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Abstract 
Polycystic Ovary Syndrome (PCOS) is a complex disorder encompassing 

reproductive and metabolic dysfunction.  Ovarian hyperandrogenism is an 

endocrine hallmark of human PCOS.  In animal models, PCOS-like 

abnormalities can be recreated by in utero over-exposure to androgenic 

steroid hormones.   

This thesis investigated pancreatic and adrenal development and 

function in a unique model of PCOS. Fetal sheep were directly exposed (day 

62 and day 82 of gestation) to steroidal excesses - androgen excess 

(testosterone propionate - TP), estrogen excess (diethylstilbestrol - DES) or 

glucocorticoid excess (dexamethasone - DEX).  

At d90 gestation there was elevated expression of genes involved in β-

cell development and function:  PDX-1 (P<0.001), and INS (P<0.05), INSR 

(P<0.05) driven by androgenic excess only in the female fetal pancreas.  β-

cell numbers (P<0.001) and in vitro insulin secretion (P<0.05) were also 

elevated in androgen exposed female fetuses.  There was a significant 

increase in insulin secreting β-cell numbers (P<0.001) and in vivo insulin 

secretion (glucose stimulated) (P<0.01) in adult female offspring, specifically 

associated with prenatal androgen excess.  

At d90 gestation, female fetal adrenal gene expression was perturbed 

by fetal estrogenic exposure. Male fetal adrenal gene expression was altered 

more dramatically by fetal glucocorticoid exposure. In female adult offspring 

from androgen exposed pregnancies there was increased adrenal 

steroidogenic gene expression and in vivo testosterone secretion (P<0.01). 

This highlights that the adrenal glands may contribute towards excess 

androgen secretion in PCOS, but such effects might be secondary to other 

metabolic alterations driven by prenatal androgen exposure, such as excess 

insulin secretion Thus there may be dialogue between the pancreas and 

adrenal gland, programmed during early life, with implications for adult health  

Given both hyperinsulinaemia and hyperandrogenism are common 

features in PCOS, we suggest that their origins may be at least partially due 

to altered fetal steroidal environments, specifically excess androgenic 

stimulation. 
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1.0  Introduction 
 

Endocrine regulation involves the release of hormones from an endocrine 

gland into the circulatory system, eliciting changes only in the target organ(s) 

expressing its cognate receptors, transducing the chemical message into 

cellular responses, as regulated by the specific hormone-receptor interaction. 

The endocrine glands and their target organs are controlled by tightly 

regulated endocrine axes, which function on the basis of either positive or 

negative feedback loops. Homeostatic regulation favours negative feedback, 

whereby the endocrine gland delivering stimulatory effects (to either another 

endocrine gland or non-endocrine tissue) is negatively regulated by the 

outcome of its effects upon the target tissue. Examples of endocrine glands 

are thyroid, ovary, testis and adrenal, which operate within feedback circuits 

involving the hypothalamus and pituitary gland, with major homeostatic 

outcomes such as the hypothalamic-pituitary-gonadal (HPG) axis, which 

regulate reproductive (ovary and testis) functions. In comparison, pancreatic 

function is responsive to circulating glucose concentrations, which determine 

which islet hormone is released to ensure tight regulation of blood glucose 

levels. Altered endocrine gland function can lead to eventual overwhelming of 

the ‘buffering capacity’ and inbuilt plasticity leading to endocrine axis 

dysfunction with potential for progression into a disease state. Variability in 

the function, and also perhaps resilience, of a particular endocrine axis is 

dependant not only upon the individuals genetics, but also epigenetics and, 

through both direct contemporary, and perhaps also through epigenetic 

manipulation at an earlier stage of life, environmental (exogenous) factors. 

This latter point of early-life effects with health legacies onwards into 

adulthood is a central tenant of the Barker hypothesis (Barker, 2004). The 

Barker hypothesis centres upon the association between low birth weight and 

adult onset of diabetes, where the associations are thought to be 

consequences of developmental plasticity, a phenomenon which most organs 

or cells are known to express (Bateson et al., 2004). This developmental 

plasticity and in utero pressures upon it can give rise to a range of different 
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physiological or morphological states in response to different environmental 

factors during development (Barker, 2004).  

 

Hormones are known to act as epigenetic signals in utero playing a major role 

in developmental programming (Fowden and Forhead, 2009). Altered 

function of any endocrine component, whether driven by endogenous 

maternal or placental factors during key developmental periods can lead to 

altered risk of developing altered function and potentially disease later in 

adulthood. Polycystic Ovary Syndrome (PCOS), which is associated with 

reproductive, metabolic and endocrine disturbances in women later in adult 

life, may have origins stemming back to fetal life, as evidenced by numerous 

studies in animal models of this condition (Abbott and Bird, 2009; Bruns et al., 

2004a; Hogg et al., 2011; Padmanabhan et al., 2006; Rae et al., 2013; 

Roland et al., 2010). The focus of this thesis is one such ovine model of 

PCOS, honing in upon the pancreas and adrenal glands as potential foci of 

the effects of in utero steroid hormone excesses during development, and 

onwards into adult life, with respect to organ structure, function and 

mechanistic underpinnings of alterations investigated. 

 
1.0.1   Polycystic Ovary Syndrome (PCOS) 

 
Polycystic Ovary syndrome (PCOS) is a combination of both reproductive and 

metabolic disorders found in women, and characterized by hypersecretion of 

luteinizing hormone (LH), hyperinsulinemia, ovarian hyperandrogenism 

(Dumesic et al., 2007) and polycystic ovaries on ultrasonography (Rotterdam 

ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group., 2004). 

PCOS has been a scientific challenge for researchers (Hsu, 2013),  and is a 

complex condition for clinicians and a frustrating experience for women. In 

women of reproductive age, PCOS is the most common endocrine 

abnormality, affecting about 6-8% of the population (Diamanti-Kandarakis & 

Piperi, 2005).  Clinical conditions such as Cushing’s syndrome, androgen-

secreting tumors and congenital adrenal hyperplasia (CAH) mimic some 

features of this PCOS, but are excluded prior to diagnosis (Rotterdam 

ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group., 2004). 
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Evidence from PCOS research has been translated to healthcare 

professionals leading to (Teede et al, 2010) use of metformin (an insulin 

sensitizing agent) (Diamanti-Kandarakis et al., 2010). Although a clear origin 

of PCOS in women is poorly understood, it appears likely that origins involve 

early life interactions between genetics and environment (Deligeoroglou et al, 

2009) with epigenetic modifications ( Xu et al, 2010; Xu et al., 2011) as a 

contributing factor influencing the pathophysiology of PCOS.  

  
1.0.1.1 Criteria for clinical diagnosis of PCOS 
 

It is estimated that about 6.6% of women in the United States suffer from 

PCOS during their reproductive years, leading to an economic burden of 

about $4.4 billion to treat associated type 2 diabetes mellitus, menstrual 

dysfunction and infertility (Azziz et al, 2005). In Australia AU$400 million 

healthcare spend occurs on PCOS, breaking down into 40% for PCOS 

associated diabetes, 12% infertility and 31% of menstrual dysfunction of total 

costs (Azziz et al, 2005). Given such high healthcare spend it has been 

critical to define strict criteria for the diagnosis and management of this 

condition. National Institute of Health (NIH) meetings held in 1990 initially 

defined PCOS as a combination oligomenorrhoea or chronic anovulation and 

hyperandrogenism (biochemical or clinical) (Zawadski and Dunaif, 1992). 

Although the extra ovarian factors e.g. insulin resistance, obesity and 

metabolic syndrome likely account for this syndrome, ovarian dysfunction 

remains the intrinsic disturbance of PCOS that is clinically recognized and 

acted upon. 

 

A redefined definition of PCOS was given at the joint consensus meeting held 

at Rotterdam in 2003 between the European Society for Human Reproduction 

and Embryology (ESHRE) and the American Society for Reproductive 

Medicine (ASRM). According to this, PCOS was defined, excluding all the 

other etiologies as presence of two among the following three criteria: (a) 

hyperandrogenism (clinical or biochemical); (b) oligo and/or anovulation; (c) 

polycystic ovaries (Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus 

Workshop Group., 2004). Regardless of the criteria used, recently, the 
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Androgen Excess Society (AES) has emphasized that androgen excess 

remains the central feature of PCOS combined with ovarian dysfunction 

(oligo-ovulation and/or polycystic ovaries) (Azziz et al., 2009). 

 

On the other hand hyperandrogenism, hyperinsulinaemia (excess insulin 

secretion) and obesity, which are the common features of PCOS, are also the 

factors that confer the increased risk of type-2 diabetes and cardiovascular 

diseases (Rajkhowa et al, 2000). However in about 75% of women with 

PCOS, the polycystic ovarian morphology has become of pathophysiological 

significance (Azziz et al., 2006). Furthermore, according to the recent 

Rotterdam consensus, less severe metabolic derangements such as obesity, 

insulin resistance and hyperglycemia seen in PCOS women in addition to 

anovulatory dysfunction will be included in the broad spectrum of the PCOS 

diagnosis criteria (Broekmans et al., 2006).  

 
1.0.2  Proposed Origins of PCOS 

1.0.2.1 Genetic linkage 
 

PCOS shows some genetic basis in the development of the syndrome (Carey 

et al., 1993; Xita et al., 2002), however the literature is conflicting in a number 

of cases. Cytochrome P450 side chain cleavage (P450scc) encoded by 

CYP11A1 gene has a polymorphic pentanucleotide repeat (tttta)n  in its 

promoter region, which is present in four-, six-, eight- and nine-repeat units in 

the normal population and is also associated with serum testosterone levels, 

however, absence of the four-repeat-units allele is seen in Greek women 

suffering from PCOS (Diamanti-Kandarakis et al., 2000). However, a Spanish 

study suggested that this polymorphism had no influence on 

hyperandrogenism in women with PCOS (San Millá et al., 2001). A more 

recent study has revealed the presence of >8 pentanucleotide repeat from 

the same allele in a South Indian population of women suffering from PCOS 

(Reddy et al., 2014), so ethnic and/or racial difference could be one possible 

reason behind the differences between these results. Certainly, a study in 

Singapore confirmed that mutations in the LH β- subunit are associated with 
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higher concentrations of serum testosterone in women with PCOS 

(Ramanujam et al., 1999). Decreased levels of polymorphic CAG repeats in 

the androgen receptor gene are associated with increased hirsutism with 

normal testosterone levels in Hispanic women (Legro et al., 1994) and low 

serum androgen levels in a subset population of women suffering from 

anovulatory infertility and polycystic ovaries (Mifsud et al., 2000). Genetic 

studies also link PCOS with disordered insulin metabolism (Franks et al., 

2001). For example, in women suffering from PCOS, the insulin gene (INS) 

variable number of tandem repeat (VNTR), which lies in the 5’ regulatory 

region of the genes has been identified as the major susceptibility locus 

(Waterworth et al., 1997) linking to hyperinsulinaemia/insulin resistance in 

PCOS (Waterworth et al., 1997). 

 

Insulin receptor (INSR) is an another gene that has been investigated in 

PCOS, where in one study, 22 patients with PCOS were screened and no 

abnormalities in the tyrosine kinase domain of the insulin receptor were 

detected (Conway et al., 1994). This result was confirmed in a second study, 

where again no mutations were detected when the entire coding region of 

INSR was examined (Talbot et al., 1996). This clearly suggests that women 

with insulin resistance in PCOS are unlikely to have INSR mutations. 

Although the above studies suggest a genetic link to PCOS, the mode of 

inheritance and genetic aetiology is still unclear and requires further 

investigation. 

 

1.0.2.2 Epigenetics and PCOS traits  
 

Epigenetic modifications of DNA are mechanisms involved in the inheritance 

of the gene expression patterns in cells without any alterations in the DNA 

sequences (Bjornsson et al., 2004; Chong and Whitelaw, 2004). Such 

modifications are known to occur via at least two distinct epigenetic 

mechanisms, histone modification and DNA methylation.  
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Nucleosomes, the basic building block of the chromosome in eukaryotes 

comprise of DNA wrapped around an octameric complex of two molecules of 

each of the four histones, which are the proteins that aid in packaging of the 

DNA into nucleosomes.  Amino acid termini of each of the histones such as, 

H2A, H2B, H3 and H4 can be modified via several post transcriptional 

mechanisms such as methylation, acetylation, phosphorylation, glycosylation 

and ADP ribosylation at specific residues in histones N-terminal tails (Zhang 

and Ho, 2010). 

 

DNA methylation is a second class of epigenetic modification, where DNA 

methyltransferase (DNMTs) enzymes modify the cytosine base at the C5 

position of cytosine (Jones and Takai, 2001). These epigenetic modifications 

are essential for mammalian development; however, they can be modified by 

environmental factors, which can alter gene expression, thus organ function, 

and hence further lead to potential development of diseases. The in utero 

environment is susceptible to such environment mediated epigenetic 

modifications leading to permanent alteration of the phenotype in adulthood 

(Bjornsson et al., 2004). It is evident from emerging data that such abnormal 

epigenetic regulation of gene expression plays a major role in the 

developmental origins of adult diseases (Pinney and Simmons, 2010; 

Waterland and Jirtle, 2004). Such epigenetic links have been made between 

growth retardation at birth and development of type 2- diabetes in adulthood 

(Martin-Gronet and Ozanne, 2005). For example, prenatal glucocorticoid 

exposure in rats (F0) leads to altered glucose homeostasis in the F1 offspring 

and without any further exposure this can be passed onto F2 generation 

(Drake et al., 2005). Moreover, in pregnant rats exposed to endocrine 

disruptors, reproductive abnormalities such as spermatogenic cell defects 

and sub-fertility can be observed in F1-F4 generations (Anway et al., 2005). 

Therefore, epigenetic reprogramming of the germ-line is possible, so it may 

play a major role in disease inheritance (Anway et al., 2005). As altered 

epigenetic modifications are associated with development of type-2-diabetes 

(Pinney and Simmons, 2010) and reproductive disorders (Anway et al., 

2005), it is possible that, such modifications contribute to effects of prenatal 

steroid exposure, which in turn may underpin some aspects of multifaceted 
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conditions/syndromes such as PCOS (Figure 1.1) (Piltonen et al., 2002). A 

recent study suggests a negative correlation between global DNA methylation 

and women with PCOS, however the study was based upon a small sample 

population (Xu et al., 2010). Therefore, large sample size, and tissue specific 

DNA methylation study (Xu Ning et al., 2010) is where currently there is 

significant focus, and these will aid understanding the relation between 

epigenetics and in utero androgen overexposure origins of PCOS in 

adulthood. 

 

1.0.2.3 Fetal Origins of PCOS  
 

The nutritional and hormonal environment affect the developing fetus in utero 

which may further lead to altered risk/likelihood of development of metabolic 

syndrome and other pathophysiological conditions later in adult life (Barker, 

2004). In a similar fashion, excess androgens during fetal life induce 

polycystic ovary syndrome (PCOS) like phenotypes later in adulthood in 

animal models derived from numerous species such as monkeys, sheep and 

rats (Abbott et al., 2005). 

 

Androgen excess during fetal life leads to PCOS-like phenotype developing 

later in adulthood by inducing changes in tissue differentiation (Abbott et al., 

2005). Androgens for example, can program the hypothalamus in terms of the 

release pattern of gonadotrophic hormones in rats (Sokka et al.,1996). 

