicity when compared with lower concentrations, and the 

cytotoxicity of TL11 (3) at 100µM was approximately 2-fold greater than at the lower 

test concentrations; neither compound showing a significant cytotoxic effect. This result 

indicated that both TL3 (16) and TL11 (3) had low cytotoxic activity at lower 
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concentrations till they reached a higher concentration at 100µM. This value would 

normally be regarded as a poorly cytotoxic compound; this is important for the 

compounds to act as probes of the biomarker legumain. 

 

Figure 2.51. TL3 (16) and TL11 (3) MTS Cell Proliferation Assay (measured at 492nm, n=3) 

From data in Figure 2.51 it was shown that after 4h incubation with TL3 (16), MCF-7 

breast cancer cells revealed similar viabilities. With increasing TL3 (16) concentration, 

results showed decreasing cell viabilities; however the rate of cell viability inhibition was 

not very significant until the anthraquinone leucine conjugate TL3 (16) concentration had 

been increased up to 10 and 100µM. On the other hand, during the (legumain) probe TL11 

(3) MTS assay, no inhibition of MCF-7 cell growth was observed from 4h incubation.  

2.3.5 New approach to design and synthesis of legumain probes 

Fluorescence intensity assay showed that almost no background fluorescence was 

released from TL11 (3). This may have been due to TL11 (3) being very pure 

(chromatographically homogeneous); that it had no 5(6)-carboxyfluorescein (5) present 

at all. Also, it proved that fluorescence from the fluorophore 5(6)-carboxyfluorescein can 

be quenched efficiently by the aminoanthraquinone, the ‘dark quencher’. This newly 
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designed substrate of biomarker legumain, TL11 (3) was very sensitive when treated with 

legumain which confirmed that the enzyme can successfully cleave at the C-terminal side 

of asparagine on the tetrapeptide chain of TL11 (3). After cleavage, the fluorophore is no 

longer be attached to the ‘dark quencher’ anthraquinone; hence fluorescence can be 

released and detected. Cytotoxicity and proliferation assays showed that TL11 (3) had 

low cytotoxic activities on MCF-7 cells until higher concentrations were used (and then 

only above the concentration that the probe has been determined to be effective; 10µM). 

All of these showed that probe TL11 (3) has the potential for use in the diagnosis and 

prognosis of breast cancer by targeting legumain.  

2.3.5.0 Design of epirubicin labelled legumain prodrug/probes 

As epirubicin has already been proved and applied as an efficient clinical anti-cancer in 

the treatment of breast cancer and its chemical structure has a coloured anthraquinone 

chromophore which makes it a potential ‘dark quencher’ for 5(6)-carboxyfluorescein (5) 

or other fluoro groups. Thus, it would perhaps be possible to synthesise a new probe based 

on the success of TL11 (3) that can have a fluorophore at one end, a similar or the same 

tetrapeptide chain in the middle as a linker which contained asparagine at the P1 position, 

and clinically proven epirubicin at the other end. In theory, when this ideal probe is 

delivered into the tumour environment which contains overexpressed legumain, this 

probe would be cleaved at the carboxyl end of asparagine by legumain to deliver the 

active drug. Without connection to the ‘dark quencher’ epirubicin, fluorescence can be 

released from the fluorophore again to indicate on the one hand, the presence of tumour 

cells expressing legumain (a diagnostic role); and on the other hand, epirubicin can work 
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as the clinically-effective anti-cancer agent to target tumour cells (hence constituting a 

combined theranostic probe/prodrug).  

It has been learned that the stage of coupling epirubicin is very crucial, in that it would 

be better to couple epirubicin onto any other compounds at the very last stage in any 

prodrug synthesis. From previous experiences gained during coupling epirubicin 

(explained in part in Chapter one of this thesis), it was shown that the widely used 

coupling reagents HOBt and TBTU could cause complex reaction mixtures in the 

coupling stage and would not help epirubicin to form the final product. In order to avoid 

using coupling reagents, it would be better and easier to couple epirubicin onto an 

activated ester compound which would ideally be OPFP or OSu esters, so only a base at 

most e.g. DIPEA, would be required during coupling the peptide to the amino group of 

the sugar in epirubicin; no other reagents would be necessary.  

Unprotected side chain asparagine can undergo a dehydration reaction, during which the 

free primary amide in the side chain would form a nitrile (cyanide) group, hence the 

structure of asparagine will be altered and legumain can no longer recognise its cleavage 

site in the peptide chain. Some studies suggested that DCC (Kashelikar and Ressler, 1964; 

Paul and Kende, 1964), a typical reagent that has been used for making an OPFP ester; 

or using TBTU alone while coupling free side chain asparagine can cause the dehydration 

in the free side chain. So, in order to make an OPFP ester compound, the primary amide 

on the side chain of asparagine might have to stay in the protected form. Once the OPFP 

ester compound has been synthesised, then the trityl protecting group on the side chain of 

asparagine can be removed by treating with neat TFA, however, there is a chance that the 
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OPFP ester bond might not survive under neat TFA strong acid condition, unless trace 

water is strictly excluded. So, one ‘mini test reaction’ was carried out to see whether the 

OPFP ester bond would be stable in such conditions or not.  

O

O

NH C O

O

F F

F

FF

 
Figure 2.52. Pentafluorophenyl 6-[(1-anthraquinone)amino]hexanoate (28)  

Pentafluorophenyl 6-[(1-anthraquinone)amino]hexanoate (28) [Figure 2.52] was chosen 

as a model compound for this mini test reaction. It was treated with neat TFA for one 

hour, and then it was compared with this OPFP compound without TFA treatment. On 

the TLC plate, no differences between this AQ-spacer-OPFP compound before or after 

TFA treatment were observed. A further investigation was carried on as well, after TFA 

treatment, pentafluorophenyl 6-[(1-anthraquinone)amino]hexanoate (28) was reacted 

with an available anthraquinone-pentapeptide conjugate, NU:UB 363 (29) which has an 

amine group at the end of its structure, and then the product was compared with the 

product from reaction of this OPFP-spacer-AQ compound without treatment of TFA 

reacted with NU:UB 363 (29). TLC results showed both products from these two 

reactions were the same, but the reaction products were not completely clean. This 

indicated that the OPFP ester bond might survive in neat TFA strong acid condition and 

after treatment, the OPFP ester compound could still be functional for further reaction. 

Based on this investigation, OPFP succinate Asn-Leu-[PEG Spacer]-AQ ester [YD93] 

(30) was synthesised and hopefully it could react with another component that has a free 
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amino end after this OPFP ester had been treated with neat TFA to remove trityl 

protecting group on the side chain of asparagine. 

In Scheme 2.7, it is outlined that initially in the synthesis of Epi-succinyl-dipeptide 

spacer-anthraquinone compound YD98 (31), it was designed to couple epirubicin with 

OPFP ester. However, a small-scale reaction (‘mini test’) showed that OPFP ester YD93 

(30) was not reactive, so succinyl-dipeptide spacer-anthraquinone compound YD91 (32) 

was deprotected by removing trityl protecting group from asparagine side chain, and then 

followed by converting it into an OSu ester YD97 (33), which later on was shown to 

couple with epirubicin successfully, confirmed by its mass spectrum.  

LeuAsn(Trt)H2N Spacer AQ

[TL5] (18)

LeuAsn(Trt)Succinyl Spacer AQ

LeuAsn(Trt)SuccinateOPFP Spacer AQ

[YD92] (34)

[YD91] (32)

[YD93] (30)
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Spacer AQ

AsnSuccinyl Leu

AsnSuccinylOSu Leu

 

Reagents and conditions: (i) succinic anhydride, DMF, DIPEA, RT, overnight. (ii) DCC, OPFP, DMAP, 

CH2Cl2, RT, 3h. (iii) TFA, RT, 1h. (iv) TFA, RT, 40min. (v) TSTU, DMAP, DMF, RT, 30min. (vi) 

Epirubicin hydrochloride, DMF, DIPEA, RT, 1h. 

Scheme 2.7. New approach to synthesis of legumain-activated potential clinical prodrug YD98 (31) 
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2.3.5.1 Synthesis of succinate Asn(Trt)-Leu-[PEG Spacer]-AQ [YD 91] (32) 
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Figure 2.53. Chemical structure of succinate Asn(Trt)-Leu-[PEG Spacer]-AQ YD91 (32)  

Succinate Asn(Trt)-Leu-[PEG Spacer]-anthraquinone YD91 (32) [Figure 2.53] was 

synthesised by treating Fmoc-Asn(Trt)-Leu-[PEG Spacer]-anthraquinone TL4 (17) with 

20% piperidine in DMF to remove the Fmoc protecting group from asparagine, then 

Asn(Trt)-Leu-[PEG Spacer]-anthraquinone TL5 (18) was reacted with succinic anhydride 

in DMF followed by adding DIPEA as base in this reaction [Scheme 2.7]. Overnight, 

after confirmation on TLC plates that this reaction had completed, YD91 (32) reaction 

solution was then added drop wise into a saturated solution of sodium hydrogen sulphate. 

A dark red precipitate was formed immediately which was then filtered and washed with 

water, and dried.  

2.3.5.2 Synthesis of OPFP succinate Asn-Leu-[PEG Spacer]-AQ ester [YD 93] (30) 
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Figure 2.54. Chemical structure of OPFP succinate Asn-Leu-[PEG Spacer]-AQ ester YD93 (30)  

YD93 (30)   

YD91 (32) 
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Succinate Asn(Trt)-Leu-[PEG Spacer]-anthraquinone YD91 (32) [Figure 2.53] was 

reacted with pentafluorophenol in dichloromethane, by using DCC as coupling reagent 

and DMAP as base in this reaction to form the OPFP succinate Asn(Trt)-Leu-[PEG 

Spacer]-anthraquinone ester YD92 (34). When the reaction was confirmed by TLC, 

crystals of DCU were filtered off and the reaction solution was evaporated to dry without 

any purification. Then this OPFP ester was treated with neat TFA for one hour at room 

temperature, the progress of this reaction was monitored on TLC plate. When it was 

finished, TFA was evaporated and the sticky product was treated with diethyl ether to 

help it to precipitate [Scheme 2.7]. 

Once this OPFP succinate Asn-Leu-[PEG Spacer]-anthraquinone ester YD93 (30) 

[Figure 2.54] was dried and collected, it was then reacted with 10-demothoxy-10-(3-

aminopropyl)aminocolchicine in DMF, followed by adding DIPEA as base. However, on 

TLC, it was shown that this reaction did not happen at all because there was no new 

product spot that was expected to form; only starting material was found on TLC. This 

may suggest that the OPFP ester did not survive in neat TFA treatment for further reaction.  

Instead of treating ester compound in neat TFA conditions while removing trityl 

protecting group on the side chain of asparagine, the trityl protecting group was removed 

first, then attempts were made to convert this compound containing unprotected 

asparagine into an ester. As the study had shown that unprotected asparagine would not 

survive in the reaction when DCC was present, during synthesis of the OPFP ester, TSTU 

was applied to convert this succinate Asn-Leu-[PEG Spacer]-anthraquinone to an OSu 

ester. 
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2.3.5.3 Synthesis of OSu succinate Asn-Leu-[PEG Spacer]-AQ ester [YD97] (33) 
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Figure 2.55. Chemical structure of OSu succinate Asn-Leu-[PEG Spacer]-AQ ester YD97 (33)  

The OSu succinate Asn-Leu-[PEG Spacer]-anthraquinone ester YD97 (33) [Figure 2.55] 

was synthesised by removing the trityl protecting group from YD91 (32) [Figure 2.53] 

in the treatment with neat TFA. Then, the dried dark red product was mixed with TSTU 

and DMAP in DMF to form the final OSu ester YD97 (33) [Scheme 2.7].     

2.3.5.4 Synthesis of epirubicin succinate Asn-Leu-[PEG Spacer]-AQ [YD98] (31) 
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Figure 2.56. Chemical structure of Epi-succiniyl-dipeptide spacer-AQ compound YD98 (31)  

This model compound epirubicin succinate Asn-Leu-[PEG Spacer]-anthraquinone YD98 

(31) [Figure 2.56] was synthesised by mixing OSu ester YD97 (33) [Figure 2.55] with 

epirubicin hydrochloride in DMF, followed by adding DIPEA into this reaction mixture. 

The progress of this reaction was monitored by TLC. When it was completed, YD98 (31) 

was purified by applying onto a thick layer silica gel preparative chromatography plate 

[Scheme 2.7].  

YD98 (31) 

YD97 (33) 
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Monitoring the preparative plate of YD98 (31), there was only one clear new dark red 

spot which was formed from this reaction, and also, the mass spectrum [Figure 2.57] 

confirmed this epirubicin succinate Asn-Leu-[PEG Spacer]-anthraquinone YD98 (31) 

structure was correct. The ES(+) mass spectrum displayed a signal at m/z 1207.4707 

corresponding to (M+H)+, which confirmed the YD98 (31) molecular mass of 1206. 

Hence, the method of using TSTU to convert the carboxylic acid end of a compound into 

an OSu ester is an alternative way to couple with epirubicin successfully in a short period 

time without forming many major by-products. 

2.3.5.5 Mass Spectral Characterisation of YD98 (31) 

This model compound epirubicin succinate Asn-Leu-[PEG Spacer]-anthraquinone 

[YD98] (31) was characterised by using nanoelectrospay positive ionisation mass 

spectrometry. 

 
Figure 2.57. Mass Spectrum of YD98 (31) 

In the model compound YD98 (31) positive ionisation mass spectrum, there was a signal 

at m/z 1207.4707 (100%) corresponding to (M+H)+, also the theoretical isotope model 

(M+H)+ 
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matched the observed data which proved the model compound YD98 (31) had the correct 

structure. 

Because this model compound reaction having worked very well, carboxyfluorescein-

tetra peptide-epirubicin compound YD101 (36) [Figure 2.58] synthesis was attempted, 

based on the same synthetic method of making model compound epirubicin succinate 

Asn-Leu-[PEG Spacer]-anthraquinone YD98 (31).  
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Figure 2.58. Chemical structure of 5(6)-FAM-Pro-Ala-Asn-Leu-epirubicin [YD101] (36)  

In the previous experience gained in this lab, it was not easily feasible to attach 5(6)-

carboxyfluorescein (5) onto a peptide by using SPPS methods, however, if 5(6)-

carboxyfluorescein (5) was joined with an amino acid (here, proline) first, then this 

conjugate would be able to couple onto a peptide by using the SPPS method.  

YD101 (36) 
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Reagents and conditions: (i) 20% piperidine in DMF, RT, 30min. (ii) Fmoc-Asn(Trt)-OH, PyBOP, DMF, 

DIPEA, RT, 1h. (iii) Fmoc-Ala-OH, PyBOP, DMF, DIPEA, RT, 1h. (iv) H-Pro-OtBu.HCl, DMF, DIPEA, 

RT, 2h. (v) TFA, RT, 3h. (vi) 5(6)-FAM-Pro-OH (53), PyBOP, DMF, DIPEA, RT, 2h. (vii) 0.5%~2.5% 

TFA, RT, 2 days. (viii) TFA, RT, 1.5h. (ix) TSTU, DMAP, DMF, RT, 1.5h. (x) epirubicin hydrochloride, 

DMF, DIPEA, RT, 1h.  

Scheme 2.8. Attempted synthesis of legumain fluorogenic probe/ potential clinical prodrug YD101 (36) 
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2.3.5.6 Synthesis of 5(6)-FAM-Pro-Ala-Asn(Trt)-Leu-OH [YD95] (37) 
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Figure 2.59. Chemical structure of 5(6)-FAM-tetrapeptide-OH compound YD95 (37)  

The tripeptide Ala-Asn-Leu-OH was synthesised by using an SPPS method. Because 

unprotected asparagine may undergo a dehydration reaction on the side chain through the 

SPPS process and normal coupling reactions, Fmoc-Asn(Trt)-OH was applied during this 

tripeptide synthesis. Because common SPPS resins, such as Wang resins, require high 

concentration of TFA at the very last stage to cleave off the peptide from resins, and in 

order to keep the trityl protection group on the side chain of asparagine through the 

cleavage stage during the SPPS process, NovaSyn®TGT resins (40) [Figure 2.60] were 

applied.  
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Figure 2.60. NovaSyn®TGT resins (40) 

Peptides attached to NovaSyn®TGT resins (40) can be cleaved off by treatment with 0.5% 

TFA in dichloromethane to give protected peptide compounds without harming sensitive 

side chain protecting groups. However, the downside of NovaSyn®TGT resins (40) is that 

normally the first amino acid loading on this kind of resins is quite low, around 0.1-

YD95 (37) 
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0.3mmol/g. On appositive note, due to low loading on NovaSyn®TGT resins (40), amino 

acids or peptides could ‘spread out’ on the surface of each resin bead easily and give more 

space for the in-coming amino acids to attach efficiently, and this could make peptide 

synthesis on this kind of resin easier when compared with high loading resins.  

Once the yellow fluo-protected, 5(6)-FAM-Pro-OH (41) had coupled onto Ala-Asn(Trt)-

Leu-OH tripeptide, the typical colour test reagents would not be suitable for the detection 

of un-reacted tripeptide. This is because the red colour test reagent [pentafluorophenyl-6-

((1-anthraquinone)amino)hexanoate] (28), an OPFP ester, could react with two phenol 

groups on 5(6)-carboxyfluorescein (5) and then show red colour on the resin beads to give 

a false indication that this coupling has not completed yet. Given the trityl protecting 

group on the side chain of asparagine is UV active under UV light, which will show a 

dark spot, the completion of this final 5(6)-FAM-Pro-OH (41) coupling onto peptide-

resin was monitored by taking a few beads from the SPPS reaction vessel, treating them 

with 0.5% TFA in dichloromethane to cleave everything off from the resin beads, spotting 

the solution onto a TLC plate and checking under UV light to see if there was any dark 

UV active spot that had no fluorescence at all on the bottom of the TLC plate. The dark 

UV active spot with no fluorescence indicated uncoupled tripeptide Ala-Asn(Trt)-Leu-

OH, so if the coupling of 5(6)-FAM-Pro-OH (41) onto NovaSyn®TGT resins (40) 

containing tripeptide Ala-Asn(Trt)-Leu-OH had completed, there should be only one 

yellow fluorescent spot appearing on the TLC plate under UV light without any trace of 

dark spot on the bottom. When the coupling reaction was completed, yellow resin beads 

were then first treated with 0.5% TFA in dichloromethane every 20 minutes, however, a 

few hours later, fractions from the SPPS vessel still showed spots with very strong yellow 
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fluorescence, so the percentage of TFA in dichloromethane was then increased up to 2.5%. 

After almost two days of TFA treatment to cleave 5(6)-FAM-Pro-Ala-Asn(Trt)-Leu-OH 

YD99 (38) off from NovaSyn®TGT resins (40), the resin beads were still yellow, however, 

the fractions from SPPS vessel showed a very week yellow colour. Then all fractions 

were combined and evaporated to dryness [Scheme 2.8].  

2.3.5.7 Synthesis of 5(6)-FAM-Pro-Ala-Asn-Leu-OSu ester [YD100] (39) 
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Figure 2.61. Chemical structure of 5(6)-FAM-tetrapeptide-OSu ester YD100 (39)  

After cleavage from resin beads and evaporation to dryness, 5(6)-FAM-tetrapeptide YD 

95 (37) [Figure 2.59] was then treated with neat TFA to remove the side chain trityl 

protecting group on asparagine. The structure of this free side chain tetrapeptide, 5(6)-

FAM-Pro-Ala-Asn-Leu-OH YD99 (38) was confirmed by it ES(-) mass spectrum which 

displayed a signal at m/z 770.2667 for the fragment (M-H)- [Figure 2.62].  

 
Figure 2.62. Mass Spectrum of free side chain 5(6)-FAM-Pro-Ala-Asn-Leu-OH YD99 (38) 

YD100 (39) 

(M-H)- 
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This deprotected conjugate was then reacted with TSTU in DMF by using DMAP as base 

in this reaction, based on the successful synthesis of the OSu succinate Asn-Leu-[PEG 

Spacer]-anthraquinone ester YD97 (33), to synthesise 5(6)-FAM-tetrapeptide-OSu ester 

YD100 (39) [Figure 2.61], [Scheme 2.8]. 

2.3.5.8 Attempted synthesis of 5(6)-FAM-Pro-Ala-Asn-Leu-epirubicin [YD101] (36) 
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Figure 2.63. Chemical structure of 5(6)-FAM-Pro-Ala-Asn-Leu-epirubicin YD101 (36) 

5(6)-FAM-Pro-Ala-Asn-Leu-OSu YD100 (39) [Figure 2.61] was mixed with epirubicin 

hydrochloride in DMF, followed by adding DIPEA as base into this reaction [Scheme 

2.8]. One hour later, the progress of this reaction was checked on TLC, which showed a 

few new spots and among those new spots, there was a very strong orange spot which 

suggested that it could be the target compound. This assumed orange ‘correct’ compound 

was purified by thick layer chromatography. However, this chromatographically pure 

orange compound from thick TLC plate was later on proved not to be the correct 

compound as had been expected. When it was incubated with legumain, there was no sign 

of fluorescence that released; when it was treated with proteinase K, fluorescence 

intensity was barely increased. From the UV-Vis spectrum, it indicated that a fluorescein-

based fluorophore was not a part of the structure of this orange compound isolated.  

