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Abstract

Grid shells are efficient structural systems covering large open spaces with relatively

small amount of materials. Also, post forming techniques allow realization of ge-

ometrically complex (free-form) shapes by means of standard connection systems.

However, due to complexity of the analysis-design process, they are rarely utilized

in construction design. In this paper, a ‘facilitating’ numerical framework is in-

troduced in which, for a given continuous reference shape, a geometrically similar

discrete model is found by implementation of a six degree of freedom formula-

tion of the Dynamic Relaxation method, to handle members bending and torsional

stiffness. A grid cutting pattern algorithm is introduced, as well as methods to

numerically simulate the double-layer construction technique and a novel (single-

node) cylindrical joint model. The methods are extensively tested and validated

on a range of structures, from ‘simple’ single-rod cases to more complex, actively

bent, grid shell frameworks.

Keywords: Form finding, Grid shell, Timber structure, Active bending, Dynamic

relaxation, Cylindrical joint, Velocity Verlet, Newton Raphson, Non-linear

analysis, Mesh data structure

1. Introduction

Free-form grid-shell structures can be formed by connecting short straight beam

elements together into nodes thus converting a curved continuous surface in a
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faceted shell. From a geometrical point of view, the described process deals with

complex connection systems: Each element converges to the node of the grid at5

a different angle, thus non-standard connections (and Computer-Aided Manufac-

turing process) become inevitable. A ‘low-tech’ method for building free-form

structures using standard (bolted/screwed) connection systems is by bending ini-

tially flat elastic rods, such as solid timber planks/laths, to form actual continuous

curves. For timber grid shells made of continuous bending members, two sub-10

categories can be defined [1] differentiating on the geometric parameters assigned

to generate a grid on a surface: If screwed laminated timber ribs are arranged

following geodesic patterns (shortest curve on a surface for two given points) the

planks composing the rib will only be subjected to torsion and bending around

the weak axis [2] enhancing the ‘allowable’ width of the the plank’s cross section.15

This technique was used for the construction of the Hannover Expo pavilion [3]. A

different approach was adopted in the design of the Mannheim timber grid shell for

the Garden Festival [4]. In this case, it was assumed a constant distance (50mm)

between the consecutive nodes belonging to the same rib, which was built-up with

two overlapping laths (double layer technique). Accordingly, the resulting mesh20

geometry of the grid shell did not follow the geodesic paths (thus, lateral bending

occurs as well). However, this second design approach allowed the possibility of as-

sembling the grid shell laid out flat (as a two-way mat of straight continuous rods)

and eventually post forming it in a double curved geometry by imposing external

displacements under the form of temporary crane-cable systems or adjustable scaf-25

folding [5, 6, 7]. With the main grid eventually formed, additional bracing elements

can be added to the system enhancing the in-plane shear stiffness of the equivalent

shell (Figure 1). The terms post formed [7, 8], actively or elastically bent [9] are

usually used to describe such kind of grid shell structures.

2. Simulating the forming process30

Since the construction of the Mannheim grid shell, only rarely this (latter)

technique has been used. According to Kelly et al: ‘The reason for the apparent

lack of enthusiasm may stem from the unique challenges associated with the design

and formation process’ [10]. Indeed, in order to draw out the post-formed grid

shape (and gain information on the internal stress fields) a geometrically non-linear35
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Figure 1: Toledo timber grid shell in Naples, Italy 2012 [7]: (a) Initial flat mat; (b) Forming

process; (c) Complete structure.

analysis is required to simulate the forming process. Regardless of the adopted

numerical algorithm, the analysis will require the definition of initial parameters

to be performed:

• The flat mat geometry (cutting pattern)

• The displacements’ vector (boundary conditions)40

‘To design the Downland grid-shell, physical modelling of the structure was a central

element of the design process, which was used to determine the boundary condition

for the form-finding model’ [5]. The final position of the boundary nodes detected

from the 1:30 scale model was used as target to the external imposed displacements
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and the mat’s cutting pattern geometry was (a priori) established to have a rect-45

angular shape. Clearly, any simulation of the forming process will always require

the preliminary modelling of scale models.

2.1. A two-step analysis approach

Different authors [7, 11, 12, 13, 14, 15, 16] addressed the problem of defining

purely numerical procedures to speeding up the design process of such structural50

systems where a built up mat of initially straight elastic rods (usually timber or

fiber reinforced polymer) is bent to obtain a form-resistant grid shell structure.

Among these, an interesting concept that comes out is that of performing a geo-

metrically non-linear analysis involving the use of a supporting surface on which

the mat is ‘forced’ to bend. In general, the form finding procedure contemplates55

two consecutive analysis steps where the stress field is generated at the completion

of the first step and then is carried forward as initial condition value on the second

one:

• An initially unstressed (flat) two-way mesh is pulled on the reference surface

by means of external axial springs [15] or external applied forces [13]. Al-60

ternatively, the mesh is positioned directly on the surface and constrained to

slide on it [14].

• With the equilibrium shape found, the mesh geometry exceeding the reference

surface is ‘deleted’ [15] (a cutting pattern is thus found) and translational

degree of freedom (DoF) of the boundary nodes are constrained while previous65

external forces/constraints (shaping the net on the reference surface) are

disabled/released, thus the system will assume a new equilibrium geometry,

settling down to its final configuration.

Clearly, a two-step analysis scheme allows finding the equilibrium shape that is close

to a reference surface which (acting basically as a form-work) can be modelled in70

accordance to a wide range of design requirements: Harris et al clearly explained

how architectural and regulation parameters were driving the shape of the Pods

grid shell roof and only in a second design phase ‘...a number of trials were made

to establish a grid onto the surface’ [17]. Moreover, with such approach there is no

need for preliminary scale models since the mesh geometry (cutting pattern of the75

mat) and boundary conditions are obtained through the first analysis step.

4



3. Problem statement

Although information on methods involving the use of a reference surface can

be found in literature [13, 14, 15, 18] an effective description for a comprehensive

numerical framework, and relative theoretical basis, seems still missing. The aim of80

the present study is to give a detailed description of the numerical implementation

of the introduced methods.

4. Theory

4.1. The Dynamic Relaxation method

The DR is a fictitious time step marching scheme where, the position of the85

nodes representing the structural system is obtained by iterative numerical inte-

gration of the Newton’s second law of motion until the entire system settles down

in static equilibrium by application of a viscous or kinetic [19] damping term. The

method was independently proposed by Day [20] and Otter [21] for the analysis of

prestressed concrete pressure vessels, although (as noted by Topping[22]) its con-90

cept was already known by Rayleigh. The method has been extensively used for a

wide range of structural problems with both geometric and material non-linearities

as for instance, the form finding and load analysis of tension structures [23] where

it provides more reliable results in terms of solution convergence if compared to

the well known iterative matrix schemes with Newton-Raphson method [24]. More-95

over, the DR does not require assembling/manipulation of a global stiffness matrix,

hence it is relatively easy to implement and is highly suitable for parallel computing

[22].