Increased LH secretion and aberrant ovarian follicular development due to 

reduced sensitivity of hypothalamic GnRH secretory system to steroidal  

negative feedback was also observed in sheep exposed in utero to excess 

androgens (Robinson et al., 1999) (Figure 1.1) and prenatal androgen 

exposure in sheep led to intrauterine growth retardation, postnatal catch-up 

growth and multi-follicular ovarian development (Manikkam et al., 2004). 

Ovulatory dysfunction was also observed in prenatally androgenized female 

rhesus monkey which exhibit 40-50% fewer menstrual cycles when compared 

to normal females (Abbott et al., 1998). These same rhesus monkeys also 

exhibit enlarged polycystic ovaries similar to the ovarian morphology seen in 
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case of women with PCOS (Abbott et al., 1998) and exhibited LH 

hypersecretion in adult life when exposed to excess androgens in utero 

(Dumesic et al., 1997).  

Figure 1.1 Overview of the possible origins of PCOS and its related 

phenotype.  

In addition to reproductive disorders, fetal androgen excess also leads to 

metabolic disorders that characterize PCOS, such as pancreatic β-cell 

dysfunction, insulin secretion and altered adipose tissue distribution  (Dunaif 

and Finegood, 1996; Hogg et al, 2011; Roland et al., 2010). For example, 

impaired insulin sensitivity during early postnatal life is seen in case of 

prenatally androgenized sheep (Recabarren et al., 2005), together with 

elevated cholesterol and hypertension after puberty (King et al., 2007) and 

impaired β-cell function (Eisner et al., 2000), irregular anovulatory cycles, 

adrenal and ovarian androgen excess and LH hypersecretion is also 

observed in adult female rhesus monkeys exposed in utero to excess 

testosterone (Abbott et al., 1998). The coupling of insulin resistance and 

impaired β-cell response to glucose then predisposes development of adult 

type 2 diabetes mellitus (Bruns et al., 2004a).  

 

As a contributing factor for polycystic ovaries, prenatally androgenized sheep 

exhibit persistent follicular cysts implying impaired follicular growth 

(Manikkam et al., 2006) (Figure 1.1). A polyfollicular phenotype of increased 

primary follicles and decreased primordial follicles is observed in this case 
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when androgen treatment covers the period of days 30-90 of gestation (term 

is  ~147days) (Steckler et al., 2005), whereas such a phenotype is less 

evident when exposure occurs after d60 of gestation (Hogg et al., 2012). So, 

whilst this latter study did identify gene expression changes in ovarian cells 

predictive of future excess androgen secretion (Hogg et al., 2012), it 

nonetheless demonstrates that timing/duration of exposure is critical in terms 

of phenotypic outcomes. In humans, excess adrenal androgen production 

during intrauterine life due to congenital adrenal hyperplasia from 21-

hydroxylase deficiency in women is associated with a PCOS phenotype 

including polycystic ovaries, insulin resistance, central adiposity, LH hyper 

secretion, anovulatory cycles and ovarian hyperandrogenism (Hague et al., 

1990), further cementing the relationship between excess in utero androgen 

exposure and development of PCOS. 

 

This thesis will focus upon on the above fetal origins of adult disease (FOAD) 

hypothesis, with respect to in utero excess steroids as seen in PCOS women, 

in terms of PCOS associated metabolic and endocrine aberrations. 

 
1.0.3  Reproductive Phenotype of PCOS 

1.0.3.1 Abnormal Follicle development 
 

Polycystic ovaries are a cardinal feature of PCOS. Independent of follicular 

atresia and ovulatory status, increased proportion of primary follicles 

reciprocal to the proportion of primordial follicles is seen in women with 

polycystic ovary morphology (Maciel et al., 2004; Webber et al., 2003) and 

according to the Rotterdam criteria, 90-100% of women with polycystic ovary 

syndrome have polycystic ovaries (Welt et al., 2006).  

1.0.3.2 The ovarian legacy of prenatal excess androgen 
exposure 

 
The experimental evidence of increased recruitment of ovarian follicles in 

adult hyperandrogenism comes from testosterone administration to adult 
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female rhesus monkeys, which is associated with increased numbers of 

primary follicles (Weil et al., 1998). This androgen exposure in the rhesus 

monkey increased mRNA expression of follicle stimulating hormone (FSH) in 

the pituitary and both insulin-like growth factor (IGF-1) and insulin like growth 

factor receptor (IGF-1R) in the granulosa cells (Vendola et al., 1999; Weil et 

al., 1998). The same polyfollicular phenotype induced in sheep in utero from 

day 30-90 of gestation (total gestation-147 days) decreased the number of 

primordial follicles but increased the number of growing (primary, preantral 

and antral) follicles (Steckler et al., 2005).  However, maternal administration 

of prenatal testosterone at d60 gestation in pregnant sheep resulted in no 

structural changes in the fetal ovarian morphology at d90 gestation (Hogg et 

al., 2011), again highlighting subtle differences in outcome dependent upon 

the window of gestation the exposure occurred in. Prenatally androgenized 

female rhesus monkeys demonstrated increased testosterone and 17α- 

hydroxyprogesterone during adulthood in response to recombinant human 

chorionic gonadotrophic (hCG) hormone, again strongly suggestive of ovarian 

hyperandrogenism (Eisner et al., 2002). Underpinning such ovarian 

hyperandrogenism, even in the absence of altered follicle recruitment, in a 

sheep model of maternal androgenization, there was increased expression of 

key genes coding for steroidogenic enzymes in adult offspring (11 months 

old), such as StAR, CYP11A1, CYP17 and also the LH receptor (LHR), 

suggesting a potential contribution to adult ovarian phenotype of PCOS 

(Hogg et al., 2012). 

 

1.0.4  Effect of prenatal steroidal environment on 
intraovarian factors 

1.0.4.1 Ovarian Hyperandrogenism  
 

Ovarian hyperandrogenism is observed in 70-80% PCOS patients (Diamanti-

Kandarakis et al., 2007). This has been ascribed to augmented expression of 

genes coding for steroidogenic enzymes such as P450side chain cleavage, 

17α-hydroxylase/17α-lyase (P450c17//CYP17) and 3β- hydroxysteroid 

dehydrogenase (3β-HSD) and consequently excess biosynthesis of androgen 
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in ovarian follicular theca cells (J. R. Wood et al., 2003). Thus it appears 

evident that thecal steroidogenic defect remains an intrinsic factor for 

increased androgen production in PCOS women (Nelson et al., 2001). 

1.0.4.2 Luteinizing hormone (LH) hypersecretion 
 
The enhanced gonadotrophin- releasing hormone (GnRH) pulsatility leading 

to enhanced LH hypersecretion is a neuroendocrine hallmark of PCOS (Birch 

et al., 2003). Impaired negative feedback underpins high LH concentrations in 

anovulatory PCOS women (Dumesic et al., 2007) via excessive action of 

androgen on hypothalamic-pituitary axis leading to elevated levels of LH 

(Jonard and Dewailly, 2004), although increased LH secretion in adolescent 

PCOS patients, is at least partially a result of reduced progesterone (P4) 

negative feedback activity (Chhabra et al., 2005). Similarly, female rhesus 

monkeys exposed to fetal male testosterone levels in utero have shown 

clinical manifestation of PCOS like LH hypersecretion during adult life 

(Dumesic et al., 1997), again adding weight to the association of in utero 

excess androgens with postnatal development of PCOS.  

 
1.0.5  PCOS associated Metabolic Phenotype 

 

The prevalence of metabolic syndrome is increased in PCOS women as 

compared to weight and age matched non-PCOS patients (Ramos and 

Olden, 2008). This metabolic syndrome (MS) associated with PCOS is a 

combination of central adiposity, increased fasting glucose and dyslipidemia 

(Grundy et al., 2005), these coexisting abnormalities sharing a common link, 

insulin resistance (IR) (Grundy, 2007). As regards evidence from animals 

models, adult female rats exposed to androgens prenatally develop increased 

visceral adiposity, increased fasting glucose and impaired glucose tolerance 

suggesting of impaired insulin action (Roland et al., 2010). Midgestational 

(d60-90) androgen exposure and postnatal overfeeding in sheep resulted in 

reduced insulin sensitivity (insulin resistance) and altered insulin dynamics in 

response to glucose challenge in the female offspring, which clearly suggests 

the prenatal androgenic effects leading to insulin resistance worsen with 
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postnatal weight gain (Padmanabhan et al., 2010), thus suggesting 

interactions between pre- and postnatal environments as regards severity of 

metabolic dysfunction. 

1.0.5.1 Glucose intolerance 
 

Hyperglycemia/dysglycemia or excess circulating glucose concentrations is a 

condition related to insulin resistance, in terms of being the end result of 

increased hepatic glucose production and decreased peripheral glucose 

uptake, which if unchecked may eventually lead to type 2 diabetes mellitus 

development (T2DM) (Guillausseau and Laloi-Michelin, 2003). Pancreatic β-

cells secret excess insulin in order to compensate for peripheral insulin 

resistance, since IR effectively means that increased insulin is required to 

achieve the necessary insulin-mediated glucose disposal into peripheral 

tissues (Bergman et al., 2002). So, when insulin secretion by pancreatic β-cell 

is no longer able to meet the demands of increased glucose, dysglycemia 

results (Bergman, 2007). Dysglycemia with elevated triglycerides and low 

concentrations of high-density lipoprotein (LDL) is common in women 

suffering from PCOS (Wild et al., 1985). According to the National Institutes 

of Child Health and Human Development (NICHD) (Zawadzki and Dunaif, 

1992), 20% of obese PCOS patients meet the criteria for impaired glucose 

tolerance (IGT) (Dunaif et al.,1987). In contrast, lean women with PCOS 

show no significant glucose tolerance differences when compared to age and 

weight matched controls (Dunaif et al., 1987), suggesting that metabolic 

features are varied within PCOS phenotypes, in accordance with the 

Rotterdam criteria (Moran and Teede, 2009). It is clear, however, that 

preconception adiposity and maternal body weight in both women and ewes 

can impair glucoregulation during pregnancy causing altered glycemic control 

and increased fetal growth (Clausen et al., 2009; Ford et al., 2009). 

Moreover, prenatal maternal androgen exposure from gestational day 40-80 

in addition to gestational glucose challenge resulted in altered glucoregulation 

in terms of increased insulin secretion in response to glucose challenge in 

female monkey offspring at ~1.5 months postnatal age, suggestive of 

experimentally induced fetal androgen excess leading to altered pancreatic 
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function (Abbott et al., 2010) and female rat offspring exposed prenatally to 

dihydrotestosterone (DHT) at gestational day 16-18, exhibited increased 

circulating glucose concentrations, suggesting that in utero effects of 

androgens can have long-term metabolic defects during postnatal life similar 

to those seen in women with PCOS (Roland et al., 2010). 

1.0.5.2 Insulin Signaling 
 
Insulin acts through several mechanisms to regulate glucose homeostasis, by 

stimulating insulin mediated glucose uptake in skeletal muscle, cardiac 

muscle, adipose tissue, and in addition, suppressing hepatic glucose 

synthesis (Bergman, 2007) and lipolysis (Groop et al., 1992), resulting in 

decreased circulating free fatty acids, further mediating its effects on hepatic 

glucose production (Bergman and Mittelman, 1998; Rebrin et al., 1995). 

 

Insulin signals its actions in target tissues by binding to the insulin receptor 

located on the plasma membrane of target cells (Cheatham and Kahn, 1995; 

Kahn, 1994). This receptor is a heterotetramer consisting of two α, β dimers 

and bridged by disulphide bonds (Kasuga., 1982). The α subunit is located 

extracellular and performs a dual role, firstly containing the ligand-binding 

domain and secondly inhibition of the intrinsic kinase activity of β-subunit 

(Cheatham and Kahn, 1995; Saltiel and Kahn, 2001). The β-subunits’ 

cytoplasmic portion possesses intrinsic protein tyrosine kinase activity, which 

in turn gets activated by ligand auto phosphorylation (Kasuga et al.,1982). 

Once insulin is bound to its receptor, it then triggers downstream signaling by 

activating tyrosine-kinases, which then phosphorylates intracellular substrates 

such as insulin receptor substrates (IRS) 1-4, for further signal transduction 

(Cheatham and Kahn, 1995; Myers et al, 1994). IRS are phosphorylated on 

specific motifs, and these phosphorylated sites bind to the SH2 domain of 

phosphatidylinositol 3-kinase (PI3-K) signalling molecule (Cheatham and 

Kahn, 1995; Saltiel and Kahn, 2001; Sun et al., 1991) initiating downstream 

signaling pathways. Translocation of the glucose transporter (GLUT-4) from 

intracellular vesicles to the cell surface for glucose uptake (Cheatham and 

Kahn, 1995; Choi and Kim, 2010) is an important step functionally in terms of 



Chapter 1                                                                                        Literature Review 

15	  

insulin mediated glucose uptake, and this action occurs via, two pathways : 

firstly the activation of PI3K (phosphorylation) by kinases helps in conversion 

of membrane phospholipids and phosphatidylinositol 4,5-biphosphate, 

leading to 3-phosphoinositide-dependant protein kinase (PDK-1 and PDK-2) 

activation.  Secondly, these protein kinases activate the serine/threonine 

kinases such as Akt/protein Kinase B (PKB), which in turn transmits the 

signal by phosphorylating ASI 160, a 160kDa substrate (Choi and Kim, 2010; 

Saltiel and Kahn, 2001) initiating the translocation. Apart from glucose 

transportation, AKT/PKB pathway activation via insulin is also known to play a 

key role in glycogen synthesis (Choi and Kim, 2010; Saltiel and Kahn, 2001) 

and gluconeogenesis (Logie et al., 2007), which highlights the importance of 

this pathway for metabolism. Insulin activated Akt pathway further activates 

downstream glucose transporters such as GLUT1, GLUT2 and GLUT-4 

(Barthel et al., 1999; Eguez et al., 2005; Jiang et al., 2008). GLUT-1 is 

expressed ubiquitously (Manel et al., 2003), GLUT-2 is involved in hepatic 

glucose uptake and absorption of sugars by the intestine and liver (Pilkis and 

Granner, 1992), whilst GLUT-4 is mainly expressed in muscle and adipose 

tissue (Jiang et al., 2008). Insulin signalling is also involved in stimulation of 

cell growth and differentiation via the mitogen activated protein kinase (MAPK 

ERK) pathway (McKay and Morrison, 2007).  MAPK acts via IRS resulting in 

activation of Ras (Saltiel and Kahn, 2001), which further results in stimulation 

of a series of serine/threonine kinase pathways such as MAPK-ERK1/2, 

which is then translocated into the nucleus initiating cell growth and 

differentiation (Saltiel and Kahn, 2001). 