YD101 (36) 
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2.3.5.9 Synthesis of Boc-Asn-[Propyl Spacer]-anthraquinone: investigation into 

suitable methods for coupling side-chain unprotected asparagine 

A previous attempt to couple side chain unprotected Boc-Asparagine-OH to the propyl 

spacer-anthraquinone compound resulted in formation of the dehydration product [AT26] 

(42) [Figure 2.64]. The reaction conditions were: Boc-Asn-OH, DCC, pentafluorophenol 

in ethyl acetate to give the OPFP active ester which was then reacted with the AQ-propyl 

spacer in DMF to give the dehydration product, AT26 (42) [Note: The asparagine 

conjugate was successfully synthesised by use of Fmoc-Asn(Trt)-OH] (Turnbull, 2003).  
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Figure 2.64. Dehydration product AT26 (42) 

Merck synthesis notes report that it is possible to incorporate asparagine without side 

chain protection and that formation of the undesirable dehydration product (nitrile) can 

be minimised by addition of HOBt to the coupling reaction (this side reaction occurs with 

many different coupling agents i.e. PyBOP, HBTU, carbodiimides).  

Although coupling of epirubicin to anthraquinone-peptides containing side-chain 

unprotected asparagine was achieved using TSTU, this method has proved to be 

problematic with carboxyfluorescein derivatives, hence, the need to investigate the use of 

alternative peptide coupling methods. Previously, we have successfully coupled 

epirubicin to N-protected peptides using standard TBTU, HOBt, DIPEA methods 
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(DiSalvo, 2004). The epirubicin-peptide conjugates were obtained in reasonable yield 

(30-50%) and we have also shown that standard TBTU, HOBt, DIPEA coupling methods 

are compatible with carboxyfluorescein. 
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0.05g, 1eq
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TBTU, 1.1eq
HOBt, 1.2eq
DIPEA, 3.5eq

DMF, RT, 12h

O

O

NH NH2

AQ-Propyl Spacer-Asn-Boc

OCH3

CH3

CH3

C

O

O

O

NHCOHNHN

NH2

O

 

Scheme 2.9. Synthesis of Boc-Asn-[Propyl Spacer]-anthraquinone 

After 12 hours, there was little evidence on TLC of any product formation; additional 

reagents were added and DIPEA was added from a newly opened bottle, TLC (chloroform: 

methanol, 9:1) showed formation of a major new product with very little formation of the 

dehydration product [AT26] (42). The product was purified by solvent extraction and 

column chromatography. The column (2.2cm×12cm) was prepared using chloroform and 

eluted using gradient elution with chloroform and ethyl acetate by increasing ratio from 

9:1 to 4:1, additional methanol was added to increase solvent polarity.  

2.3.5.10 Synthesis of 5(6)-FAM-β-Ala-Pro-Ala-Gly-Nva-Pro-Asn-[Propyl 

Spacer]-AQ [YD103] (43) 
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Figure 2.65. Chemical structure of 5(6)-FAM-heptapeptide-spacer-AQ YD103 (43) 

YD103 (43) 



204 

 

Boc Asn OH

AsnBoc Spacer AQ

(i)

ii)

YD103] (43) 

Propyl Spacer AQ 

O

O

OH OH

O
C

O

NH
CON

CONH CONH CONH CON
O

O

NHCOHNCONH

NH2

O

5(6) FAM      Ala    Pro     Ala    Gly    Nva    Pro     Asn        Spacer      AQ

Legumain cleavage site

 

Reagents and conditions: (i) TBTU, HOBt, DIPEA, DMF, RT, 12h. (ii) 5(6)-FAM-β-Ala-Pro-Ala-Gly-

Nva-Pro-OH, TBTU, HOBt, DIPEA, DMF, RT, 1h.  

Scheme 2.10. Synthesis of 5(6)-FAM-heptapeptide-spacer-AQ YD103 (43) 

There are two motivations to synthesise this fluoro-peptide-propyl spacer-AQ compound 

YD103 (43). First, it was designed to prove that a fluorophore peptide conjugate can 

couple onto an unprotected asparagine compound by using standard TBTU, HOBt, 

DIPEA coupling methods; second, in most papers, the authors mentioned that legumain 

has the specific cleavage spot at the carboxyl end of asparagine (Chen et al., 1998; Chen 

et al., 2000; Stern et al., 2009) and there was always an extra amino acid at the P1’ 

position (usually Leucine) (Liu et al., 2003), however, they did not discuss if the presence 

of extra amino acid at the P1’ position or the peptide chain has more than four amino 

acids is necessary or crucial during legumain cleavage.  

Asn-[Propyl Spacer]-AQ TFA salt was dissolved in DMF and treated with DIPEA first, 

to convert this TFA salt to a free base compound, then it was mixed with 5(6)-FAM-β-

Ala-Pro-Ala-Gly-Nva-Pro-OH. This reaction was kept at room temperature for 1h. The 

final compound was extracted with chloroform and water, and purified by loading onto a 

thick layer chromatography plate.  
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2.3.5.10.1 Mass Spectral Characterisation of YD103 (43) 

5(6)-FAM-heptapeptide-spacer-AQ YD103 (43) was analysed by nanoelectrospray 

ionisation in both negative and positive modes. It was shown that negative ion mode was 

preferred to positive ion mode for YD103 (43).  

 
Figure 2.66. Nanoelectrospray Negative Ionisation Mass Spectrum of YD103 (43) 

 

Figure 2.67. Nanoelectrospray Positive Ionisation Mass Spectrum of YD103 (43) 

In the nanoelectrospray negative ionisation mass spectrum [Figure 2.66], a strong 

doubly-charged signal at m/z 621.2352 (100%) which indicated [(M-2H)/2]2- had been 

detected; whereas in the nanoelectrospray positive ionisation mass spectrum [Figure 

2.67], a signal (M+H)+ corresponding to the singly-charged ion at m/z 1245.4878 was 

[(M-2H)/2]2- 

(M+H)+ 
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also found. So, both of these two mass spectra proved YD103 (43) was the correct target 

structure.  

2.3.5.10.2 YD103 (43) Fluorimetric Assay 

The ability of YD103 (43) that it can be cleaved by activated legumain at the carboxyl 

end of asparagine in order to release fluorescence was determined by fluorimetric assay.  

During fluorimetric assay, after incubating with activated legumain at 37oC, YD103 (43) 

showed similar result [Figure 2.68] to TL11 (3) fluorimetric assay. In the first 20 minutes, 

the graph was quite linear; and after 55 minutes, the increase of fluorescence intensity 

was very low and the graph started to reach a plateau. This indicated that YD103 (43) can 

be cleaved by legumain at the carboxyl end of asparagine. The results from YD103 (43) 

fluorimetric assay showed that even though there was no amino acid at the P1’ position 

on the substrate and there were up to seven amino acids in the substrate peptide chain, 

legumain can still cleave at the C-end of asparagine.  

 

Figure 2.68. Relative fluorescence intensity release with time from the incubation of legumain probe 

(YD103) (43) (10µM) with recombinant human legumain (40ng) in legumain assay buffer, pH 5.0, 

λex 492nm, λem 520nm (Mean values ± SD from triplicates from one experiment are presented). 
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After fluorimetric assay, additional YD103 (43) was mixed and incubated with additional 

legumain at 37oC overnight. The next day, this mixture was extracted (partitioned) 

between chloroform and water. The chloroform layer was kept and checked by TLC, 

along with an authentic sample of [Propyl Spacer]-AQ compound. (chloroform:methanol 

9:1) Rf = 0.14; Red. On the TLC plate, it was shown that the extracted compound from 

the chloroform layer was the same as [Propyl Spacer]-AQ compound, in further 

confirmation of the position of the legumain ‘cleavage hotspot’.  
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cleavage site

O

O

NHH2N

Incubated with legumain 
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Scheme 2.11. Cleavage of YD103 (43) at the carboxyl end of asparagine by legumain. 

This confirmed that after cleavage by legumain, YD103 (43) generated the two 

anticipated compounds, 5(6)-FAM-heptapeptide and [Propyl Spacer]-AQ conjugate 

[Scheme 2.11]. 

 

 

YD103 (43) 

5(6)-FAM-heptapeptide 

[Propyl Spacer]-AQ conconjugate 
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2.4 CONCLUSION 

Legumain is overexpressed by tumour cells and can only be activated in acidic conditions, 

such as the tumour microenvironment, also it requires highly specific substrate, and all of 

these features suggest that legumain could be a perfect potential target for anti-cancer 

prodrug development and a unique sensitive tumour biomarker for early stage detection. 

Motivated by evidence in recent studies that legumain is an attractive target, the 

fluorogenic probe TL11 (3) was designed as a substrate for the potential breast cancer 

biomarker legumain, which specifically cleaves peptides at the carboxyl side of 

asparagine. In the intact fluorogenic conjugate, fluorescence from 5(6)-

carboxyfluorescein (5) was quenched by the anthraquinone residue [Figure 2.35]. The 

fluorophore quenching study showed that probe TL11 (3) had almost no fluorescence, 

which indicated that it is a good FRET probe for fluorimetric assay. After cleavage by 

legumain at the cleavage ‘hot spot’ Asn↓-Leu, fluorescence from 5(6)-carboxyfluorescein 

(5) can be released and detected again [Figure 2.34]. Fluorimetric assay showed rapid 

fluorescence release and the relative fluorescence intensity released from probe TL11 (3) 

reached maximum in less than 2 hours. Importantly, fluorescence release with time was 

linear across the first 10 minutes. 

An amino acid at the P3 position in a legumain substrate is not necessarily compulsory 

for a good fit into the active site; however, legumain enzyme kinetics assay for probe 

TL11 (3), VG (10) and PN11 (11) indicated that having proline fits in the P3 position of 

legumain substrate will enhance binding affinity between legumain and its substrate. 
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Fluorimetric assay for probes TL11 (3), AD17 (8), AD20 (9) and VG (10), concluded that 

the favoured choice for the P2 position in a substrate tetrapeptide is Ser>Ala>Thr≥Gly. 

Also YD103 (43) fluorimetric assay revealed the P1’ position is not essential to afford a 

substrate as well. Thus, a legumain substrate with a peptide sequence that ends at the P1-

asparagine carboxyl side can still be recognised and cleaved off by legumain as long as it 

contains at least four amino acids.  

Results from fluorimetric assay showed that all 5(6)-FAM labelled probes performed 

much better than FITC labelled probes during the same period of incubation with 

activated legumain. Maximum fluorescence intensity released from 5(6)-FAM labelled 

probes (at 10µM concentration) were between 2000 to 3000RFI, however, from FITC 

labelled probes were in the order of 400RFI. It had been noticed that even though two 

different fluorophores had been chosen for these two kinds of probes, the fluorescence 

intensity released from the same concentration of comparator fluorophores, 5(6)-FAM (5) 

and FITC (4) under the same conditions were very similar. Hence, results from 5(6)-FAM 

labelled probes and FITC (4) labelled probes were comparable. When comparing 

fluorimetric assay results between TL11 (3), FF (6) and MK8 (7) probes, the large 

fluorescence intensity released from TL11 (3) may suggest that having proline at the P3 

position in the substrate peptide can greatly improve the cleavage rate between substrate 

and activated legumain, in common with the observations by Sexton and colleagues 

(Sexton et al., 2007).  
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During attempts to find an alternative way of synthesising fluoro-tetrapeptide-epirubicin 

YD101 (36), the success of making epirubicin succinate Asn-Leu-[PEG Spacer]-AQ 

YD98 (31) illustrated a new approach to couple epirubicin with an OSu ester instead of a 

OPFP ester. The synthesis of an OSu ester which can use DMF as solvent and does not 

require DCC, was superior to using OPFP esters. However, the failure to make the fluoro-

tetrapeptide-epirubicin YD101 (36) remains unresolved.  

2.5 FUTURE WORK 

The future work can focus on cloning/in vitro metabolism studies (HPLC methods) using 

recombinant enzymes (i.e. legumain) and tissue homogenates with a series of prodrugs 

that are based on fluorogenic probe TL11 (3) containing anticancer agents to optimise 

delivery, activation and release of the active agent(s). 
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2.6 STRUCTURE LIBRARY 
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NH2
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CONH CONHCONHCONH

O

O

OHO OH  

5(6)-FAM-Pro-Ala-Asn-Leu-[PEG Spacer]-AQ [TL11] (3) 

1-{2-[2-(2-(N-5(6)-carboxyfluoresceinylcarbonyl-L-prolyl-L-alanyl-L-asparaginyl-L-

leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione 

O

O

NH
O

O
H2N

            O

OO
O

NH
CONHHNC

O

OH3C

CH3

CH3

 
[PEG Spacer]-AQ [TL1] (14)             Boc-Leu-[PEG Spacer]-AQ [TL2] (15) 

 

 

 

 

O

O

NH
O

O
COHNF3CCOOH3N

 
H-Leu-[PEG Spacer]-AQ trifluoroacetate salt [TL3] (16) 

1-{2-[2-(2-(L-leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione 

trifluoroacetate 

O
O

NH

O

O

NH

O

NH CONHCONHC

O

OCH2

 

Fmoc-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL4] (17) 

1-{2-[2-(2-(Nα-(9-fluorenylmethoxycarbonyl)-Nγ-trityl-L-aspaginyl-L-

leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione 

1-{2-[2-(2-

aminoethoxy)ethoxy]ethylamino}

anthracene-9,10-dione 

 

1-{2-[2-(2-(N-tertiarybutoxycarbonyl-L-

leucylamino)ethoxy)ethoxy]ethylamino}

anthracene-9,10-dione 
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H-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL5] (18) 

1-{2-[2-(2-(Nγ-trityl-L-aspaginyl-L-leucylamino)ethoxy)ethoxy]ethylamino}anthracene-

9,10-dione 
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O

OCH2 NH CONH CONHCONH

O

NH
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Fmoc-Ala-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL6] (19) 

1-{2-[2-(2-(Nα-(9-fluorenylmethoxycarbonyl)-L-alanyl-Nγ-trityl-L-aspaginyl-L-

leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione 

O

O

NH
O

O
COHNCOHNCOHN

NH

O

H2N

 

H-Ala-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL7] (20) 

1-{2-[2-(2-(L-alanyl-Nγ-trityl-L-aspaginyl-L-

leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione 

C

O

OCH2 N
O

O
NH

O

O

NH

O

CONH CONHCONHCONH

 

Fmoc-Pro-Ala-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL8] (21) 

1-{2-[2-(2-(Nα-(9-fluorenylmethoxycarbonyl)-L-prolyl-L-alanyl-Nγ-trityl-L-aspaginyl-L-

leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione 
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H-Pro-Ala-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL9] (22) 

1-{2-[2-(2-(L-prolyl-L-alanyl-Nγ-trityl-L-aspaginyl-L-

leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione 
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O
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5(6)-FAM-Pro-Ala-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL10] (23) 

1-{2-[2-(2-(N-5(6)-carboxyfluoresceinylcarbonyl-L-prolyl-L-alanyl-Nγ-trityl-L-

asparaginyl-L-leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione 
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5(6)-FAM-Pro-Gly-Asn-Leu-[PEG Spacer]-AQ [AD17] (8) 

1-{2-[2-(2-(N-5(6)-carboxyfluoresceinylcarbonyl-L-prolyl-glycyl-L-asparaginyl-L-

leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione 
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5(6)-FAM-Pro-Ser-Asn-Leu-[PEG Spacer]-AQ [AD20] (9) 

1-{2-[2-(2-(N-5(6)-carboxyfluoresceinylcarbonyl-L-prolyl-L-seryl-L-asparaginyl-L-

leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione 
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5(6)-FAM-Pro-Thr-Asn-Leu-[PEG Spacer]-AQ [VG] (10) 

1-{2-[2-(2-(N-5(6)-carboxyfluoresceinylcarbonyl-L-prolyl-L-threonyl-L-asparaginyl-L-

leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione 

O

O
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NH2
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CONH CONHCONHNH CONH
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5(6)-FAM-Ala-Asn-Leu-Ala-[PEG Spacer]-AQ [PN11] (11) 

1-{2-[2-(2-(N-5(6)-carboxyfluoresceinylcarbonyl-L-alanyl-L-asparaginyl-L-leucyl-L-

alanylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione 
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OHO OH
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S

NH CONH CONH CONH CONH
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O

NH O
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FITC-Ala-Ala-Asn-Leu-[Propyl Spacer]-AQ [FF] (6) 

1-[3-(fluoresceinylthioureido-L-alanyl-L-alanyl-L-asparaginyl-L-leucylamino) 

propylamino]anthracene-9,10-dione 
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FITC-Ala-Ala-Asn-Ala-[Propyl Spacer]-AQ [MK8] (7) 

1-[3-(fluoresceinylthioureido-L-alanyl-L-alanyl-L-asparaginyl-L-alanylamino) 

propylamino]anthracene-9,10-dione 
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H-Leu-[Propyl Spacer]-AQ (25) 

1-{2-[2-(2-(L-leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione 

 

C

O

N

NH2

O

CONHCONH

O

O

OHO OH

COOH

             

O

O

NH C O

O

F F

F

FF

 

5(6)-FAM-Pro-Ala-Asn-OH (26) 
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Succinate Asn(Trt)-Leu-[PEG Spacer]-AQ [YD 91] (32) 

1-{2-[2-(2-(Nα-succinyl-Nγ-trityl-L-asparaginyl-L-

leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione 
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OPFP succinate Asn(Trt)-Leu-[PEG Spacer]-anthraquinone ester [YD92] (34) 

1-{2-[2-(2-(Nα-succinyl-Nγ-trityl-L-asparaginyl-L-

leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione pentafluorophenolate 

N-[5(6)-carboxyfluoresceincarbonyl]-L-

prolyl-L-alanyl-L-asparagine 

 

Pentafluorophenyl 6-[(9,10-dioxo-9,10-

dihydroanthracen-1-yl)amino] hexanoate (28) 
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OPFP succinate Asn-Leu-[PEG Spacer]-anthraquinone ester [YD93] (30) 

1-{2-[2-(2-(Nα-succinyl-L-asparaginyl-L-leucylamino)ethoxy)ethoxy]ethylamino 

anthracene-9,10-dione}pentafluorophenolate 
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Succinate Asn-Leu-[PEG Spacer]-AQ [YD96] (35) 

1-{2-[2-(2-(Nα-succinyl-L-asparaginyl-L-

leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione 
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OSu succinate Asn-Leu-[PEG Spacer]-AQ ester [YD97] (33) 

1-{2-[2-(2-(Nα-succinyl-L-asparaginyl-L-

leucylamino)ethoxy)ethoxy]ethylamino}anthracene-9,10-dione N-hydroxysuccinimide 
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Epirubicin succinate Asn-Leu-[PEG Spacer]-AQ [YD98] (31) 

N-Epirubicin-1-{N-2-[2-(2-(succinyl-L-asparaginyl-L-leucylamino)ethoxy)ethoxy] 

ethylamino}anthracene-9,10-dione 
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5(6)-FAM-Pro-Ala-Asn-Leu-epirubicin [YD101] (36) 

N-[5(6)-carboxyfluoresceinylcarbonyl-L-prolyl-L-alanyl-L-asparaginyl-L-leucyl]-

epirubicin 
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5(6)-FAM-Pro-Ala-Asn-Leu-OSu ester [YD100] (39) 

{N-[5(6)-carboxyfluoresceinylcarbonyl]-L-prolyl}-L-alanyl-L-asparaginyl-L-leucine N-

hydroxysuccinimide ester 
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5(6)-FAM-β-Ala-Pro-Ala-Gly-Nva-Pro-Asn-[Propyl Spacer]-AQ [YD103] (43) 

1-{3-N-[5(6)-carboxyfluoresceinylcarbonyl-β-alanyl-L-prolyl-L-alanyl-glycyl-L-

norvalyl-L-prolyl-L-asparaginylamino]propylamino}anthracene-9,10-dione 

5(6)-FAM-Pro-Ala-Asn(Trt)-Leu-OH 

[YD95] (37) 

{N-[5(6)-carboxyfluoresceinylcarbonyl]-

L-prolyl}-L-alanyl-Nγ-trityl-L-asparaginyl-

L-leucine 

 

5(6)-FAM-Pro-Ala-Asn(Trt)-Leu-OH 

[YD99] (38) 

{N-[5(6)-carboxyfluoresceinylcarbonyl]-L-

prolyl}-L-alanyl-L-asparaginyl-L-leucine 
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2.7 EXPERIMENTAL 

2.7.1 Chemical synthesis of legumain probes and their intermediates 

General methods (grade of silica, chemical suppliers etc.) for chemical synthesis in this 

chapter see section 1.6.1 to 1.6.2 in Chapter I. 

2.7.1.1 Synthesis of [PEG Spacer]-AQ [TL1] (14) 

1-Chloroanthraquinone (3g, 0.012mol) was suspended in DMSO (5mL) and 2-[2-(2-

amino-ethoxy)-ethoxy]-ethylamine (35mL, 0.24mol) was added. The mixture was heated 

over a water bath at 95oC for 4h. The solution was cooled and added to a large excess of 

water (500mL). The purple precipitated solid was filtered off, dried and used for 

subsequent reactions without further purification. Analytically pure samples of TL1 (14) 

were prepared by column chromatography [chloroform: ethyl acetate: methanol (80:19:1), 

then chloroform: methanol (9:1)]. Yield: 2g (34%). TLC [butanol: acetic acid: water 

(4:5:1)]: Rf 0.52 purple (product; homogeneous on TLC). 

1H NMR (d6-DMSO 300MHz) δ: 3.00 (2H, m, CH2NH2), 3.20 (2H, m, OCH2CH2NH2), 

3.50 - 3.60 (2H, m, AQNHCH2CH2O), 3.60 – 3.70 (4H, m, OCH2CH2O), 3.70 - 3.80 (2H, 

m, CH2NHAQ), 7.3 (1H, dd, H-2), 7.40 (1H, dd, H-4), 7.65 (1H, t, H-3), 7.75 - 7.80 (5H, 

m, H-6, H-7; NH3
+ unresolved), 8.10 - 8.20 (2H, m, H-5, H-8), 9.75 (1H, t, AQ-NH).  