4.1.1. Rotational formulation with DR

The DR method is typically implemented by considering three DoF per node,100

where each link connecting two nodes can only simulate cable/strut behaviour-

like. In spite, it has been shown that three DoF schemes are able to simulate

bending stiffness [25] if identical second moments of area, around any axis of the

elements cross section, are provided. Further, torsional stiffness can be modelled as

well by three DoF schemes if (in addition to cross section symmetry requirements)105

beams with a naturally curved (unstressed) shape are considered [26] and only

small deflections are provided to occur. In order to provide a widely applicable
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method, not restricted to the aforementioned limitations, a more comprehensive

Six DoF per node DR scheme (three translational DoF plus three rotational DoF)

is here introduced.110

Previous developments of beam elements with Six DoF and their resolution by

DR schemes can be found in [27] and [28]. In these, the cross-section orientation

is handled by introducing a third node for each beam element. A more refined

approach (developed by Williams) [29] assumes a local reference frame for each

node and a cubic shape function for the beam element in order to simulate axial,115

bending and torsional stiffness. The Six DoF DR theory introduced in the next

subsection is based o this latter formulation.

4.2. Six DoF DR theory

Let’s assume an elastic rod represented by a discrete list P of nodal coordinates

r̄i with arbitrary initial position in the Cartesian coordinate system:120

P = {r̄i . . . r̄n} ; r̄i = [x y z] (1)

and a connectivity list N storing the nodes’ indexes of the element ends (1, 2):

N = {nj . . . nn} ; nj = {i1, i2} (2)

In addition, to the ith node is associated a local coordinate system {x̄i, ȳi, z̄i}
of unit vectors, with z̄i the tangent direction to the rod’s longitudinal axis and x̄i,

ȳi the cross sectional axes (see Figure 2). Note that, as for the node position, the

initial local system orientation can be arbitrary given.125

4.2.1. Translations

Assuming a residual (out of balance) force R̄i acting at the ith node as resultant

of external applied loads P̄i and internal reaction forces F̄prec. and F̄succ. of the

elements preceding and succeeding the node:

R̄i = [Ri,x Ri,y Ri,z] = P̄i + F̄prec. + F̄succ. (3)

and expressing the acceleration of node r̄i at time t along the x direction ac-130

cording to Newton’s second law of motion:

ẍti =
Rt

i,x

mi
(4)
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with mi the fictitious [23] nodal mass, the updating velocity and displacement

components are thus obtained by numerical integration of Eq. (4) which rearranged

in a velocity Verlet scheme [30] gives the recurrence equation for the velocity term

ẋi at time t:135

ẋti = Cẋt−∆t
i +

∆t

2
(ẍt−∆t

i + ẍti) (5)

and the updated xi coordinate projected at time t+ ∆t:

xt+∆t
i = xti + ẋti∆t+

∆t2

2
ẍti (6)

where C ∈ [0, 1] is a viscous damping term. At the first analysis iteration,

the velocity term ẋt−∆t
i and acceleration term ẍt−∆t

i of Eq. (5) can be set to

zero. Repeating Eqs. (4 to 6) for the remaining y and z components of R̄i for all

the nodes of P, provides the updated geometry Pt+∆t to submit for the next DR140

iteration (to be run afterwards repositioning the constrained nodes).

The choice of an appropriate mass/time-increment ratio is of fundamental im-

portance for DR analyses. Small lumped masses and a large time increment clearly

reduce the number of iterations needed for equilibrium convergence, however, over

a certain limit, numerical instability may occur. Another important parameter145

choice regards the value to assign for the viscous damping factor C, which should

be proportional (for each node) to the fundamental modes of the system in order to

avoid under (over) dumped vibrations, thus assuring fast equilibrium convergence.

For an automatic assessment of the DR parameters see [31].

4.2.2. Rotations150

Like for translations, a residual moment H̄i is assumed at node r̄i as the resul-

tant of external applied moments Q̄i and internal reaction moments M̄prec., M̄succ.

of the two surrounding elements:

H̄i = [Hi,x Hi,y Hi,z] = Q̄i + M̄prec. + M̄succ. (7)

Accordingly, the angular acceleration of node r̄i around the Cartesian (global)

x direction at time t is:155

ϑ̈ti,x =
Ht

i,x

i
(8)
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where i is the fictitious lumped moment of inertia (or angular mass). Therefore,

the recurrence equations of angular velocity ϑ̇i at time t and angle of rotation ϑi

at time t+ ∆t around the global x direction are:

ϑ̇ti,x = Cϑ̇t−∆t
i,x +

∆t

2
(ϑ̈t−∆t

i,x + ϑ̈ti,x) (9)

ϑt+∆t
i,x = ϑ̇ti,x∆t+

∆t2

2
ϑ̈ti,x (10)

Noting that, while Eq. (6) provides an absolute coordinate value, the angle160

ϑi,x given by Eq. (10) is an increment of rotation (of the local coordinate system).

Applying Eqs. (8) to (10) for the remaining components of H̄i thus obtaining

the rotation angles ϑi,y and ϑi,z around the Cartesian y and z directions; the local

system orientation {x̄i, ȳi, z̄i}t is updated to {x̄i, ȳi, z̄i}t+∆t by pre-multiplying each

unit vector with a rotation matrix Ã such that:165

x̄t+∆t
i = Ã · x̄ti (11)

and Ã defined as:

Ã = Ĩ cosα+ Ṽ sinα+ Ṽ 2(1− cosα) (12)

where Ĩ is a 3× 3 Identity matrix and Ṽ a Skew-symmetric matrix:

Ṽ =


0 −vz vy

vz 0 −vx
−vy vx 0

 (13)

Eq. (12) is a matrix form of the Rodrigues’ rotation formula [32] to spatially

rotate a vector (x̄ti) around an axis (defined by the unit vector v̄) by a given

angle (α). As proposed by Williams (see ref. [29]) the values of v̄ and α can be170

obtained from the found rotation angles by using the non-linear vector product [33].