 

Insulin resistance (IR) can be defined as the decreased response to insulin in 

terms of insulin mediated glucose disposal into target tissues (Ben-Haroush 

et al., 2004) and 50% to 80% of women with PCOS are insulin resistant 

(Legro et al., 2004). In the pathophysiology of PCOS, insulin resistance 

interacts to cause both hyperandrogenism and anovulation, hence, it plays an 

integral role in PCOS (Poretsky et al., 1999). A synergistic activity of insulin 

with LH in the synthesis of androgen occurs in ovarian theca cells (Poretsky 

et al., 1999), which leads to arrest follicular development and aberrant 

follicular recruitment (Willis et al., 1998). Insulin acts through its receptors in 
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the theca cells by stimulating ovarian P450c17 mRNA expression and its 

enzyme activity via the phosphoinositide 3-kinase (PI3K) pathway 

(Baillargeon and Carpentier, 2007). In PCOS patients, increased serine 

phosphorylation of the insulin receptor may be a cause for decreased insulin 

sensitivity and compensatory hyperinsulinemia, which may then be the 

underlying stimulation for increased activity of the P450c17 enzyme system 

(Zhang et al.,1995). This combined effect in PCOS women may explain the 

relation between insulin resistance and hyperandrogenism (Dunaif, 1997). 

 

A number of abnormalities with insulin action have been identified in women 

with PCOS, including impaired hepatic gluconeogenesis suppression 

(Dunaif,, 1989), and abnormalities in insulin receptor signaling  (Dunaif, 

1997). The excessive phosphorylation of serine residues of the insulin 

receptor is though to underlie insulin resistance in approximately 50% of 

women with PCOS (Dunaif, 1997). As evidence for this, cultured skin 

fibroblasts from women with PCOS display selective insulin resistance, where 

both insulin and IGF-1 stimulated glycogen synthesis is observed to be 

significantly decreased as compared to fibroblasts from non-PCOS women 

(Book and Dunaif, 1999) suggesting that the metabolic arm of insulin 

signaling can be altered without any alteration in the mitogenic pathway 

(Saltiel and Kahn, 2001). Basal auto-phosphorylation of the insulin receptor 

was significantly increased in the cultured skin fibroblasts and skeletal muscle 

from PCOS women, suggesting a potential mechanism for PCOS related 

insulin resistance (Dunaif et al.,1995) and also, recently, Rajkhowa et al 

(2009), observed decreased ERK activity in response to insulin in skeletal 

muscle biopsies from women with PCOS,  suggestive of abnormalities in the 

mitogenic pathway in addition to the metabolic pathway. However, the exact 

relationship between altered insulin signaling and PCOS, at mechanistic 

levels remains poorly understood. Although, intriguingly, there have been 

recent studies indicating that maternal prenatal androgen exposure in an 

ovine model of PCOS leads to increased insulin secretion in absence of 

insulin resistance, suggesting an altered adult PCOS metabolic phenotype 

due to prenatal androgen exposure whereby hyperinsulinemia may in fact be 
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a primary defect as opposed to simply a secondary, compensatory effort by 

the pancreas to compensate for IR (Hogg et al., 2011; Rae et al., 2013).  

1.0.5.3 Hyperinsulinemia 
 

Decreased insulin clearance or increased insulin secretion can lead to a 

hyperinsulinemic condition (Hücking et al., 2008). The first clinical evidence of 

β-cell dysfunction in PCOS women was demonstrated by Ehrmann et al 

(1995), where decreased post-prandial insulin secretory response and β-cell 

dysfunction to an oscillatory glucose infusion were observed. Compared to 

weight and aged matched controls, disposition index (DI) of insulin was 

significantly decreased in both lean and obese PCOS women (Dunaif and 

Finegood, 1996). Furthermore, obese adolescent girls with PCOS 

demonstrated β-cell dysfunction in terms of glucose intolerance (Arslanian et 

al., 2001). Taken together, these findings suggest that, independent of 

obesity; defects are evident in women with PCOS in terms of glucose 

stimulated insulin secretion. This backed up by evidence from animal studies, 

for example, female mice exposed to testosterone and streptozotocin (STZ) 

induced β-cell stress, demonstrated systemic oxidative stress and 

predisposition to β-cell failure (Liu et al., 2010), suggesting a role of excess 

androgens, in leading to β-cell stress and predisposition to β-cell failure in 

hyperandrogenic conditions. In addition, prenatal androgen exposure to 

pregnant female rhesus monkeys (term~165 days) during both early 

(gestational day 40) and late gestation (gestational day 100-115) 

demonstrated diminished β-cell function and female adult offspring exhibited 

impaired β-cell function (Eisner et al., 2000). This suggests that prenatal 

androgen exposure alters insulin:glucose homeostasis in the female offspring 

irrespective of the timing of gestational exposure and has implications in 

terms of understanding the metabolic abnormalities associated with PCOS. 

Hyperinsulinemia associated with PCOS is usually considered a 

consequence of insulin resistance (IR) (Goodarzi et al., 2005). However, 

prenatal androgen exposure in mice resulted in altered pancreatic β-cell 

glucose sensitivity (Roland et al., 2010).  
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Mice exposed to excess prenatal androgens showed increased glucose 

concentrations in absence of insulin resistance (normal peripheral insulin 

sensitivity) in response to glucose challenge in the female offspring (Roland 

et al., 2010) and these offspring also exhibited normal body weights 

compared to control animals, supporting the absence of insulin resistance 

(Roland et al., 2010) and corresponding to some aspects observed in 

adolescent PCOS girls (McCartney et al., 2006). This impaired pancreatic 

islet function might further lead to type 2 diabetes in the presence of other 

metabolic derangements such as obesity, since any dysfunction in β-cells 

may become clinically relevant only when the pancreas is placed under some 

form of ‘stress’ due to increased demand to compensate for underlying IR. 

Indeed, women with PCOS are at increased risk for diabetes development, 

likely due to impaired β-cell function causing lesser compensatory ability 

where IR is introduced to the overall equation (Legro et al., 1999).  

 

There remains the question of whether hyperinsulinemia is completely 

consequential of insulin resistance. Given evidence of β-cell dysfunction, it is 

a possibility that at very least a sub-component of hyperinsulinemia could be 

attributable to a pancreatic β-cell defect as a primary cause. Tentative 

evidence for this can be seen in the studies of Roland et al., (2010), where 

increased insulin secretion was observed in animals prenatally exposed to 

excess androgens during early life. A recent study, involving ovine exposure 

to midgestational (d60-d102) androgens, resulted in increased insulin 

secretion in adult offspring with no changes in glucose tolerance, suggesting 

absence of insulin resistance in these animals (Hogg et al, 2011). This led to 

the hypothesis that an underlying primary pancreatic alteration might precede 

pancreatic functional changes in terms of compensatory hyperinsulinaemia to 

IR (Rae et al., 2013).  

 

Maternal prenatal androgen exposure in sheep altered expression of key 

pancreatic developmental genes in vivo such as pancreatic duodenal 

homeobox-1 (Pdx-1), insulin receptor (INSR), insulin like growth factor-1 

(IGFR-1), which were significantly elevated in the female fetal pancreas; and 
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in vitro glucose challenge of fetal pancreatic tissue from androgen exposed 

female fetuses resulted in excess insulin secretion compared to female 

controls (Rae et al., 2013). Moreover, during postnatal life, prenatal androgen 

exposure increased insulin secreting β-cells in the female adult pancreas, and 

caused increased insulin response to in vivo glucose load, in the absence of 

altered peripheral insulin signaling again suggestive of a primary pancreatic 

alteration (Rae et al., 2013). In addition to female pancreas, the latter study 

also investigated the male fetal pancreas to address the possibility of 

phenotypically male pancreas developing in females due to excess 

androgens, but found no changes in male fetal pancreas with respect to 

pancreatic gene expression or function (Rae et al., 2013). However, this may 

be due to altered endogenous male fetal androgen synthesis in response to 

exogenous androgen load (Connolly et al., 2013). Overall, this study suggests 

that there could be a primary β-cell dysfunction due to prenatal overexposure 

to androgens, with implications for metabolic abnormalities associated in 

women with PCOS.  

1.0.5.4 Obesity and molecular dysregulation associated 
with PCOS 

 
While not an essential feature of PCOS in terms of diagnosis, obesity is 

common in PCOS (Gambineri et al., 2002), and in the USA, among women 

diagnosed with PCOS, 42% were obese and 24% were overweight (Azziz et 

al., 2004). Certainly. PCOS has been associated with development of 

abdominal adiposity (Holte et al., 1994) as when compared to the general 

population, there is a fourfold increased prevalence rate of PCOS among 

obese and overweight premenopausal women (Alvarez-Blasco et al., 2006). 

This enlargement of adipose tissue mass and accumulation of free fatty acids 

(FFA) in non adipose tissue is associated with lipotoxicity and insulin 

resistance (Carpentier, 2008). Similarly, postnatal overfeeding in the female 

sheep offspring from prenatally androgenized pregnancies (d60-90) resulted 

in reduced insulin sensitivity (insulin resistance) and increased glucose 

concentrations during in vivo glucose challenge, respectively, which clearly 

suggests the prenatal androgenic effects leading to insulin resistance are 
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exacerbated by postnatal weight gain (Padmanabhan et al., 2010). This is 

confirmed by prenatal androgenisation of pregnant mice, which resulted in 

enlarged visceral adipocyte differentiation in young female offspring (Roland 

et al., 2010) and prenatal androgen (PA) exposure in normal fed (regular 

chow fed) Sprague-Dawley rats resulted in increased triglyceride and 

cholesterol concentrations in their female adult offspring (Demissie et al., 

2008), and a high fat diet in a different cohort of mice following the same 

treatment regime developed further increased hepatic triglyceride content in 

female adult offspring, (Demissie et al., 2008). Interestingly both normal and 

high fat fed offspring rats offspring from androgenized pregnancies showed 

increased fasting serum insulin concentrations with no change in their 

glucose levels, suggesting the link between prenatal androgens and postnatal 

weight gain underlying metabolic alterations such as obesity and metabolic 

syndrome (Demissie et al., 2008). Similarly, reduced visceral adiposity with 

improved insulin resistivity in post-pubertal female adult sheep (20 months 

old) from early prenatally androgenized (d30-d90) pregnancies suggests that 

there is a period of developmental adaptation in these animals (Veiga-Lopez 

et al., 2013) because the same group had earlier demonstrated reduced 

insulin sensitivity in the PA young female adult sheep offspring (androgenised 

from d60-90 gestation) (Padmanabhan et al., 2010).  

 

Clearly then, there is an identified need to further understand pancreatic 

development in PCOS models, and how prenatal environments can alter such 

development with consequences related to hyperinsulinaemia, if we are to 

understand the relationship between pancreatic function and insulin 

sensitivity in both these models and also PCOS. The following sections will 

discuss pancreatic development and the postnatal role of steroids during this 

process, relevant to the experiments designed and performed in this thesis. 
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1.1  The pancreas - structure, function, regulation and 
development 
1.1.1  Basic Anatomy 

 
The name pancreas is derived from the Greek word, ‘pan’ meaning ‘all’ and 

‘creas’ meaning ‘flesh’ (Slack 1995). In humans, the pancreas weighs around 

70-150 grams and measures 15-25 cm in length (Slack 1995) draining to the 

duodenum by the ampulla of Vater, which is where the main pancreatic duct 

is connected with common bile duct (Slack 1995) (Figure 1.2). The pancreas 

is comprised of two different types of glandular tissue, the exocrine pancreas; 

and the focus of this thesis, the endocrine pancreas. Exocrine function 

comprises secretion of digestive enzymes (proteases, lipases, amylases and 

nucleases) from acinar/duct cells. The Islets of Langerhans are the endocrine 

component of the pancreas containing alpha (α)- cells secreting glucagon 

(Nadal et al., 1999) beta (β) cells secreting insulin (Quesada et al., 2006) 

somatostatin releasing delta cells, PP cells secreting polypeptides and more 

recently identified epsilon (ε) - cells producing ghrelin (Prado et al., 2004). All 

of these endocrine cells collectively account for only 1-2% of total pancreatic 

tissue (Bouwens and Rooman, 2005). 

 

        Figure 1.2 Anatomy of the human adult pancreas. (Slack 1995). 
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1.1.2  Pancreas- function 
 

The regulation of blood glucose concentrations (endocrine) and digestion 

(exocrine) are the key functions performed by the pancreas (Gesina et al., 

2004). Circulating glucose concentrations must be maintained in a precise 

range independent of dietary ingestion. This process of blood glucose 

homeostasis involves the liver, adipose tissue, brain, skeletal muscle and 

endocrine pancreas (Fritsche et al., 2008). Insulin secretion remains at low 

levels during fasting because of low plasma glucose concentrations. During 

this stage the compensatory hormone glucagon, along with corticosteroids 

and adrenalin aid in promoting the production of glucose from hepatic 

storage, and subsequent release into the circulation. Glucagon, a counter 

regulatory hormone to insulin, acts in response to insulin-induced 

hypoglycemia by raising glucose concentrations (Freychet et al., 1988) and 

thereby maintains  blood glucose homeostasis. Glucagon is secreted in a 

pulsatile fashion by the α-cells of the islets (Opara et al.,1988) inducing 

hepatic glucose output via glycogenolysis and gluconeogenesis processes 

(Weigle and Goodner, 1986). Glucagon activates PKA phosphorylation, which 

then activates glycogen phosphorylase kinase, which phosphorylates (serine-

14) glycogen phosphorylase. The phosphorylation of glycogen phosphorylase 

leads to increased glycogen breakdown (glycogenolysis) and produces 

glucose 6-phosphate (G-6-P), which is then converted into glucose by 

glucose-6-phosphatase (G-6-Pase), increasing the glucose pool for hepatic 

output (Johnson et al.,1997). Glucagon also regulates glucose concentration 

by stimulating hepatic gluconeogenesis mechanism acting via 

phosphoenolpyruvate carboxykinase (PEPCK) and CREB cycle finally 

leading to glucose secretion (Larsson and Ahrén, 2000; Okar and Lange, 

1999). Whilst insulin is required for much of the peripheral uptake of glucose, 

it is imperative that circulating glucose concentrations are maintained within 

strict limits, as neuronal tissue glucose uptake is not insulin mediated and 

thus neuronal glucose regulation is a reflection of circulating concentrations. 

Insulin acts in a paracrine fashion and inhibits glucagon release via activation 

of the insulin receptor- phosphatidylinositol 3-kinase (PI3K) pathway (Kaneko 
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et al., 1999) and also increases KATP channel activity in rat α-cells via 

membrane hyperpolarization, thus inducing an inhibitory effect on glucagon 

production (Franklin et al., 2005).  

 

During the fed stage, where glucose concentrations rise due to absorption 

from the gut, insulin secretion from pancreatic beta cells is increased which 

then suppresses the glucose level in the body by promoting glucose uptake 

via muscles and adipocytes (insulin mediated glucose disposal (IMGD). 

Insulin also prevents liver hepatocytes from producing glucose by inhibiting 

the processes of gluconeogenesis and glucogenolysis (Fritsche et al., 2008). 

Increased translation of pre-pro-insulin transcript regulates the synthesis of 

insulin in response to acute glucose stimulation, whilst prolonged exposure to 

glucose results in the synthesis of insulin through insulin gene transcription 

(Poitout et al., 2006. β-cells are electrically excitable, playing a key role in 

regulation of secretion (Drews et al., 2010). The final insulin secretory 

response in β-cells is in turn driven by oscillations of membrane potential via 

Ca2+ influx (Rorsman et al., 2000).  