13C NMR spectrum (d6-DMSO 75.5MHz) 38.64 (ve, Aq-NH-CH2); 42.10 (ve, CH2NH3
+); 

66.72 (ve, Aq-NH-CH2-CH2); 68.63 (ve, O-CH2-CH2NH3
+); 69.62 (ve, O-CH2-CH2-O); 

112.06 (ab, CF3); 115.12 [+ve, aromatic (Aq) CH]; 118.70 [+ve, aromatic (Aq) CH]; 126.25 

(+ve, aromatic CH); 126.40 (+ve, aromatic CH); 132.32 [ab, aromatic (Aq) C-1]; 133.47 
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(+ve, aromatic CH); 134.49 (+ve, aromatic CH); 135.61 (+ve, aromatic CH); 151.27 (ab, 

CO-TFA); 182.85 (C=O-quinone); 184.20 (C=O-quinone). 

2.7.1.2 Synthesis of Boc-Leu-[PEG Spacer]-AQ [TL2] (15) 

A solution of Boc-Leu-OSu (0.927g, 0.0028mol) in DMF (10mL) was added to TL1 (14) 

(1g, 0.0021mol) in DMF (10mL), DIPEA (0.49mL, 0.0028mol) was added and the 

reaction was stirred at RT for 2.5h. Chloroform (50mL) was added and the organic layer 

was washed with water (2×200mL), saturated sodium bicarbonate solution (2×30mL), 

water (200mL), dried (Na2SO4), filtered and evaporated in vacuo to a low volume. The 

crude product was purified by silica gel column chromatography (17cm×4.5cm) eluting 

with chloroform: methanol (9:1). Fractions containing major product were collected, 

filtered and evaporated to dryness. Yield: 0.9g, (76%). TLC [chloroform: methanol (9:1)]: 

Rf 0.65 purple (product; homogeneous on TLC). 

1H NMR (CDCl3 300MHz) δ: 0.90 (6H, dd, 2×CH3), 1.45 (1H, s, + 8H, s, Boc), 1.60 – 

1.70 (3H, m, CH2CH), 3.45 - 3.65 (6H, m, AQNHCH2CH2O; OCH2CH2NHCO), 3.65 – 

3.75 (4H, m, OCH2CH2O), 3.85 (2H, t, CH2NHAQ), 4.15 (1H, m, α-CH), 5.0 (1H, d, α-

CHNHCO), 6.75 (1H, t, CH2NHCO), 7.10 (1H, dd, H-2), 7.50 – 7.65 (2H, m, H-3, H-4), 

7.70 - 7.80 (2H, m, H-6, H-7), 8.20 - 8.25 (2H, m, H-5, H-8), 9.90 (1H, t, AQ-NH).  

13C NMR spectrum (CDCl3, 75.5MHz) 21.95 (+ve, CH3-leu); 22.93 (+ve, CH3-leu); 24.71 

(+ve, -CH); 28.29 [+ve, C(CH3)3]; 39.34 (ve, Aq-NH-CH2); 41.75 (ve, -CH2-leu); 

42.68 (ve, CH2-NHCO-leu); 53.00 (+ve, -CH-leu); 69.38 (ve, CH2-O); 69.83 (ve, CH2-

O); 70.31 (ve, CH2-O); 70.56 (ve, CH2-O); 115.86 (+ve, aromatic CH); 117.82 (+ve, 

aromatic CH); 126.71 [(+ve, aromatic CH) (AQ-6 and 7)], 132.97 (+ve, aromatic CH); 
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133.99 (+ve, aromatic CH); 134.65 [ab, aromatic (Aq) C-1]; 135.30 (+ve, aromatic CH); 

151.60 (ab, NHCOO); 172.87 (ab, spacer-NHCO-leu); 183.74 (ab, C=O); 185.06 (ab, C=O). 

2.7.1.3 Synthesis of H-Leu-[PEG Spacer]-AQ trifluoroacetate salt [TL3] (16) 

TL2 (15) (0.65g, 0.001mol) was dissolved in trifluoroacetic acid (7mL) at RT. After 0.5h 

the solvent was evaporated and the residual solid re-evaporated with ethanol (2mL). 

Addition of diethyl ether (100mL) gave a precipitate of TL3 as the N-terminal 

trifluoroacetate salt which was filtered off and dried in vacuo. Yield (0.54g, 84%). TLC 

[chloroform: methanol (9:1)]: Rf 0.36 purple (product; homogeneous on TLC). 

1H NMR (d6-DMSO 300MHz) δ: 0.85 (6H, t, 2×CH3), 1.45 – 1.65 (3H, m, CH2CH), 3.25 

(2H, m, CH2NHCO), 3.45 - 3.55 (4H, m, AQNHCH2CH2O; OCH2CH2NHCO), 3.55 – 

3.65 (4H, m, OCH2CH2O), 3.65 - 3.75 (3H, m, CH2NHAQ; α-CH), 7.3 (1H, dd, H-2), 

7.45 (1H, dd, H-4), 7.65 (1H, t, H-3), 7.80 - 7.95 (2H, m, H-6, H-7), 8.05 - 8.20 (5H, m, 

H-5, H-8; NH3
+ unresolved), 8.55 (1H, t, NHCO), 9.75 (1H, t, AQ-NH).  

13C NMR spectrum (d6-DMSO 75.5MHz) 22.00 (+ve, CH3-leu); 22.39 (+ve, CH3-leu); 

23.55 (+ve, -CH-leu); 38.64 (ve, Aq-NH-CH2); 40.03 (ve, -CH2-leu); 42.11 (ve, CH2-

NHCO-leu); 50.86 (+ve, -CH-leu); 68.69 (ve, CH2-O); 68.82 (ve, CH2-O); 69.56 (ve, 

CH2-O); 69.72 (ve, CH2-O); 112.06 (ab, CF3); 115.11 (+ve, aromatic CH); 118.71 (+ve, 

aromatic CH); 126.25 (+ve, aromatic CH); 126.38 (+ve, aromatic CH); 132.32 [ab, aromatic 

(Aq) C-1]; 133.46 (+ve, aromatic CH); 134.49 (+ve, aromatic CH); 135.60 (+ve, aromatic 

CH); 151.28 (ab, CO-TFA); 168.97 (ab, spacer-NHCO-leu); 182.85 (C=O -quinone); 

184.50 (C=O -quinone). 
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2.7.1.4 Synthesis of Fmoc-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL4] (17) 

Fmoc-Asn(Trt)-OH (0.476g, 0.8mmol), TBTU (0.256g, 0.8mmol) and HOBt (0.12g, 

0.78mmol) were dissolved in DMF (5mL), DIPEA (0.417mL, 2.4mmol) was added and 

reaction mixture was left at RT for 15min prior to addition to a stirred solution of TL3 

(16) (0.5g, 0.861mmol) in DMF (5mL). After three hours, chloroform was added and the 

organic layer was washed with water (2×200mL), saturated sodium bicarbonate solution 

(2×30mL), water (200mL), dried (Na2SO4), filtered and evaporated in vacuo to a low 

volume. The crude product was purified by silica gel column chromatography 

(17cm×4.5cm) eluting with chloroform: methanol (19:1). Fractions containing major 

product were collected, filtered and evaporated to dryness.  

Yield: 0.7g (78%). TLC [chloroform: methanol (9:1)]: Rf 0.85 purple (product; 

homogeneous on TLC). 

2.7.1.5 Synthesis of H-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL5] (18) 

TL4 (17) (0.6g, 0.57mmol) was treated with 20% piperidine in DMF for 30min. Then 

chloroform was added into this reaction mixture and organic layer was washed with water 

(2×200mL), saturated sodium bicarbonate solution (2×30mL), water (200mL), dried 

(Na2SO4), filtered and evaporated in vacuo to a low volume. The crude product was 

purified by silica gel chromatography (7cm×4.5cm) which was eluted with chloroform: 

methanol (9:1), fractions containing major product were collected, filtered and evaporated 

to dryness.  

Yield: 0.385g (82%). TLC [dichloromethane: methanol (9:1)]: Rf 0.53 (purple) product; 

homogeneous on TLC. 
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2.7.1.6 Synthesis of Fmoc-Ala-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL6] (19) 

Fmoc-Ala-OH (0.11g, 0.36mmol), TBTU (0.12g, 0.36mmol) and HOBt (0.056g, 

0.36mmol) were dissolved in DMF (5mL), DIPEA (0.190mL, 1.09mmol) was added and 

reaction mixture was left at RT for 15min prior to addition to a s stirred solution of TL5 

(18) (0.3g, 0.36mmol) in DMF (5mL) following the same procedure as described for the 

synthesis of TL4 (17). The crude product was purified by silica gel chromatography 

(10cm×4.5cm) which was eluted with dichloromethane: ethyl acetate: methanol (7:2:1), 

fractions containing major product were collected, filtered and evaporated to dryness.  

Yield: 0.35g (86%). TLC [dichloromethane: ethyl acetate: methanol (7:2:1)]: Rf 0.74 

(purple) product. Compound TL6 (19) chromatographically homogeneous (single spot on 

TLC). 

2.7.1.7 Synthesis of H-Ala-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL7] (20) 

The Fmoc protecting group was removed from TL6 (19) (0.3g, 0.27mmol) using 20% 

piperidine in DMF following the same procedure as described for the synthesis of TL5 

(18). The crude product was purified by silica gel chromatography (8cm×4.5cm) which 

was eluted with dichloromethane: ethyl acetate: methanol (7:2:1), fractions containing 

major product were collected, filtered and evaporated to dryness.  

Yield: 0.21g (88%). TLC [dichloromethane: ethyl acetate: methanol (7:2:1)]: Rf 0.22 

(purple) product; homogeneous on TLC. 

2.7.1.8 Synthesis of Fmoc-Pro-Ala-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL8] (21) 

Fmoc-Pro-OH (0.0754g, 0.22mmol), TBTU (0.072g, 0.22mmol) and HOBt (0.034g, 

0.22mmol) were dissolved in DMF (5mL), DIPEA (0.117mL, 0.67mmol) was added and 

reaction mixture was left at RT for 15min prior to addition to a stirred solution of TL7 
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(20) (0.2g, 0.22mmol) in DMF (5mL) following the same procedure as described for the 

synthesis of TL4 (17).  

Yield: 0.23g (85%). TLC [dichloromethane: ethyl acetate: methanol (7:2:1)]: Rf 0.63, 

(purple) product; homogeneous on TLC. 

2.7.1.9 Synthesis of H-Pro-Ala-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL9] (22) 

The Fmoc protecting group in TL8 (21) (0.2g, 0.16mmol) was removed by using 20% 

piperidine in DMF for 30min following the same procedure as described for the synthesis 

of TL5 (18). The crude product was purified by silica gel chromatography column 

(5cm×4.5cm) which was eluted with dichloromethane: ethyl acetate: methanol (7:2:1), 

fractions containing major product were collected, filtered and evaporated to dryness.  

Yield: 0.13g (82%). TLC [dichloromethane: ethyl acetate: methanol (7:2:1)]: Rf 0.05 

(purple) product. The purity of TL9 (22) was confirm by its homogeneous character on 

TLC. 

2.7.1.10 Synthesis of 5(6)-FAM-Pro-Ala-Asn(Trt)-Leu-[PEG Spacer]-AQ [TL10] (23) 

5(6)-carboxyfluorescein (5) (0.046g, 0.12mmol), TBTU (0.039g, 0.12mmol) and HOBt 

(0.0185g, 0.12mmol) were dissolved in DMF (5mL), DIPEA (0.021mL, 0.12mmol) was 

added and reaction mixture was left at RT for 15min prior to addition to a stirred solution 

of TL9 (22) (0.12g, 0.12mmol) in DMF (5mL) following the same procedure as described 

for the synthesis of TL4 (17). The crude product was purified by silica gel 

chromatography (7cm×4.5cm) which was eluted with chloroform: ethyl acetate: 

methanol (5:2:1), fractions containing major product were collected, filtered and 

evaporated to dryness.  
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Yield: 0.124g (77%). TLC [chloroform: ethyl acetate: methanol (5:2:1)]: Rf 0.35 (orange) 

product; homogeneous on TLC. 

2.7.1.11 Synthesis of 5(6)-FAM-Pro-Ala-Asn-Leu-[PEG Spacer]-AQ [TL11] (3) 

TL10 (23) (0.1g, 0.074mmol) was treated with TFA (3mL) for 4h following the same 

procedure as described for the synthesis of TL3 (16). The solid crude compound was 

purified by silica gel chromatography (10cm×4.5cm) eluting with dichloromethane: ethyl 

acetate: methanol (5:2:1), fractions containing major product were collected, filtered and 

evaporated to dryness. 

Yield: 0.022g (27%). TLC [dichloromethane: ethyl acetate: methanol (5:2:1)]: Rf 0.5 

(orange) product. The purity of TL11 (3) was confirmed by its homogeneous character 

on TLC and by its high resolution mass spectrum.  

ESMS(-) m/z: 552.7033 (28%) [(M-2H)/2]2-; 1106.4143 (100%) (M-H)-. 

2.7.1.12 Synthesis of H-Pro-Gly-Asn(Trt)-Leu-[PEG Spacer]-AQ (44) 

Fmoc-Pro-Gly-OH (0.23g, 0.58mmol) and TBTU (0.18g, 0.56mmol) were dissolved in 

DMF (5mL), DIPEA (0.194mL, 1.12mmol) was added and reaction mixture was left at 

RT for 15min prior to addition to a stirred solution of TL5 (18) (0.4g, 0.5mmol) in DMF 

(5mL) following the same procedure as described for the synthesis of TL4 (17). The crude 

yield for this red product was 0.39g (65%). TLC [dichloromethane: ethyl acetate: ethanol 

(4:4:1)]: Rf 0.5 (purple) product. A portion of this purple Fmoc protected product (0.15g, 

0.13mmol) was treated with 20% piperidine in DMF (7mL) following the same procedure 

as described for the synthesis of TL5 (18) to remove the Fmoc protecting group. It proved 
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difficult to obtain the product as a dry solid, therefore the residue was used directly for 

subsequent reactions (N-labelling with fluorophores). 

2.7.1.13 Synthesis of 5(6)-FAM-Pro-Gly-Asn(Trt)-Leu-[PEG Spacer]-AQ (45) 

H-Pro-Gly-Asn(Trt)-Leu-[PEG Spacer]-AQ (44) (0.065mmol; estimated from above 

2.7.1.12) was re-dissolved in DMF (5mL). It was then mixed with a solution of 5(6)-

carboxyfluorescein (5) (0.028g, 0.075mmol), PyBOP (0.039g, 0.075mmol) in DMF 

(7mL). DIPEA (0.052mL, 0.3mmol) was added into this reaction mixture afterwards 

following the same procedure as described for the synthesis of TL4 (17). 

Yield: 0.0387g (44%). TLC [chloroform: ethyl acetate: methanol (2:2:1)]: Rf 0.7 (orange) 

product.  

2.7.1.14 Synthesis of 5(6)-FAM-Pro-Gly-Asn-Leu-[PEG Spacer]-AQ [AD17] (8) 

5(6)-FAM-Pro-Gly-Asn(Trt)-Leu-[PEG Spacer]-AQ (45) (0.02g, 0.015mmol) was 

treated with TFA (5mL) at RT for 2h following the same procedure as described for the 

synthesis of TL3 (16). The solid crude compound was purified by silica gel 

chromatography (10cm×4.5cm), which was eluted with chloroform: methanol (17:3), 

fractions containing major product were collected, filtered and evaporated to dryness. 

Yield: 0.0092g (56%). TLC [chloroform: methanol (4:1)]: Rf 0.6 (orange) product. The 

purity of AD17 (8) was confirmed by its homogeneous character on TLC and by its high 

resolution mass spectrum. 

ESMS(+): 547.7100 (80%) ([M+2H)/2]2+; 1094.4139 (20%) (M+H)+; 1116.3958 (8%) 

(M+Na)+. 
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2.7.1.15 Synthesis of H-Ser(tBu)-Asn(Trt)-Leu-[PEG Spacer]-AQ (46) 

Fmoc-Ser(tBu)-OSu (0.27g, 0.58mmol) was dissolved in DMF (5mL) with DIPEA 

(0.086mL, 0.495mmol) and the reaction mixture was left at RT for 15min prior to addition 

to a stirred solution of TL5 (18) (0.41g, 0.5mmol) in DMF (5mL) following the same 

procedure as described for the synthesis of TL4 (17). The purple Fmoc protected product 

yielded 0.4g (68%). TLC [dichloromethane: ethyl acetate: ethanol (4:4:1)]: Rf 0.8 (purple) 

product. The Fmoc protected product (0.184g, 0.15mmol) was dissolved in 20% 

piperidine in DMF (7mL) following the same procedure as described for the synthesis of 

TL5 (18) to remove the Fmoc protecting group. TLC [dichloromethane: ethyl acetate: 

ethanol (4:4:1)]: Rf 0.4 (purple) product. 

2.7.1.16 Synthesis of 5(6)-FAM-Pro-Ser(tBu)-Asn(Trt)-Leu-[PEG Spacer]-AQ (47) 

After removing Fmoc protecting group, H-Ser(tBu)-Asn(Trt)-Leu-[PEG Spacer]-AQ (46) 

was dissolved in DMF (5mL) which was then added into a mixture of 5(6)-FAM-Pro-OH 

(0.0884g, 0.19mmol), PyBOP (0.1123g, 0.218mmol), DIPEA (0.137mL, 0.788mmol) in 

DMF (5mL) following the same procedure as described for the synthesis of TL4 (17). 

TLC [dichloromethane: ethyl acetate: ethanol (4:4:1)]: Rf 0.7 (orange) product. 

2.7.1.17 Synthesis of 5(6)-FAM-Pro-Ser-Asn-Leu-[PEG Spacer]-AQ [AD20] (9) 

5(6)-FAM-Pro-Ser(tBu)-Asn(trt)-Leu-[PEG Spacer]-AQ (47) was treated with TFA 

(5mL) at RT for 2.5h following the same procedure as described for the synthesis of TL3 

(16). The crude compound was purified by silica gel chromatography (12cm×4.5cm), 

which was eluted with chloroform: methanol (4:1), fractions containing the major product 

were collected, filtered and evaporated to dryness. 
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Yield: 0.0421g (25%). TLC [chloroform: methanol (4:1)]: Rf 0.5 (orange) product; 

homogeneous on TLC. 

ESMS(+): 562.7153 (100%) [(M+2H)/2]2+; 1124.4249 (86%) (M+H)+. 

2.7.1.18 Synthesis of H-Thr(tBu)-Asn(Trt)-Leu-[PEG Spacer]-AQ (48) 

TL5 (18) (1.9g, 2.31mmol) was dissolved in DMF (5mL), then it was mixed with a 

solution of Fmoc-Thr(tBu)-OH (1.06g, 2.66mmol), HOBt (0.35g, 2.56mmol), TBTU 

(0.82g, 2.56mmol) in DMF (10mL) with DIPEA (1.29mL, 7.39mmol), following the 

same procedure as described for the synthesis of TL4 (17). During purification for the 

Fmoc protected crude compound, chloroform: methanol (4:1) was used as the 

chromatography elution solvent and the silica gel column was 12cm×4.5cm. The 

chromatographically homogeneous Fmoc protected compound yielded 0.87g (31%), TLC 

[chloroform: methanol (9:1, 2mL with 3 drops of acetic acid)]: Rf 0.74 (red) product. 

Then 0.3g (0.25mmol) of this red product was treated with 20% piperidine in DMF (10mL) 

following the same procedure as described for the synthesis of TL5 (18) to remove Fmoc 

protecting group.  

Yield: 0.19g (77%). TLC [chloroform: methanol (9:1)]: Rf 0.3 (red) product. Compound 

H-Thr(tBu)-Asn(Trt)-Leu-[PEG Spacer]-AQ (48) was deemed sufficiently pure for use 

without further purification. 

2.7.1.19 Synthesis of 5(6)-FAM-Pro-Thr(tBu)-Asn(Trt)-Leu-[PEG Spacer]-AQ (49) 

5(6)-FAM-Pro-OH (41) (0.079g, 0.17mmol), PyBOP (0.087g, 0.17mmol) were dissolved 

in DMF (3mL) with DIPEA (0.093mL, 0.54mmol) as base, then this solution was mixed 

with H-Thr(tBu)-Asn(Trt)-Leu-[PEG Spacer]-AQ (48) (0.18g, 0.1837mmol) in DMF 

(3mL) following the same procedure as described for the synthesis of TL4 (17). The crude 
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compound was purified by silica gel chromatography (6.5cm×3.2cm) and eluted with 

chloroform: methanol (24:1, 100mL with 3 drops of acetic acid). Fractions containing the 

major product were collected, filtered and evaporated to dryness. 

Yield: 0.11g (45%). TLC [chloroform: methanol (3:1, 2mL with one drop of acetic acid)]: 

Rf 0.43 (orange) product. Compound 5(6)-FAM-Pro-Thr(tBu)-Asn(Trt)-Leu-[PEG 

Spacer]-AQ (49) was deemed sufficiently pure for use without further purification. 

2.7.1.20 Synthesis of 5(6)-FAM-Pro-Thr-Asn-Leu-[PEG Spacer]-AQ [VG] (10) 

5(6)-FAM-Pro-Thr(tBu)-Asn(Trt)-Leu-[PEG Spacer]-AQ (49) (0.095g, 0.069mmol) was 

treated with TFA (5mL) at RT for 3h. The solvent was evaporated to a low volume; 

addition of diethyl ether gave a precipitate. The solid crude product yielded 0.06g (80%). 

Half of this crude product (0.030g, 0.026mmol) was purified through a silica gel 

chromatography column (2cm×4.5cm) which was eluted with chloroform: methanol (4:1, 

50mL with one drop of acetic acid). Fractions containing main product were combined, 

filtered, and evaporated to dryness.  

Yield: 0.002g (7%). The purity of VG (10) was confirmed by its homogeneous character 

on TLC and by its high resolution mass spectrum. 

ESMS(+): 569.7234 (100%) [(M+2H)/2]2+; 1138.4398 (35%) (M+H)+. 

