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Abstract 

New uniform approximations of the Blasius velocity profile and Blasius function are developed from existing rational 
approximations of the Blasius velocity profile and of the Blasius function itself. Essentially, the existing rational 
approximations are rescaled (when necessary) and one of two methodologies [1, 11] is applied to the rescaled rational 
approximations to determine corresponding uniform approximations to the Blasius velocity profile and Blasius function. A 
brief discussion is presented on the merits of the results. 
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INTRODUCTION 

In the light of a recent interest in approximate analytical representations of the Blasius function and its derivative or 

velocity profile (see, for example, [1, 3, 5–14]), we present in this paper new uniform (valid for ),0[ x ) approximations 

of the Blasius velocity profile and the Blasius function itself. Basically, these new uniform approximations of the Blasius 
velocity profile and the Blasius function originate from given rational approximations to the Blasius velocity profile or the 
Blasius function which are not themselves uniform approximations, but may be developed into such as described below [1, 

11]. While all of the rational approximations that we start with have been taken from the general literature [1, 8], it is to be 
noted that, in sections 3 and 4 before we apply one of the methods of extending the rational approximations into uniform 
approximations, the given rational approximations [8] are first scaled to provide new rational approximations to either the 
Blasius velocity profile or the Blasius function, which improves the final ‘fit’ of the uniform approximat ion also. Before 
describing the methodology (in general terms) we remind ourselves of the relevant background of the Blasius problem, 
which arises from boundary layer theory [4]. 

      As is well known [2], the Blasius function ),(xF  with x  a dimensionless distance, is the solution of the nonlinear 

ordinary differential equation 

                                                                        0)()(
2

1
)(  xFxFxF                                                                          (1.1) 

with the boundary/initial conditions [2] 

                                                                      1)(  ;0)0()0(  FFF                                                                       (1.2) 

The initial/boundary value problem (1.1) and (1.2) leads, immediately, to a boundary value problem for the dimensionless 

velocity ),()( xFxf   that is, the nonlinear ordinary differential equation 

                                                                              0
2

1
 fFf                                                                                      (1.3) 

along with the boundary/initial conditions 

                                                                           1)(  ,0)0(  ff                                                                                 (1.4) 

As well as the profile of )()( xFxf   being well known [2], we see that we may also write 

                                                                             
x

dttfxF
0

)()(                                                                                     (1.5) 
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which is important to the overall method describe below.  

      Further aspects of the Blasius problem are summarized in Table 1, which contains information, taken from reference 
[6], on the initial and asymptotic properties of the Blasius function critical to the production of new rational approximations 
from given rational approximations, as well as providing functional material for the production of uniform approximations in 
conjunction with the original rational approximations. 

 

Table 1. Basic Properties of the Blasius Function [6] 

Symbol Definition Numerical Value 
 

  

 

)0(F   

 

0.33205733621519630 

 

B 

 

))(( xxF
x
Lim 


 

 

1.7207876575205038 

 

Q 

 

)()2(
4

exp xFBx
x

Lim
x

 









 

 

0.111483754997889 

 

      Before launching into the ‘meat’ of the paper, we now describe, in general terms of course, the basic methodologies 
presented in detail in sections 2 to 4. 

      Two methods of obtaining uniform approximations from rational approximations are presented below. First, we 
describe a ‘combination’ method. Suppose we start from a, if necessary scaled (see above), rational approximation to the 
Blasius velocity profile. Then, we obtain a uniform approximate velocity profile by combining the rational approximation 

with the derivative of the asymptotic expression for )(xF  obtained from row two of Table 1; the combination method is 

that developed by Yun [11]. Alternatively, if we start from an approximation of the Blasius function itself, either one 
obtained from our rational approximation to the Blasius velocity profile and (1.5) or a given (scaled again) rational 
approximation of the Blasius function, then we obtain a uniform approximate Blasius function by combining the 

approximate Blasius function with the asymptotic expression for ),(xF  obtained from row 2 of Table 1 again; the method 

of combination is, again, that developed by Yun [11]. 

      The second method of producing a uniform approximation from a given approximation is obtained by starting, as 
before, from a, if necessary scaled, rational approximation to the Blasius velocity profile. The rational approximation to the 
Blasius velocity profile is then extended to a uniform rational approximation, following Ahmad and Al-Barakati [1], by the 
inclusion of an asymptotic factor – similar to that of row three of Table 1 – to both the numerator and denominator of our 
(scaled) rational approximation to the Blasius velocity profile. This new rational approximation to the velocity profile is then 
substituted into (1.5) to get a uniform analytical approximation of the Blasius function. 