 

1.1.3 Glucose stimulated Insulin Synthesis (GSIS) in 
pancreatic beta- cells 

 
Insulin is secreted in response to glucose in a biphasic manner (Barbosa et 

al., 1998). Glucose transporter 2 (GLUT2) mediates the entry of glucose into 

beta cells through facilitated diffusion (Jiang et al., 2008), conferring 

regulation of insulin secretion at a cellular level. In response to increased 

glucose concentrations, glucokinase (GK) from the nucleus is released into 

the cytosol pool (Agius et al., 1995; van Schaftingen et al., 1997). The result 

being that glucose in the β-cell is now phosphorylated to glucose-6-

phosphate (Matschinsky et al 1998) (Figure 1.3). In this way, GK is 

considered as a pancreatic beta cell glucosensor and plays a critical role in 

glucose stimulated insulin secretion (Iynedjian 2009). Pancreatic β-cells 

express low levels of lactate dehydrogenase (Schuit et al., 1997; Sekine et 

al., 1994) and high levels of pyruvate carboxylase activity (Schuit et al., 1997) 
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meaning pyruvate is synthesized by glycolysis in the β-cells and later enters 

the Kreb’s cycle (Schuit et al., 1997). Following glucose phosphorylation by 

GK, adenosine triphosphate (ATP) is generated both by glycolysis and Kreb’s 

cycle in the mitochondria (mitochondrial metabolism) leading to closure of 

ATP-sensitive K+ channels (KATP channels) due to an increase in both 

intracellular diadenosine polyphosphates (DPs) (Ashcroft, 2006) and 

ATP/ADP ratio (Ashcroft et al.,1984). As a consequence, depolarization of the 

plasma membrane occurs due to the closure of ATP sensitive K+ channels, 

leading to extracellular calcium influx (Ashcroft, 2006). 

 

This electrical activity regulates the secretory response in β-cells that consists 

of oscillations of the membrane potential ranging from electrical silent periods 

to Ca2+ action potential originating depolarizing plateaus (Rorsman et al., 

2000). The increased carbon dioxide (CO2) influx produced from glucose into 

the Krebs cycle leads to production of intermediates such as malate (Brun et 

al., 1996; Schuit et al., 1997) glutamate (Maechler and Wollheim, 1999) and 

citrate (Brun et al., 1996; Schuit et al., 1997), which leave the mitochondria 

and accumulate into the cytosol stimulating insulin release (Prentki et al., 

1997). Malate efflux promotes electron transfer from cytosolic NADH to 

NADPH (MacDonald, 1995), whilst citrate produces acetyl esters using 

malonyl coenzyme A (CoA) as a precursor and finally the combination of ATP 

and proton dependent step, the glutamate efflux from the mitochondria leads 

to the uptake of glutamate by the secretory vesicles, also referred to as large 

dense-core vesicles, which leads to exocytosis of insulin secretory granules 

(Maechler and Wollheim, 1999) (Figure 1.3). 

 

Cytosolic Ca2+ induced insulin-containing secretory granules act 

synergistically with the cyclic adenine monophosphate (cAMP) pathway 

(Wang and Iynedjian, 1997) on the exocytosis process, transporting the 

insulin secretory granules to the plasma membrane of β-cells and finally 

releasing insulin into the circulation (Flatt 1996). 
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Figure 1.3 Schematic representation of glucose stimulated insulin secretion 

(GSIS) in pancreatic β-cells.  

In brief, after the glucose uptake by Glut-2, glucokinase acts as a rate limiter 

by converting glucose to glucose-6-phosphate. This increase in glucose 

metabolism leads to production of ATP via glycolysis, pyruvate oxidation and 

reducing equivalent shuttles, resulting in increased ATP/ADP ratio, leading to 

inhibition of KATP channels and membrane depolarization. This in turn leads 

to activation of voltage gated Ca2+ channels and in combination with 

coupling factors exocytosis of insulin granules is activated resulting in insulin 

secretion.  

 
 
1.2 Pancreatic Development in PCOS animal models 

 
Understanding of pancreatic development owes much to research driven by 

alarming increases in the rates of development of type-2 diabetes mellitus 

and insulin resistance (Hill and Duvillié, 2000). Consumption of a high-calorie 

diet, changes in lifestyle and lack of exercise have lead to an increase in 

global prevalence of diabetes and obesity (Kasuga, 2006). About 60-90% of 

human clinical study cases of diabetes are known to suffer from obesity 
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related type-2 diabetes mellitus (Anderson et al., 2003), which is further 

interlinked to insulin resistance (Ludvik et al.,1995).  

 

The prenatal period is considered to be one stage where beta cells obtain 

their capacity for insulin secretion. With direct relevance to this thesis, 

prenatal androgen exposure in female mice has been shown to result in a 

dampened response to glucose by islets in vitro, suggesting in utero 

exposure of androgens resulted in altered β-cell function (Roland et al., 

2010). Similarly, maternal androgen exposure in sheep at d62-d102 

increases the expression of genes (Pdx-1, IGFR-1, INSR and INS) involved in 

β-cell development and function during fetal life, which translates in vitro to 

increased insulin secretion from the female fetal pancreas at d90 gestation 

(Rae et al., 2013). As later in the thesis the effects of prenatal steroid 

exposure on fetal pancreatic development and function will become a focus of 

the work, it is therefore important to understand the development of pancreas 

under normal physiological conditions. 

 

Much of the work that informs literature on embryonic development of the 

pancreas is derived from rodent and human studies, however, there are 

important differences with regards to the timing of the β-cell differentiation 

between human and mouse (Piper et al., 2004; Sarkar et al., 2008), meaning 

caution must be exercised in extrapolations from one species to another. In 

this regard, for a better understanding of the pancreatic morphogenesis in 

humans, the sheep is perhaps a better comparator animal than a rodent 

(Green et al.,2010) due to sheep being a large animal model to study fetal 

physiology (Green et al.,2010; Padmanabhan and Veiga-Lopez, 2013) and 

also there being striking similarities between human and ovine pancreatic 

development (Green et al., 2010). Numerous processes that occur during 

intrauterine life in humans and sheep only occur postnatally in rodents, 

underscoring species differences in development, and emphasizing that the 

correct animal model is critical; whilst rodents may be convenient in terms of 

study, they are not a universally relevant or applicable animal surrogate of 

human development. 
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Mammalian pancreatic development follows 3 key steps, namely primary 

transition, secondary transition and isletogenesis (Green et al., 2010). The 

pancreas is derived from the endoderm region of the developing embryo and 

after the primary transition, the cells protodifferentiate to form the pancreatic 

anlagen (Pictet et al.,1972). Around embryonic day 9.5 in the mouse (33% of 

total gestational age of 28 days), and in humans (Piper et al., 2004) around 

dGA (days gestational age) 25-26 (9.6% of total gestational age 265 days), 

two epithelium buds form, one arising dorsally from the upper duodenal part 

of foregut, while the second arising from the ventral to the hepatic endoderm, 

which then fuse (Slack, 1995). During the primary transition, a dense 

outgrowth is formed when the pancreatic precursor (epithelial progenitor) 

cells expand, become lobulated and finally elongate into branches (Piper et 

al., 2004).  This elongation is associated with a condensed mesodermal 

covering in rodents (Piper et al., 2004). In contrast, the pancreatic buds 

elongate into a loose mesenchymal bed in humans around 26-41 dGA 

(12.6% of total gestational age) (Piper et al., 2004) and between 24-29 dGA 

(18% of total gestational age) in the sheep (Cole et al., 2009). Later, 

progenitor cell expansion culminates with ‘differentiated state’ or the 

secondary transition in mouse between embryonic day 13.5-15.5 (50% of 

total gestational age 28 days) (Pictet et al., 1972) however, in conjunction 

with progenitor cell expansion, the secondary transition in humans begins at 

52dGA (19.6% of total gestational age of 265 days) and in sheep before 

24dGA (16.3% of total gestational age 265 days) (Cole et al., 2009; Piper et 

al., 2004). 

 

Pancreagenesis involves two other processes; islet cell replication and 

isletogenesis. The mitotic activity of the newly formed endocrine cells remains 

quiescent until term embryonic day 19 (E19) in mouse (Jensen et al., 2000). 

In humans, the β-cell proliferation commences at 8 weeks gestational age 

(21.1% of total gestation of 265 days) and replication continues throughout 

gestation (Kassem et al., 2000). A similar time frame is seen in sheep where 

β-cell differentiation and proliferation occurs simultaneously during pancreatic 
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development (Cole et al., 2009). Isletogenesis or formation of lslet-like 

structures occurs in humans around 11 weeks gestational age (Piper et al., 

2004), and around 33dGA in sheep (22.7% of total gestational age of 147 

days) (Cole et al., 2009). Cole et al (2009) describe isletogenesis in sheep 

pancreatic development, whereby islets develop by undergoing an epithelial-

mesenchymal transition (EMT) from individual epithelial progenitor cells of the 

pancreatic tubule. In brief, the EMT process, which is driven by the SNAIL 

family of pancreatic developmental molecules, helps in making the epithelium 

behave like a β-cell and produce insulin while still remaining part of the 

epithelium and then the β-cell is extruded from the epithelium by forming a 

‘bottle shape’ (Cole et al., 2009). Finally, once the individual β-cell is 

separated, it then replicates to form a β-cell mass (Cole et al., 2009). The 

following section describes in detail some of the known key genes involved in 

β-cell development and function during fetal life.  

 

1.2.1 Pancreatic Duodenal homeobox 1 (PDX-1) 
 

PDX-1 plays a key role in β-cell survival, pancreatic precursor cell maturation 

and differentiation in the developing gut (Butler et al.,2007; Kim and Hebrok, 

2001). PDX-1 gene belongs to the mammalian Parahox gene cluster, 

representing mammalian genes that are involved in development and found 

outside the classical Hox (Homeobox) gene cluster (Brooke, Garcia-

Fernàndez, and Holland, 1998). The latter Hox gene cluster comprises three 

genes: Pdx1 (β-cells), Gsh1 (α-cells) and Cdx2/3 (α-cells) (Rosanas-Urgell et 

al.,2005). PDX-1 is involved in initiating differentiation and morphogenesis of 

the mouse pancreatic epithelial progenitor cells, which later restricts to 

mature β-cells in adult life (Offield et al., 1996) and is also involved in 

transactivation of β-cell specific genes (Sander and German, 1997) such as 

somatostatin, insulin, glucose transporter-2 (Glut-2) and glucokinase in rats 

(Gremlich et al., 1997). Similar cellular pattern of PDX-1 expression are seen 

in humans (Piper et al., 2004) and PDX-1 expression and localization was 

observed at 33 dGA in sheep fetal pancreatic β-cells (Cole et al., 2009). Pdx-

1 gene expression and immune-detection was also evident in adult mouse 
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pancreatic islets (Rosanas-Urgell et al., 2005). This is an indication of the 

dual action of PDX-1, because it is an essential factor in early pancreatic 

development and also a key transcription factor for proper functioning of 

pancreatic islets and glucose homeostasis during adulthood. 

 

PDX-1 is involved in regulation of insulin gene transcription via glucose 

metabolism (Wu et al., 1999). In brief, PDX-1 is activated by glucose via 

insulin-dependent cell signaling, which involves phosphatidylinositol 3-kinase 

(PI3K). This leads to activation of the cytoplasmic form of PDX-1 and 

translocation to the nucleus where it binds to specific gene promoter 

sequences initiating transcription (Wu et al., 1999).  

 

Thus pancreatic agenesis is observed in PDX-1 null (knock out) mice, due to 

inhibition of branching and morphogenesis of the initial buds (Jonsson et al., 

1994) and a similar condition is noticed in a homozygous mutation of the Pdx-

1 gene in humans (Stoffers et al., 1997), underscoring the importance of 

PDX-1 in the pancreatic developmental process.  Pdx-1 point mutation and 

frame shift mutations are observed in heterozygous human patients, who 

subsequently suffer from a subtype of maturity onset of diabetes in young 

(MODY), namely familial early-onset type 2-diabetes (Ashizawa et al., 2004).  

In the pancreatectomy rat model (Px) and Zucker diabetic fatty (ZDF) rat 

model, PDX-1 protein expression levels were significantly reduced (Zangen et 

al., 1997), and in the Px rat model, both Glut-2 and insulin gene expression 

were reduced (Zangen et al., 1997). As PDX-1 is involved in regulation of 

insulin and Glut-2 gene expression (Gremlich et al., 1997), it is arguable that 

downregulation of PDX-1 in these animal models results in the pathogenesis 

of pancreatic β-cell failure and type-2 diabetes (Weir et al., 1997). Certainly, 

pancreatic islets exhibit reduced protein expression of PDX-1 and reduced 

islet area in both new born pups and neonatal life (28 postnatal) rats of rat 

dams who were exposed to low protein diet during gestation and lactation 

(Arantes et al., 2002). In a maternal protein restriction sheep model, β-cell 

function was determined at the molecular level, which revealed that Pdx-1 

gene expression was unaltered during fetal life, however it was upregulated in 
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young adult lambs from low protein diet pregnancy, further leading to 

impaired insulin secretion (Gatford et al., 2008). Thus the above studies 

suggest that intrauterine environment (low protein diet) can have an effect on 

Pdx-1 expression in terms of β-cell mass and function. Furthermore, from the 

above evidence, it is arguable that maternal environmental insults can act 

upon the developing pancreas, and the effects are evident even during 

postnatal life as seen in terms of impaired pancreatic endocrine function in 

sheep (Gatford et al., 2008). Recently, our group investigated the effects of 

maternal in utero androgen exposure (TP) at d62-d102 in sheep, which 

showed us that Pdx-1 gene expression was significantly increased in female 

fetal pancreas (Rae et al., 2013), and was associated with altered in vitro fetal 

insulin secretion and a hyperinsulinemic condition during adult life (Rae et al., 

2013), which would back up these studies. 

 

1.2.2  Insulin like growth factors (IGFs) and Insulin like 
growth factor receptors (IGFRs) 
 

Insulin-like growth factors (IGFs) during pancreatic development comprise of 

type 1 (IGF-1) and type 2 (IGF-2), whose receptors belong to protein tyrosine 

kinase receptor family. Both insulin and IGF ligands can bind to either insulin 

receptor or IGF-1 receptor. IGF-1 is a key hormone in pancreatic islet cell 

development, cell proliferation, growth and metabolism (Kenyon, 2010). IGF 

signaling is thought to play an important role in the linkage of low birth weight 

to development of insulin resistance, obesity and type-2 diabetes mellitus 

(Eriksson et al., 2002; Godfrey and Barker, 2001). IGF-1 acts via IGFR-1 

and/or insulin receptor, where the latter two have similar homology (Byrne et 

al., 2002). IGF-1 binds to the extracellular domains of the insulin receptor or 

IGFR-1, where the signal is mediated through auto-phosphorylated tyrosine 

residues of the intracellular β-subunits of the insulin receptor, which leads to 

phosphorylation of insulin receptor substrate-2 (IRS-2) (Burks and White, 

2001). The phosphor-inositol 3-kinase (PI3K) pathway is activated upon IRS-

2 protein phosphorylation, which drives expression of IGFs effects on glucose 

homeostasis. The downstream signal transduction of PI3K results in several 
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IGF mediated effects such as gene expression, mitogenesis, cell growth and 

protein synthesis. PI3K pathway activates transcription factors such as Pdx-1, 

via activating phosphokinase B (PKB), also known as Akt, and target of 

rapamycin (mTOR) in the downstream signaling (Withers and White, 2000). 