2.7.1.21 Synthesis of 5(6)-FAM-Ala-Asn-Leu-Ala-[PEG Spacer]-AQ [PN11] (11) 

Probe PN11 (11) was synthesised by solution phase peptide synthesis from [PEG Spacer]-

AQ [TL1] (14) (1g, 2.82mmol). Four N-protected amino acids were applied in sequence 

during coupling stage: Boc-Ala-OH (0.64g, 3.38mmol), Boc-Leu-OSu (0.335g, 

1.02mmol), Fmoc-Asn(Trt)-OH (0.546g, 0.92mmol) and Fmoc-Ala-OH (0.16g, 

0.51mmol). HOBt and TBTU were used as coupling reagents and DIPEA was used as the 
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base for these coupling stages, following the same procedure as described for the 

synthesis of TL4 (17). Boc and Fmoc protection groups were removed by following the 

same deprotection procedure as for the synthesis of TL3 (16) and TL5 (18), respectively. 

5(6)-FAM (5) (0.024g, 0.064mmol) was used for the final coupling onto the tetrapeptide 

spacer AQ conjugate, following the same method for synthesis of TL10 (23). Trityl 

protection group on the side chain of asparagine was removed following the same 

procedure as described for the synthesis of TL11 (3). The crude probe PN11 (11) was 

purified using a thick layer chromatography plate (20cm×20cm×0.1cm) which was eluted 

with dichloromethane: methanol (6:1, 70mL, with 10 drops of acetic acid). Yield (0.043g). 

TLC [dichloromethane: methanol (6:1, 2.8mL, with 2 drops of acetic acid)]: Rf 0.6 

(orange) product. The purity of PN11 (11) was confirmed by its homogeneous character 

on TLC and by its high resolution mass spectrum. 

ESMS(-) m/z: 1080.3934 (100%) (M-H)-. 

2.7.1.22 Synthesis of H-[Propyl Spacer]-AQ (50) 

To a suspension of 1-chloroanthraquinone (3g, 0.0123mol) in DMSO (5mL), 1,3-

diaminopropane (20.7mL, 0.248mmol) was added. This reaction mixture was heated over 

a water bath for half an hour. A large volume of water (500mL) was added to give a 

precipitate of crude product, which was then filtered and dried without any further 

purification. Yield: (3.4349 g, 98%). TLC [butanol: acetic acid: water (4:5:1)]: Rf 0.55 

(red) product.   

2.7.1.23 Synthesis of H-Leu-[Propyl Spacer]-AQ (51) 

Boc-Leu-OSu (1.17g, 0.0036mol) was mixed with DIPEA (0.63mL, 0.0036mol) in DMF 

(10mL) and this mixture was left at RT for 15min before it was added into a stirred 
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solution of H-[Propyl Spacer]-AQ (50) (1g, 0.0036mol) in DMF (20mL) following the 

same procedure as described for the synthesis of TL4 (17). This crude compound was 

purified by silica gel chromatography (10cm×3.2cm) which was eluted with ethyl acetate: 

dichloromethane (4:1). Fractions containing the major product were collected, filtered 

and evaporated to dryness. The Boc protected compound was treated with TFA (7mL) 

following the same procedure as described for the synthesis of TL3 (16). 

Yield: 0.7g (50%). 

2.7.1.24 Synthesis of H-Ala-Ala-Asn-Leu-[Propyl Spacer]-AQ (52) 

The tetrapeptide-[propyl Spacer]-AQ (52), was prepared by solution phase peptide 

synthesis by step-wise addition of Fmoc-Asn(Trt)-OH (0.728g, 1.22mmol) and Boc-Ala-

Ala-OH (0.288g, 1.1065mmol) following the same procedure as described for the 

synthesis of TL4 (17). Deprotection of Fmoc, Boc and trityl groups protected compounds 

followed the same procedure as described for the synthesis of TL5 (18) and TL3 (16), 

respectively.  

2.7.1.25 Synthesis of FITC-Ala-Ala-Asn-Leu-[Propyl Spacer]-AQ [FF] (6) 

H-Ala-Ala-Asn-Leu-[Propyl Spacer]-AQ (52) (0.1g, 0.154mmol) and FITC (4) (0.056g, 

0.144mmol) were mixed in DMF (6mL), and then DIPEA (0.098mL, 0.5637mmol) was 

added into this reaction mixture which was kept in dark for 18h following the same 

procedure as described for the synthesis of TL4 (17). The crude product was purified 

using a thick layer chromatography plate (20cm×20cm×0.1cm) eluting with chloroform: 

ethanol (10:3).  

Yield: 6mg (4%). The purity of FF (6) was confirmed by its homogeneous character on 

TLC and by its high resolution mass spectrum.     
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ESMS(+) m/z: 1039.3634 (100%) (M+H)+; 1061.3466 (5%) (M+Na)+. 

ESMS(-) m/z: 1037.3506 (100%) (M-H)-. 

2.7.1.26 Synthesis of FITC-Ala-Ala-Asn-Ala-[Propyl Spacer]-AQ [MK8] (7) 

The FITC (4) labelled probe MK8 (7) was prepared following a similar procedure as that 

described for the synthesis of the other FITC (4) labelled probe FF (6) (section 2.7.1.22-

25), the only difference being that the first amino acid was Boc-Ala-OH (0.742g, 

3.92mmol).  

Yield: (0.0773g, 8.5%). TLC [butanol: acetic acid: water (15:4:1)]: Rf 0.66 product. The 

purity of MK8 (7) was confirmed by its homogeneous character on TLC and by its high 

resolution mass spectrum. 

ESMS(-) m/z: 497.1478 (27%) [(M-2H)/2]2-; 995.3019 (100%) (M-H)-. 

2.7.1.27 Synthesis of succinate Asn(Trt)-Leu-[PEG Spacer]-AQ [YD 91] (32) 

Succinic anhydride (0.0194g, 0.194mmol) was dissolved in DMF (3mL), followed by 

DIPEA (0.034mL, 0.196mmol). This mixture was added to a stirred solution of the 

anthraquinone-dipeptide, TL5 (18) (0.078g, 0.0947mmol) in DMF (3mL). After 12h, the 

reaction solution was added drop wise into a saturated solution of sodium hydrogen 

sulphate, and a dark red precipitate formed immediately. This dark red precipitate was 

then filtered and washed with water, and dried.  

Yield: (0.0854g, 98%). TLC [butanol: acetic Acid: water (15:4:1)]: Rf 0.95 (purple) 

product; homogeneous on TLC. 
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2.7.1.28 Synthesis of OSu succinate Asn-Leu-[PEG Spacer]-AQ ester [YD 97] (33) 

The succinate Asn(Trt)-Leu-[PEG Spacer]-anthraquinone [YD 91] (32) (0.05g, 

0.0542mmol) was treated with TFA (2mL) at RT for 40min to remove the trityl group on 

the side chain of asparagine. TLC [dichloromethane: methanol (8:1)]: Rf 0.27 (purple) 

product. The white solid (triphenylmethane) was filtered off from the TFA solution, and 

the product was evaporated to dryness. Succinate Asn-Leu-[PEG Spacer]-anthraquinone 

(YD 96) (35) (0.015g, 0.0221mmol) was mixed with TSTU (0.007g, 0.0232mmol) and 

DMAP (0.0027g, 0.0221mmol) in DMF (1mL), and the reaction was left at RT for half 

an hour, following the same procedure as described for the synthesis of TL4 (17). The 

reaction mixture was partitioned between chloroform and water, the organic layer was 

evaporated to a very low volume and addition of diethyl ether gave a precipitate of the 

final product YD 97 (33).  

Yield: (0.0093g, 54%). TLC [dichloromethane: methanol (8:1)]: Rf 0.32 (purple) product; 

homogeneous on TLC. 

2.7.1.29 Synthesis of epirubicin succinate Asn-Leu-[PEG Spacer]-AQ [YD 98] (31) 

Epirubicin hydrochloride (0.0067g, 0.01155mmol) was dissolved in DMF (0.5mL) 

followed by DIPEA (0.002mL, 0.0115mmol), 10min later, it was then added into a DMF 

solution (0.5mL) of OSu succinate Asn-Leu-[PEG Spacer]-anthraquinone ester (YD 97) 

(33) (0.009g, 0.01156mmol). One hour later, a mini extraction was carried out and the 

progress of this reaction as monitored by TLC (dichloromethane: methanol 8:1) Rf 0.4 

(red) product. The DMF reaction solution was evaporated to dryness and re-dissolved in 

a mixed solvent of dichloromethane and methanol before it was loaded onto a thick-layer 
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chromatography plate which was eluted with dichloromethane: methanol (8:1). The red 

band containing the major product was collected, washed with dichloromethane and 

methanol, and evaporated to dryness. The purity of YD 98 (31) was confirmed by its 

homogeneous character on TLC and by its high resolution mass spectrum. 

Yield (0.0043g, 31%) 

ESMS(+) m/z: 1207.4707 (100%) (M+H)+. 

2.7.1.30 Synthesis of 5(6)-carboxyfluorescein-Pro-OH (41) 

H-Pro-OtBu.HCl (0.3g, 1.4617mmol) was dissolved in DMF (2mL), followed by treating 

with DIPEA (0.254mL, 1.47mmol), 10min later, it was mixed with a DMF solution (3mL) 

of 5(6)-carboxyfluorescein (5) (0.5g, 1.3287mmol) and PyBOP (0.7g, 1.3286mmol), 

additional DIPEA (0.46mL, 2.6574mmol) was added into this reaction solution. This 

reaction mixture was kept in the dark at RT for 2h following the same procedure as the 

synthesis of TL4 (17). TLC [dichloromethane: methanol (9:1)]: Rf 0.39 (yellow) product. 

The crude product was purified by silica gel column chromatography (4.5cm×11cm) 

eluted with dichloromethane: methanol (9:1). Fractions containing the major product 

were collected, filtered and evaporated to dryness. Chromatographically pure, dry 5(6)-

carboxyfluorescein-Pro-OtBu was treated with TFA (4mL) at RT for 3h following the 

same procedure as described for the synthesis of TL3 (16).  

Yield: (0.58g, 93%). TLC [dichloromethane: methanol (4:1)]: Rf 0.15(yellow) product. 

Compound 5(6)-carboxyfluorescein-Pro-OH (41) was deemed sufficiently pure for use 

without further purification. 
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2.7.1.31 Synthesis of 5(6)-FAM-Pro-Ala-Asn(Trt)-Leu-OH [YD 95] (37) 

Fmoc-Leu-NovaSyn®TGT resin (0.68g, 0.1435mmol) was swollen in dichloromethane 

(5mL) for 1h. Coupling and deprotection cycles were applied by following a general 

SPPS synthesis procedure, which is given as follows: 

1st cycle: N-Fmoc-Asn(Trt)-OH (0.26g, 3 equivalents), PyBOP (0.224g, 3 equivalents) 

were dissolved in DMF (3mL), and then DIPEA (0.15mL, 6 equivalents) was added into 

this solution. The mixture was split into two portions and each portion was added into 

an SPPS reaction vessel separately and kept shaking for 30min. Then the solution was 

drained out and resins were washed by DMF (3 ~10mL/g of resins). A few resin beads 

were taken out and a colour test was performed by using pentafluorophenyl 6-[(1-

anthraquinone)amino]hexanoate (28) as the colour test reagent (for on-bead amine 

detection) in DMF with one drop of DIPEA. When the colour test showed a negative 

result, a solution of 20% (v/v) piperidine in DMF was added into SPPS reaction vessel 

(3~10mL/g resins) and the vessel was kept shaking for 15min, and then the solution 

was drained away each time. Resins were then washed with DMF (3 ~10mL/g of resins) 

and the colour test was repeated. Positive result (resin beads turned red) indicated that 

deprotection had completed.    

2nd cycle: N-Fmoc-Ala-OH (0.134g, 3 equivalents), PyBOP (0.224g, 3 equivalents) were 

dissolved in DMF (3mL), and then DIPEA (0.15mL, 6 equivalents) was added into this 

solution [following 1st cycle coupling and deproteciton methods].  

3rd cycle: 5(6)-FAM-Pro-OH (41) (0.2036g, 3 equivalents), PyBOP (0.224g, 3 

equivalents) were dissolved in DMF (3mL), and then DIPEA (0.15mL, 6 equivalents) 

was added into this solution [following 1st cycle coupling method]. 
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After coupling 5(6)-FAM-Pro-OH (41) onto resin beads, the colour test cannot be applied 

to indicate the completion of the coupling procedure. Instead, a few beads were taken out 

of the SPPS vessel and treated with 0.5% TFA in dichloromethane and the new product 

monitored by TLC. Coupling of 5(6)-FAM-Pro-OH (41) was repeated (0.2g, 3 

equivalents), and PyBOP (0.224g, 3 equivalents) in DMF (3mL), and then DIPEA 

(0.15mL, 6 equivalents).  

TLC showed the reaction to be complete. Then the yellow resin beads were treated with 

portions of 0.5% TFA in dichloromethane and kept shaking for 20min each time, 

increasing to 2.5%, until no further product was removed from the resin. Product fractions 

were combined and evaporated to almost dryness and followed by treating with diethyl 

ether. The yellow precipitate of the title compound was then filtered off and dried in vacuo.  

Yield: 0.107g (74%) 

ESMS(+) m/z: 1036.3733 (4%) (M+Na)+. 

2.7.1.32 Synthesis of 5(6)-FAM-β-Ala-Pro-Ala-Gly-Nva-Pro-Asn-[Propyl 

Spacer]-AQ [YD103] (43) 

TFA Asn-[Propyl Spacer]-AQ salt (0.013g, 1.1eq) was dissolved in DMF (1mL) and 

treated with DIPEA (4.4µL, 1.1eq) for 5min, then to this solution, a DMF solution (2mL) 

of 5(6)-FAM-β-Ala-Pro-Ala-Gly-Nva-Pro-OH (0.020g, 1eq), HOBt (0.0039g,1.1eq), 

TBTU (0.0081g, 1.1eq) and DIPEA (12.8µL, 3.2eq) was added in. This reaction was kept 

at RT for 1h, following the same procedure as for the synthesis of TL4 (17). TLC 

[chloroform:methanol (6:1), 2.1mL + 2 drops of TFA]: Rf 0.26 (orange) product. 

Chloroform:methanol 4:1 (2mL + 3 drops of TFA, Rf = 0.54) was determined to be a 

better solvent system. So YD103 was re-dissolved in a small volume of chloroform and 

methanol before it was chromatographed on a thick-layer plate which was eluted with 
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chloroform:methanol 4:1 (65mL + 96 drops of TFA) and kept in dark the whole time. The 

orange pure (chromatographically homogeneous) product band was collected and washed 

with methanol and evaporated to dryness.  

Yield: 2.3mg (8%). The purity of YD103 (43) was confirmed by its homogeneous 

character on TLC and by its high resolution mass spectrum. 

ESMS (-): 621 (100%) [(M-2H)/2]2-. 

ESMS (+) m/z: 1245.4878 (50%) (M+H)+.  

2.7.2 UV-Vis Absorption Assay 

2.7.2.1 Materials 

Assay buffer: 50mM MES hydrate (Sigma, M2933), 250mM NaCl, pH 5.0; Substrate: 

TL3, 1mg/mL stock in DMSO; Beckman DU 800 Spectrophotometer; 3mL quartz cuvette.  

2.7.2.2 Method 

UV-Vis absorption assay was applied for probe TL11 (3) quencher part TL3 (16) to 

determine TL3 (16) absorption area between wavelengths 500 to 600nm.  

Assay buffer (3mL) was used as blank in TL3 (16) UV-Vis absorption assay. Final 

concentration for TL3 (16) in 3mL quartz cuvette was 50µM. Wavelength scan 

application was selected for this assay. Scan speeds was set as 600nm/min and 

wavelength range was set between 500 and 600nm. 

2.7.3 Fluorescence Spectroscopy Assay 

2.7.3.1 Materials 

Assay buffer: 50mM MES hydrate (Sigma, M2933), 250mM NaCl, pH 5.0; Substrate: 

Novel Fluorogenic Probe TL11 (3), 1mg/mL stock in DMSO; Fluorophore: 5(6)-
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carboxyfluorescein (5), 1mg/mL stock in DMSO then diluted to 100µM in assay buffer; 

Perkin Elmer LS50B Luminescence Spectrometer; 3mL quartz cuvette.       

2.7.3.2 Method 

Fluorescence spectroscopy assay is usually applied to detect fluorescence intensity in 

target compounds. By using this assay, it is very straightforward and clear to compare 

fluorescence intensities between probe TL11 (3) and its fluorophore 5(6)-

carboxyfluorescein (5).  

The excitation wavelength was set at 492nm and emission wavelength range was set 

between 500 and 600nm, and they were carried out at RT.  

For both assays, in the final 3mL quartz cuvette, 15µL of 100µM 5(6)-carboxyfluorescein 

(5) was mixed with 2985µL of assay buffer to make a final concentration 0.5μM of 5(6)-

carboxyfluorescein (5); and 16.6µL of 1mg/mL TL11 (3) DMSO stock solution was 

mixed with 2983.4µL of assay buffer to make a final concentration 5μM of TL11 (3).  

2.7.4 Fluorimetric Assay 

2.7.4.1 TL11 (3) Fluorimetric Assay 

Fluorimetric assay for probe TL11 (3) was applied to prove that probe TL11 (3) has the 

capability to bind with and be cleaved by activated legumain, to release fluorescence 

during cleavage.  

2.7.4.1.1 Materials 

Activation buffer: 50mM Sodium Acetate, 100mM NaCl, pH 4.0; Recombinant human 

legumain (R&D systems, 2199-CY-010); Assay buffer: 50mM MES hydrate (Sigma, 
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M2933), 250mM NaCl, pH 5.0; Substrate: Novel Fluorogenic Probe TL11 (3), 1mg/mL 

stock in DMSO; Fluorophore: 5(6)-carboxyfluorescein (5), 1mg/mL stock in DMSO then 

diluted to 100µM in assay buffer; F16 Black Maxisorp 96 well Plate; FluoStar Omega 

multi-mode Microplate Reader. 

2.7.4.1.2 Method 

Stock rh-legumain (10µg) was diluted with 100µL activation buffer (pH 4.0) and stored 

at -78ºC. Aliquots were incubated for 2h at 37oC before dilution to 1ng/µL in assay buffer 

(pH 5.0).  

 

Figure 2.69. Arrangement on black 96-well plate for Fluorimetric Assay 

As shown in Figure 2.69, in each well: 

A1~C1 100µL assay buffer (B) 

A2~C2 90µL assay buffer (B) + 10µL 100µM 5(6)-carboxyfluorescein (5) (F) 

A3~C3 98.9µL assay buffer (B) + 1.1µL 909.1µM fluorogenic probe TL11 (3) (T) 

A4~C4 60µL assay buffer (B) + 40µL 1ng/µL Legumain stock solution (L) 

A5~C5 50µL assay buffer (B) + 10µL 100µM 5(6)-carboxyfluorescein (5) (F) + 40µL 

1ng/µL Legumain stock solution (L) 

A6~C6 58.9µL assay buffer (B) + 1.1µL 909.1µM fluorogenic probe TL11 (3) (T) + 40µL 

1ng/µL Legumain stock solution (L) 
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Final assay conditions per well: 

 10μM of 5(6)-carboxyfluorescein (5) in A2~C2 and A5~C5; 

 10μM of TL11 (3) in A3~C3 and A6~C6;  

 40ng of Legumain in A4~C4, A5~C5 and A6~C6.  

Emission spectra were recorded at 5min intervals on a FluoStar Omega multi-mode 

Microplate Reader using excitation and emission analytical wavelengths of 485nm and 

520nm, respectively. Gain value was set at 800 for this fluorimetric assay. 

2.7.4.2 5(6)-FAM-Pro-Ala-Asn-OH (26) Fluorimetric Assay 

A standard curve was prepared for 5(6)-FAM-Pro-Ala-Asn-OH (26) by plotting 

fluorescence emission against concentration for use in TL11 (3) fluorimetric assays.  

The 5(6)-FAM-Pro-Ala-Asn-OH (26) 96-well plate layout is shown as follows: 

 

Figure 2.70. 5(6)-FAM-Pro-Ala-Asn-OH (26) arrangement on 96-well plate 

As shown in Figure 2.70, in each well: 

A1~C1 100µL assay buffer (B) 

A2~C2 99µL assay buffer (B) + 1µL 100µM 5(6)-FAM-Pro-Ala-Asn-OH (26) 

A3~C3 97.5µL assay buffer (B) + 2.5µL 100µM 5(6)-FAM-Pro-Ala-Asn-OH (26) 

A4~C4 95µL assay buffer (B) + 5µL 100µM 5(6)-FAM-Pro-Ala-Asn-OH (26) 
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A5~C5 92.5µL assay buffer (B) + 7.5µL 100µM 5(6)-FAM-Pro-Ala-Asn-OH (26) 

A6~C6 90µL assay buffer (B) + 10µL 100µM 5(6)-FAM-Pro-Ala-Asn-OH (26) 

A7~C7 87.5µL assay buffer (B) + 12.5µL 100µM 5(6)-FAM-Pro-Ala-Asn-OH (26) 

Final assay conditions per well: 

 1μM of 5(6)-FAM-Pro-Ala-Asn-OH (26) in A2~C2;  

 2.5μM of 5(6)-FAM-Pro-Ala-Asn-OH (26) in A3~C3; 

 5μM of 5(6)-FAM-Pro-Ala-Asn-OH (26) in A4~C4;  

 7.5μM of 5(6)-FAM-Pro-Ala-Asn-OH (26) in A5~C5; 

 10μM of 5(6)-FAM-Pro-Ala-Asn-OH (26) in A6~C6;  

 12.5μM of 5(6)-FAM-Pro-Ala-Asn-OH (26) in A7~C7. 