      The body of the paper is arranged as follows. In section 2, we develop the first of our new approximate velocity 

function/Blasius function pairs by starting with the rational approximation to the Blasius velocity profile, ),()( xFxf   of 

Ahmad and Al-Barakati [1] and applying the methodology of Yun [11], mentioned above, to obtain new uniform 
approximations of the velocity function/Blasius function pair. Note, again, that the starting functions are not uniform 
approximations, but have a finite radius of application. We emphasise that this is true of all the starting approximate 
function pairs that we use in the present analysis. Next, in section 3, we adapt the rational approximate solutions of the 
Blasius problem derived in Noghrehabadi et al [8], to obtain uniform approximations of the velocity function/Blasius 
function pair. In order to do this, it is necessary to first rescale the Noghrehabadi et al [8] velocity function/Blasius function 

pair to accommodate the ‘missing’ initial condition ),0(F   presented in Table 1. Once this is done, new uniform 

approximations of the velocity function/Blasius function pair follow on using Yun’s method [11] again. In section 4, we 
extract a result from section 3 and produce new uniform rational approximations of the velocity function/Blasius function 
pair by adapting an idea of Ahmad and Al-Barakati [1] to the scaled Blasius velocity profile approximation of section 3 to 
obtain further new uniform approximations of the velocity function/ Blasius function pair.  

2. THE AHMAD AND AL-BARAKATI VELOCITY PROFILE 

In this section we consider the uniform approximations arising from the Ahmad and Al-Barakati velocity profile, that is [1] 
(with   given in Table 1) 

                                                                    
3
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420
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1

560

3

)()(

x
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xFxf AA









                                                                  (2.1) 
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As explained in the introduction, we will use relation (2.1) in conjunction with the asymptotic form (from Table 1) 

BxxF )(  and its derivative form Bxf )(  to produce uniform approximations of the velocity function/Blasius 

function pair. A critical point in this construction is the existence of the ‘weight function’ [11] 

                                                                      























x

b

x

b

x

x
k

k

0     ,

1

)(                                                                    (2.2) 

which, for ‘sufficiently large’ ,k  approaches the Heaviside step function [11] 

                                                                           










.1

,0
)(

b,   x

b,   x
bxH                                                                            (2.3) 

so that we may conjoin two functions )(x  and ),(x smoothly, by taking a weighted average of the form [11] 

                                                                xxxxx 0     ),()()())(1(                                                          (2.4) 

The point is that )(x  predominates for ,0 bx   while ),(x  predominates for ,bx   thus ensuring the 

conjunction (2.4) gives a ‘smooth’ coverage of the whole half-line .0  x  Naturally the choice of the parameters b  

and k  determine just how good the fit of the conjunction (2.4) is to the problem in question. 

      In this instance, we wish to ‘mix’ (2.1) with Bxf  )(  and also ‘mix’ the Blasius function corresponding to (2.1) with 

.)( BxxF   Following some ‘numerical experimentation’, we find that 5b  and 20k  lead to the best overall 

coverage for the velocity function/Blasius function pair. This leads to the two uniform approximations, one for the velocity 
profile 

                                                            xBxxfxxf A 0     ,)()())(1()(1                                                        (2.5) 

and one (implicitly) for the Blasius function 

                                                       xBxxxFxxF A 0     ),)(()())(1()(1                                                    (2.6) 

where, from (1.5) 

                                                                                
x

dttfxF AA
0

)()(                                                                               (2.7) 

      In Table 2 we present the results of the evaluation of (2.6) for selected values over the range 100.x0   Also shown 

in Table 2, for comparison, are the results of the numerical solution of the Blasius problem (1.1) and (1.2) [4]. The results 
presented show that all values calculated from (2.6) lie within %29.0 of the numerical solution of the Blasius problem [4]. 

Finally, note that Ahmad and Al-Barakati [1] develop uniform approximations of the velocity function/Blasius function pair 
from (2.1) also, but they use a different method of approach (see the discussion of section 4 below). 