PKB in turn regulates gene expression via inactivation of transcription factor 

forkhead in rhabdomuosarcoma (FoxO1), which enhances the activity of 

signal translator and activator STAT-3 dependent promoters (Kortylewski et 

al., 2003). mTOR acts as an inhibitor on the translational process by inhibiting 

4E-binding protein (4E-BP1), an cell cycle by activating p70s6k. The latter will 

finally induce an increase in β-cell size due to the translation of ribosomal 

proteins and elongation factors such as cyclin D and E (Kortylewski et al., 

2003). 

 

Apoptosis remains the key cause of β-cell death in insulin secreting β-cells or 

pancreatic islets when exposed to different pathological conditions like 

diabetes (Butler et al., 2007). In case of β-cell failure, disturbances in the 

insulin/insulin growth factor (IGF) signaling pathway results in decreased 

expression of Pdx1 (Chan-Chen et al., 2008). IGF-1 acts on β-cell apoptosis 

by activating phosphokinase-B and also inhibiting Bcl-2 associated death 

protein (BAD) activity, thereby giving such signalling its displaying its 

antiapoptotic activity (Henshall et al., 2002) and further maintaining/increasing 

cell numbers by inhibiting apoptosis (Bryne et al., 2002). All the pathways 

mentioned activated via the IGF-1 signalling pathway (Burks and White, 

2001; Rhodes and White, 2002; Withers and White, 2000) have clear 

implications for fetal development since pancreatic  β-cells clearly depend on 

the interactions of these growth factors (Holt, 2002) for the proper β-cell 

growth and function. Foe example, pancreatic IGF-I, IGF-II and insulin 

receptor (INSR) gene expression are all significantly upregulated in young 

lambs who are prenatally exposed to protein restriction or fetal growth 

restriction with downstream consequences of unchanged β-cell mass but 

impaired β-cell function (Gatford et al., 2008). In addition, prenatal 

androgenization significantly increased the mRNA expression of IGF-1 in the 

liver of adult offspring but not during fetal life in an ovine model of PCOS 
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(Hogg et al., 2011). In the same sheep model of PCOS, mRNA expression of 

pancreatic IGFR-I, INSR (insulin receptor) and INS (insulin gene) are 

significantly upregulated during fetal life in response to prenatal 

androgenisation and postnatal changes in insulin secretion are one such 

legacy of the prenatal androgenic environment (Rae et al., 2013). 

Collectively, the above findings suggest that metabolic alteration in terms of 

IGF/insulin signaling can be permanently affected during in utero life, and 

consequences felt in adult life.  

 

1.3 Is the Pancreas a sex steroid dependent tissue? 
 

Sex steroid hormones (SSH) are so-called because of their role in 

reproductive function. Comprising of androgens (androstenedione, 

dihydrotestosterone (DHT), testosterone, dehydroepiandrosterone) estrogens 

(estrone, estriol and estradiol) and progestagens  (progesterone), the major 

sources of these are adrenal glands, testis, ovary and placenta. Such steroids 

play fundamental roles throughout life, including sexual differentiation, 

reproductive axis function, spermatogenesis and the menstrual cycle (Wilson 

and Foster, 1992). In terms of the process and regulation of steroidogenesis, 

this is dealt with in detail in later sections on the adrenal gland and ovary. 

 

In terms of gonadal steroid production, in brief, under hypothalamic regulation 

via gonadotropin releasing hormone secretion (GnRH), the anterior pituitary 

secretes gonadotropins (follicle stimulating hormone (FSH) and luteinizing 

hormone (LH), which control steroidogenesis in the gonads of both males and 

females (Santoro et al., 1986) as illustrated in Figure 1.4.   The hypothalamic 

pituitary adrenal axis operates to produce steroids in an analagous fashion, 

utilizing hypothalamic CRH (Corticotrophic releasing hormone) to drive 

anterior pituitary ACTH culminating in production of sex steroids and 

glucocorticoids from the adrenal glands (Figure 1.4). In both cases, negative 

regulations is affected by the steroids produced (Figure 1.4). 
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Figure 1.4 The hypothalamic pituitary gonadal (HPG) and hypothalamic 

adrenal axes (HPA) acts via negative feedback mechanism.  

(GnRH- gonadotrophic releasing hormone; LH-luteinizing hormone; FSH- 

follicle stilumating hormone; T-testosterone, E-estrogen, P-progesterone; 

CRH- Corticotrophic releasing hormone; ACTH-adrenocorticotrophic 

hormone). 
 

The presence of sex steroid hormone (SSH) receptors in pancreatic tissue 

suggests a relationship between SSH and pancreatic tissue (Greenway et al., 

1981). Progesterone receptors (PR) are expressed in 75% of glucagon 

secreting cells and 20% of insulin secreting cells in pancreas (Doglioni et al., 

1990). Importantly, androgen receptor (AR) mRNA expression in rat pancreas 

(Diaz- Sanchez et al., 1995), ovine fetal pancreas (Rae et al., 2013) and 

human fetal and adult pancreas (Corbishley et al., 1986) has been 

demonstrated and estrogen receptor (ER)-α and ER-β are also expressed by 

insulin secreting β-cells (Alonso-Magdalena et al., 2008; Nadal et al., 1999). 
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Hence it is clear that the pancreas has the capability of responding to all 

classes of SSH. 

 

Steroid metabolism potential of pancreatic tissue is indicated by expression of 

steroidogenic enzymes such as 3-β hydroxysteroid dehydrogenase (3β-HSD) 

and 17-β hydroxysteroid dehydrogenase (17β-HSD), both have been 

localized in the canine endocrine pancreas (Mendoza-Hernández et al., 1996; 

Mendoza-Hernández et al., 1988). Enzymes involved in androgen 

biosynthesis have been detected in rat pancreatic tissue; examples include 

P450scc and P450 17-α both of which are critical in de novo synthesis of 

androgen (Ogishima et al., 2008). Additionally, testosterone is involved in 

regulation of insulin gene expression, and insulin secretion in vitro in cultured 

adult rat islets (Morimoto et al., 2001), suggesting the possibility of a role in 

insulin secretion in vivo. 

 

1.3.1  Androgens and Pancreatic function in PCOS 
 
Androgens are the sex steroids involved in the development of a male 

phenotype during fetal life; sexual characteristics at the time of puberty and 

also maintenance of the male sexual behavior and function. In females, 

androgens are a precursor for ovarian estradiol production, and are 

regulators of ovarian follicular recruitment (Burger, 2002). 5-α reductase 

enzyme peripherally converts testosterone into a more potent androgen 

dihydrotestosterone (DHT) (Azzouni et al., 2012). Both androgen and DHT 

bind to and activate the androgen receptor (AR), a 110kDa protein (Radmayr 

et al., 2008), which is a key transcription factor for androgen mediated 

signaling. 

 

AR belongs to the steroid nuclear receptor superfamily (Heinlein and Chang, 

2002) and its phosphorylation is mediated via serine residues with ligand 

bound to AR (Gioeli et al., 2002). Kinase recruitment and serine 

phosphorylation, which protects AR from proteolytic degradation, is promoted 

by androgen binding (Blok et al., 1998). The phosphorylated conformational 
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change promotes AR movement from the cytoplasm into the nucleus, which 

is followed by binding of AR with the androgen response element (ARE) (van 

Royen et al., 2007).  This binding of tissue specific AREs to AR results in 

recruitment of histone acetyl transferase enzymes, further leading to 

androgen dependent gene transcription (Heinlein and Chang, 2002). 

 

Androgenic effects on endocrine pancreatic function can occur via both 

genomic and non-genomic mechanisms.  For instance, androgen receptor 

mRNA was expressed and downregulated due to testosterone administration 

in rat pancreas (Díaz-Sánchez et al., 1995). In vivo insulin mRNA and in vitro 

insulin concentration was significantly upregulated in prepubertal male rat 

pancreas exposed to testosterone, however, both were decreased due to 

gonadectomy (testosterone deprivation), (Morimoto et al., 2001). 

Testosterone administration in adult male rats resulted in increased insulin 

mRNA, insulin protein abundance and insulin release (S Morimoto, 

Fernandez-Mejia et al., 2001), suggesting a direct role of androgens in 

pancreas islet function and also a new potential target for treating 

hyperandrogenic conditions such as PCOS associated metabolic disorder 

(Bruns et al., 2004b). Other studies also demonstrate the protective effect of 

testosterone. Compared to gonadectomised male rats, apoptotic beta-cell 

mass index (apoptotic nuclei/ total cells nuclei) was significantly reduced in 

male gonadectomised rats who were administered with testosterone 

enanthate, (Morimoto et al., 2005). This effect was completely reversed due 

to anti-androgen (flutamide) treatment indicating a classical androgen 

receptor mediated mechanisms in the pancreas (Morimoto et al., 2005). 

These rats, later supplemented with testosterone and administered with STZ 

showed androgen-mediated cytoprotective activity by inhibiting β-cell 

apoptosis via induction of antioxidant enzyme catalase and super oxidase 

dismutase (Palomar-Morales et al., 2010). Endocrine gland-derived vascular 

epithelial growth factor (EG- VEGF) mRNA expression is increased in rat 

pancreatic islets treated with testosterone whereas the reverse is observed in 

treatment with flutamide (Morales et al., 2008). Dehydroepiandrosterone 

decreased glucose driven insulin release in BRIN-BD11 cell line, which is 
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derived from RINmF rat insulinoma cells. The serum insulin concentration 

was less in case of streptozotocin (STZ) treated Wistar females rats 

compared in males, in which the former developed hyperglycemia and β-cell 

destruction and were more susceptible to diabetes at a high rate when 

compared to males (Vital et al., 2006). However, there remains the possibility 

of sex-specific β-cell responses to androgens since the majority of these 

studies have utilized male castrate animals thus avoiding complexing features 

of the ovarian cyclical variations in circulating steroids. Hence male animals 

have been pre-exposed to relatively high concentrations of androgens during 

fetal life, whereas female animals have not, thus one focus of this thesis will 

be to examine potential differences attributable to sex in terms of androgenic 

pancreatic responses. 

 

There is also some evidence of nongenomic effects of testosterone in rat 

pancreatic β-cells. Physiological concentrations of testosterone administered 

in vitro in isolated rat pancreas, resulted in rapid stimulation of Ca2+ uptake 

and subsequent insulin secretion (Grillo et al., 2005). 

Dehydroepiandrosterone (DHEA), on the other hand, had an inhibitory effect 

on carbachol induced insulin secretion in human pancreatic islets and 

carbachol induced Ca2+ release and insulin secretion in rat insulinoma (INS-

1) cell. Activity of carbcachol induced Ca2+ release by DHEA was blocked by 

pertussis toxin activity, suggesting DHEA acting via non-genomic mechanism 

(G-protein receptors) of androgens in mediating the signal transduction in 

pancreatic β-cells (Liu et al., 2006). 

 

Not only does testosterone have protective effects on pancreatic β-cells, but it 

is also involved in discordant effects on diabetes.  Female non-obese mice 

(NOD) mice, a model for spontaneous type-1 diabetes, became diabetic at a 

higher frequency than males, however further diabetic development was 

prevented by treating the mice with androgens (Fitzpatrick et al, 1991 and 

Fox, 1992), and castration in the NOD males result in a similar condition 

observed in females prior to androgen replacement (Fitzpatrick et al, 1991 

and Fox, 1992). In context of metabolic disturbances associated with PCOS 
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and relevant to this thesis, prenatal androgen exposure in animal models 

such as rats have altered metabolic function in terms of altered glucose 

tolerance, and β-cell dysfunction in adult female mice (Roland et al.,2010) 

and in the ovine model of PCOS (Rae et al., 2013), in terms of upregulated 

Pdx-1 mRNA expression in vivo and increased in vitro insulin secretion during 

fetal life in females, and the legacy of hyperinsulinemia and increase insulin 

secreting β-cells later in adulthood, suggesting a role for prenatal androgens 

in programming long-term alterations in metabolic function similar to 

conditions such as PCOS in women (Dumesic et al., 2007). All these studies 

suggest that androgens influence responsible for glucose mediated insulin 

secretion, pancreatic beta cell destruction and development of diabetes. 

Collectively, these observations suggest that androgens can alter glucose 

mediated insulin secretion and pancreatic β-cell function, both in a 

contemporary way, and also via developmental perturbation with a potential 

lifelong, health-relevant legacy. 

 

1.3.2  Estrogens and pancreatic function in PCOS 
 

Estrogens are known to play important roles in blood glucose homeostasis, 

such as maintaining normal insulin sensitivity during pregnancy and 

menstrual cycle (Livingstone and Collison, 2002; Louet et al., 2004) and 

glucose stimulated insulin secretion (GSIS) both in vivo and in vitro (Alonso-

Magdalena et al., 2006; Nadal et al., 1998). Furthermore, increased or 

decreased estrogen levels outside physiological ranges can promote insulin 

resistance and type-2 diabetes (Ding et al., 2007; Godsland, 2005; 

Livingstone and Collison, 2002). Ovariectomy or menopause leading to low 

estrogen concentrations is therefore associated with impaired glucose 

tolerance and insulin resistance (Godsland, 1996). In addition, adult male 

mice treated with E2 (estradiol) for 4 days (100µg/kg/day), demonstrated 

alterations in glucose tolerance, became insulin resistant and finally 

hyperinsulinemic, illustrating the potential for estradiol concentrations to alter 

glucose homeostasis in the short term (Ropero et al., 2008). 
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Estrogen receptor- α (ERα) and estrogen receptor-β (ERβ) are the two 

nuclear receptors, through which estrogens mediate their effects (Losel et al., 

2003; Sutter-Dub, 2002). Both the receptors are expressed by insulin 

secreting β-cells (Alonso-Magdalena et al., 2008;  Liu and Mauvais-Jarvis, 

2010). Only ERα agonist treatment showed significant increase in insulin 

secretion in vitro indicating that estrogenic action on insulin biosynthesis is 

mediated by ERα (Alonso-Magdalena et al., 2008). Genetic polymorphisms of 

ERα gene in humans is associated with type-II diabetes and metabolic 

syndrome (Gallagher et al., 2007), and ERα knockout mice display increased 

rates of obesity and insulin resistance (Barros and Gustafsson, 2011; Ropero 

et al., 2008). That reduction in β-cell mass and pancreatic insulin content 

observed in both male and female wild type mice exposed to a single dose of 

streptozotocin (STZ) (Vital et al., 2006) was further exacerbated in aromatase 

knockout (ArKO) male and female mice and could be rescued to some extent 

by supplementation with estradiol treatment (Vital et al., 2006), demonstrating 

the protective effect of estradiol via ERα. Impaired glucose metabolism and 

insulin resistance is also found in human patients suffering from aromatase 

deficiency due to a point mutation of the aromatase gene (Zirilli et al.,2008). 