2.7.4.3 AD17 (8), AD20 (9), VG (10) and PN11 (11) Fluorimetric Assay 

AD17 (8), AD20 (9), VG (10) and PN11 (11) fluorimetric assays were following exactly 

the same method for TL11 (3) assay.  

Final assay conditions per well: 

 10μM of 5(6)-carboxyfluorescein (5) in A2~C2 and A5~C5; 

 10μM of probe in A3~C3 and A6~C6;  

 40ng of Legumain in A4~C4, A5~C5 and A6~C6.  

2.7.4.4 FF (6) and MK8 (7) Fluorimetric Assay 

FF (6) and MK8 (7) fluorimetric assays were following exactly the same method for TL11 

(3) assay.  

Final assay conditions per well: 

• 10μM of FITC (4) in A2~C2 and A5~C5; 

• 10μM of probe in A3~C3 and A6~C6;  

• 40ng of Legumain in A4~C4, A5~C5 and A6~C6.  
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2.7.4.5 YD103 (43) Fluorimetric Assay 

The YD103 (43) 96-well plate layout is shown as follows: 

 

Figure 2.71. YD103 (43) arrangement on 96-well plate 

As shown in Figure 2.71, in each well: 

A1~C1 100µL assay buffer (B) 

A2~C2 90µL assay buffer (B) + 10µL 100µM 5(6)-carboxyfluorescein (5) (F) 

A3~C3 98.8µL assay buffer (B) + 1.2µL 803.9µM fluorogenic probe YD103 (43) (Y) 

A4~C4 58.8µL assay buffer (B) + 1.2µL 803.9µM fluorogenic probe YD103 (43) (Y) + 

40µL 1ng/µL Legumain stock solution (L) 

Final assay conditions per well: 

 10μM of 5(6)-carboxyfluorescein (5) in A2~C2; 

 10μM of YD103 (43) in A3~C3 and A4~C4;  

 40ng of Legumain in A4~C4.  

2.7.5 TL11 (3), PN11 (11) and VG (10) probes Enzyme Kinetics assay 

2.7.5.1 Method 

Legumain stock frozen solution, which was kept at -78oC, was incubated at 37oC for two 

hours before diluted down to 1ng/µL with assay buffer.  
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Figure 2.72. TL11 (3) enzyme kinetics assay arrangement on 96-well plate 

As shown in Figure 2.72, in each well: 

A1~C1 100µL assay buffer (B) 

A2~C2 99µL assay buffer (B) + 1µL of 100µM 5(6)-carboxyfluorescein (5) (F) 

A3~C3 to A9~C9 in each column, final concentration of TL11 (3) (T) was increased from 

1µM, 2.5µM, 5µM, 7.5µM, 10µM, 20µM up to 40µM and assay buffer (B) was applied 

to top up each well final solution volume to 100µL. 

D3~F3 to D9~F9 in each column, final concentration of TL11 (3) (T) was increased from 

1µM, 2.5µM, 5µM, 7.5µM, 10µM, 20µM up to 40µM, solution and assay buffer (B) was 

applied to adjust each well solution volume to 60µL. At last, 40µL of 1ng/µL legumain 

(L) was added into each well of these seven columns just before the 96-well plate was 

placed into microplate read.  

Final assay conditions per well: 

• 1μM of TL11 (3) in A3~F3; • 2.5μM of TL11 (3) in A4~F4; • 5μM of TL11 (3) in 

A5~F5;  

• 7.5μM of TL11 (3) in A6~F6; • 10μM of TL11 (3) in A7~F7;  

• 20μM of TL11 (3) in A8~F8; • 40μM of TL11 (3) in A9~F9; 

• 1µL of 100µM 5(6)-carboxyfluorescein (5) in A2~C2;  

• 40μL of 1ng/μL legumain in D3~F9 

• All wells were topped up to 100μL with assay buffer 
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Methods for PN11 (11) and VN (10) probes enzyme kinetics assays were very similar to 

TL11 (3) enzyme kinetics assay. When arranging 96-well plates layout for PN11 (11) and 

VN (10) probes, they were applied the same as TL11 (3) probe on 96-well plate.  

2.7.5.2 Enzyme kinetics assay data process by SigmaPlot 12 

Data from each enzyme kinetics assay for each probe were processed by using enzyme 

kinetics wizard under toolbox tag in SigmaPlot 12.  

2.7.6 Methods for cytotoxicity and proliferation assays 

2.7.6.1 MCF-7 cell culture 

ER positive MCF-7 mammary carcinoma cells were cultured in 75cm2 flasks containing 

RPMI-1640 medium (Sigma) (containing phenol red and supplemented with 10% heat 

inactivated foetal calf serum (FCS), penicillin (50units/mL), streptomycin (50μg/mL) and 

L-glutamine (2mM)) at 37oC in 5% CO2 atmosphere. Cells were supplied with fresh 

medium every three days and passaged weekly.   

To harvest the cells from the flask, medium was poured out and then cells were washed 

with sterile sodium chloride (30mL) twice to wash out remaining medium in the flask. 

Then cells were trypsinised by adding 10% trypsin in sterile sodium chloride solution 

(5mL) in to the flask, which was shaken well and incubated at 37oC in 5% CO2 

atmosphere for five minutes to release the adherent cells from the flask. Five minutes 

later, RPMI-1640 medium was added into the flask to quench the action of trypsin and 

cells were centrifuged for two minutes at 2000rpm to pellet cells before the supernatant 
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was discarded. Cells were then washed with fresh RPMI-1640 medium again before being 

resuspended in 30mL of fresh medium.  

2.7.6.2 Materials for LDH and MTS assays 

ER positive MCF-7 mammary carcinoma cells; RPMI-1640 medium containing phenol 

red (Sigma); trypsin (1×); Nigrosin; NaCl (sterile); Triton X; MTS kit (Promega); LDH 

kit (Promega); Stop solution (Promega); PBS buffer; MTT; DMSO; TL3 (16); TL11 (3).    

2.7.6.3 Drug preparation for LDH and MTS assays 

Stock solutions of TL3 (16) and TL11 (3) were prepared at 1mM in neat DMSO, filter 

sterilised and diluted down to 100, 10, 1, 0.1, 0.01μM in phenol red free RPMI (reduced 

medium) for use.  

2.7.6.4 Seeding cells for LDH and MTS assays 

Cells were seeded at 2×104 cells per well (in 100μL of RPMI medium with phenol red) 

on a 96-well plates and cultivated for 24h at 37oC in 5% CO2 atmosphere. Then the usual 

medium was removed from each well and replaced with 200μL of phenol red free RPMI 

medium (reduced medium) and treatment drug solutions at concentrations of interest. The 

96-well plates were treated for 4h at 37oC in 5% CO2 atmosphere. Three minutes before 

the end of drug treatment period, reduced medium was removed from the Triton-X control 

wells and replaced with 200μL of Triton-X (0.5%).  
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96-well plate layout was as follows: 

 1 2 3 4 to 12 

A Cells + Triton-X  

B Cells + Medium  

C Cells + 0.01μM of Drug  

D Cells + 0.1μM of Drug  

E Cells + 1μM of Drug  

F Cells + 10μM of Drug  

G Cells + 100μM of Drug  

H Medium only  

A1 to A3: Cells + 200μL of Triton-X; 

B1 to B3: Cells + 200μL of phenol red free RPMI medium; 

C1 to C3: Cells + 200μL of 0.01μM Drug solution; 

D1 to D3: Cells + 200μL of 0.1μM Drug solution; 

E1 to E3: Cells + 200μL of 1μM Drug solution; 

F1 to F3: Cells + 200μL of 10μM Drug solution; 

G1 to G3: Cells + 200μL of 100μM Drug solution; 

H1 to H3: 200μL of phenol red free RPMI medium. 

2.7.6.4.1 LDH assay 

50μL of medium was removed from each of the wells after drug treatment period and 

placed into a new 96-well plate. 50μL of LDH substrate was added into each well and 

this new plate was incubated in the dark for 30min at RT. Stop solution (50μL) was 

applied to each well to stop this reaction. Any large bubbles were popped by using a 



246 

 

syringe needle and then the reaction was read at the absorbance of 492nm within one hour 

after the addition of stop solution.  

2.7.6.4.2 MTS assay 

From the wells in the original plate, 50μL of medium was removed from each well, and 

then MTS solution (20μL) was added into each well. The 96-well plate was then 

incubated for 1h at 37oC in a humidified, 5% CO2 atmosphere before the reaction was 

read at the absorbance of 492nm.  
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Chapter III. DNA Binding Study on Novel 

Anthracenediones 

3.1 INTRODUCTION 

In the past two decades, more efforts were focused on the interaction relationship of 

small molecule compounds with DNA. The study of drug-DNA binding facilitates 

better understanding of the molecular mechanisms of drug-DNA interaction and 

affords better ways to design DNA targeted drugs (Li et al., 2005). Drug-DNA 

interaction has two major binding modes: intercalation and groove binding (Chaires, 

1998; Palchaudhuri and Hergenrother, 2007). The purpose of studying the 

DNA-binding properties of compounds in the context of this research project and its 

relationship to Chapters I and II of this thesis are two-fold. Firstly, several protease 

substrates (either of MMPs or legumain) contained aminoanthraquinones. The latter 

are present either as active agents or sometimes ‘black-hole’ quenchers of fluorophores 

in FRET pairs. In the former case, amino acid conjugates of spacer-linked 

anthraquinones might be expected to be cytotoxic based on earlier work (Turnbull, 

2003) and it is accepted that whether or not these conjugates bind to DNA can 

influence their ability to act as topoisomerase inhibitors and their cytotoxic properties. 

On the other hand, when aminoanthraquinone-spacer compounds have been used as 

quenchers, it is important from a diagnostic point of view, if probes are to be used in 

vivo, that they are non-toxic or much less toxic than the actives from this series, if and 

when released as their amino acid conjugates after protease-catalysed cleavage of 
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oligopeptide substrate precursors. Therefore, this chapter presents the results of 

DNA-binding studies performed on some earlier-prepared, lead compounds from the 

cytotoxic series together with some novel analogues prepared here, in an attempt to 

define structure-activity relationships amongst this closely related group of 

compounds. The DNA binding properties of anthracenediones related to mitoxantrone 

(1) have been reported in the early literature (Agbandje et al., 1992). 

3.1.1 Intercalating agents 

A half century ago, Lerman (1961) and Pritchard et al. (1966), hypothesised that the 

flat shape gave the advantage of polycyclic aromatic ring compounds to insert between 

two base pairs of the DNA double helix. Van der Waals interaction between base pairs 

and the π-electron systems of the polycyclic aromatic ring compound are the main 

binding forces. Their theory was confirmed by others by X-ray crystallographic studies 

(Lerman, 1961; Pritchard et al., 1966; Nakamoto et al., 2008). Intercalating agents 

usually have planar structures, normally containing bi/tricyclic ring structures. Once 

intercalating agents insert between DNA base pairs, which may result in the use of an 

enormous amount of free energy, they can lead to unwinding and lengthening of the 

DNA helix (Chaires, 1998; Palchaudhuri and Hergenrother, 2007; Neto and Lapis, 

2009) and also cause base-pair deletions or insertions during DNA replication. During 

lengthening of the DNA, only the axial distance of neighbouring phosphate groups can 

be increased, the length between neighbouring phosphate groups stays the same 

(Williams et al., 1992). Studies showed that different intercalating agents may have 
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their own preferred binding sites, and these unique binding site preferences can lead to 

different pharmacological and cytotoxic activities for different intercalating agents 

(Nakamoto et al., 2008).  

A red-shift of 10nm or more in the visible absorption spectrum can commonly be 

found during drug-DNA intercalation due to a π-π* electron transition that would be 

altered in the drug chromophore (Nakamoto et al., 2008).  

During DNA intercalation binding, intercalating agents obey the rule of 

neighbour-exclusion which states that intercalating agents can only bind every other 

base step. The neighbouring binding sites cannot be occupied by intercalating agents at 

the same time. The restraint of neighbour-exclusion rule may be caused by the 

stereochemical structure of the sugar-phosphodiester backbone (Williams et al., 1992).  

3.1.2 Groove-binding agents 

When compared with intercalating agents, groove-binding agents do not cause 

significant DNA structure changes during drug-DNA interaction and it can be 

considered as a type of lock-and-key model. Groove-binding compounds commonly 

have crescent shaped structures and usually bind to the minor groove of DNA, also 

none or very little free energy is required during drug-DNA binding interaction 

(Chaires, 1998; Palchaudhuri and Hergenrother, 2007).  
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3.1.3 Anthracycline Derivatives 

Since the first anthracycline, daunorubicin, was introduced as an antineoplastic agent 

in 1967, more than 200 anthracyclines have been identified and many of them are 

considered as useful anticancer agents. The most clinically used anthracyclines are: 

daunorubicin (daunomycin (2), rubidomycin), doxorubicin (adriamycin), epirubicin (a 

semi-synthetic derivative of doxorubicin) and idarubicin. Although they show quite a 

wide range of efficacy against several types of cancer, due to the risk of irreversible 

cardiac damage, their clinical efficacy is limited (Smith et al., 2010).  

 

Anti-tumour agent daunomycin (2) [Figure 3.1] has a planar structure spanning rings 

B-D that fits well in between base pairs and functions as an intercalator. The 

nonplanar substituents in ring A interact with the DNA double helix through hydrogen 

bonding and offer an anchoring function to hold the amino sugar to fit in the minor 

groove of DNA (Quigley et al., 1980). 

3.1.4 Anthracene-9,10-dione Derivatives 

The anthracene-9,10-dione series of compounds have been known as more effective 

for some types of cancer, and less systemically toxic when compared with 
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Figure 3.1. Chemical structure of daunomycin (2) 
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anthracycline analogues, such as daunomycin (2) and doxorubicin (Agbandje et al., 

1992). Since the late 1970s, numerous aminoalkylaminoanthraquinones have been 

synthesised in order to reduce cardiotoxic effects caused by doxorubicin in which an 

aminoalkyl group supplants the amino sugar moiety of the latter. One notable example 

of this approach, mitoxantrone (1) [Figure 3.2] (Wallace et al., 1979), has been 

widely studied and it showed less cardiotoxic effects when compared with 

anthracyclines doxorubicin and daunorubicin. Although mitoxantrone (1) has a planar 

aromatic structure which is crucial for intercalation, due to the two extended side 

chains at positions 1 and 4, mitoxantrone (1) can only partially intercalate in between 

base pairs of DNA (Lown et al., 1985). Early structure activity studies indicated that 

5,8-dihydroxy-substituition, as present in mitoxantrone’s structure, can improve a 

compound’s water solubility and increase cytotoxic potency by approximately 10-fold 

when compared to the unsubstituted analogue ametrantrone (2) [Figure 3.2] 

(Zee-Cheng and Cheng, 1978). Murdock and colleagues pointed out that symmetrical 

1,4-bis-substituted side-chains have to be basic, in order to bind to phosphate groups of a 

DNA chain. Also, ‘one-armed’ analogues were reported to be less active or inactive 

(Murdock et al., 1979). 

R
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NH

R
NH

NH

OH

OH

A B C

Where:     Mitoxantrone: R=OH (1) 

                 Ametantrone: R=H (3)  

Figure 3.2. Chemical structure of ametantrone (3) and mitoxantrone (1) 
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Cytotoxicity of many topoisomerase II targeting anti-cancer agents, such as 

mitoxantrone (1), are correlated with their abilities to stabilize DNA-enzyme cleavable 

complexes in which topoisomerase II enzymes are bound to DNA strands covalently 

(Osheroff, 1989). These stabilized cleavable complexes are lethal during DNA replication 

and can lead to mutations, recombination events and cell death (Chen et al., 1996; 

Willmore et al., 1998). In mitoxantrone derivatives, it had been noticed that there was a 

good correlation between cytotoxicity and topoisomerase II DNA cleavage. Structure 

alteration on one side chain did not markedly affect cytotoxic potency or DNA cleavage, 

however, removing 5,8-dihydroxyl groups from the planar aromatic moiety (ametantrone 

(3)) significantly reduced the formation of topoisomerase II-DNA-drug cleavable 

complex in both intact cells and SV40 DNA (De Isabella et al., 1993). Studies showed 

that mitoxantrone (1) can form drug-stabilized DNA enzyme cleavable complexes with 

both topoisomerase IIα and topoisomerase IIβ isoforms in vivo, in mTOP2-4 wild-type 

mouse embryonic fibroblasts, however, topoisomerase IIα is the preferred cytotoxic 

target of mitoxantrone (1) rather than the topoisomerase IIβ isoform (Errington et al., 

1999). During mitoxantrone treatment, topoisomerase IIα cleavable complexes had a 

half-life of 10 hours and they were 1.7-fold more stable than topoisomerase IIβ cleavable 

complexes which had a half-life of 6 hours. The longevity of mitoxantrone-stabilized 

topoisomerase IIα DNA cleavable complex could be related to its cytotoxic properties 

(Errington et al., 2004).   
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3.1.5 Competitive Ethidium Displacement 

N

CH2CH3

NH2H2N

Br

 

Figure 3.3. Chemical structure of ethidium bromide (4) 

Ethidium bromide (4) [Figure 3.3] is a cationic dye (Olmsted and Kearns, 1977) and a 

trypanocidal drug (Newton, 1957) which can intercalate between base pairs in both 

double stranded DNA and RNA (Baguley and Falkenhaug, 1978). There are two 

modes of site binding for ethidium bromide to interact with DNA. The primary, also 

the stronger mode of binding has been defined as intercalation between base pairs. The 

second mode of site binding is known as the external binding between ethidium 

bromide and the phosphate groups on the DNA surface. Binding of ethidium bromide 

to double stranded DNA is saturated when one ethidium bromide molecule is bound 

with every four or five base pairs (Nordmeier, 1992). In solution, fluorescence of 

ethidium bromide is quenched by aqueous solvent. However, once ethidium bromide 

(4) intercalates DNA, the dye molecule is inside the hydrophobic environment which 

protects ethidium bromide (4) from the aqueous solvent, hence a dramatic fluorescence 

release can be detected (Olmsted and Kearns, 1977). The complex of DNA-ethidium 

bromide has higher viscosity and higher melting temperature when compared with free 

DNA (Nakamoto et al., 2008). The maximum absorbance of ethidium bromide (4) is at 

480nm, however, once ethidium bromide (4) is bound with DNA, the absorption 
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maximum wavelength shifts to 518nm along with increasing of relative fluorescence 

intensity.  

 

Figure 3.4. Ethidium displacement assay 

Ethidium displacement assay [Figure 3.4], an indirect fluorescence based technique, 

was first described almost three decades ago (Morgan et al., 1979). When ethidium 

bromide (4) binds to DNA, its fluorescence can be increased by 24-fold (Palchaudhuri 

and Hergenrother, 2007). Providing a second DNA binding ligand to DNA-ethidium 

complexes can lead to a displacement of ethidium bromide, hence it can cause a 

decrease of fluorescence intensity (Baguley et al., 1981).  
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3.2 AIM 

Several anthraquinone derivatives had been designed and synthesised in this 

laboratory. They all have similar chemical structures with various hydroxyl groups at 

different positions on the anthraquinone basic structure. In order to study their 

individual DNA binding affinities, measurement of the Kapp DNA binding constant 

was introduced as a means of comparison of compounds within closely structurally 

related series. Hence, how different side chains and different number of hydroxyl 

groups would affect anthraquinone derivatives’ DNA binding affinity can then be 

calculated and compared. As mitoxantrone (1) is the most effective and widely studied 

anthracene-9,10-dione derivative, so each anthraquinone derivative in this project was 

compared with the measured mitoxantrone Kapp value in order to find out how potent 

these compounds are. Furthermore, the standard cell proliferation MTT assay was 

applied to NU:UB 21 (5), 31 (6), 51 (7) and YD 4 (8) so as to find out the relationships 

between each compound’s DNA binding affinity and cytotoxicity.  
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3.3 RESULTS AND DISCUSSION 

In previous studies on the NU:UB series of aminoanthraquinones and their amino acid 

conjugates in this laboratory, it was shown that the anthraquinone system has the 

potential to bind to DNA by intercalation which favours interactions with 

topoisomerase II, and the extended spacer group or spacer with one amino acid 

conjugate in the anthraquinone system may favour interactions with topoisomerase I 

(Turnbull, 2003). 

It has been shown that both NU:UB 31 (6) and 51 (7) are dual topoisomerase I and II 

inhibitors. The dehydroxylated (anthraquinone), diaminopropane spacer proline 

conjugate NU:UB 31 (6) is able to stimulate topoisomerase I, II α- and II β- mediated 

DNA cleavage at 5µM, 25µM and 25µM, respectively (optimum concentrations). And 

the 4, 8-dihydroxylated, diaminopropane spacer glycine conjugate NU:UB 51 (7) can 

stimulate topoisomerase I, II α- and II β- mediated DNA cleavage at 50µM, 25µM and 

25µM, respectively (optimum concentrations) (Pettersson, 2004).  

The anthraquinone derivatives that have been used in this project for competitive 

ethidium displacement assay and standard cell proliferation MTT assay all have similar 

structure which is shown in general form in Figure 3.5 and details for each derivative 

are listed in Table 3.1: 
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Figure 3.5 General structure of anthraquinone derivatives. 
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Drug R1 (C4) R2 (C8) Spacer Amino acid 

NU:UB 83 (9) OH OH NH(CH2)3NH Proline 

NU:UB 85 (10) OH OH NH(CH2)4NH Proline 

NU:UB 31 (6) H H NH(CH2)3NH Proline 

NU:UB 51 (7) OH OH NH(CH2)3NH Glycine 

YD4 (8) OH H NH(CH2)3NH Glycine 

YD82 (11) OH H NH(CH2)2NH(CH2)2OH N/A 

NU:UB 466 (12) H H NH(CH2)2NH(CH2)2OH N/A 

YD2 (13) OH H NH(CH2)3NH N/A 

NU:UB 197 (14) H H NH(CH2)3NH N/A 

NU:UB 21 (5) H H NH(CH2)3NH D-alanine 

Table 3.1 Differences in anthraquinone derivatives at the C4 and the C8 positions. 