Assuming x̄, ȳ and z̄ the unit vectors of the Cartesian space:

x̄ = [1 0 0] ; ȳ = [0 1 0] ; z̄ = [0 0 1] (14)

and indicating with ⊗ the non-linear vector product operator, the rotation axis

is obtained by the following expression:

ā =

[
x̄

(
tan

ϑi,x
2

)]
⊗
[
ȳ

(
tan

ϑi,y
2

)]
⊗
[
z̄

(
tan

ϑi,z
2

)]
(15)
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Accordingly, the non-zero entries of Ṽ and rotation angle α needed to apply175

Eq. (12) are given by:

v̄ =
ā

|ā|
; α = arctan (2|ā|) (16)

With the rotation matrix Ã thus determined, Eq. (11) can be applied for the

remaining unit vectors ȳi and z̄i of the local coordinate system.

Figure 2: Element’s local displacements according to the orientation of the ends’ coordinate

systems: (a) Rotations around the local ȳ axes; (b) Rotations around the local x̄ axes; (c) Angle

of twist; The dashed line represents the element’s cubic shape function.

4.2.3. Computing Residuals

In order to operate the described procedure, the out of balance forces R̄i and180

moments H̄i need to be computed at each time increment. For load analyses,

the system of external applied loads is (a priori) known, while it will be set to

null in case of form finding analyses. Therefore, only the reaction components

in Eqs. (3) and (7) need to be computed. These vector quantities (expressed in
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the global coordinate system) acting on the ith node, can be obtained from the185

scalar force/moment reactions at the extremities of the elements surrounding r̄i. In

turn, such (local) force and moment reactions are obtained from the local element

displacements: With reference to Figure 2 the rotations θx,1, θy,1, θx,2, θy,2 around

the local x̄1, ȳ1, x̄2, ȳ2 axes; the angle of twist ϕ and the axial shortening/elongation

of the generic nj element are assumed to be:190

θx,1 =
ȳ1 · p̄
|p̄|

; θy,1 = − x̄1 · p̄
|p̄|

; θx,2 =
ȳ2 · p̄
|p̄|

; θy,2 = − x̄2 · p̄
|p̄| (17)

ϕ =
x̄1 · ȳ2 − x̄2 · ȳ1

2
(18)

e =
|p̄|2 − L2

0

2L0
+
L0

60

[
4
(
θ2
x,1 + θ2

y,1

)
− 2 (θx,1θx,2 − θy,1θy,2) + 4

(
θ2
x,2 + θ2

y,2

)]
(19)

with p̄ the vector connecting the end nodes r̄1, r̄2 at time t and L0 the un-

stressed length of the element (which may not correspond to the initial length).

Differentiating the beam’s expression of total strain energy U with respect to the195

found displacements, and indicating with A, Ix, Iy, J , E and G respectively: Cross

sectional area, moments of area, torsional constant, Young’s and shear modulus,

the resulting element ends reactions are:

N =
EA

L0
e ; Mϕ =

GJ

L0
ϕ (20)

Mx,1 =
NL0

30
(4θx,1 − θx,2) +

2EIx
L0

(2θx,1 + θx,2) (21)

200

Mx,2 =
NL0

30
(4θx,2 − θx,1) +

2EIx
L0

(2θx,2 + θx,1) (22)

My,1 =
NL0

30
(4θy,1 − θy,2) +

2EIy
L0

(2θy,1 + θy,2) (23)

My,2 =
NL0

30
(4θy,2 − θy,1) +

2EIy
L0

(2θy,2 + θy,1) (24)

where N is the internal axial force, Mϕ the torsion moment around p̄ and Mx,1,

Mx,2, My,1, My,2 the bending moments about the x̄1, x̄2, ȳ1, ȳ2 local axes.
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For a derivation of Eqs. (17) to (24) the reader is referred to ref. [29]. It is only205

worth here to note that the coupling between translations and rotations is taken

into account: In Eq. (19) the total shortening/elongation is obtained as summation

of the element’s axial deformation plus the contribution caused by element bowing

(the first and second terms of the expression, respectively). This leads to the

appearance of the axial force term N in Eqs. (21 to 24) taking into account the210

amount of moment generated by an axial force acting on a bent member. The local

force-displacement relations for the j th element (Eqs. 20 to 24) may be written in

matrix form:

f = {Kt
A + KB} · d (25)

where:

f =



N

Mx,1

Mx,2

My,1

My,2

Mϕ


; d =



1

θx,1

θx,2

θy,1

θy,2

ϕ


(26)

215

Kt
A = EAe



1/L0 0 0 0 0 0

0 2/15 −1/30 0 0 0

0 −1/30 2/15 0 0 0

0 0 0 2/15 −1/30 0

0 0 0 −1/30 2/15 0

0 0 0 0 0 0


(27)

KB =
1

L0



0 0 0 0 0 0

0 4EIx 2EIx 0 0 0

0 2EIx 4EIx 0 0 0

0 0 0 4EIy 2EIy 0

0 0 0 2EIy 4EIy 0

0 0 0 0 0 GJ


(28)

As it can be seen, the stiffness matrix KB only depends on the material prop-

erties and unstressed beam geometry, while KA takes into account, at each time

increment, the stiffness contribution due to element’s shortening/elongation and

bowing (e).220
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The nodal vector forces F̄1, F̄2 and moments M̄1, M̄2 generated by the above

scalar quantities are:

F̄1 =
N

|p̄|
p̄+ T̄ ; F̄2 = −F̄1 (29)

M̄1 = x̄1Mx,1 + ȳ1My,1 + z̄1Mϕ (30)

M̄2 = x̄2Mx,2 + ȳ2My,2 − z̄2Mϕ (31)

The shear force T̄ in Eq. (29) can be found by imposing the equilibrium to225

rotation of the element: The resultant moment (M̄1 + M̄2) acting on the element,

will generates a shear force oriented in the ū direction orthogonal to both p̄ and

(M̄1 + M̄2) itself (see Figure 3). Accordingly:

ū =
(M̄1 + M̄2)× p̄
|(M̄1 + M̄2)× p̄|

(32)

The scaling value |T̄ | of ū to obtain T̄ is given by the torque lever-arm relation:

230

|T̄ | = |M̄1 + M̄2|
d

; d = |p̄| · cos η (33)

Figure 3: Shear reaction force T̄ at the element’s end nodes.

where cos η can be found by dot product between (M̄1 +M̄2) and a vector lying

on the dashed line shown in Figure 3, orthogonal to both p̄ and ū:

cos η =
(M̄1 + M̄2) · (p̄× ū)

|M̄1 + M̄2||p̄× ū|
(34)
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Rearranging Eqs. (33) and (34) gives the following expression for shear force:

T̄ = ū
|M̄1 + M̄2|2|p̄× ū|

|p̄|
[
(M̄1 + M̄2) · (p̄× ū)

] (35)

4.3. Application of DR to elastic grid shells

4.3.1. Modelling cylindrical joints235

In order to apply the previously described DR method for an actively bent grid

shell system, the kinematic of the nodal connection need to be properly modelled.