Estradiol is known to regulate the expression of several genes involved in 

islet physiology. In female Wistar rats, insulin gene expression and circulating 

insulin levels vary across the estrous cycle in accordance with circulating 

estradiol and progesterone levels (Morimoto et al., 2001). Estrogen deprived 

(ovariectomised, OVX) female Sprague-Dawley rats show decreased 

pancreatic glucokinase gene expression, resulting in decreased insulin 

secretion capacity, however, insulin levels return to normal after estrogen 

replacement, clearly suggesting the direct effect of estrogens on β-cell gene 

expression (Choi et al., 2005). Estradiol also regulates the expression of Pdx-

1 gene, a key transcription factor involved in development of the pancreas 

and also transcription of insulin gene (Choi et al., 2005). In addition to 

classical, genomic signaling effects of estrogens, estradiol may also exerts its 

effects via non-genomic actions. Fort example, rapid effects of 17-β estradiol 

in islet cells leads to activation of cGMP/PKG signaling in male mice (Nadal et 

al., 1998). Nadal et al (1998), also found increased expression of intracellular 
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Ca2+ and decreased KATP channel activity due to 17β-stradiol effect in male 

pancreatc β-cell, suggesting augmenting of insulin secretion. On the contrary, 

inappropriate or pathophysiological estrogenic signaling may lead to adverse 

effects, for example, the environmental disrupting compound Bisphenol A 

(BPA), which has estrogenic properties, can promote postprandial 

hyperinsulinemia and insulin resistance in healthy male mice (Alonso-

Magdalena et al., 2006). This study also suggested that BPA and naturally 

occuring estrogens have similar potency in upregulation of insulin secretion 

(Alonso-Magdalena et al., 2006).  

 

Estradiol valerate (EV) treatment in rats during prepubertal life staring at day 

14 through to neonatal life (Rosa-E-Silva et al., 2003) and letrozole 

(nonsterdoidal aromatase inhibitor to block conversion of androgen to 

estrogen) starting at postnatal day 21- 3 months (early) (Mannerås et al., 

2007) or at postnatal day 42- 3 weeks (late) administration (Baravalle et al, 

2006; Kafali et al, 2004) are the two main models used to study the role of 

prenatal estradiol programing. Letrozole administration to rats at two different 

time points causes ovarian hyperandrogenism (Mannerås et al., 2007; 

Baravalle et al, 2006 and Kafali et al, 2004). In early letrozole treated rats 

insulin sensitivity, visceral fat and lipid profiles were unaffected  (Mannerås et 

al., 2007). Given that androgens such as testosterone can be metabolized to 

estradiol via P450 aromatase, which is found in many tissues including the 

placenta, a sub-aim of this thesis is to delineate which effects in androgen 

exposure models are truly androgenic in nature, and which may be indirect 

via metabolism to estrogenic steroids. 

 

1.3.3  Glucocorticoids and pancreatic function  
 

Glucocorticoids such as corticosterone and cortisol are the class of steroid 

hormones secreted by the zona fasiculata, a component of the outer cortical 

region of the adrenal gland (Endoh et al., 1996 and Miller, 2008). After 

entering the cytoplasm of the target cells via diffusion, glucocorticoids exert 

effects via binding to glucocorticoid receptors (GR)  (Funder, 1992). GR 
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belongs to the superfamily of the steroid nuclear receptors. GR-α and GR-β 

are the two variants of GR produced by alternative splicing (Duma et al., 

2006) with a molecular weight of 94kDa and 90kDa respectively (Giguère et 

al., 1986). The triggering of phosphorylation, dimerization and translocation of 

GR into the nucleus occurs due to the binding of GC to its receptor isoform 

GRα, which in turn binds to particular elements on DNA resulting in 

repression or enhancement of hormonal effective gene transcription (Kumar 

and Thompson, 1999). Outcomes include stimulation of hepatic 

gluconeogenesis via GR and induction of key enzymes such as glucose- 6- 

phosphate and phosphoenolpyruvate carboxykinase.(PEP-CK) (Hanson and 

Reshef, 1997). By activating glycogen synthase and inactivating, glycogen 

phosphorylase, a glycogen-mobilizing enzyme, glucocorticoids can also 

stimulate glycogen synthesis and furthermore decrease translocation of 

glucose transporters (GLUT 4) to the cell surface thereby inhibiting peripheral 

glucose uptake (Dimitriadis et al., 1997).  

 

GCs are involved in regulation of many pathways such as those involved in 

stress responses, blood pressure maintenance, metabolism, fluid and 

electrolyte homeostasis and response to infection (Reynolds, 2010). 

Endogenous levels of glucocorticoids are maintained not only by HPA axis 

activity (discussed below), but also by intracellular 11β-hydroxysteroid 

dehydrogenases (11β-HSD), which catalyse extra-adrenal, peripheral 

interconversion of inactive 11-keto metabolites and active glucocorticoids 

(Nixon et al., 2012). Numerous fetal tissues and placenta express GRs from 

early embryonic stages (Cole et al., 1995; Speirs et al., 2004). Placental 11β-

HSD 2 expression protects the developing fetus tissues from the high levels 

of maternal glucocorticoids by converting the active glucocorticoid cortisol into 

its inactive form cortisone (J R Seckl, 1997). In this role, and in its role in 

numerous cells expressing the mineralocorticoid receptor (MR), 11βHSD2 is 

thought of as a gatekeeper enzyme, since it prevents occupation of MR by 

GCs and thereby protects against apparent mineralocorticoid excess 

syndrome (AME) (Michael et al., 2003). During development, glucocorticoids 

are known to promote organ maturation and precocious organ maturation is 
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induced by exogenous glucocorticoid (Bian et al., 1992; Fowden, 1995). 

However, exposure to excess glucocorticoids during prenatal life leads to low 

birth weight in both humans (Bloom et al., 2001; French et al., 1999) and 

animals (Nyirenda, et al., 1998).  Hepatic GR and PEP-CK mRNA expression 

levels were increased in adult male wistar rat offspring who were exposed to 

excess prenatal glucocorticoids during late gestation, which further led to 

glucose intolerance (increased hepatic gluconeogenesis) suggesting the 

programming effect of glucocorticoids (Nyirenda et al., 1998). The other 

isotype of 11βHSD, the type 1 enzyme, plays a role in activation of cortisone 

to cortisol, thereby regulating, in concert with 11βHSD2, glucocorticoid 

concentrations locally in many tissues (Tomlinson et al., 2004). 

Glucocorticoids (GC) also play an important role in fetal pancreatic 

development. That pancreatic transcription factor Pdx-1 gene expression was 

significantly downregulated in vitro in the embryonic pancreatic buds of wistar 

rats in response to prenatal GC exposure, suggests a role for glucocorticoids 

in modifying the balance of β-cell specific transcription factors during 

development (Gesina et al., 2004).  Prenatal glucocorticoid exposure during 

late gestation resulted in downregulation of hepatic IGF-II mRNA expression 

in vivo, by suppressing the promoter 4 activity in the fetal sheep (Li et al., 

1998). Repeated maternal glucocorticoid (betamethasone- d125 and d146) 

administration in sheep decreased cord plasma insulin concentration at 125 

days of gestation and increased cord plasma glucose levels in the ovine fetus 

at day 146 gestation (Sloboda et al., 2002). Early maternal glucocorticoid 

(cortisol) exposure to pregnant sheep resulted in hyperinsulinemia in adult 

male offspring suggesting the long term effects of cortisol during early 

pregnancy might lead to altered pancreatic function and diabetes (De Blasio 

et al., 2007). Prenatal glucocorticoid treatment in this thesis is used to some 

extent as a surrogate of stress to investigate its effects on metabolic function 

during fetal and postnatal life. 

 

In summary, it is clear that the pancreas, and perhaps also its development, 

can be altered in terms of function by steroids. Since the origin of such 

steroids is mainly the gonads and the adrenal gland, a central tennat of this 
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work is the premise that there is some form of steroidal interplay between the 

pancreas and the adrenal gland during development. Given adrenal 

hyerpandrogenism is thought to contribute to overall androgen load in PCOS, 

in addition to the pancreas, the adrenal is also a focus of this thesis, in terms 

of asking the question of whether not its function can be programmed by in 

utero exposure, and hence the following sections deal with adrenal 

development in detail with respect to PCOS. 

 

1.4 Adrenal Gland and PCOS 
 
1.4.1 Hypothalamic-Pituitary-Adrenal (HPA) axis 
 

 In mammals, basal and stress related homeostasis are modulated by the 

hypothalamic-pituitary-adrenal (HPA) axis, whose effects are primarily 

mediated via the production of cortisol. Corticotrophic releasing hormone 

(CRH) (Vale et al., 1981) and arginine vasopressin (AVP) are released from 

the parvocellular neurons of the hypothalamic paraventricular nucleus (PVN) 

(Vale et al.,1981). Both CRH and AVP neuropeptides are released into the 

hypophysial portal circulation (Antoni, 1986) and reach the anterior pituitary 

where they bind to their respective receptors (corticotrophic releasing 

hormone receptor (CRHR) (Perrin and Vale, 1999) and vasopressin receptor 

(V3) (Hernando et al., 2001) and act synergistically to stimulate 

adrenocorticotrophic hormone (ACTH) secretion from corticotrophin cells into 

the general systemic circulation. ACTH binds to the melanocortin type-2 

receptor (MC2-R) present in the parenchymal cells of the adrenocortical zona 

fasiculata region (principal target) (Figure 1.5).  

 

The activated MC2-R initiates the stimulation of the cyclic adenosine-

monophosphate pathway (cAMP), which induces steroidogenesis and 

secretion of adrenal steroids such as glucocorticoids, mineralocorticoids and 

adrenal androgens (Cone et al., 1996; Mountjoy et al., 1992). During the 

initial step of glucocorticoid biosynthesis, ACTH specifically initiates the 

conversion of cholesterol to pregnenolone (Raffin-Sanson et al., 2003; 

Simpson and Waterman, 1988). Glucocorticoids, being the downstream 
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effectors of the HPA axis regulate physiological changes or effects via 

intracellular receptors (Bamberger et al., 1996), where the effects are usually 

adaptive. However, changes such as excess or inadequate activation of HPA 

axis can lead to development of pathological conditions (McEwen and Stellar, 

1993).  

                

 

Figure 1.5 Schematic representation of the HPA axis.  

In response to stress, CRF and AVP are released from the PVN of the 

hypothalamus and into the portal vessels and reach the anterior pituitary 

gland, then binding to CRHR and V3 receptors respectively. CRH and AVP 

act synergistically to induce ACTH release into systemic circulation. The 

circulating ACTH binds to melanocorticotrophic receptor (MC2-R) in the zona 

fasiculata of the adrenocortical region, driving release of glucocorticoids into 

the circulation. Finally glucocorticoids regulate physiological events and 

regulate further HPA axis activation by negative feedback. 

 

Stress can be defined as a state of real or perceived threat to homeostasis 

(Dobson and Smith, 2000). A complex range of stress responses such as 
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immune, endocrine and nervous systems are required in order to maintain 

homeostasis due to a stimulus (stressor) (Carrasco and Van de Kar, 2003; 

Chrousos and Gold, 1992). This activation of stress response initiates a 

number of physiological and behavioral changes, which further aid survival of 

the individual when encountered with a homeostatic challenge. The 

physiological changes in response to stress includes increased 

cardiovascular, respiratory and metabolic rate with inhibitory effects on 

general functions such as feeding, digestion, growth, reproduction and 

immunity (Habib et al., 2001; Sapolsky et al., 2000).   

 
1.4.2  Adrenal cortex, zonation and function  

 

The adrenal glands occupy a position superior to each kidney having a 

flattened pyramidal shape (Tortora and Grabowski, 2003), consisting of an 

inner medulla and outer cortex. The adult adrenal cortex consists of three 

histological and functionally distinct zones, the zona glomerulosa (ZG) 

located just below the outermost capsule, which secretes mineralocorticoids; 

the zona fasiculata (ZF) the mid zone, which secrets glucocorticoids and the 

innermost zona reticularis (ZR), which is responsible for secretion of adrenal 

androgens such as dehydroepiandrosterone (DHEA) and its sulphated form 

(DHEA-S). All three steroid hormones are synthesized via a cascade of 

steroidogenic enzymes (Miller and Auchus, 2011). Aldosterone is the 

mineralocorticoid secreted in response to rennin-angiotensin II system (AT-II) 

in the zona glomerulosa. This hormone regulates several functions such as 

renal sodium retention, blood pressure and intravascular water homeostasis 

(Williams, 2005). Glucocorticoids such as cortisol are secreted by the zona 

fasiculata in response to the HPA activity described above (Habib et al., 

2001). The adrenal medulla is located to the centre of the adrenal gland, 

which, via sympathetic nervous stimulation, secretes the cathecolamines, 

epinephrine and nonepinephrine.  

 

Specific binding of adrenocorticotrophic hormone (ACTH) to its G-protein 

coupled receptor; MC2R (ACTH-receptor) induces steroidogenesis in the 

adrenal cortex (Di blasio et al., 1990), culminating in the classical 
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glucocorticoid secretory response. However, in vivo and in vitro studies have 

demonstrated not only glucocorticoid release, but also adrenal androgens 

(DHEA and DHEAS) are secreted in response to ACTH stimulation (Xing et 

al., 2010). Within the context of this thesis, the question arises as to whether 

or not the adrenal gland could perhaps be a source, additional to the ovary, of 

excess androgens commonly observed in PCOS-animal models. 

 

1.4.3  Fetal Adrenal Development and function 
 

The cells of the human adrenal cortex are a part of the adrenogonadal 

primordium within the urogenital ridge, originating from the intermediate 

mesoderm (Sucheston and Cannon, 1968; Wrobel and Süss, 1999). 

Adrenocortical cells develop early at 4 weeks of human embryonic 

development (Parker et al., 2002) and by week 8, the cortex is separated 

from the gonadal primordium into a distinct adrenal primordium (Mesiano and 

Jaffe, 1997). In comparison, the adrenal gland in the ovine fetus can be 

observed as early as dGA 28 (19% of total gestational age of 147 days) 

(Wintour et al., 1975), however clear zonation becomes apparent only around 

dGA 60  (41% of total gestational age of 147 days) (Webb, 1980).  The 

human fetal adrenal cortex is comprised of three zones namely, the inner 

fetal zone (FZ) (analogous to zona reticularis) and outer definitive zone (DZ) 

(analogous to zona glomerulosa) both consisting of eosinophilic cells larger in 

size in the former and small densely packed cells in the latter (Goto et al., 

2006; Hanley and Arlt, 2006). In humans, a third zone, the transition zone 

(TZ) is present in between the FZ and DZ functioning analogous to adult zona 

fasiculata (Figure 1.6) (Kempná and Flück, 2008). In sheep fetal adrenal 

gland, the outer zone is equivalent of adult zona glomerulosa while the inner 

zone corresponds to the zona fasiculata (Robinson et al., 1979; Webb, 1980). 