The first nine anthraquinone derivatives shown in Table 3.1 were compared with 

mitoxantrone (1) in competitive ethidium displacement assay in order to find out if 

hydroxyl groups at the C4 and/or the C8 positions or different spacers or spacer with 

different amino acid conjugates would affect DNA binding affinities. Four similar 

anthraquinone derivatives NU:UB 21 (5), 31 (6), 51 (7) and YD 4 (8) which all have 

1,3-diaminopropane as spacer were also compared in standard cell proliferation MTT 

assays.  

3.3.1 Design and synthesis of anthraquinone DNA-binding agents 

Based on the successful synthesis of previous members of the NU:UB series (Turnbull, 

2003), YD2 (13), YD4 (8), YD82 (11) and NU:UB 466 (12) were synthesised by 

introducing or eliminating one hydroxyl group from similar previous NU:UB 

compounds in this research project, while the other anthraquinone compounds were 

prepared previously and given for testing in this research project.    
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3.3.1.1 Synthesis of 4-hydroxy-1-[Propyl Spacer]-AQ TFA salt [YD2] (13) 

O

O OH

NH NH3OOCCF3

 

Figure 3.6. Chemical structure of 4-hydroxy-1-[Propyl Spacer]-AQ TFA salt [YD2] (13) 

AQ-spacer TFA salt YD2 (13) [Figure 3.6] is an intermediate compound during the 

synthesis of AQ-spacer glycine conjugate TFA salt YD4 (8). When compared with 

NU:UB 197 (14), YD2 (13) has similar structure with the same diaminopropane spacer 

[Propyl Spacer] but having an extra hydroxyl group at the C4 position. Hence, it would 

be valuable to determine if an extra hydroxyl group would cause different DNA 

binding affinities when comparing YD2 (13) and NU:UB 197 (14) in the DNA binding 

assay.  

LEUCOQUINIZARIN 

4 OH AQ PROPYL SPACER NH Boc

[YD1] (15)

4 OH AQ PROPYL SPACER NH3OOCCF3

[YD2] (13)

[YD4] (8)

4 OH AQ PROPYL SPACER NH2

[YD79] (17)

(i)

(ii)

(iii)

4 OH AQ PROPYL SPACER GLY Boc

[YD3] (16)

(iii)

(iv)

(v)

(ii)

(vi)

O

O OH

NH NHCO NH3OOCCF3

 
Reagents and conditions: (i) Boc-NH(CH2)3-NH2, EtOH:THF (2:1), water bath, 70min, triethylamine. 

(ii) O2, 2h. (iii) TFA, RT, 30min. (iv) Boc-Gly-OSu, DMF, triethylamine, RT, 12h. (v) NH2(CH2)3NH2, 

DCM, water bath 95C, 60min. (vi) Boc-Gly-OH, HOBt, TBTU, DMF, DIPEA, RT, 12h. 

Scheme 3.1. Synthesis of 4-OH-AQ-[Propyl Spacer]-Gly TFA salt [YD4] (8) 
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The synthesis of 4-hydroxy-1-[Propyl Spacer]-AQ TFA salt, YD2 (13), started with 

mixing leucoquinizarin with Boc-NH-(CH2)3-NH2 in a mixed solvent of ethanol: THF 

(2:1), then this reaction mixture was refluxed for one hour. The colour of this reaction 

changed from brown to dark purple. Once the completion of this reaction was 

confirmed by TLC, this purple solution was air-bubbled for two hours to oxidize the 

first-formed leuco form of the product. After oxidization, 4-hydroxy-1-([Propyl 

Spacer]-NH-Boc)-AQ [YD1] (15) was purified by column chromatography. Then this 

pure (chromatographically homogeneous) purple product was treated with TFA to 

remove the Boc-protecting group and form a trifluoroacetate salt YD2 (13) [Scheme 

3.1]. The structure of YD2 (13) was confirmed by its electrospray (+) mass spectrum 

which had a strong signal at m/z 297 for the cationic species (RNH3)
+. 

3.3.1.2 Synthesis of 4-hydroxy-1-(Gly-[Propyl Spacer])-AQ TFA salt [YD4] (8) 

O

O OH

NH NHCO NH3OOCCF3

 

Figure 3.7. Chemical structure of 4-hydroxy-1-(Gly-[Propyl Spacer])-AQ TFA salt [YD4] (8) 

Based on the structure of dual topoisomerase I and II inhibitor NU:UB 51 (7), YD4 (8) 

[Figure 3.7] was designed and synthesised with the objective of ‘removing’ one 

hydroxyl group at the C8 position in NU:UB 51 (7) and keeping the same 

diaminopropane spacer glycine conjugate in the side chain, to find out whether 

eliminating one hydroxyl group at the C8 position would lead to any DNA binding 

affinity changes. YD4 (8) was prepared by two procedures: via YD2 (13), using 
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mono-Boc-protected diamine (Method I), and using free diamine via compound YD79 

(17) (Method II). 

Method I of synthesising YD4 (8), from YD2 (13) route: the trifluoroacetate salt YD2 

(13) was coupled with Boc-Gly-OSu to give 1-(Boc-Gly-[Propyl 

Spacer])-4-hydroxy-AQ [YD3] (16), then this Boc protected compound YD3 (16) was 

treated with TFA to give the final trifluoroacetate salt YD4 (8).  

Method II of synthesising YD4 (8), from YD79 (17) route: leucoquinizatin was 

reacted with one equivalent of un-protected 1,3-diaminopropane in dichloromethane, 

then the reaction mixture was oxidized for one hour to give a dark purple intermediate, 

4-hydroxy-1-[(3-aminopropyl)amino]anthraquinone [YD79] (17). After purification by 

column chromatography, YD79 (17) was coupled with Boc-Gly-OH by using standard 

peptide coupling methods to form the Boc protected compound YD3 (16), which was 

then purified and treated with TFA to give the final dark purple product YD4 (8) 

[Scheme 3.1].  

Although YD4 (8) can be synthesised by both methods, method I was a better way to 

synthesise YD 4 (8) than method II and this is because in method I, the Boc protected 

AQ-propylamino spacer YD1 (15) was synthesised by using Boc-NH(CH2)3-NH2. 

Because one end of this diaminopropane is protected by a Boc group, this coupling 

reaction was quite straightforward and the product was easily purified by running a 

silica gel chromatography column. In method II, the AQ-propyl spacer YD79 (17) was 

synthesised by using unprotected 1,3-diaminopropane, hence, during the coupling 

stage, one mole of diaminopropane may react with two moles of leucoquinizarin. Also, 

the unprotected AQ-propylamino spacer YD79 (17) was difficult to dissolve in both 
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dichloromethane and methanol or the mixture of both solvents. So the purification of 

product YD79 (17) on a silica gel chromatography column was more difficult than the 

purification of the Boc protected product YD1 (15) in method I.   

3.3.1.2.1 Mass Spectral Characterisation of YD4 (8) 

Given YD4 (8) is a TFA salt, in order to find signals of both the alkylammonium 

cation (RNH3)
+ and trifluoroacetate anion, this 4-hydroxy-1-(Gly-[Propyl Spacer])-AQ 

TFA salt [YD4] (8) was analysed by electrospray ionisation in both positive and 

negative modes. 

 

Figure 3.8. ESI(+) Mass spectrum of 4-hydroxy-1-(Gly-[Propyl Spacer])-AQ TFA salt [YD4] (8) 

The electrospray (+) mass spectrum showed a strong signal for (M+H)+ at m/z 354.1 

(100%), a signal at m/z 707.2 for the species (2M+H)+ and the electrospray (-) mass 

spectrum had a strong signal at m/z 112.8 (100%) which confirmed the presence of the 

trifluoroacetate anion [Figure 3.8]. Hence, both electrospray positive and negative 

mass spectra indicated that YD4 (8) had the correct structure.  

(M+H)+ 

trifluoroacetate anion 

(2M+H)+ 
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3.3.1.3 Synthesis of YD82 (11) 

O

O

NH

OH

NH2
OH

F
F F

O O

 

Figure 3.9. Chemical structure of YD82 (11) 

YD82 (11) [Figure 3.9] shares the same spacer side chain as mitoxantrone (1), and it 

was designed to have only one spacer side chain at the C1 position instead of two side 

chains in its structure, and also two hydroxyl groups at the C5 and C8 positions were 

omitted in YD82 (11). All the structural changes made to YD82 (11) were in order to 

see if removing one of the two spacer side chains from mitoxantrone (1) and two 

additional two hydroxyl groups at the C5 and C8 positions would cause any significant 

decrease in YD82 DNA binding affinity when compared with mitoxantrone (1); 

probing the speculation or sometimes assumption that hydroxyl groups augment 

DNA-binding and that two side-chains is a feature assumed mandatory in mitoxantrone 

analogues.      

Scheme 3.2 illustration of the synthesis of YD82 (11): 
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LEUCOQUINIZARIN 

4 OH AQ AMINO ALCOHOL SPACER [YD80] (18)

[YD82] (11)

(i)

(ii)

O

O

NH

OH

NH2
OH

F
FF

O O

 

Reagents and conditions: (i) NH2-(CH2)2-NH-(CH2)2-OH, RT, 20min. (ii) TFA, RT.  

Scheme 3.2. Synthesis of YD82 (11) 

This trifluoroacetate salt YD82 (11) was synthesised by treating leucoquinizarin with 

2-[(2-aminoethyl)amino]ethanol for 20 minutes, then this purple slurry was extracted 

between water and chloroform. After extraction, purple product 4-hydroxy-AQ-amino 

alcohol spacer [YD80] (18) was purified by flash chromatography and then the 

chromatographically pure compound was treated with TFA on ice. Once this purple 

compound was completely dissolved in TFA, the solvent was evaporated to dryness 

and remaining product was treated with diethyl ether to give a purple precipitate of 

final product [YD80] (18).   

In the beginning, in order to make this single side-chain substituted compound YD80 

(18) instead of 1,4-bis (blue) by-product, a few solvents had been tested for this 

reaction, however, the results were not very satisfying. When ethanol: tetrahydrofuran 

(THF) (2:1) was used as the reaction solvent (often applicable for this type of 

amination), after refluxing for over three hours, the suspension in the round bottomed 
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flask was still brick-red in colour and on the TLC plate, it only showed a very tiny 

weak purple spot. Zee-Cheng et al. reported in 1979 that they used butanol as the 

reaction solvent (Zee-Cheng et al., 1979), so the synthesis of YD80 (18) was carried 

out again using butanol as reaction solvent. After heating over a water bath for five 

hours and leaving at room temperature overnight, the TLC showed quite a lot spots and 

also the purple spots were very weak, but this method seemed better than using 

ethanol: tetrahydrofuran (2:1) as the reaction solvent. The dark purple compound from 

this reaction was then collected and examined by mass spectral and NMR analyses. 

However, the results showed the purple compound was not correct, and that cyclisation 

on the side chain may have occurred during synthesis.  

 
 

Figure 3.10 Mass spectrum of YD80 (18) cyclisation compound. 

In the mass spectrum [Figure 3.10], there was a signal at m/z 325.1183 (100%) for the 

species (M+H)+, and 671.2107 (2M+Na)+, which indicated that the mass for this 

compound was 324Da. However, the expected mass for YD80 (18) should have been 

326Da. The two missing protons led to the theory that cyclisation occurred during 

(M+H)+ 

(2M+Na)+ 
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YD80 (18) synthesis. Two possible cyclisation product structures were recognised 

[Figure 3.11]. These would arise from either initial amination at C-1 by the secondary 

amino group of the amino alcohol aminating reagent, to give A (19), or (preferred) by 

the primary amino group to give B (20); then, cyclisation onto C-2. 

O

O OH

N

NH

CH2CH2OH

O

O OH

HN

N
CH2CH2OH

A (19)                                                             B (20)                                     

Figure 3.11. Possible cyclisation compounds in YD80 (18) reaction 

The NMR spectrum showed clearly that cyclisation happened during reaction (the 

characteristic and usually well-resolved aromatic proton H-2 peak (typically at 

7.2-7.3ppm, doublet) was missing. However, it could not be confirmed whether it was 

a primary or secondary amine that formed this cyclisation based on the simple 1H 

NMR spectrum [Figure 3.11] (without using NOE experiments or perhaps nitrogen 

nmr). So, this dried cyclisation compound formed during the YD80 (18) reaction was 

then coupled with (Boc)2O in dry methanol. Three hours later, there was no difference 

between starting the material and product on TLC plates in a variety of solvent 

systems, and this may indicate that the cyclisation compound could be structure B (20) 

in Figure 3.11. This is because if the cyclisation compound was structure A (19), then 

it should be able to couple a Boc group onto the available –NH- at C-2, whereas in 

structure B (20), the C-1 –NH- cannot easily become Boc-protected because of very 

slow acylation of an NH which is chelated to the quinone oxygen on C-9. Also 
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Zee-Cheng and Cheng reported that the cyclisation in structure B (20) [Figure 3.11] 

was more likely to happen during such reaction (Zee-Cheng and Cheng, 1978). Hence, 

all evidence supports that the cyclisation compound structure should be structure B 

(20) in Figure 3.11. 

The 1H NMR spectrum of cyclisation compound B (20) [Figure 3.11] showed a 

6-proton multiplet signal at 3.56ppm and a 2-proton triplet signal at 3.69 which were 

assigned to methylene protons in the cyclisation side chain. The alcohol proton was 

assigned to a one-proton singlet at 4.92ppm. The singlet signal at 6.24ppm was 

assigned to the H-3 proton. Signals for H-6 and H-7 protons can be found between 

7.76 and 7.80ppm. A multiplet signal between 8.19 and 8.22ppm was assigned to H-5 

and H-8, and the anthraquinone amino proton was found at 11.06ppm.  

During the successful synthesis of YD80 (18), 2-[(2-aminoethyl)amino]ethanol was 

used neat when mixed with leucoquinizarin without using any solvent or heating. The 

whole reaction was kept for a quite short time, about 20 minutes, just in order to avoid 

the reaction starting to form any 1,4-bis blue by-product. Following the isolation of 

4-hydroxy-AQ-amino alcohol spacer [YD80] (18), it was converted into its 

trifluoroacetate salt YD82 (11), which, surprisingly, did not show a difference on TLC 

between these two compounds (in different solvent systems). Further investigation was 

carried out, in that YD80 (18) was reacted with (Boc)2O in pure methanol. Three hours 

later, a new blue spot appeared on the TLC plate which was higher-running than the 

starting YD80 (18) spot. This indicated that in YD80’s (18) chemical structure, there 
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was likely a secondary amine in the side chain which could be capped with a tBoc 

protecting group. So, YD80 (18) made from mixing leucoquinizarin with amine alone 

contained the desired spacer, with a linear side-chain, instead of forming a cyclisation 

product and proved the best method for obtaining the target compound.  

Both YD80 (18) and its TFA salt were analysed by NMR spectroscopy to confirm that 

YD82 (11), the TFA salt form of YD80 (18), was correctly formed after treating YD80 

(18) with trifluoroacetic acid. Furthermore, the NMR spectrum of YD80 (18) showed, 

for example, a signal for a one-proton singlet at 2.07ppm confirming the presence of an 

amino proton in the side-chain, RNH(CH2)2OH. The amino proton at the C1 position 

of anthraquinone was assigned to a one-proton triplet at 10.52ppm; in YD 82, the 

methylene protons for the side-chain were found between 3.03 and 3.77ppm. The 

alcohol proton was assigned to a one-proton singlet at 5.29ppm. A signal for a one 

proton triplet at 10.20ppm confirming the amino proton at the C1 position of 

anthraquinone.  

3.3.1.4 Synthesis of NU:UB 466 (12) 

O

O

NH
NH2

OH

F
F F

O O

 

Figure 3.12. Chemical structure of NU:UB 466 (12) 
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NU:UB 466 (12) [Figure 3.12] is similar to YD82 (11), the only difference between 

these two compounds is that the hydroxyl group at the C4 position is ‘missing’ in the 

NU:UB 466 (12). The purpose of designing NU:UB 466 (12) was to find out if the 

missing hydroxyl group at the C4 position would lead to a significant difference 

between NU:UB 466 (12) and YD82 (11) DNA binding affinities, as suggested by 

literature reports on early mitoxantrone analogues (Agbandje et al., 1992).   

The synthesis of NU:UB 466 (12) is outlined in Scheme 3.3:  

O

O

NH
NH2

OH

F
F F

O O

1-Chloroanthraquinone

AMINO ALCOHOL SPACERAQ [NU:UB 466 free base] (21)

[NU:UB 466] (12)

(i)

(ii)

 

Reagents and conditions: (i) NH2-(CH2)2-NH-(CH2)2-OH, DMSO, water bath, 30min. (ii) TFA, RT 

Scheme 3.3. Synthesis of NU:UB 466 (12) 

NU:UB 466 (12) was synthesised by mixing 1-chloroanthraquinone and 

2-[(2-aminoethyl)amino]ethanol in DMSO, then this reaction mixture was heated over 

a water bath for half an hour. The red NU:UB 466 free base (21) was then purified by 

column chromatography, and dissolved in TFA to give the final trifluoroacetate salt 

[Scheme 3.3].  

Both NU:UB 466 free base (21) and its TFA salt NU:UB 466 (12) were analysed by 

NMR spectroscopy. For NU:UB 466 free base (21), the 1H NMR spectrum (in 
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d6-DMSO) gave a one proton broad singlet at 1.90ppm confirming the presence of the 

amino proton in the side-chain. Signals for methylene protons in the side-chain were 

evidenced between 2.62 and 3.49ppm. A signal of a one proton triplet at 9.75ppm was 

assigned to the amino proton at the C1 position of the anthraquinone. For NU:UB 466 

(12), signals for methylene protons can be found between 3.08 and 3.77ppm. A signal 

of a one proton triplet was assigned to the alcohol proton at the end of the side-chain at 

4.66ppm. The signal at 8.73ppm was assigned to the two (cationic) protons in 

RNH2
+(CH2)2OH. 

The two 1H spectra of NU:UB 466 free base (21) and its TFA salt NU:UB 466 (12) are 

quite similar, the only differences are that there was a singlet for two protons at 

8.73ppm in the spectrum of NU:UB 466 (12) and it was assigned to the cationic amino 

protons RNH2
+(CH2)2OH and there was a small broad signal at 1.90ppm in the NU:UB 

466 free base (21) 1H spectrum that was assigned to RNH(CH2)2OH. The amino 

protons in alkylammonium-type cations of other compounds in the 

aminoalkylamino-anthraquinones and amino acid conjugates in the NU:UB series had 

previously been shown to be present in the aromatic region of the spectrum also. 

3.3.2 DNA binding assays 

During each compound’s DNA binding assay, the binding affinity was studied by 

displacing ethidium bromide from the CT-DNA-ethidium bromide complex by the new 

potential intercalative agent. During successive additions, the concentration of each 

compound was increased by 1µM each time so as to get a reduction of 50% in the 
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fluorescence intensity (of the ethidium-DNA complex). Fluorescence intensity was 

plotted against compound concentration and QE50 values were calculated from the 

mean value (n=3). The QE50 value is the mean concentration of test compound 

required to effect the 50% reduction in the initial fluorescence of the starting 

DNA-bound ethidium complex. Thus, the smaller the value, the greater is the DNA 

binding affinity of the binding ligand.   

3.3.2.1 Mitoxantrone (1) DNA binding assay 

 

Figure 3.13. Variation of relative fluorescence intensity of CT-DNA (60µM) with pre-bound EB (4) 

(30µM) when treated with different concentrations of mitoxantrone (1) (n=3) in PBS buffer. The 

excitation wavelength was set at 480nm and maximum emission was observed between 584nm and 

589nm. 

 

 Coefficient Std. Error t P 

min -0.0000 0.0000 (+inf) <0.0001 

max 207.0467 5.3015 39.0546 <0.0001 

QE50 1.73 0.1488 11.6471 <0.0001 

 

When the relative fluorescence intensity reached 50%, the concentration of 

mitoxantrone (1) was 1.73±0.15µM. In order to calculate the apparent binding constant 
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(Kapp) for each compound, the binding constant for the CT DNA-ethidium complex 

was taken from the literature value as reported by Kundu et al. (Kundu et al., 2011). 

The Kapp value was calculated according to the equation:   

For mitoxantrone (1), Kapp=(KEB[EB])/[Drug]=(1×107M-1×30)/1.73=17.34×107M-1 

3.3.2.2 NU:UB 83 (9) DNA binding assay 

 

Figure 3.14. Variation of relative fluorescence intensity of CT-DNA (60µM) with pre-bound EB (4) 

(30µM) when treated with different concentrations of NU:UB 83 (9) (n=3) in PBS buffer. The 

excitation wavelength was set at 480nm and maximum emission was observed between 584nm and 

591nm. 

 

 

 Coefficient Std. Error t P 

min -0.0000 0.0000 (+inf) <0.0001 

max 201.0530 4.6648 43.1002 <0.0001 

QE50 2.61 0.2163 12.0683 <0.0001 

 

When the relative fluorescence intensity reached 50%, the concentration of NU:UB 83 

(9) was 2.61±0.22μM. 

NU:UB 83 (9), Kapp=(KEB[EB])/[Drug]=(1×107M-1×30)/2.61=11.49×107M-1 
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3.3.2.3 NU:UB 85 (10) DNA binding assay 

 

Figure 3.15. Variation of relative fluorescence intensity of CT-DNA (60µM) with pre-bound EB (4) 

(30µM) when treated with different concentrations of NU:UB 85 (10) (n=3) in PBS buffer. The 

excitation wavelength was set at 480nm and maximum emission was observed between 584nm and 

589nm. 