For a double layer grid shell, standard connections such as slotted-hole (Figure 4)

or clamping plate [34] systems may be provided. Alternatively, only one grid layer

is pre-assembled and formed, thus the second layer is screwed on the previous one240

(lath by lath) in a second construction phase (e.g: Savill garden grid shell con-

struction [6]). In any of the aforementioned cases, a hinge mechanism will occur at

the nodal connections of the two-way mat. In general, such hinge-like connections

are numerically modelled by placing the mesh elements on two staggered levels and

connecting them by means of link elements which allow rotation around their lon-245

gitudinal axis. Although faithful to the real geometry, doubling the mesh nodes at

each connection generates local eccentricities. On the contrary, a ‘simpler’ model

with only one node per connection is numerically more stable. Such single-node

model can be implemented by assuming a double connectivity list (N; M for in-

stance) thus having two separate lists (Figure 4-b) one for each direction of the250

quadrangular mesh:

M = {mk . . .mn} ; mk = {i1, i2} (36)

and a second local coordinate system such that each connection is defined by a

single position vector r̄i but two local systems:

{x̄i,n, ȳi,n, z̄i,n} ; {x̄i,m, ȳi,m, z̄i,m} (37)

Accordingly; the residual out of balance force R̄i is obtained as the resultant of

reactions of the four elements surrounding r̄i:255

R̄i = P̄i + F̄prec,n + F̄succ,n + F̄prec,m + F̄succ,m (38)

while the rotational DoFs can be nodally decoupled by computing two distinct

out of balance moments:

H̄i,n = Q̄i,n + M̄prec,n + M̄succ,n ; H̄i,m = Q̄i,m + M̄prec,m + M̄succ,m (39)
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Figure 4: Slotted hole connection system [4]: (a) Schematic view; (b) Two distinct N and M

connectivity lists are used to define the equivalent numerical model.

The resulting kinematic mechanism of the described model resembles a spherical

joint acting between two rods (n and m). In order to simulate a (more realistic)

cylindrical joint behaviour, with ȳi,n ≡ ȳi,m coincident with the joint rotational260

axis, the resulting angle β between ȳi,n and ȳi,m at the end of the DR iteration, has

to be reset to zero (see Figure 5). This task is performed by pre multiplying once

more the local system orientations resulting from Eq. (11) with a rotation matrix

(Eq. 12) whose entries this time are given by:

v̄∗ =
ȳi,m × ȳi,n
|ȳi,m × ȳi,n|

; αn = β/2 ; αm = −β/2 (40)

where: αn applies in Eq. (11) to rotate {x̄i,n, ȳi,n, z̄i,n} and αm applies to rotate265

{x̄i,m, ȳi,m, z̄i,m}. Of course, the local system orientations found by using Eqs. (40)

do not correspond to an equilibrium configuration, as well as the nodes position

at the current time anyway. Since we are only interested in the (final) static

equilibrium configuration, the out of balance moment generated by the described

‘artificial’ rotation will gradually decrease with the residuals, eventually becoming270

small enough to be neglected (at analysis completion). Moreover, the described

procedure allows semi-rigid behaviour to be simulated as well (e.g to take into

account the connection stiffness) by scaling, at every time increment, the resulting

αn and αm angles with a reducing factor s ∈ [0, 1].
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Figure 5: Local coord. systems of the surrounding n and m elements at node i: (a) Spherical

hinge. The rotations of the two systems are decoupled; (b) Cylindrical joint. The ȳi,n and ȳi,m

local axes are constrained along the same direction.

Figure 6: Built-up cross section.

4.3.2. Modelling double layer systems275

The double layer technique allows to obtain more tight curvatures compared

to a single layer mat made of laths with equivalent cross sectional area. Then, at

completion of the forming process, the sliding between overlapping laths is con-

strained (thus, enhancing the bending stiffness of the built-up rib) by inserting

shear timber blocks in between the laths making up the single rib. Accordingly,280

for form finding analyses, the cross sectional area, and moments of area to assign

in Eq. (25) can be assumed as double of the corresponding single lath values. In

particular, according to Figure 6, the moment of area Ix results to be:

Ix = bh3/6 (41)

Nevertheless, for load analyses, the increase of bending stiffness around the x
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axis for effect of the shear blocks, need to be taken into account: Assuming a rigid285

timber block (infinite transverse shear modulus) and a rigid laths-block connection

interface, the resulting moment of area around the x local axis can be assumed as:

Ix =
b(2h+ hs)

3

12
− bh3

s

12
(42)

with hs the shear block height. On the opposite, assuming the stiffness contri-

bution given by the shear blocks as null, the resulting Ix value is obviously that290

given by Eq. (41). On this basis, and assuming compatibility in the curvature and

displacements of overlapping laths (hence, considering any shear flexibility of the

composite section as null) a general equation can be arranged:

Ix = cs

(
h2

2
+
h2
s

2
+ hhs

)
bh+

bh3

6
; cs ∈ [0, 1] (43)

Accordingly, cs is set to zero for form finding analyses, while a value 6= 0 is

calibrated (e.g. by experimental bending tests) for load analyses in order to take295

into account the increase in bending stiffness due to the presence of shear blocks.

Of course, when setting the updated moment of area value for load analyses

(at completion of the two-step form finding routine) the occurring change in stiff-

ness will generate unbalancing forces. In other terms, the system will set in the

equilibrium configuration that would result by forming the double layer mat with300

shear blocks already screwed on at the flat configuration. In order to maintain the

equilibrium geometry obtained at form finding completion (with Ics=0
x ) the corre-

sponding element ends reactions Mx,1, Mx,2 must maintain the found equilibrium

value (M eq.
x,1, M eq.

x,2) regardless of the new Ics 6=0
x value. Therefore, the resulting an-

gular displacements θeq.x,1 and θeq.x,2 in the second term of Eqs. (21, 22) need to be305

multiplied with a reducing factor corresponding to the ratio (Ics=0
x /Ics 6=0

x ):

M eq.
x,1 =

NL0

30
(4θeq.x,1 − θ

eq.
x,2) +

2EIcs 6=0
x

L0

[
2

(
Ics=0
x

Ics 6=0
x

)
θeq.x,1 +

(
Ics=0
x

Ics 6=0
x

)
θeq.x,2

]
(44)