3. THE NOGHREHABADI ET AL VELOCITY PROFILE I 

In this section we consider the uniform approximation arising from the velocity profile of Noghrehabadi et al [8], which we 
write as 

                  
963

74

00.68001683417415

31.961489

00.68001683417415

83.812490706

00.68001683417415

73.702146316430
1

00.68001683417415

70.114789608

00.68001683417415

00.03256300018

00.68001683417415

00.0005622567066

)()(

xxx

xxx

xFxf NN





                (3.1) 

The approximate velocity profile (3.1) arose as an approximate solution to the Blasius problem and, because of this, unlike 

(2.1), (3.1) does not satisfy the condition .)0()0(  NN Ff  Instead, we find that  

                                                  3339972019.0
00.68001683417415

00.0005622567066
)0()0(  NN Ff                                              (3.2) 

which is the leading term in the denominator of (3.1) (c.f. (2.1)). 
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Table 2. Approximate Representations of the Blasius Function 

 

x 
)(1 xF  )(2 xF  )(3 xF  )(4 xF  

 

‘Exact’ [4] 

0 

0.4 

0.8 

1.2 

1.6 

2.0 

2.4 

2.8 

3.2 

3.6 

4.0 

4.4 

4.6 

4.8 

5.0 

5.2 

5.4 

5.6 

5.8 

6.0 

6.4 

6.8 

7.0 

7.4 

8.0 

10 

20 

 

100 

 

 

0 

0.0266 

0.1061 

0.2379 

0.4203 

0.6500 

0.9223 

1.2309 

1.5688 

1.9285 

2.3031 

2.6866 

2.8806 

3.0764 

3.2744 

3.4745 

3.6755 

3.8766 

4.0775 

4.2781 

4.6788 

5.0790 

5.2791 

5.6792 

6.2792 

8.2792 

18.2792 

98.2792 
 

0 

0.0266 

0.1061 

0.2379 

0.4203 

0.6500 

0.9223 

1.2309 

1.5691 

1.9295 

2.3056 

2.6917 

2.8872 

3.0839 

3.2816 

3.4803 

3.6797 

3.8794 

4.0793 

4.2793 

4.6792 

5.0792 

5.2792 

5.6792 

6.2792 

8.2792 

18.2792 

98.2792 
 

0 

0.0266 

0.1061 

0.2379 

0.4203 

0.6499 

0.9221 

1.2306 

1.5684 

1.9284 

2.3039 

2.6894 

2.8847 

3.0815 

3.2796 

3.4789 

3.6787 

3.8788 

4.0790 

4.2790 

4.6791 

5.0792 

5.2792 

5.6792 

6.2792 

8.2792 

18.2792 

98.2792 
 

0 

0.0266 

0.1061 

0.2379 

0.4203 

0.6500 

0.9223 

1.2310 

1.5691 

1.9296 

2.3059 

2.6927 

2.8887 

3.0859 

3.2841 

3.4828 

3.6820 

3.8815 

4.0812 

4.2809 

4.6802 

5.0796 

5.2794 

5.6793 

6.2792 

8.2792 

18.2792 

18.2792 
 

 

0 

0.0266 

0.1061 

0.2379 

0.4203 

0.6500 

0.9223 

1.2310 

1.5691 

1.9295 

2.3057 

2.6924 

2.8882 

3.0853 

3.2833 

3.4819 

3.6809 

3.8803 

4.0799 

4.2796 

4.6794 

5.0793 

5.2792 

5.6792 

6.2792 

8.2792 

18.2792 

98.2792 
 

                              

To overcome this deficiency, we ‘rescale’ (3.1) by replacing the coefficient of x  in (3.1) by   from Table 1 (set 0a  in 

(4.1) below). So, after replacing the coefficient of x  in (3.1) by ,  we again look for two uniform approximations (now 

labelled by  ) 

                                                            xBxxfxxf N 0     ,)()())(1()(2                                                      (3.3) 

for the velocity profile and (implicitly) 

                                                       xBxxxFxxF N 0     ),)(()())(1()(2                                                 (3.4) 

for the Blasius function where, from (1.5) 

                                                                               
x

dttfxF NN
0

)()(                                                                            (3.5) 
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As in section 2, after some ‘numerical experimentation’, we find that 5b  and 20k  lead, again, to the best overall  

coverage for the velocity function/ Blasius function pair. In Table 2 we present the results of the evaluation of (the 

appropriate form of) (3.4) for selected values over the range .1000  x  The results presented show that all values 

calculated from (2.6) lie within about %046.0 of the numerical solution [4] of the Blasius problem. 