  

 Coefficient Std. Error t P 

min -0.0000 0.0000 (+inf) <0.0001 

max 211.7459 3.2636 64.8812 <0.0001 

QE50 6.43 0.3105 20.7052 <0.0001 

  

When the relative fluorescence intensity reached 50%, the concentration of NU:UB 85 

(10) was 6.43±0.31µM. 

NU:UB 85 (10), Kapp=(KEB[EB])/[Drug]=(1×107M-1×30)/6.43=4.67×107M-1 
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3.3.2.4 NU:UB 31 (6) DNA binding assay 

 

Figure 3.16. Variation of relative fluorescence intensity of CT-DNA (60µM) with pre-bound EB (4) 

(30µM) when treated with different concentrations of NU:UB 31 (6) (n=3) in PBS buffer. The 

excitation wavelength was set at 480nm (n=3) and maximum emission was observed between 

584nm and 591nm. 

  

 Coefficient Std. Error t P 

min -0.0000 0.0000 (+inf) <0.0001 

max 211.2786 2.2639 93.3259 <0.0001 

QE50 15.10 0.4307 35.0585 <0.0001 

  

When the relative fluorescence intensity reached 50%, the concentration of NU:UB 31 

(6) was 15.10±0.43µM. 

NU:UB 31 (6), Kapp=(KEB[EB])/[Drug]=(1×107M-1×30)/15.10=1.99×107M-1 
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3.3.2.5 NU:UB 51 (7) DNA binding assay 

 

Figure 3.17. Variation of relative fluorescence intensity of CT-DNA (60µM) with pre-bound EB (4) 

(30µM) when treated with different concentrations of NU:UB 51 (7) (n=3) in PBS buffer. The 

excitation wavelength was set at 480nm and maximum emission was observed between 583nm and 

589nm. 

  

 Coefficient Std. Error t P 

min -0.0000 0.0000 (+inf) <0.0001 

max 210.3699 5.1263 41.0377 <0.0001 

QE50 5.05 0.4352 11.6017 <0.0001 

 

When the relative fluorescence intensity reached 50%, the concentration of NU:UB 51 

(7) was 5.05±0.44µM. 

NU:UB 51 (7), Kapp=(KEB[EB])/[Drug]=(1×107M-1×30)/5.05=5.94×107M-1  
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3.3.2.6 YD4 (8) DNA binding assay 

 

Figure 3.18. Variation of relative fluorescence intensity of CT-DNA (60µM) with pre-bound EB (4) 

(30µM) when treated with different concentrations of YD4 (8) (n=3) in PBS buffer. The excitation 

wavelength was set at 480nm and maximum emission was observed between 584nm and 590nm. 

 

 Coefficient Std. Error t P 

min -0.0000 0.0000 (+inf) <0.0001 

max 214.0050 3.6694 58.3213 <0.0001 

QE50 10.95 0.5518 19.8499 <0.0001 

  

When the relative fluorescence intensity reached 50%, the concentration of YD4 (8) 

was 10.95±0.55µM. 

YD4 (8), Kapp=(KEB[EB])/[Drug]=(1×107M-1×30)/10.95=2.74×107M-1 
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3.3.2.7 YD82 (11) DNA binding assay 

 

Figure 3.19. Variation of relative fluorescence intensity of CT-DNA (60µM) with pre-bound EB (4) 

(30µM) when treated with different concentrations of YD82 (11) (n=3) in PBS buffer. The 

excitation wavelength was set at 480nm and maximum emission was observed between 583nm and 

590nm. 

  

 Coefficient Std. Error t P 

min -0.0000 0.0000 (+inf) <0.0001 

max 211.3406 0.9483 222.8713 <0.0001 

QE50 7.04 0.0929 75.8328 <0.0001 

 

When the relative fluorescence intensity reached 50%, the concentration of YD82 (11) 

was 7.04±0.09µM. 

YD82 (11), Kapp=(KEB[EB])/[Drug]=(1×107M-1×30)/7.04=4.26×107M-1 

 

 

 

 



281 

 

3.3.2.8 NU:UB 466 (12) DNA binding assay 

 

Figure 3.20. Variation of relative fluorescence intensity of CT-DNA (60µM) with pre-bound EB (4) 

(30µM) when treated with different concentrations of NU:UB 466 (12) (n=3) in PBS buffer. The 

excitation wavelength was set at 480nm and maximum emission was observed between 585nm and 

591nm. 

 

 Coefficient Std. Error t P 

min -0.0000 0.0000 (+inf) <0.0001 

max 206.3343 1.5772 130.8217 <0.0001 

QE50 14.78 0.2639 56.0041 <0.0001 

 

When the relative fluorescence intensity reached 50%, the concentration of NU:UB 

466 (12) was 14.78±0.26µM. 

NU:UB 466 (12), Kapp=(KEB[EB])/[Drug]=(1×107M-1×30)/14.78=2.03×107M-1 
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3.3.2.9 YD2 (13) DNA binding assay 

 

Figure 3.21. Variation of relative fluorescence intensity of CT-DNA (60µM) with pre-bound EB (4) 

(30µM) when treated with different concentrations of YD2 (13) (n=3) in PBS buffer. The 

excitation wavelength was set at 480nm and maximum emission was observed between 589nm and 

594nm. 

 

 Coefficient Std. Error t P 

min -0.0000 0.0000 (+inf) <0.0001 

max 542.1397 4.5545 119.0331 <0.0001 

QE50 5.08 0.1319 38.5535 <0.0001 

 

When the relative fluorescence intensity reached 50%, the concentration of YD2 (13) 

was 5.08±0.13µM. 

YD2 (13), Kapp=(KEB[EB])/[Drug]=(1×107M-1×30)/5.08=5.91×107M-1 
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3.3.2.10 NU:UB 197 (14) DNA binding assay 

 

Figure 3.22. Variation of relative fluorescence intensity of CT-DNA (60µM) with pre-bound EB (4) 

(30µM) when treated with different concentrations of NU:UB 197 (14) (n=3) in PBS buffer. The 

excitation wavelength was set at 480nm and maximum emission was observed between 586nm and 

590nm. 

 

 Coefficient Std. Error t P 

min -0.0000 0.0000 (+inf) <0.0001  

max 203.6404 2.7716 73.4749 <0.0001  

QE50 13.25 0.4691 28.2549 <0.0001  

 

When the relative fluorescence intensity reached 50%, the concentration of NU:UB 

197 (14) was 13.25±0.47µM. 

NU:UB 197 (14), Kapp=(KEB[EB])/[Drug]=(1×107M-1×30)/13.25=2.26×107M-1 
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All nine anthraquinone derivatives that had been tested in this competitive ethidium 

displacement assay have a general structure which is shown as in Figure 3.23: 

O
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5 4
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Spacer/ Spacer-amino acid conjugate TFA Salt

 

Figure 3.23. General structure of anthraquinone derivatives. 

They all have an amine group at the C1 position and it is linked with a spacer, and in 

the anthraquinone core, hydroxyl group(s) and/or hydrogen at the C4 and/or C8 

position.  
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These nine anthraquinone derivatives’ structures are quite similar to each other, 

however, whether the number of hydroxyl groups on the anthraquinone base structure 

would affect DNA binding constant Kapp values or whether different lengths or 

composition of spacer groups or additional amino acid would affect Kapp were 

important factors to be determined and will be discussed as follows:  

 SPACER/ SPACER AMINO 

ACID CONJUGATE 
R1 R2 

NU:UB 83 (9) NH(CH2)3NH-Pro TFA OH OH 

NU:UB 51 (7) NH(CH2)3NH-Gly TFA OH OH 

YD2 (13) NH(CH2)3NH3 TFA OH H 

NU:UB 85 (10) NH(CH2)4NH-Pro TFA OH OH 

YD82 (11) NH(CH2)2NH2(TFA)-(CH2)2OH OH H 

YD4 (8) NH(CH2)3NH-Gly TFA OH H 

NU:UB 197 (14) NH(CH2)3NH3 TFA H H 

NU:UB 466 (12) NH(CH2)2NH2(TFA)-(CH2)2OH H H 

NU:UB 31 (6) NH(CH2)3NH-Pro TFA H H 

 Table 3.2: Different spacers and functional groups at R1 and R2 positions of 

anthraquinone derivatives. 
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Drug QE50
# (µM) Kapp (M-1) 

Mitoxantrone (1) 1.73±0.15 17.34×107 

NU:UB 83 (9) 2.61±0.22 11.49×107 

NU:UB 51 (7) 5.05±0.44 5.94×107 

YD2 (13) 5.08±0.13 5.91×107 

NU:UB 85 (10) 6.43±0.31 4.67×107 

YD82 (11) 7.04±0.09 4.26×107 

YD4 (8) 10.95±0.55 2.74×107 

NU:UB 197 (14) 13.25±0.47 2.26×107 

NU:UB 466 (12) 14.78±0.26 2.03×107 

NU:UB 31 (6) 15.10±0.43 1.99×107 

Table 3.3: Anthraquinone derivatives: QE50 values and Kapp binding constants. 

 # mean concentration when the CT DNA-EB fluorescence intensity has decreased by 50%. 

From Table 3.2 and Table 3.3, the data clearly indicated that among the anthraquinone 

derivatives: 

1. The more –OH groups at the C4 and/or C8 position(s) on the anthraquinone base 

structure, the higher the DNA binding constant Kapp that the compound would show in 

competitive ethidium displacement assays.  

 NU:UB 83 (9) and NU:UB 31 (6) share the same spacer-amino acid conjugate 

-NH(CH2)3NH-Pro trifluoroacetate, but NU:UB 83 (9) has two hydroxyl groups 

at the C4 and C8 positions, while NU:UB 31 (6) has no hydroxyl group at 

either of those two sites. The results from competitive ethidium displacement 

assay showed that the DNA binding constant Kapp value for NU:UB 83 (9) is 

almost 6-fold greater than the constant Kapp value for NU:UB 31 (6). So, 
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removing two hydroxyl groups from the structure leads to a dramatic DNA 

binding affinity decrease.  

 NU:UB 51 (7) and YD4 (8) have the same spacer -NH(CH2)3NH- and are Gly 

trifluoroacetate salts, however NU:UB 51 (7) has two hydroxyl groups on the 

C4 and C8 sites, and there is only one hydroxyl group at the C4 position in 

YD4 (8). Results of DNA binding constant Kapp value measurements showed 

that NU:UB 51 (7) can bind onto DNA with almost two-fold stronger affinity 

than YD4 (8).  

 Similar results were obtained between YD82 (11) and NU:UB 466 (12) pair 

and YD2 (13) and NU:UB 197 (14) (salt form and free base) pair, Kapp values 

for the compound which has one extra hydroxyl group at the C4 position were 

2.1 fold and 2.6 fold higher than the other, respectively.  

 Compounds YD82 (11) and NU:UB 466 (12) both contained one single side 

chain of mitoxantrone (1) at the C1 position, and from data shown in Table 3.3 

it clearly showed that the Kapp values for both compounds were only 

approximately a quarter and one eighth of mitoxantrone’s DNA binding 

constant Kapp value, respectively. This may indicate that two 

-NH(CH2)2NH-(CH2)2OH side chains in mitoxantrone (1) are crucial for DNA 

binding, removing one of these side chains and both hydroxyl groups at the C5 

and C8 [NU:UB 466 (12)], would lead to a DNA binding affinity decreasing by 

eight-fold, however, if one hydroxyl group was re-introduced at the C4 position 
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[YD82 (11)], the DNA binding affinity would increase by almost two-fold 

when compared with NU:UB 466 (12) which has no hydroxyl group at all. 

2. When compounds have the same amount of hydroxyl groups at the same sites, the 

structure of the spacer/ spacer-amino acid conjugate that is linked to the amine group at 

the C1 position can lead to differences in the DNA binding constant Kapp values as well 

as the anthraquinone nuclear substitution pattern.  

 NU:UB 83 (9), NU:UB 51 (7) and NU:UB 85 (10) all have two hydroxyl 

groups at the C4 and C8 sites, and share similar but different spacers. NU:UB 

83 (9) has proline, while NU:UB 51 (7) has glycine at the end of the spacer. 

The Kapp values showed that NU:UB 83 (9) can bind onto DNA with two-fold 

greater affinity than NU:UB 51 (7) did.  

 NU:UB 85 (10) and NU:UB 83 (9) have similar structures. However, in 

NU:UB 85 (10), the N-butyl spacer structure has one extra –CH2 group when 

compared with the propyl spacer in NU:UB 83 (9). Nevertheless, the Kapp value 

for NU:UB 85 (10) was only one third of the Kapp value of NU:UB 83 (9). This 

may suggest that the longer spacer in the compound structure, and thus the 

potential for greater distancing of cationic charge from the chromophore, the 

less DNA binding affinity the compound would have.  

 YD2 (13) and YD4 (8) each only have one hydroxyl group at the C4 position 

and share the same spacer. YD2 (13) has the aminopropylamino spacer group 

whereas YD4 (8) is the corresponding glycine conjugate. This difference in 



289 

 

side-chain structure leads to the result that YD2 (13), with the shorter distance 

between the anthraquinone core and the cationic amino group, can bind onto 

DNA with approximately two fold greater affinity than YD4 (8), its glycine 

conjugate. This suggests that distancing the positive charge in the side chain 

from the anthraquinone nucleus leads to decreased DNA-binding properties.  

 Both NU:UB 197 (14) and NU:UB 31 (6) do not have any hydroxyl groups at 

the C4 and C8 positions. The only difference between these two TFA salts was 

NU:UB 31 (6) is the proline conjugate of NU:UB 197 (14). From the Kapp 

values in Table 3.3, it suggested that the presence of the proline residue at the 

end of the propyl spacer can slightly weaken the compound’s DNA binding 

affinity. 

From the above results, it was inferred that for compounds that share the same 

anthraquinone base structure,  

1) The DNA binding constant Kapp value would increase if there were more 

hydroxyl groups on the anthraquinone base structure. In Table 3.3 data showed 

that regardless of the spacer chain, the more hydroxyl groups in the compound 

structure would increase its’ DNA binding affinity (consistent with early 

reports in the literature on substituted mitoxantrone analogues; section 3.1.4).  

2) When compounds have the same amount of hydroxyl groups at the same 

positions, the aminopropylamino spacer leads to a higher DNA binding 

constant, Kapp value, than the spacer glycine conjugate.  
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3.3.3 MTT assay 

 

Scheme 3.4, Outline of the MTT assay (the basis of the colourimetric method) 

The MTT assay is often used as a method to determine the number of viable cells after 

exposing to toxic substances. During the MTT assay [Scheme 3.4], succinate 

dehydrogenase in the mitochondria break the tetrazolium ring in the water soluble 

(pale yellow) tetrazolium salt, 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium 

bromide (MTT) (22) thereby converting it to an insoluble dark purple formazan (23), 

which cannot permeate through the cell membranes and hence it accumulates in the 

viable cells (Fotakis and Timbrell, 2006).  

O

O

NH NHCO NH3OOCCF3

CH3

         

O

O

NH NHCO NH2OOCCF3

 

       NU:UB 21 (5)                            NU:UB 31 (6) 

Figure 3.24. Chemical structures of NU:UB 21 (5) and NU:UB 31 (6). 

MTT (22) MTT Formazan (23) 
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Figure 3.25. Survival rate of MCF-7 breast cancer cells treated with NU:UB 21 (5), NU:UB 31 (6), 

NU:UB 51 (7) and YD4 (8) for 96h (n=8). 

In vitro cytotoxicities of NU:UB 21 (5), NU:UB 31 (6), NU:UB 51 (7) and YD4 (8) 

against the MCF-7 breast cancer cell line were measured after 96h incubation by MTT 

assay (Plumb et al., 1989). MCF-7 cells growth curves against different concentrations 

of each compound are shown in Figure 3.25.  

Table 3.4. NU:UB 21 (5), NU:UB 31 (6), NU:UB 51 (7) and YD4 (8) in vitro cytotoxicity against 

MCF-7 breast cancer cells (96h incubation).  

The only difference between NU:UB 21 (5) and NU:UB 31 (6) [Figure 3.24] is that 

the terminal amino group of the aminopropylamino spacer, in NU:UB 21 (5) links to 

D-alanine and in NU:UB 31 (6) it connects to proline. From the MTT assay results 

analysed by SigmaPlot 12, it was found that after 96h incubation, NU:UB 21 (5) had 

an IC50 value of 6.8µM whereas NU:UB 31 (6) had a value of 10.6µM. This indicates 

COMPOUND SPACER SIDE CHAIN 
HYDROXYL GROUP 

POSITION 
IC50(µM) 

NU:UB 51 (7) -NH(CH2)3NH-Gly TFA 4 & 8 1.2 

YD4 (8) -NH(CH2)3NH-Gly TFA 4 3.4 

NU:UB 21 (5) -NH(CH2)3NH-D-Ala TFA N/A 6.8 

NU:UB 31 (6) -NH(CH2)3NH-Pro TFA N/A 10.6 
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that NU:UB 21 (5) is approximately 1.5-fold more potent than NU:UB 31 (6) (in this 

cell line).  

From their chemical structures, it can easily be noticed that NU:UB 51 (7) only has one 

extra hydroxyl group at position 8 of the anthraquinone when compared with YD4 (8). 

That extra hydroxyl group makes NU:UB 51 (7) (IC50 1.2µM) almost 3 times more 

potent than YD4 (8) (IC50 3.4µM). 

From Table 3.4, the data illustrates that: 

1) The more hydroxyl groups on the anthraquinone basic structure, the smaller 

IC50 value obtained (i.e. increased potency) after 96h incubation with MCF-7 

breast cancer cells. With two hydroxyl groups at positions C4 and C8, NU:UB 

51 (7) was 6-fold and 10-fold more potent than NU:UB 21 (5) and NU:UB 31 

(6), respectively, which do not have any hydroxyl groups on the anthraquinone 

structure. With one hydroxyl group ‘missing’ in YD4 (8) when compared with 

NU:UB 51 (7), it showed only a third of the inhibitory activity of NU:UB 51 

(7). 

2) At the terminus of the aminopropylamino spacer side chain, the smaller the 

structure of amino acid, the more the potency of that compound. When 

comparing the methyl group in D-alanine with the five-membered-ring structure 

of proline, NU:UB 21 (5) greater inhibitory potency against MCF-7 cells than 

NU:UB 31 (6). This may be related to the nature of the amino group; namely, 

primary in NU:UB 21 (5) but secondary in NU:UB 31 (6), or it may simply be 
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a question of steric hindrance to accessing the amino group in proline by the 

DNA phosphate backbone. More studies on related compounds are clearly 

required to determine the consistency of this observation. 

3) Having one extra hydroxyl group and the relatively smaller structure of glycine 

in the aminopropylamino side chain, YD4 (8) was determined to be 

approximately two-fold more potent than NU:UB 21 (5) and three times more 

potent than NU:UB 31 (6). 

When comparing DNA-binding data in Table 3.3, and in vitro cytotoxicity data in 

Table 3.4 there appeared to be a direct connection. The stronger DNA-binding affinity 

a compound shows, the more cytotoxic potency a compound will present. This 

indicated that there is a good correlation between drug-DNA binding affinity and 

cancer cell growth inhibitory activity.  
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3.4 CONCLUSION 

From DNA-binding studies, when the anthraquinone series compounds were compared 

with mitoxantrone (1), they indicated the major influencing factor that can affect 

drug-DNA binding affinities is the number of hydroxyl group in the anthraquinone 

chromophore. In general, the more hydroxyl groups in the anthraquinone derivative 

structure, the greater DNA binding affinity a given anthraquinone compound 

possesses. Also, upon introducing one side chain only into the anthraquinone structure, 

the DNA binding affinities decreased when compared with mitoxantrone (1) which has 

two side chains at the C1 and C4 positions. For compounds with hydroxyl group(s) at 

the same position(s) in the anthraquinone compound structure, the length of its side 

chain may influence its DNA-binding affinity as well, but not as greatly as the 

presence and number of hydroxyl groups.  

Results from DNA-binding studies to determine Kapp and MTT studies to determine 

IC50 values were consistent. This suggests that the greater DNA binding affinity the 

anthraquinone compound has, the more cytotoxic potency it will present.   

3.5 FUTURE WORK 

It has been shown that the different number of hydroxyl groups in the anthraquinone 

derivative structure can certainly make a major difference to its DNA binding affinity. 

However, whether alternative substitution patterns of hydroxyl groups in the 

anthraquinone skeleton would affect the DNA binding constant Kapp value or whether, 

for constant number and position of hydroxyl groups in its structure, the composition, 
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such as the number of -(CH2)- groups separating the two amino groups in the side 

chain (spacer) could lead to different DNA binding affinities? These questions will 

lead to further study in future work. Because the leading compounds identified in this 

study (i.e. NU:UB 51 (7) and YD4 (8)) are both active and good quenchers of 

fluorescence, they would be good compounds to incorporate into legumain/ MMP 

activated prodrugs in future studies. 