M eq.
x,2 =

NL0

30
(4θeq.x,2 − θ

eq.
x,1) +

2EIcs 6=0
x

L0

[
2

(
Ics=0
x

Ics 6=0
x

)
θeq.x,2 +

(
Ics=0
x

Ics 6=0
x

)
θeq.x,1

]
(45)

The occurring difference values between the actual angular displacements and

the reduced values are:

θeq.x,1 −
(
Ics=0
x

Ics 6=0
x

)
θeq.x,1 ; θeq.x,2 −

(
Ics=0
x

Ics 6=0
x

)
θeq.x,2 (46)
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From a physical point of view, such difference in values can be conceived as the310

unstressed residual angles that would result if we release the boundary constraints

of the formed grid but leaving the shear blocks inserted. It is easy to understand

that, in doing such operation, the screwed double layer mat would not assume the

flat geometry anymore. Accordingly, for a load analysis performed in continuity of

a form finding analysis, the rotation angles around the local x axes measured at315

time t by Eqs. (17) have to be deduced of the quantity given by Eq. (46) thus, the

force-displacement relations (21, 22) become:

Mx,1 =
NL0

30
(4θx,1 − θx,2)+

+
2EIcs 6=0

x

L0

{
2

[
θx,1 − θeq.x,1

(
1− Ics=0

x

Ics 6=0
x

)]
+

[
θx,2 − θeq.x,2

(
1− Ics=0

x

Ics 6=0
x

)]} (47)

Mx,2 =
NL0

30
(4θx,2 − θx,1)+

+
2EIcs 6=0

x

L0

{
2

[
θx,2 − θeq.x,2

(
1− Ics=0

x

Ics 6=0
x

)]
+

[
θx,1 − θeq.x,1

(
1− Ics=0

x

Ics 6=0
x

)]} (48)

Thus, Eq. 25 can be rewritten as:

f = {Kt
A + KB} · d + KC · deq. (49)

Where:320

KC =
2E

L0



0 0 0 0 0 0

0 2(Ics=0
x − Ics 6=0

x ) (Ics=0
x − Ics 6=0

x ) 0 0 0

0 (Ics=0
x − Ics 6=0

x ) 2(Ics=0
x − Ics 6=0

x ) 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


; deq. =



0

θeq.x,1

θeq.x,2

0

0

0


(50)

The non-null entries of deq. are obtained obviously at completion of the form

finding analysis according to the resulting equilibrium geometry. The value of Ix

in KB is set to Ics=0
x for the form finding routine while it is set to Ics 6=0

x for the

successive load analysis.
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4.3.3. Surface constraints325

Provided an appropriate mass/time-increment ratio, the DR methods will al-

ways converge to an equilibrium configuration of minimum strain energy (which

is typical of explicit numerical schemes such as DR) no matter how gross is the

deformation of the initial grid on the reference surface. Nonetheless, a mere ran-

dom distribution of the initial nodes’ position may results in a grid which will ‘fold330

back’ on itself on the reference surface at analysis completion. A simple measure

to prevent the analysis converging to such an equilibrium configuration of ‘local’

minimum strain energy, is assuring a ‘certain’ degree of geometric regularity for

the initial grid pattern, which for instance, may be generated by projection maps

(e.g. cartesian, gnomonic, cylindrical, spherical, etc.) from a matrix of point.335

Clearly, fundamental requirement to generate the initial position of the nodes

is obviously that they have to lie on the reference surface. Assuming the reference

surface described by a real function of the kind f(r̄) = 0 with r̄ a coordinate vector

defined in R3 (see Eq. 1):

P = {r̄ | f(r̄) = 0} (51)

In addition, we have to define a subspace of interest of the Cartesian space340

containing the part of mesh (a subset of P) that we want constrained to slide on

the surface. Indicating with B ⊂ R3 the subspace of interest, in case the ith node

falls into B (r̄i ∈ B) then, only the tangent-to-surface component (R̄i‖) of the

out-of-balance force (R̄i) is considered:

R̄i‖ = w̄i × (R̄i × w̄i) (52)

On the opposite, for r̄i /∈ B, the full residual obtained by Eq. (38) is inserted345

in Eq. (4) to eventually obtain the updated node position. The unit vector normal

to the surface w̄i appearing in eq. (52) is given by [35]:

w̄i =

∂f

∂x
x̄+

∂f

∂y
ȳ +

∂f

∂z
z̄√(

∂f

∂x

)2

+

(
∂f

∂y

)2

+

(
∂f

∂z

)2
(53)

with x, y and z the components of r̄i, while x̄, ȳ and z̄ are the unit vectors as

defined in Eqs. (14). Even though, we constrained certain nodes to move along

the tangent-to-surface direction, their updated node position (given by Eqs. 6)350
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will almost surely be off the surface: f(r̄i) 6= 0. Therefore, prior to running the

next DR iteration, those nodes have to be pulled back on the surface. The closest

coordinate position on the surface (r̄∗i ) of the r̄i node is given by [35]:

r̄∗i = r̄i −
f(r̄i)

[
∂f

∂x
x̄+

∂f

∂y
ȳ +

∂f

∂z
z̄

]
(
∂f

∂x

)2

+

(
∂f

∂y

)2

+

(
∂f

∂z

)2 (54)

As alternative to the computing of tangential residuals and node repositioning

(Eqs. 52 to 54) an external ‘pulling’ force k(r̄∗i − r̄i) can be added in Eq. (38) to355

constrain the elastic grid moving close to the reference surface but allowing some

clearance as well, in order to reduce the resulting bending stress. Such pulling force

can be conceived as the effect of an axial spring linking each grid node r̄i to the

surface in r̄∗i . The spring stiffness k is calibrated to reduce/increase the clearance

amplitude. Noting that (unlike in [15]) the surface node position r̄∗i is recomputed360

at each time increment as the closest to r̄i thus, the corresponding spring force

will not induce any undesirable axial stress to the elastic grid during the forming

simulation. Of course, a value of k varying for each node may be provided as

well, in order to (smoothly) reduce the clearance in some areas, e.g. at the surface

boundary.365

4.3.4. Mesh cutting

Once the elastic grid constrained to the surface reaches a static equilibrium

configuration, at completion of the first DR analysis step, the mesh geometry is

initialized (thus submitted to the second analysis step) by ‘cutting’ the excess part.