Although both human and ovine fetal adrenal glands share development 

similarities, the ovine adrenal gland lacks a specific fetal zone during its 

development (Robinson, 1979) and the zona reticularis becomes evident only 

during postnatal life (1 month old lamb) (Naaman-Répérant and Durand, 

1997).  
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The fetal adrenal medulla is formed later in gestation by the 

pheochromoblasts that are derived from the neural crest which migrate 

through the fetal adrenal cortex at early as 6 weeks of gestation (Cooper et 

al., 1990 and Ehrhart-Bornstein et al., 1997). There are two hypotheses put 

forth to explain the adrenal zonal specification. Firstly, the cell migration 

theory explains that the cells, which migrate, centripetally gaining zone-

specific characteristics, are stem cells that exist subcapsularly and are the 

cells that are the precursors differentiating in the ZG. The second theory 

proposes that all the zones in the fetal adrenal cortex are derived from the 

undifferentiated stem cells (Mesiano and Jaffe, 1997). 

        

Figure 1.6 Structure of the different zones during fetal adrenal cortical 

development. Adapted from (Lalli and Paolo Sassone, 2003). 

 

By 7 weeks of gestation in humans, fetal adrenal gland express steroidogenic 

enzymes (Hanley and Arlt, 2006) and in humans ACTH starts its control on 

cortisol synthesis by 8 weeks of gestation (38% of total gestational age of 147 

days) (Goto et al., 2006). In sheep, fetal adrenal gland grows in a biphasic 

fashion, where the first growth period is rapid occurring between dGA 60-

dGA120. At dGA60 zona glomerulosa cells produce aldosterone, and the 

second growth period occurring after dGA120 (81% of total gestational age of 
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147 days) sees development and maturation of zona fasiculata (Boshier and 

Holloway, 1989; Webb, 1980). The adrenal cortex in the ovine fetus secrets 

cortisol only during the first half of gestation (Wintour et al., 1995) and also 

last fifth of gestation, but remains quiescent between dGA90-dGA120 (term 

~147days) (Wintour et al., 1975), possibly due to the inadequate production 

of ACTH from the fetal pituitary during prior to this time.  However, it is 

apparent that cortisol secretion during the last fifth of gestation helps in 

development of organs and is critical in the onset of parturition (Liggins, 

1994a, Liggins, 1994b). 

 

1.4.1  Adrenal Steriodogenesis: initial steps 
 

Although most of the cholesterol required for the synthesis of steroid 

hormones is provided through low-density lipoproteins (LDL), the adrenal 

cortex can also synthesize cholesterol de novo from acetate (Mason and 

Rainey, 1987).  Sterol response element binding protein (SREBPs), a group 

of transcription factors, regulate the genes involved in fatty acid and 

cholesterol biosynthesis (Horton et al., 2002). 3-hydroxy-3-methylglutaryl co-

enzyme-A reductase is the rate-limiting enzyme in this synthesis pathway 

(Miller and Auchus, 2011). LDL cholesterol esters, which enter the adrenal 

cells through receptor-mediated endocytosis, are converted to free 

cholesterol prior to steroid hormone synthesis (Brown et al., 1979). 

Mitochondria are an important site in steriodogenesis; cholesterol is 

transported from outer mitochondrial membrane to the inner mitochondrial 

membrane via steroid acute regulatory protein (StAR) (Figure 1.7) (Ponting 

and Aravind, 1999). P450 side chain cleavage (P450scc) catalyzes the first 

true step in adrenal steriodogenesis by converting cholesterol to 

pregnenolone in the ZG, ZF and ZR (Parker and Schimmer, 1995). The 

pattern of steroid synthesis in adrenal gland is complex as each of the 

adrenal cortex regions secretes different steroids, the mineralocorticoids, 

glucocorticoids (cortisol) (which involves additional enzymes such as CYP21 

and CYP11B1) and weak adrenal androgens (DHEA and DHEAS) whose 
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synthesis shares some enzymes common to all zones (Auchus & Rainey, 

2004).  

 

1.4.1.1 3β-hydroxysteroid dehydrogenase (3β-HSD) 
 

3β-hydroxysteroid dehydrogenase (3β-HSD) is expressed in human fetal 

adrenal glands from 7-12 weeks of gestation (Goto et al., 2006). 3β-HSD 

converts pregnenolone to progesterone in the zona glomerulosa, 17-

hydroxypregnenolone to 17-hydroxy progesterone in zona fasiculata and 

dehydroepiandrosterone (DHEA) to androstenedione in zona reticularis 

respectively (Figure 1.7) (Lee et al., 1999; Payne and Hales, 2004). 

1.4.1.2 P450c17 
 

P450c17 or CYP17 enzyme, which is expressed only in the ZF and ZR region 

of the adrenal cortex, performs a dual function. 17α-hydroxylase activity 

converts progesterone to 17-hydroxy progesterone in the ZF and 

pregnenolone to 17-hydroxy- pregnenolone in the ZR respectively (Payne & 

Hales, 2004). 17, 20-lyase activity of P450c17 enzyme, which is expressed 

only in the ZR converts 17-hydroxy- pregnenolone to dehydroepiandrosterone 

(DHEA) and 17-hydroxy progesterone to androstenedione (Auchus, 1998 and 

Lee-Robichaud et al., 1995). 

1.4.1.3 CYP21A (21-hydroxylase) 
 

21-hydroxylase (P450c21) converts progesterone to deoxycortisone in the 

zona glomerulosa and 17-hydroxyprogesterone to 11-deoxycortisol in the 

zona fasiculata (Payne & Hales, 2004). CYP21 is expressed during late 

gestation in ovine fetus due to its role in regulation of parturition  (Myers et al., 

2005; Warnes et al., 2004) and in humans around 14 weeks of gestation 

(Coulter and Jaffe, 1998; Narasaka et al, 2001).  

1.4.1.4  CYP11B (11β-hydroxylase) 
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Progesterone is metabolized to aldosterone by P45011βB2 (CYP11B2) in the 

zona glomerulosa (Payne and Hales, 2004). CYP11B1 activity helps in 

hydroxylation of 11-deoxycortisol to cortisol in the zona fasiculata (Payne & 

Hales, 2004). CYP11B1 is also expressed in developing sheep (Coulter et al., 

2000), rodents (Mellon et al., 1995), and human fetal adrenal (Coulter and 

Jaffe, 1998).  

 

 

 

Figure 1.7 Schematic representation of the adrenal steroidogenic pathway. 

 (ZG- zona glomerulosa; ZF- zona fasiculata; ZR- zona reticularis) 

1.4.1.5 SULT2A1 
 

SULT2A1 catalyzes dehydroepiandrosterone (DHEA) to its sulphated form, 

DHEAS, which is the abundantly produced adrenal androgen within the zona 

reticularis (Rainey and Nakamura, 2008).  

1.4.1.6 11β-HSDs 
 

11βHSDs are involved in interconversion of glucocorticoids within the zona 

fasiculata region of the adrenal gland depending on the available co-factor. 
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11β-HSD type 1 converts inactive cortisone to active cortisol utilising NADPH 

co-factor and 11βHSD type 2 converts active cortisol (11βHSD-2) to inactive 

cortisone in presence of NAD+ as a co-factor cortisol gets inactivated  (Figure 

1.7) (Michael et al., 2003).  

1.4.1.7 5-α  reductase 
 

Testosterone is converted to a more potent androgen dihydrotestosterone 

(DHT) by the activity of 5α reductase (Figure 1.7) (Siiteri and Wilson, 1974). 

 
1.5  Adrenal Hyperandrogenism and PCOS 

 
In addition to the ovarian androgen excess in PCOS, excess adrenal 

androgen secretion is also observed (Hague et al., 1990; Rosenfield, 1999). 

PCOS related adrenal androgen excess in women accounts for 20-30% of 

excess androgens, which is manifested by elevated levels of circulating 

androstenedione, DHEA and DHEAS (Carmina et al., 1992; Yildiz and Azziz, 

2007) along with hyper-responsive ACTH stimulated DHEA and 

androstenedione (Azziz et al, 1998). Abnormal regulation of P450c17α in the 

adrenal cortex is observed in women with PCOS (Rosenfield et al., 1990). 

PCOS is also found in patients suffering from non-congenital adrenal 

hyperplasia (NCAH) and congenital adrenal hyperplasia (CAH) leading to 

adrenal androgen excess due to abnormal functioning of 21-hydroxylase in 

addition to luteinizing hormone hypersecretion and ovarian 

hyperandrogenism (Carmina and Lobo, 1994; Levin et al., 1991 and Moran et 

al., 2000). PCOS phenotype is also seen in patients with CYP21 mis-sense 

mutations causing excess androgen secretion (Witchel and Aston, 2000; 

Witchel et al., 1997). During fetal development, the adrenal gland produces 

large amounts of dehydroepiandrosterone (DHEA) and DHEA sulphate 

(DHEAS) (Yuen and Mincey, 1987), which declines after birth and remains 

low until adrenarche. Adrenarche is the increased production of adrenal 

DHEA and DHEAS occurring during 6-8 years of age in humans (Parker, 

1991). Adrenarche is considered to be a relatively recent evolutionary 

phenomenon as it has been identified in the Old World Monkeys (Hominoidea 
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superfamily), that includes humans and chimpanzees (Richard et al., 2004; 

Genazzani et al., 1983).   

 

In utero environment alterations during fetal adrenal development can have a 

bearing upon long-term adrenal function. Pregnant Sprague-Dawley rats 

exposed to ethyl alcohol (EtOH) during the second week of gestation 

demonstrated significantly increased mRNA expression of corticotrophic 

releasing hormone (CRH) at postnatal day 21 (in response to electroshocks), 

(Lee et al.,1990). In a different study, pregnant rats exposed to the endocrine 

disrupting compound di- (2-ethylhexyl) Phthalate from day 14 until birth 

showed chronic activation of the adrenal gland and decreased aldosterone 

secretion during postnatal life (day 60) in adult male rats (Martinez-Arguelles 

et al., 2014), suggesting the susceptibility of altered fetal environment on the 

adrenal development and the long term consequences in terms of altered 

adrenal function. However, since the latter study examined only male rats, it 

is important to consider that there are sex-specific differences in response to 

a range of hormones (Giussani et al.,2011; Wierman, 2007), hence in the 

current thesis adrenal from both male and female sheep fetuses and offspring 

were assessed where possible. Adrenal steroidogenesis was altered in adult 

rats in response to maternal undernutrition and elevated ACTH-R levels were 

observed indicating altered hypothalamic pituitary adrenal  (HPA) axis in both 

male and female adult offspring that were subjected to maternal under 

nutrition in utero (Khorram et al., 2011). In utero maternal androgen over 

exposure in rhesus monkeys recapitulates PCOS features such as elevated 

basal circulating adrenal DHEA and DHEAS in the female adult offspring 

(Zhou et al., 2005). Hence it is clear that prenatal androgenization carries not 

only a consequence of altered ovarian steroidogenesis, but also adrenal 

steroidogenesis alterations, however, mechanisms underpinning such altered 

function remain unknown. 
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1.5.1 Glucocorticoids and PCOS 
 

Fetal circulating glucocorticoid levels are increased during late gestation in 

several pre-cocial species (Fowden et al, 1998). This increase in fetal plasma 

glucocorticoid in essential for initiation of labor and delivery in sheep (Liggins, 

1968; Magyar et al., 1980). Independent of the effects on parturition, 

glucocorticoids are also crucial in maturation of fetal lung (Surbek et al., 

2012). Placental 11β-hydroxysteroid dehydrogenasetype-2 acts as a barrier, 

protecting the fetus from excess maternal circulating glucocorticoids by 

converting the active glucocorticoids such as cortisol to its inactive form 

(cortisone) (Benediktsson et al., 1993). However, in utero glucocorticoid 

exposure during fetal adrenal development can have a bearing upon adrenal 

development, resulting in long term functional alteration, for example, 

prenatal glucocorticoid exposure and further exposure to carbenoxolone, a 

placental 11βHSD2 inhibitor, resulted in reduced growth in male rat offspring 

along with hyperglycemia (Lindsay et al. 1996). The synthetic glucocorticoid, 

dexamethasone is a poor substrate for 11βHSD-2 (Brown et al., 1996) and in 

sheep exposure to prenatal synthetic glucocorticoids early in gestation leads 

to decreased fetal plasma cortisol and increased expression of key adrenal 

steroidogenic enzymes in both sexes, and decreased placenta 11βHSD-2 

gene expression only in male fetuses during near term (d125), therefore 

altering the fetal pituitary-adrenal axis development (Braun et al., 2009a). 

Prenatal glucocorticoid exposure to pregnant rats from day 13 to term 

resulted in elevated ACTH-R mRNA expression in both male and female 

offspring and also elevated urinary aldosterone and corticosterone secretion 

(Waddell et al., 2010). Glucocorticoids have also been proposed to alter 

signal transduction in the adrenal cortex, which in turn regulates ACTH 

sensitivity (Picard-Hagen et al.,1995). 

 

Collectively, the above descriptions serve to highlight the critical importance 

of each of the steroidogenic enzymes and moreover, the correct balance of 

these enzymes, in maintaining adrenal function and overall homeostasis, and 

thereby also serves to illustrate how developmental disruption of adrenal 
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steroidogenic function can have serious health consequences throughout 

developmental life, and beyond. 

 

1.5.2 Adrenal associated metabolic abnormalities in PCOS: a 
co-conspiracy between the pancreas and the adrenal gland? 
 

Approximately 50-70% of PCOS patients suffer from insulin resistance, 

glucose intolerance and hyperinsulinemia (Legro et al., 1999). Insulin 

augments ovarian androgen production from follicular theca cells (Nestler et 

al., 1998) and thus may also be a reason behind excess adrenal androgen. 

There is a possibility that changes in adrenal androgen secretion are the end 

result of abnormal insulin secretion. Insulin like growth factor-II (IGF-II) acting 

via insulin like growth factor receptor type-1 regulates P45017 activity, which 

may play a role in increased androgen secretion in cases such as PCOS 

(Mesiano et al., 1997). Reports to date have not been successful in 

demonstrating any effect of insulin on adrenal androgen production in PCOS 

patients. There is disagreement with the increased DHEAS levels in 

hyperandrogenic women who were experimentally given short-term 

hyperinsulinemia (Buyalos et al.,1997; Falcone et al.,1990; Moghetti et al., 

1996). Secretion of adipocytokines and other inflammatory products (Ehrhart-

Bornstein et al., 1998) and estrogen in the adipose tissue suggests a role for 

obesity in altering adrenal function (Forney et al., 1981). Obese patients with 

both abdominal and visceral adiposity show a higher degree of cortisol 

secretion and metabolism (Stewart et al.,1999; Vicennati and Pasquali, 2000; 

Vicennati et al., 1998). Understanding the cause and effect remains a key 

priority in terms of adrenal and pancreatic dialogue leading to altered function 

in PCOS. 

 

1.6 Is there a Male phenotype of PCOS? 
 

In recent years, fetal programming of PCOS related metabolic syndrome has 

been examined in terms of trans-generational inheritance of the syndrome. 