Also, an investigation can be carried out for the new anthraquinone derivatives 

prepared here to see whether these DNA intercalators can show any 

DNA-topoisomerase inhibitory activities as well as established members of the NU:UB 

series. 
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3.6 STRUCTURE LIBRARY 

O

O OH

NH NH C

O

O CH3

CH3

CH3

 

4-hydroxy-1-[Boc-Propyl Spacer]-AQ YD1 (15) 

4-hydroxy-1-[3-(N-tertiarybutoxycarbonylamino)propylamino]anthraquinone  

O

O OH

NH NH3

F
F F

O O

 

4-hydroxy-1-[Propyl Spacer]-AQ TFA salt YD2 (13) 

4-hydroxy-1-[(3-aminopropyl)amino]anthraquinone trifluoroacetate  

O

O OH

NH NHCO NH O

O

CH3

CH3

CH3

 

4-hydroxy-1-(Boc-Gly-[Propyl Spacer])-AQ YD3 (16) 

4-hydroxy-1-[3-(N-tertiarybutoxycarbonylglycylamino)propylamino]anthraquinone 

O

O OH

NH NHCO NH3

F
F F

O O

 

4-hydroxy-1-(Gly-[Propyl Spacer])-AQ TFA salt YD4 (8) 

4-hydroxy-1-[3-(glycylamino)propylamino]anthraquinone trifluoroacetate  

O

O OH

NH NH2

  

4-hydroxy-1-[Propyl Spacer]-AQ YD79 (17)                      

4-hydroxy-1-[(3-amino)propylamino]anthraquinone   
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O

O

NH

OH

NH
OH

 
4-hydroxy-1-[Amino Alcohol Spacer]-AQ YD80 (18) 

4-hydroxy-1-{[2-(2-hydroxyethyl)aminoethyl]amino}anthraquinone  

O

O

NH

OH

NH2
OH

F
F F

O O

 

4-hydroxy-1-[Amino Alcohol Spacer]-AQ TFA salt YD82 (11) 

4-hydroxy-1-{[2-(2-hydroxyethyl)aminoethyl]amino}anthraquinone trifluoroacetate  

O

O

NH
NH

OH

 
1-[Amino Alcohol Spacer]-AQ NU:UB466 free base (21) 

1-{[2-(2-hydroxyethyl)aminoethyl]amino}anthraquinone  

O

O

NH
NH2

OH

F
F F

O O

 

1-[Amino Alcohol Spacer]-AQ TFA salt NU:UB466 (12) 

1-{[2-(2-hydroxyethyl)aminoethyl]amino}anthraquinone trifluoroacetate  

O

O

NH

OH

NHCOOH NH3

F
F F

O O

 

4,8-dihydroxy-1-(Gly-[Propyl Spacer])-AQ TFA salt NU:UB 51 (7) 

4,8-dihydroxy-1-[3-(glycylamino)propylamino]anthraquinone trifluoroacetate  
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O

O

NH NHCOOH

OH

NH2OOCCF3

 

4,8-dihydroxy-1-(Pro-[Propyl Spacer])-AQ TFA salt NU:UB 83 (9) 

4,8-dihydroxy-1-[3-(L-prolylamino)propylamino]anthraquinone trifluoroacetate  

O

O

NHOH

OH

NHCO NH2OOCCF3

 
4,8-dihydroxy-1-(Pro-[Butyl Spacer])-AQ TFA salt NU:UB 85 (10) 

4,8-dihydroxy-1-[4-(L-prolylamino)butylamino]anthraquinone trifluoroacetate  

O

O

NH NHCO NH3OOCCF3

CH3

 
1-(D-Ala-[Propyl Spacer])-AQ TFA salt NU:UB 21 (5) 

1-(3-[D-alanylamino)propylamino]anthraquinone trifluoroacetate  

O

O

NH NHCO NH2OOCCF3

 

1-(Pro-[Propyl Spacer])-AQ TFA salt NU:UB 31 (6) 

1-(3-[L-prolylamino)propylamino]anthraquinone trifluoroacetate  

O

O

NH NH3OOCCF3

 

1-[Propyl Spacer]-AQ TFA salt NU:UB 197 (14) 

1-[(3-aminopropyl)amino]anthraquinone trifluoroacetate  
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3.7 EXPERIMENTAL 

3.7.1 DNA binding assay 

3.7.1.1 Materials 

Buffer: 

PBS buffer was made by dissolving one phosphate buffered saline tablet (Sigma) in 

200mL of distilled water to obtain (final concentrations) 0.01M phosphate buffer, 

0.0027M potassium chloride, 0.137M sodium chloride, pH 7.4 at 25oC. This buffer 

solution was stored at 4oC for further use.  

Ethidium Bromide: 

A stock solution of ethidium bromide 10mg/mL in deionised water was prepared, 

protected from light and kept at 4oC.  

Drug test solutions: 

Drug solutions were prepared by making a stock solution of 1mg/mL in DMSO, then 

further diluted to give a final concentration in the cuvette of 5~20µM as required.  

DNA solution: 

One centimetre portion (approximately) of Calf Thymus DNA (Sigma) was dissolved 

slowly in 5mL of PBS buffer at 4oC for 24h. Any small amount of non-dissolved Calf 

Thymus DNA residue was filtered off and the concentration of Calf Thymus DNA 

stock solution was determined by using a Beckman Coulter DU®800 UV/Vis 

Spectrophotometer at 260nm using a molar extinction coefficient of 6600 M-1cm-1.  
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DNA Quantification: 

The analytical wavelength for the spectrophotometer was set at 260nm; the blank 

reference was PBS alone in a 3mL cuvette. Then 100~300µL of this unquantified DNA 

stock solution was placed into the cuvette and diluted with PBS buffer to give a final 

volume of 3mL. According to the linearity range of the Beer-Lambert Law, the ideal 

absorbance should fall between 0.5 and 0.7. The absorbance was read three times, the 

mean value was then used to determine the concentration of this DNA stock solution.  

Absorbance (A)=Concentration (C) × Cell length (L) × Molar extinction coefficient 

(Σ) 

(The units are: mol/L for C, cm for L, mol-1dm3cm-1 for Σ) 

Hence the concentration of DNA solution in the 3mL cuvette can be calculated: 

C=Absorbance / (1cm × 6600mol-1dm3cm-1)   

Then by using equation C1V1=C2V2, the concentration of the original DNA stock 

solution can be determined.  

3.7.1.2 Method 

Excitation and emission wavelengths were set at 480nm and 550-750nm, respectively, 

for DNA-bound ethidium bromide on a Perkin Elmer Luminescence Spectrometer 

LS50B to measure the fluorescence intensity. The order of addition of solutions into 

the 3mL cuvette followed: 1) DNA (final concentration in the cuvette was 60µM); 2) 

EtBr (final concentration in the cuvette was 30µM); 3) PBS buffer, used to top up the 
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cuvette to give a final volume of 3000µL. The fluorescence intensity of this solution 

mixture was recorded after it came to equilibrium.  

A serially diluted drug DMSO solution giving a final concentration in the cuvette of 1 

micromolar from its stock solution (1mg/mL) was added into the cuvette, and then the 

solution was mixed well and allowed to reach equilibrium for 5min each time. Aliquots 

of drug solution were added into the cuvette until the fluorescence intensity dropped to 

below half the fluorescence intensity of the original drug free DNA solution. The QE50 

value of a drug can be defined by the concentration of this drug that can lead to a 50% 

decrease of the fluorescence of original DNA-bound ethidium (Baguley and 

Falkenhaug, 1978). From the plot of relative fluorescence intensity against DNA 

binding ligand concentration, the apparent DNA binding constant Kapp can be 

calculated by using the equation: KEB[EB]=Kapp[DNA binding ligand]. The DNA 

binding ligand concentration in this equation is defined as the ligand concentration to 

cause a 50% decrease of the relative fluorescence intensity of DNA-bound ethidium 

bromide, and where KEB=1.0×107M-1 (Kundu et al., 2011). 

3.7.1.3 DNA binding data processing using SigmaPlot 12 

The DNA binding QE50 values for each substrate were analysed by SigmaPlot 12. The 

analysis method chosen was the four parameter logistic curve equation (under the 

equation category of standard curves in regression wizard equation which can be found 

in nonlinear regression under analysis tab). In the equation options, the minimum Y 

value was set as zero.  
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3.7.2 MTT assay 

3.7.2.1 Materials 

ER positive MCF-7 mammary carcinoma cells; RPMI-1640 medium containing phenol 

red (Sigma); trypsin (1×); Nigrosin; NaCl (sterile); Triton X; PBS buffer; MTT (22); 

DMSO; Test compounds: NU:UB 31 (6); NU:UB 21 (5).   

3.7.2.2 Method 

In a 96-well plate, in lane 1 (blank), contained RPMI medium only (150μL); in lanes 2 

(drug-free control)-12 (with drug), each well was filled up with 150μL of 

1.4×104cells/mL suspension. Then the 96-well plate was incubated at 37oC in a 

humidified, 5% CO2 atmosphere for 24h.  

On the next day, Stock solutions of NU:UB 31 (6), and NU:UB 21 (5) were prepared at 

1mM in neat DMSO, filter sterilised and diluted down to 400, 40, 4, 0.4, 0.04μM in 

phenol red free RPMI (reduced medium) for use.  

Then 50μL of the each drug solution was added to its corresponding well. In order to 

make sure that the total volume in each well is the same, 50μL of RPMI medium was 

added into each well in lane 1 and lane 2, blank and control respectively.  

The layout of the 96-well plate was: 
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Lane 1: Blank (200μL of RPMI medium) 

Lane 2: Control (150μL of 1.4×104 cells/mL suspension + 50μL of RPMI medium) 

Lane 3: 0.01μM drug concentration (150μL of 1.4×104 cells/mL suspension + 50μL of 

0.04μM drug solution) 

Lane 4: 0.1μM drug concentration (150μL of 1.4×104 cells/mL suspension + 50μL of 

0.4μM drug solution) 

Lane 5: 1μM drug concentration (150μL of 1.4×104 cells/mL suspension + 50μL of 

4μM drug solution) 

Lane 6: 10μM drug concentration (150μL of 1.4×104 cells/mL suspension + 50μL of 

40μM drug solution) 

Lane 7: 100μM drug concentration (150μL of 1.4×104 cells/mL suspension + 50μL of 

400μM drug solution) 

Then this 96-well plate was incubated at 37oC in a humidified, 5% CO2 atmosphere for 

96h.  

Four days later, the 96-well plate was taken out of the incubator and centrifuged at 

1000rpm for 5min. Then 100μL medium was removed from each well with care, and it 

was replaced with 70μL fresh RPMI medium. The MTT solution was prepared by 

dissolving 20mg MTT into 4mL 0.01M PBS buffer to give a concentration of 5mg/mL 

MTT solution. Then 2mL of this 5mg/mL MTT solution was further diluted by adding 
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into 5mL of RPMI medium. 50μL of this diluted MTT solution was added into each 

well and the 96-well plate was incubated at 37oC in a humidified, 5% CO2 atmosphere 

for 4h. Blue crystals would form in the bottom of the wells. After 4h incubation, the 

96-well plate was centrifuged at 1000rpm for 5min again and then all medium was 

removed from each well without dislodging any of the blue crystals. Then 150μL of 

DMSO was added into each well on the plate and mixed vigorously with care in order 

not to create any bubbles in the wells. Before the 96-well plate was read at the 

absorbance of 550nm, it was left to stand for 30min.  

3.7.2.3 IC50 calculation 

The IC50 value for each substrate was calculated from the absorbance data of the MTT 

product by using SigmaPlot 12. The analysis method chosen was the four parameter 

logistic curve equation (under the equation category of standard curves in regression 

wizard equation which can be found in nonlinear regression under analysis tab). In the 

equation options, the minimum Y value was set as zero. 

3.7.3 Chemical synthesis  

3.7.3.1 Synthesis of 4-hydroxy-1-[Propyl Spacer]-AQ TFA salt YD2 (13) 

[4-hydroxy-1-[(3-aminopropyl)amino]anthraquinone trifluoroacetate 

YD2 (13)] 

(Mono) N-tertiarybutoxycarbonyl-1,3-diaminopropane (1.024g, 6.02mmol) was added 

into a suspension of leucoquinizarin (1g, 4.15mmol) in the mixed solvent of ethanol 
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(60mL) and tetrahydrofuran (30mL), and the reaction mixture was heated over a 

boiling water bath for 70min. Then, the solution was cooled and aerated for two hours 

at RT. The oxidised crude product reaction mixture was then partitioned between 

chloroform and water (1:2, 300mL). The organic phase was dried (Na2SO4), filtered, 

then purified by flash chromatography on a silica gel column (4.2cm×14cm) which 

was eluted with dichloromethane first, then dichloromethane: ethyl acetate (19:1).  

TLC, toluene: ethyl acetate (4:1), Rf = 0.42 (purple) 4-hydroxy-1-[3-(N-tertiarybutoxy 

carbonyl amino)propylamino]anthraquinone (YD 1) (15). Compound YD 1 (15) was 

chromatographically homogeneous (single spot on TLC). 

Yield: 0.345g, 17%. Melting point: 137-138oC. 

Chromatographically pure YD1 (15) (300mg, 0.76mmol) was treated with 

trifluoroacetic acid (10mL) for half an hour, and then excess solvent was evaporated. 

Diethyl ether (50mL) was added to help to precipitate the title compound. TLC, 

butanol:acetic acid:water (4:5:1). Rf = 0.6 (purple) product; homogeneous on TLC. 

Yield: 0.3g, 96.8%. Melting point: 154-156oC. 

ESMS(-) m/z: 297 (100%).  

3.7.3.2 Synthesis of 4-hydroxy-1-(Gly-[Propyl Spacer])-AQ TFA salt [YD4] (8) 

[4-hydroxy-1-[3-(glycylamino)propylamino]anthraquinone trifluoroacetate 

YD4 (8)] (method I) 

Boc-Gly-OSu (0.332g, 1.22mmol) was dissolved in DMF (8mL), followed by addition 

of triethylamine (0.17mL, 1.22mmol) as base. The reaction mixture was left at RT for 
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15min before it was mixed with a solution of YD2 (13) (0.25g, 0.61mmol) in DMF 

(8mL). After keeping at 4oC overnight, the reaction mixture was extracted between 

chloroform and water (1:2, 300mL). The organic phase was dried (Na2SO4), filtered, 

then purified by flash chromatography on a silica gel column (4.2cm×12cm) which 

was eluted with chloroform: ethyl acetate: methanol (4:1:2%). TLC: Butanol: Acetate 

acid: water (4:5:1). Rf = 0.87 (purple) 1-(Boc-Gly-[Propyl Spacer])-4-hydroxy-AQ 

[YD3] (16).  

Yield: 0.2018g, 73.1%. Melting point: 110-112oC. 

ESMS(+) m/z: 476.1 (25%) (M+Na)+. 

The pure (chromatographically homogeneous) Boc-protected compound YD3 (16) 

(0.075g, 0.166mmol) was treated with trifluoroacetic acid (3mL) for half an hour. 

TLC, Butanol: Acetic acid: water (4:5:1), Rf = 0.39 (purple) product. The solvent was 

evaporated to almost dryness and the residue was treated with diethyl ether to 

precipitate the title compound.  

Yield: 0.0754g, 97.5%.  

ESMS(+) m/z: 354.1 (100%) (M+H)+; 707.2 (10%) (2M+H)+; ESMS(-) m/z: 112.8 

(100%) trifluoroacetate anion. 
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3.7.3.3 Synthesis of 4-hydroxy-1-(Gly-[Propyl Spacer])-AQ TFA salt [YD4] (8) 

[4-hydroxy-1-[3-(glycylamino)propylamino]anthraquinone trifluoroacetate 

YD4 (8)] (method II) 

Leucoquinizarin (1g, 4.13mmol) and 1,3-diaminopropane (0.345mL, 4.13mmol) were 

mixed in dichloromethane (60mL). This reaction mixture was then heated over a 

boiling water bath for 1h. The progress of this reaction was monitored by TLC, 

Butanol: Acetic acid: water (4:5:1), Rf = 0.57 (purple) 4-hydroxy-1-[Propyl 

Spacer]-AQ [YD79] (17). The crude reaction mixture was aerated for 1h at RT and 

then purified by flash chromatography on a silica gel column (4.2cm×4cm) which was 

eluted with dichloromethane: methanol (4:1). When the initial orange and dark brown 

fractions had eluted, then the solvent system was changed to dichloromethane: 

methanol (3:1) and chloroform: methanol (4:1, 150mL + 20 drops of acetic acid) to 

elute all of the required purple compound from the column. All fractions containing the 

major product were combined together, and then filtered and evaporated to dryness.  

Boc-Gly-OH (0.355g, 2.03mmol), HOBt (0.31g, 2.03mmol) and TBTU (0.651g, 

2.03mmol) were dissolved in DMF (10mL), then, DIPEA (1.05mL, 6.04mmol) was 

added and the reaction mixture was left at RT for 15min prior to addition to a stirred 

solution of 4-hydroxy-1-[Propyl Spacer]-AQ [YD79] (17) (0.6g, 2.03mmol) in DMF 

(10mL). After three hours, chloroform was added and the organic layer was washed 

with water (2×100mL), saturated sodium bicarbonate solution (2×30mL), water 

(100mL), dried (Na2SO4), filtered and evaporated in vacuo to a low volume. The crude 
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product was purified by silica gel column chromatography (4.2cm×6cm) eluting with 

chloroform: methanol (19:1). Due to difficulties in discerning bands – because the 

column turned into a very dark purple colour, small fractions from the column were 

collected (every 10mL) till no more major purple fraction was evident. Fractions 

containing the major product were combined, filtered and evaporated to near dryness, 

then diethyl ether was added to give a precipitate of purple Boc group protected 

compound YD3 (16). Pure (chromatographically homogeneous) YD3 (16) was then 

treated with TFA for 45min and the progress of this deprotection was checked by TLC, 

chloroform:methanol (9:1), [Rf = 0.1 (purple) final product] for the trifluoroacetate salt 

YD4 (8). Excess solvent was evaporated to dryness and the trifluoroacetate salt was 

purified by flash chromatography on a silica gel column (4.2cm×4.1cm). In the 

beginning, elution was conducted with chloroform: methanol (9:1). When the top and 

middle purple fractions (showing on TLC plates) had eluted, the solvent system was 

changed to chloroform: methanol (4:1, 150mL + 20 drops of acetic acid). Fractions 

containing major product were combined, filtered and evaporated to low volume and 

then diethyl ether was added to help precipitation.  

Yield: 0.0841g, 9%. TLC [chloroform:methanol (9:1)]: Rf = 0.1 purple (product).  

Both samples of the trifluoroacetate salt YD4 (8) from two synthesis methods were 

compared on TLC, and were shown to be identical by mixed TLC experiments.   
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3.7.3.4 Synthesis of 4-hydroxy-1-{[2-(2-hydroxyethyl)aminoethyl]amino} 

anthraquinone trifluoroacetate YD82 (11) 

Leucoquinizarin (0.1g, 0.4132mmol) was mixed with 2-[(2-aminoethyl)amino]ethanol 

(2mL, 19.8mmol) at RT for 20min, and then the reaction slurry was extracted between 

chloroform and water (1:5, 300mL) immediately. Chloroform layer was dried 

(Na2SO4), filtered and evaporated to a low volume before it was loaded onto a silica 

gel column (2.1cm×7.5cm) which was eluted with only chloroform at first, when the 

yellow fraction had eluted, the solvent was changed to ethyl acetate, and finally to 

chloroform: methanol (4:1) to remove all of the purple compound from the column. 

Fractions containing the major product were combined, filtered and evaporated to 

dryness. TLC, chloroform: methanol (4:1), Rf = 0.24, (purple) YD80 (18). Then this 

chromatographically pure purple Boc group protected compound YD80 (18) was 

dissolved in TFA to form the trifluoroacetate salt YD82 (11), excess solvent was 

evaporated to afford the title compound.  

Yield: 23.1mg, 12.7%. 

1H NMR (DMSO-d6, 300 MHz) : 3.03 (2H, s, AQ-NHCH2CH2), 3.19 (2H, s, 

RCH2CH2OH), 3.65 (2H, s, AQ-NHCH2), 3.77 (2H, s, RCH2CH2OH), 5.29 (1H, s, 

R(CH2)2OH), 7.38 (1H, d, C2-CH), 7.58 (1H, d, C3-CH), 7.89 – 7.96 (2H, m, C6-CH 

and C7-CH), 8.25 -8.29 (2H, m, C5-CH and C8-CH), 10.20 (1H, t, AQ-NH). 

Cyclisation compound B (20) 1H NMR (DMSO-d6, 300 MHz) : 3.56 (6H, m,

(CH2)2 NNH CH2 R ), 3.69 (2H, t, -CH2OH), 4.92 (1H, s, -CH2OH), 6.24 (1H, s, 
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C3-CH), 7.76 – 7.80 (2H, m, C6-CH and C7-CH), 8.19 – 8.22 (2H, m, C5-CH and 

C8-CH), 11.06 (1H, s, AQ-NH-).  

3.7.3.5 Synthesis of 1-{[2-(2-hydroxyethyl)aminoethyl]amino}anthraquinone 

trifluoroacetate NU:UB466 (12) 

1-Chloroanthraquinone (0.5g, 0.0021mol) and 2-[(2-aminoethyl)amino]ethanol 

(3.125mL, 0.0309mol) were mixed together. DMSO (3mL) was added to this reaction 

mixture to aid dissolution. The reaction mixture was heated over a boiling water bath 

for 30min. The progress of this reaction was monitored on TLC plates, 

dichloromethane:methanol (3:2), Rf = 0.34 (red) NU:UB 466 free base (21). Then the 

reaction mixture was extracted between chloroform and water (1:5, 300mL), dried 

(Na2SO4), filtered and evaporated to a low volume before it was purified by flash 

chromatography on a silica gel column (4.2cm×10cm) which was eluted with 

dichloromethane:methanol (3:2). Fractions containing the major red product were 

combined, filtered and evaporated. Then NU:UB 466 free base (21) was dissolved in 

TFA for 5min to form a red NU:UB 466 (12), excess solvent was evaporated to almost 

dryness and then diethyl ether added to precipitate the title compound.  

1H NMR (DMSO-d6, 300MHz) : 3.08 (2H, dd, AQ-NHCH2CH2), 3.22 (2H, m, 

RCH2CH2OH), 3.67 (2H, dd, AQ-NHCH2), 3.77 (2H, m, RCH2CH2OH), 4.66 (1H, t, 

R(CH2)2OH),7.35 (1H, d, C2-CH), 7.49 (1H, d, C4-CH), 7.69 (1H, t, C3-CH), 7.85 – 

7.92 (2H, m, C6-CH and C7-CH), 8.13 – 8.20 (2H, m, C5-CH and C8-CH), 8.73 (2H, s, 

RNH2
+(CH2)2OH), 9.72 (1H, t, AQ-NH). 
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