This task is performed by interrogating the connectivity lists N and M checking370

for each element, whether the corresponding end nodes fall into subspace B, thus

the connectivity lists are updated accordingly, discharging all the elements outside

B. However, if an element crosses the subspace of interest, manipulation of the

geometry list P is required. In other terms, we need to find the nodal coordinates

r̄0 at the point of intersection between the boundary of B and the element’s shape375

function: Let assume that B is lower bounded by z ≥ 0 and r̄(t) is the cubic Hermite

shape function of the crossing element, defined by the end nodes coordinates (r̄i1 ;

r̄i2) and tangent unit vectors (z̄1; z̄2) as shown in Figure 2: The problem is reduced
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to find the value of t0 such that r̄(t0) lies on the global (x, y) plane:

t0 → r̄(t0) = [x y 0] ; t0 ∈ [0, 1] (55)

hence we take into account only the third component of r̄ in Eq. (55):380

t0 → z(t0) = 0 (56)

The solution of the cubic function (56) may be analytically found (e.g by Car-

dano’s method or Vieta’s substitution). Alternatively, an iterative method such us

Newton-Raphson may be used:

tn+1 = tn − z(tn)(
∂z

∂tn

) (57)

The value of t0 so found is then inserted in the remaining two x(t) and y(t) of

r̄(t) thus obtaining r̄0. Extending the problem to the general case of B bounded385

by a plane with arbitrary orientation, Eq. (56) becomes:

t0 → ω̄p · [r̄(t0)− r̄p] = 0 (58)

with ω̄p the vector normal to the plane and r̄p a point of the plane. Therefore,

the recurrence Eq. (57) becomes:

tn+1 = tn − ω̄p · [r̄(tn)− r̄p]

ω̄p ·
(
∂r̄

∂tn

) (59)

The new boundary node so found is added to the node list P and the connectivity390

index of the crossing element is updated accordingly.

A description of the algorithm is given with reference to Figure 7: The element

‘12’ crosses the subspace with its start node 4 thus the new node 8 is computed and

the element’s connectivity is updated as shown in Figure 7-b while, element ‘19’

remains connected to node 4. By adding a new node to the P geometry list rather395

updating the coordinate values of the former (start/end) node, there is no need for

following any particular (geometric/spatial) order in inspecting the connettivity

list, thus allowing parallel access and computing schemes.
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Figure 7: Cutting algorithm: (a) Two elements crossing the subspace B are connected to the

same node 4; (b) At the 12th iteration the end node of element ‘12’ is updated, while element

‘19’ remains linked to node 4; (c) The boundary node 9 can be (independently) computed at the

19th iteration.

Figure 8: Elastica shapes under four buckled states. The numerical x displacement and y

displacement errors of the right-end and midspan nodes, are reported in Fig. 9.

5. Numerical tests

5.1. Elastica400

As in [11, 25] the described six DoF DR formulation is firstly tested, in the

bi-dimensional case, against the analytical solution of an initially straight elastic

rod pinned at its ends. Figure 8 details the corresponding Elastica shapes for the

effect of four increasing values of the axial load P over the critical Euler buckling

value Pcr, identifying each shape with the corresponding inclination angle of the405

end’s tangential direction. The load values of P corresponding to the four shapes,
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are obtained according to Timoshenko and Gere1 as: P = (K2 · EI)L−2 [36]. A

bending stiffness EI = 100kNm2 and an axial stiffness EA = 100MN were set. The

rod’s length is 10.0m. For each of the four buckled states, five DR analyses with

increasing number of elements (20, 24, 28, 32 and 36) were performed. The analyses410

were stopped when the following inequality limit was reached: max|R̄i| ≤ 9.5e-6P .

The numerical x displacement of the rod’s right-end node and y displacement of

the mid-span node are compared to the corresponding analytical values in terms

of error percentage and are summarized in Figure 9.

x[%] =
100|xA − xDR|

xA
; y[%] =

100|yA − yDR|
yA

(60)

As expected, the numerical error is inversely proportional to the number of415

elements used to modelling the discrete rod. Higher error percentages are registered

for the 40◦ buckled state, with a maximum error of 1.5% most probably due to axial

deformation (not taken into account in the analytical solution) of the numerical

model. Remarkably, the error of the 36 elements model, falls below the 0.5% for

all four buckled configurations.420

Figure 9: Numerical error of displacements at different discretization values for a buckled elastic

rod (shown in Fig. 8).

1The length L in [36] corresponds to L/2 of the present study; The complete elliptic integral

of the first kind (K) has been calculated up to the 10th decimal place in order to maintain high

accuracy of the analytic solution of P .
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Figure 10: Combined bending and torsion numerical tests set up: Displacements y, z and rot.

angle γ of the midspan node for different P̄ -Q̄ values are reported in Tab. 1.

5.2. Combined bending and torsion

A further numerical test on the single rod case is performed to assess the re-

liability of the method in the three-dimensional case, involving combined bending

moment and torsion effects: Firstly, a 10m long rod is bent as in the previous test

(dashed line in Figure 10) until a distance between ends of 6.2m is reached. Sec-425

ondly, the rod is prevented from rotating around the global x axis at its end nodes

and combinations of increasing forces P̄ and constant torque Q̄ are applied at the

midspan node. The analyses described were then replicated with the commercial

Finite Element software Abaqus with Newton-Raphson solver (NR), to handle large

displacements. A 36-element geometry was set up for both NR and DR models,430

while the axial and bending stiffness was set in accordance to the previous test

(Ix = Iy = I) as well as the convergence criteria. In addition, a torsional stiffness

value GJ = 50kNm2 was assumed.

The resulting y and z displacements and rotation angle γ at the mid-span

node, for five P̄ -Q̄ load combinations, obtained with both NR and DR methods,435
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Table 1: NR and DR methods: Comparison of displacement values at the midspan node of a

pre-stressed rod under five load combinations (see Fig. 10).

Load case 1 2 3 4 5

P [kN] 0.0 5.0 10.0 15.0 20.0

Q [kNm] 10.0 10.0 10.0 10.0 10.0

NR DR NR DR NR DR NR DR NR DR

y/La 0.3421 0.3420 0.3357 0.3359 0.3251 0.3255 0.3119 0.3124 0.2975 0.2980

z/L 0.0239 0.0235 0.0656 0.0645 0.1032 0.1018 0.1358 0.1344 0.1633 0.1621

γ [rad] 0.5646 0.5664 0.6807 0.6789 0.7856 0.7814 0.8754 0.8701 0.9498 0.9442

aL =10.0m

are reported in Table 1. As can be seen, both methods give very close results,

especially if we consider the magnitude of displacements involved. At load case 5

the mid-span node achieves a lateral (z) displacement of more than 1.6m with an

occurring discrepancy between NR and DR analyses output of 0.9cm (≈ 0.5%) and

a difference between vertical (y) components of 0.5cm on a total value of almost440

3m (≈ 0.16%). Not least, the rod’s cross section at the midspan node undergoes a

rotation γ of 0.942 rad (circa 54◦) corresponding to a gap of only 0.0052 rad (0.3◦)

between NR and DR outputs (≈ 0.5%). For completeness of results, the bending

reactions Mx, My at the elements midpoint and torsion Mϕ (second of Eqs. 20)

outputs of the DR analyses under load case 2, are compared to the corresponding445

NR outputs and summarized in table 2.