     In fact, Noghrehabadi et al [8] also develop a rational approximation for ).(xF  If we apply the same scaling to the 

Noghrehabadi et al )(xF  (equation (36-b) of [8]) as we did to (3.1), and form the same weighted average as in (3.4), we 

get another uniform approximation to the Blasius function which we label ).(3 xF The results of the usual evaluation of 

)(3 xF  are presented in Table 2 and all lie within %13.0  of Howarth’s [4] numerical solution. (Of course, a similar analysis 

can be developed with )(xF   to produce an approximate velocity profile ).(3 xf  ) 

4. THE NOGHREHABADI ET AL VELOCITY PROFILE II 

Actually, there is another means of extending the effective range of a given rational approximation to encompass the real 
half-line .0  x  This process, devised by Ahmad and Al-Barakati [1], bears a resemblance to the second limit in row 

three of Table 1. Using a limiting argument, Ahmad and Al-Barakati [1] attach an exponential factor to their rational 

approximation (2.1) of )(xf  in an attempt to overcome the limited range of validity of (2.1). In this section, we will attempt 

to do the same for the corrected velocity profile of Noghrehabadi et al [8].      

      Specifically, we propose the form (note that we are basing (4.1) on the scaled form of (3.1), with the coefficient of x  in 

(3.1) replaced by the value of   from Table 1)                                     

1
410963

1
41074

22 2

2

00.68001683417415

31.961489

00.68001683417415

83.812490706

00.68001683417415

73.702146316430
1

00.68001683417415

70.114789608

00.68001683417415

00.03256300018
3320573362.0

)()(










x

x

NN

eaxxxx

eaxxxx

xFxf     (4.1)          

where the parameter a  is to be determined. In practice the simplest way to determine a  is by collocation. In fact, similar 

to [1], we determine a  by fixing the value of 

                                                                               
x

dttfxF NN
0

22 )()(                                                                           (4.2) 

for 8x  at ,2792.6  which is taken the last column of Table 2 and assumed exact.  

      The result of the collocation is that we find that 

                                                                             
12

10255588531.7


a                                                                       (4.3) 

which we then substitute into (4.1) and use in (4.2) to produce another (implicit) uniform approximation for the Blasius 

function which we label ),(4 xF  that is 

                                                        xBxxxFxxF N 0     ),)(()())(1()( 24
                                              (4.4) 

with )(x  as before. We present the results of the evaluation of )(4 xF  in Table 2 again. The results presented in Table 2 

show that all values calculated from (2.6) lie within about %032.0  of the numerical solution [4] of the Blasius problem. 

5. DISCUSSION AND CONCLUSIONS 

We have presented three new uniform rational algebraic approximations to the Blasius velocity profile, along with 
corresponding uniform approximations to the Blasius function. In addition, a new uniform rational approximation to the 
Blasius function itself has been developed directly. All of these new functions were developed from existing 
approximations in the literature [1, 8] which were rescaled (when necessary) and combined according to the ideas of Yun 
[11] or Ahmad and Al-Barakati [1]. The numerical results for the four new (implicit) Blasius function approximations are 
presented in Table 2 and compared with the ‘standard’ numerical results of Howarth [4], also presented in Table 2. 

      A detailed examination of the results presented in Table 2 shows that the best uniform fit to the Blasius function is (4.4). 
The improvement of (4.4) over, say, (3.4) is probably [1] due to the fact that we have collocated using the ‘exact’ value for 

8x  from Howarth’s results [4]. Also, (4.4) is a different type of improvement over the original (rescaled) rational 

algebraic approximation than was used in the other three cases; although both types of improvement rely on knowledge of 
the asymptotic form [1, 11] of the Blasius function and/or its first derivative. 
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      As is usual in these discussions, we have concentrated on quoting the results of the numerical computation of the 
approximate Blasius functions only. This is probably due to the (apparent) convention of comparing the results of such 
analyses with the original numerical results of Howarth [4]. Naturally, there is no great difficulty in evaluating the velocity 
functions and, as there is sufficient information provided above, the interested readers can construct the full functional 
form of any of the approximate velocity profiles themselves. The velocity profiles are, one and all, sigmoid-shaped (as is 
only to be expected). 

      As a last word, we note that while the approximations presented here clearly approximate the solution of the Blasius 
problem, they are not solutions of the Blasius equation or of the equation for the velocity function. In every case, on 
substituting one of the approximations into the relevant equation, there will be a residual to account for. So, for example, if 

we substitute )(4 xF  into (1.1) we find that the residual is nonzero, that is 

                                                                       0)()(
2

1
)()( 4444  xFxFxFxR                                                            (5.1) 

However, this is normal in such work. 
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