Table 2: NR and DR methods: Comparison of internal reactions, measured at the elements

midpoint, under the (P̄ -Q̄) load case 2.

Elem. internal reaction [kNm] Mx My Mϕ

Elem. index NR DR NR DR NR DR

1 1.12 1.14 -33.65 -33.38 5.03 5.00

6 13.81 13.84 -20.75 -20.63 5.03 5.00

11 28.88 28.89 -10.67 -10.65 5.03 5.00

16 44.56 44.50 -3.61 -3.58 5.03 5.00

21 44.56 44.50 -3.61 -3.58 -5.03 -5.00

26 28.88 28.89 -10.67 -10.65 -5.03 -5.00

31 13.81 13.84 -20.75 -20.63 -5.03 -5.00

36 1.12 1.14 -33.65 -33.38 -5.03 -5.00
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Figure 11: Cylindrical joint numerical test: (a) Unloaded configuration; (b) Final configuration.

5.3. Cylindrical joint

The aim of the following numerical test is to demonstrate the validity of the

single-node cylindrical joint model introduced in subsection 4.3.1.

Two rods (with length of 1m each) are joined together at their ‘common’ node450

by means of cylindrical joint, thus defining an overall ‘L’ shape with internal angle

of 90◦. Then, the first rod is clamped at its start node, while, a vertical load P̄

of 15kN is applied at the end node of the second rod (see Figure 11). Material

and cross-sectional stiffnesses (E, G, A, Ix, Iy and J) are set in accordance to the

previously described tests (subsections 5.1, 5.2) as well as the convergence criteria:455

max|R̄i| ≤ 9.5e-6P . Only two elements per rod are set.

Supposing, in first instance, to assume the rods elastic behaviour as being

infinitely stiff. Is such a case, the applied load would clearly not generate any

rotation. In fact, both vector load P̄ and the rotational axis of the cylindrical

joint would remain aligned along the vertical direction (independently of the load’s460
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magnitude) thus, the system would rest in (initial) neutral equilibrium. On the

other hand, assuming finite stiffness values for the rods, as the case, the alignment

between P̄ and the rotational axis of the joint is lost as soon as the 1st rod starts

twisting and bowing due to the effect of P̄ . Consequently, the (neutral) equilibrium

is lost as well, and a rotation around the cylindrical joint is triggered to find a new465

(stable) equilibrium, which is eventually reached when: the 2nd rod’s longitudinal

axis, the joint rotational axis and the vector P̄ are all aligned along the same

vertical plane.

As shown in Figure 11, at DR equilibrium convergence, the 2nd rod under-

gone a (local) counter-clockwise rotation of 0.325rad (circa 18.6◦) around the joint470

rotational axis.

5.4. Spherical dome

This example provides a description of the developed method with a practical

application to the form finding and load analysis of a grid shell dome.

5.4.1. Form finding475

The reference surface is described by the equation f(r̄) of a sphere having

radius of 11m and its centre coinciding with the global axes origin. The subspace

of interest B is defined by z ≥ 4.582m so that each grid node whose z coordinate at

time t is lower than such value, will not be constrained to the surface. Accordingly,

the part of reference surface contained in B configures a spherical cap with a span480

of 20m and circa 6.4m high. The unstressed length L0 of the two-way grid is set

to 1m. A flowchart of the form finding procedure is illustrated in Figure 12: The

mesh, obtained with the cutting method previously described, can be used to find

the corresponding flat grid by ‘relaxing’ it on a flat surface. In fact, although

geometrically different, the two meshes have the same topology. Unlike the single485

rod case, no analytical solution for a complete grid shell system is readily available

to compare with the numerical solution. However, restricting the investigation

to the assessment of the (global) grid node’s displacements only for effect of the

geometric constraints (constant elements length; reference surface) a comparison

of outputs can be made with other discrete models. In the particular case of a490

spherical surface, the expression to calculate a corresponding discrete mesh with
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Figure 12: Form finding of a grid shell dome: Flowchart.

constant edge length (also called Chebyshev net) thus constant arch-length2, is

given by Bobenko and Pinkall [37]: Assuming the nodes of the Chebyshev net

defined by a (n×m) matrix, the unit vector ω̄ normal to the spherical surface at

node r̄n+1,m+1 can be found from the unit vectors at nodes r̄n,m; r̄n+1,m and r̄n,m+1495

by:

ω̄n+1,m+1 = −ω̄n,m +
ω̄n,m · (ω̄n+1,m + ω̄n,m+1)

1 + (ω̄n+1,m · ω̄n,m+1)
(ω̄n+1,m + ω̄n,m+1) (61)

2To the case of spherical surface: for an arbitrary set of chords with constant length the

corresponding geodesic arch-length is always constant.
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Figure 13: Spherical cap: (a) Chebyshev net found by Eqs. (61, 62) ; (b) Comparison of DR

output with the Chebyshev net geometry.

Consequently, for a sphere with its centre coinciding to the origin of the global

coordinate system, the nodal coordinates are given by:

r̄n+1,m+1 = (sphere radius)ω̄n+1,m+1 (62)

On this basis, a Chebyshev net has been generated on a quarter of the spherical

cap previously described, as shown in Figure 13-a. The nodes r̄n,0 and r̄0,m of the500

first raw and column of the matrix are those obtained at completion of the first DR

analysis step (grid still constrained to the surface) thus the remaining entries of the

matrix are obtained by applying Eqs. (61, 62). The error percentage is calculated

as:

Error[%] =
100|r̄DR − r̄Cheb.|
sphere radius

(63)

As can be seen from Figure 13-b, the error increases with the distance from the505

axes of the matrix. Despite the arch-length of the Chebyshev net edges coinciding

with the arch-length of the DR cubic splines at the r̄n,0 and r̄0,m nodes, the discon-

tinuity of tangents between consecutive Chebyshev net (geodesic) arches increases

as we move away from the matrix axes. In any case, the discrepancy of outputs

between the two geometries remains below the 0.01%.510

5.4.2. Load analysis

The single-layer grid shell dome, obtained in the previous example, is submitted

for a load analysis performed with both DR and NR methods, thus a comparison

of results is provided. Material and cross-sectional stiffnesses are those set for the

previously described tests. In order to take into account the effect of pre-stress515
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Figure 14: Spherical cap: Preliminary form finding analysis by Newton-Raphson method. Grid

cutting pattern and final position of the boundary nodes are those obtained at DR completion of

the first form finding step.

Figure 15: Load analysis of the grid shell dome: Deformed geometry obtained by DR method

(scale - 30 times).

forces for the NR analysis, a preliminary (form finding) analysis step is performed

by imposing a set of displacements to the boundary nodes of the flat mat geometry

(as shown in Figure 14) where: both flat mat geometry and final position of the

boundary nodes are those obtained by the DR procedure illustrated in subsection

5.4.1. Further, for the NR analysis, the cylindrical joint connections are simulated520

by means of link elements, with a fictitious size of only 0.1mm, in order to replicate

the behaviour of the single-node model adopted for the DR analysis.

For both DR and NR analyses, a gravitational load P is applied at each node

of the structure by increments of 0.2kN per node (up to 2kN). For each load incre-

ment (load step) the equilibrium geometry is computed and the (average) vertical525

displacement, of the four nodes at the summit of the grid dome, is recorded. The

equilibrium convergence criteria for the DR load steps is set to: max|R̄i| ≤ 5N. The

resulting load-displacement curves are reported in Figure 16, according to which,

the two analyses give very close results, with a maximum discrepancy < 1%. The

deformed geometry for P = 2kN per node obtained by DR method, is shown in530

Figure 15 with a magnification factor of 30.
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Figure 16: Grid shell dome: Load-displacement curves by DR and NR methods.

Figure 17: Corrugated barrel vault: (a) Reference surface; (b) Final geometry.

5.5. Corrugated barrel vault

In the present example, a reference surface is defined in such a way to replicate

the overall shape of the Downland grid shell: The resulting corrugated barrel vault

is 50m long, with a varying width of 12.5m to 16m, while the height varies from535

9.5m at the central hump to circa 7.4m at the saddles [10]. According to the

adopted surface function (see Appendix A), the global (x, y) plane coincides with

the ground floor level of the real structure whose longitudinal axis is directed

along the y global direction. Hence, B is defined by: (z ≥ 0.0m) and (−25.0m

≤ y ≤ 25.0m).540

According to Harris et al [5] the timber specimens were graded as D30 of the BS
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EN 338 [38] strength classification, for which a mean modulus of elasticity parallel

to the grain (E0,mean) of 11kN/mm2 is given. Such value is estimated from tests

on timber population at a temperature of 20◦C and relative humidity of 65%. In

these environmental conditions, the moisture content (MC) of wood in general does545

not exceed 12% (dry timber) while the green oak used for the Downland grid shell

construction had a corresponding MC up to 65% [5]. For values of MC over the

fiber saturation point (around 27%) a reduction in stiffness and strength occurs. In

order to take this into account, a Edry/Egreen ratio of 1.3 [39] is used to derive a

‘reasonable’ value of elastic modulus (E = E0,mean/1.3 = 8.46kN/mm2) for input550

in Eqs. (20 to 24). A mean value of 0.69kNmm2 [38] is set for the transverse shear

modulus G. The initial rectangular mat’s overall shape [5] is preserved during the

form finding analysis by constraining the vertical displacements of the boundary

nodes of the mat’s longer side. The grid shell geometry at form finding completion

is shown in Figure 17.555

6. Conclusions

The work presented in this paper has aimed to facilitate the design of actively

bent grid shells, with particular attention on the use of timber (see Figure 18).

A numerical framework is developed to address a range of issues at various design

stages, including, a viable form finding procedure, structural analysis and assembly560

definitions (flat mat geometry) by combining finite element procedures (Dynamic

Relaxation) with numerical methods typical of the computational geometry (mesh

manipulation and geometry intersection). Further investigations, concerning the

coupling of rotational degree of freedom, resulted in the development of a novel

single-node numerical model for large rotation simulation of cylindrical joint sys-565

tems. In addition, a procedure is illustrated to allow changing the element’s cross-

sectional properties during the completion of the form finding stage by maintaining

the corresponding ends reactions values. Such procedure permits load analyses in

which the increase in stiffness of the built-up timber ribs (for effect of shear blocks

insertion) is taken into account, and at the same time maintains the equilibrium570

configuration (previously) obtained without shear blocks.

In order to allow the implementation of the described procedures, a detailed

description of the equations involved is given. After preliminary validation tests
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Figure 18: Post-formed timber grid shells [16].

on ‘simple’ structural systems, the procedures are applied to the form finding,

structural analysis and mat cutting patterns search of a grid shell dome, as well as575

the form finding analysis of a corrugated barrel vault.

The accompanying numerical tests demonstrated the reliability of the proposed

method. The preliminary tests showed a good level of accuracy for the six DoF DR

formulation in the estimation of the load-displacements functions. Accordingly, the

six DoF DR can be used for non-linear buckling analyses at the completion of the580

form finding routine (by adding a non-null term P̄i to the residuals: Eq. 3) thus

allowing to take into account the effect of pre-stress (and material relaxation) on

the final load bearing capacity.
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Appendix A. Barrel vault shape function

As in [40] the vertical z component of the reference surface is obtained by

superposition of multiple function values. Writing f(r̄) = f(x, y, z) = 0 in the590

form f(x, y) = z, we have:

z = f = f1 + f2 + f3 + c (A.1)

where:

f1 = − cosh
( x

2.55

)
; f2 = cosh

( x

4.1

)
cos
(y

3

)
f3 = −

(
x2

50
+

y2

665

)
; c = 9.55

(A.2)

The main barrel vault is shaped with f1 while f2 provides the corrugated profile

and f3 takes into account the occurring height difference between the central dome595

and the lateral ones (see Figure A.1) the constant c translates vertically the surface

so that the global (x, y) plane coincides to the structure’s ground floor.

From Eqs. (A.2) the partial derivatives of f(r̄) to insert in Eq. (53) to compute

the vector normal to the surface, result to be:

∂f

∂x
= − 1

2.55
sinh

( x

2.55

)
+

1

4.1
sinh

( x

4.1

)
cos
(y

3

)
− x

25

∂f

∂y
= −1

3
cosh

( x

4.1

)
sin
(y

3

)
− y

332.5

∂f

∂z
= −1

(A.3)
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Figure A.1: Corrugated barrel vault: f(r̄) = f1 + f2 + f3 + c.
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