This may potentially be mediated through epigenetic mechanisms, such as 
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DNA methylation (Ozanne and Constância, 2007; Pinney and Simmons, 

2010). Heritability of adrenal androgen secretion was observed in 68- weight 

and ethnicity compared unrelated control men and 119 brothers of 87 

unrelated women with PCOS (Legro et al., 2002). Several studies have 

indicated that impaired glucose tolerance (IGT) occurs through maternal 

lineage rather than paternal or grand paternal inheritance of diabetes 

(Benyshek et al., 2006; Blondeau et al., 2002; Zambrano et al., 2006). Most 

of the male related PCOS research is based on epidemiological evidence 

(Recabarren et al., 2008; Sam et al., 2008; Yilmaz et al., 2005) and very little 

is understood about this inheritance of PCOS, in part due to lack of a male 

phenotype. However, premature baldness is seen in men in PCOS families 

(Carey et al., 1993; Ferriman and Purdie, 1979; Mao et al., 2001). Insulin 

resistance, a metabolic phenotype of PCOS is seen in brothers, sisters and 

mothers of women with PCOS (Kaushal et al., 2004; Norman et al., 1996; Sir-

Petermann et al., 2002; Yildiz et al., 2003). Recabarren et al., (2008) have 

shown that sons of women with PCOS exhibit high body weight from infancy 

in addition to insulin resistance as the subjects get older, indicating risk for 

development of metabolic syndrome. From animal studies, experimentally, in 

the absence of hyperandrogenism, a decrease in β-cell compensation and 

insulin sensitivity is demonstrated in prenatally androgenized male rhesus 

monkeys (Bruns et al., 2004). In ovine PCOS/excess androgen exposure 

models, midgestational androgen exposure alters testis development in terms 

of reduced testicular gene expression, Leydig cell function (Connolly et al., 

2013) and decreased sensitivity of the testes to luteinizing hormone in young 

male sheep (Recabarren et al., 2013) suggesting altered testicular function, in 

male relatives of women with PCOS. There is a lack of sufficient research in 

male animal models with regard to possible male phenotypes of PCOS. 

Therefore, this study sets out to investigate the metabolic disturbances in 

prenatally androgen over-exposed male sheep fetuses. 
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1.7 Therapeutic Management of PCOS  
 

Hyperandrogenism, hyperinsulinemia and insulin resistance are identified as 

significant contributors in the pathophysiology of PCOS as they play a key 

role in PCOS related metabolic and reproductive disturbances (Diamanti-

Kandarakis, 2008). An initial treatment option for PCOS, depending on the 

obesity of the patient, is weight loss, since obesity is seen in about 35%-60% 

of women with PCOS. Weight loss of around 5% of the initial weight can lead 

to re-establishment of the menstrual cycle alongside decreased circulating 

glucose and androgens concentrations in PCOS women (Patel and Nestler, 

2006). Weight loss accompanied with good diet, can ameliorate metabolic 

effects due to decreased hyperinsulinemia in insulin resistance women 

(Reaven, 2005) and exercise is known to play a key role in this process 

(Bruner et al., 2006), however, knowledge on optimal type, duration and 

frequency of exercise is lacking. Clomiphene citrate (CC) is a selective 

estrogen receptor antagonist, which interferes with negative feedback of 

estrogen at the hypothalamus, thereby increasing HPG axis activity, resulting 

in effective ovulation in case of PCOS women suffering from infertility issues 

such as oligo- or anovulation (Homburg, 2005). 

 

Metformin, a biguanide, is used as a pharmaceutical option to treat both 

metabolic and reproductive abnormalities in PCOS women. Metformin has 

pleotropic actions on several tissues such as ovary, liver, endothelium, 

skeletal muscles and adipose tissue (Palomba et al., 2009). It activates 

glycolytic enzymes such as pyruvate kinase and hexokinase in the liver, thus 

stimulating glycolysis and glucose entry into the liver.  Metformin is also an 

insulin sensitizer used to treat type 2 diabetes -mellitus (T2DM) resulting in 

increased insulin mediated hepatic glucose uptake (Diamanti-Kandarakis et 

al., 2010). Phosphorylation of extracellular signal related kinase 1-2 (ERK1-2) 

involved in lipolysis is stimulated by high glucose concentrations and tumour 

necrosis factor-α (TNF-α). This signaling is inhibited by metformin in the 

primary rat adipocytes, which indicates the anti-lipolytic activity of metformin 

in decreasing the systemic levels of free fatty acids (FFA) (Ren et al., 2006).  
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Metformin treatment can also have some effects in terms of normalization of 

androgen concentrations, extending its efficacy across the broad clinical 

spectrum of PCOS (Kolodziejczyk et al.,2000). There is reduction in androgen 

production in the ovaries (Mansfield et al.,2003; Rice et al., 2009), reduced 

activity of steroidogenic enzymes such as CYP17, P450 side chain cleavage 

(P450scc), 3-β hydroxysteroid dehydrogenase (3β-HSD), steroidogenic acute 

regulatory protein (StAR) and 17α- hydroxylase/17,20 lyase (CYP17) in 

women with PCOS treated with metformin, which may be a downstream 

consequence of a reduction in circulating insulin concentrations (Diamanti-

Kandarakis et al., 2010).  

 

Glucocorticoids are used to treat PCOS patients with high adrenal androgen 

secretion (Parsanezhad et al. 2002). Anti-androgen treatment in PCOS 

patients with hirsutism results in reduced new hair growth and also slows 

down the growth of already present terminal hair (Calaf et al., 2007). A key 

issue that remains in the therapy described is that it treats only the symptoms 

of PCOS and not the origins, and it is urgently required that we understand 

the origins and underlying causes of this syndrome for better treatments than 

metformin which shows varying degrees of success across the spectrum of 

PCOS.  

 

1.8 Animal Models 
 
Several studies have demonstrated fetal programming of PCOS traits in 

numerous species by inducing excess testosterone exposure prenatally. 

Similar to PCOS patients, prenatally testosterone treated monkeys and sheep 

manifest hyperandrogenism (Eisner et al., 2002; Padmanabhan et al., 2006), 

polycystic ovaries (West et al., 2001), hypergonadotropism (Dumesic et al., 

1997), hyperinsulinemia (Recabarren et al., 2005) and neuroendocrine 

feedback defects (Sharma et al., 2002). Subsequently, a salient feature of 

such offspring is hyperandrogenic anovulation (Abbott et al., 2005). 
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Exposure to prenatal excess testosterone in sheep (Birch et al., 2003), rats 

(Foecking et al.,2005) and monkeys (Abbott et al., 1998) leads to ovulatory 

dysfunction later in adulthood. Sheep exposed from gestational age 30 to 90 

days to prenatal testosterone induces a poly-follicular phenotype by 

increasing the proportion of growing follicles (Steckler et al., 2005). Increase 

in the pituitary responsiveness to gonadotropin releasing hormone (GnRH) 

and reduced sensitivity of hypothalamus to progesterone and estradiol 

negative feedback induces LH hypersecretion in prenatally testosterone 

treated sheep (Sarma et al., 2005). 

 

PCOS animal models, in addition to recreating the reproductive phenotypes 

observed in humans, can also recapitulate the metabolic phenotype of PCOS, 

since downstream consequences of prenatal androgen excess such as 

increased adiposity, insulin resistance and hyperinsulinemia have also been 

observed (Bruns et al., 2007; Padmanabhan et al., 2010; Rae et al., 2013; 

Roland et al., 2010). Prenatal androgen exposure in sheep altered fetal 

pancreatic gene expression and function and also had effects during 

postnatal life in terms of excess insulin secretion in absence of insulin 

resistance (Rae et al., 2013). Collectively, it is evident that animal models can 

provide increased insight into understanding the pathogenesis involved in 

clinical conditions such as PCOS.  

 

1.8.1  Benefits of Sheep as model for PCOS  
 

Using sheep as a model for PCOS study over other animals has benefits due 

to similarities between ovine and human pre and postnatal 

development/growth (Padmanabhan and Veiga-Lopez, 2013) and in terms of 

litter sizes, sheep, like humans, have capability of producing one or two 

offspring weighing about 3-6kg (Remacle et al., 2007). Sheep have been 

successfully used for many years to study reproductive biology, and also fetal 

development with relevance to humans (Harding and Bloomfield, 2004). They 

are amenable to a wide variety of procedural manipulations, which includes 

ultrasound monitoring of ovarian follicular dynamics, behavioral interaction 
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studies in the natural setting, non-invasive sequential monitoring of ovarian 

follicular dynamics, repetitive hormonal sampling, neurotransmitter measuring 

due to the large brain size, detailed hormonal profiling and cost effectiveness 

when compared to non-human primates (Padmanabhan and Veiga-Lopez, 

2013). 

 
1.9 Objectives of this thesis 
 
Several studies in the past have made use of animal models such as rodents, 

monkeys and sheep where the pregnant mother was administered with 

excess androgens and the effects were monitored in the fetus and postnatal 

life, which has aided understanding of the developmental origins of PCOS. 

The main limitation of the maternally androgen injected model is that 

testosterone administered via a maternal route can be metabolized to 

estrogens via placental aromatase enzyme activity, which begs the question 

of whether the effects observed in the fetus are direct consequences of 

androgenic excess or via metabolism, estrogenic excess. Additionally, 

maternal androgen administration can alter maternal glucose dynamics, 

hence complexing effects of androgens and glucose. Therefore, this thesis 

has used a unique and novel sheep model throughout, where the synthetic 

androgen, testosterone-propionate (TP) was administered directly into the 

fetus using ultrasound guided injection technique, thus bypassing maternal 

and placental metabolic activity. This permits direct examination of effects of 

fetal steroidal excesses, and in addition permits estrogenic effects to be 

studied without the occurrence of abortion due to estrogenic activity in the 

pregnant mother. A further refinement utilized in these studies is that steroid 

treatments were commenced mid-gestation – previous studies have utilized 

d30 of gestation as the start of treatment, however, this coincides with the 

process of sexual differentiation in sheep, and has the unwanted effect of 

making female lambs display a male external genetalia phenotype, which of 

course does not occur in human PCOS patients. Mid-gestational exposure 

prevents this occurrence, with female lambs displaying no overt genital 

phenotype attributable to prenatal steroid exposure. A third strength of these 
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studies is that wherever possible, effects noted in female offspring are 

contrasted with effects noted in male offspring, and thus a deliverable is 

information regarding the effects of pre-exposure to androgens (due to 

endogenous androgen secretion from fetal testes) on responses to 

administered steroids. The tissues chosen as a focus of this study are the 

pancreas and adrenal gland, highlighted above as potential foci of prenatal 

steroid action with relevance to metabolic alterations, which may have life 

long health consequences in offspring. To address the question of 

permanency of effects, and to identify the legacies, if any, of altered prenatal 

steroid exposure, studies were conducted both on fetal tissues and postnatal 

tissues derived from offspring delivered from such experimentally 

manipulated pregnancies. 

 

1.9.1 Aims  
 
This thesis will focus on prenatal steroid (androgenic, estrogenic and 

glucocorticoid) excess exposure on both female and male (wherever 

possible) fetuses and offspring.  

The overarching aims are: 

1. To delineate the effects of androgens from estrogens in the 

development and subsequent postnatal function of the pancreas and 

adrenal glands. 
2. To study the effects of prenatal glucocorticoids on metabolic 

development and function, again focusing on the pancreas and the 

adrenal gland.  
3. To determine, with respect to questions 1 and 2, the differences of 

gender in terms of response to fetal steroidal over exposure. 
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2.0 Materials and methods 
 
This section details the general material and methods employed in this thesis. 

All chemicals and reagents were purchased from Sigma-Aldrich, UK, unless 

otherwise stated. Any work that has been carried out in conjunction with 

others is duly acknowledged in the chapters in which the specific work is 

presented. 

 

2.1 Animal Husbandry      
 
Scottish Greyface ewes were the animals used throughout this thesis, which 

were purchased by, housed and cared for at the Marshall Building, Roslin, 

Edinburgh, authorised by UK Home Office Project License Number 60/3744 

and the animal work was carried out after authorisation by local ethical 

committee approval, under legislation of the Animals (Scientific Procedures) 

Act 1986.  

 

2.1.1 Mating and pregnant ewe husbandry 
 
Ewes were fed to gain comparative body condition (scores 2.5-3) before they 

were estrous cycle synchronized. Synchronization was by inserting a vaginal 

Chronogest CR sponge, which was impregnated with 20mg of flugestone 

acetate (progesterone analogue) (Intervet UK Ltd, Buckinghamshire, UK). 

Later the sponges were withdrawn the same day initiating the estrous cycle. 

The Scottish Greyface ewes were then mated with Texel rams under natural 

breeding conditions and pregnancy was later confirmed by ultrasound scan. 

Singleton, twin and triplet pregnancies were evenly divided into treatment and 

control experimental groups. Pregnant ewes were fed with Excel EweNuts 

(0.5 kg daily, Carrs Billington, Lancashire, UK) and Crystalyx Extra High 

Energy Lick (Caltech Soway Mills, Cumbria, UK), plus hay (ad libitum) and 

housed in groups in spacious enclosures. To prevent dominant ewes from 

being overfed at the expense of smaller ewes, the former were housed 

separately. All ewes were vaccinated against Clostridial diseases and 
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pasteurellosis 4-6 weeks prior to lambing by treating these animals with 

Heptavac P Plus (Intervet UK Ltd.). 

 

2.1.2 Fetal Treatments 
 
This thesis deals only with direct fetal treatments, which occurred at d62 and 

82 of gestation (ovine pregnancy is ~147 days). The pregnant ewes were 

anaesthetized by an intramuscular injection of 10mg Xylazine (Rompun, 

Bayor Plc Animal health Division, Berkshire, UK) and left to settle for 10 min, 

followed by a dose of 2.0mg/kg I.V ketamine (Ketaset, Fort Dodge Animal 

health, Southampton, UK) intravenously. Under sterile surgical conditions, 

injections were carried out using an ultrasound vaginal probe fitted with a 

needle guide (20G Quincke spinal needle), which was inserted through the 

uterine wall and into the fetal flank.  The delivery of the injection (200µl) into 

the fetal flank was confirmed on ultrasound image, and any obvious leakages 

or uptake into the fetal circulation were recorded. The fetuses were injected at 

gestational d62 and d82 of gestation directly with testosterone propionate 

(TP- 20mg; AMS Biotechnology (Europe) Ltd., Abingdon, UK) or 

diethylstilbestrol (DES-50µg) or dexamethanose (DEX-100µg) dissolved in 

vegetable oil (Sainsbury’s SO organic range) (containing 5% ethanol) at a 

stock concentration of 100mg/ml, using a 20G Quincke spinal needle (BD 

Biosciences, Oxford, UK) under ultrasound guidance. Dr. Colin Duncan 

performed ultrasound and Professor Alan McNeilly, Dr Mick Rae, Dr Kirsten 

Hogg and Dr Fiona Connolly carried out the fetal injections in accordance with 

personal licenses. Afterwards, experimental treatment ewes were 

administered a post-operative dose of antibiotics (1mg/25kg:i.m., Stepcare: 

Animalcare Ltd., York, UK). 

 

2.1.3 Husbandry of lambs and young adult offspring 
 
Lambs were naturally suckled and if necessary supplemented with powdered 

lamb milk (Shepherdess SCA Mill, North Yorkshire, UK), then gradually 

weaned onto hay, before being removed from dams at 12 weeks. Lambs were 
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administered with Heptavac P Plus vaccine (Intervet UK Ltd.) at 3 and 7 

weeks of age. Various parameters were assessed in the offspring (both lamb 

and young adult) from steroid manipulated pregnancies such as gene 

expression, glucose tolerance (GTT) and Synacthen testing, which are 

detailed in the specific chapters in which these methods are included.  

 

2.2 Animal Sacrifice  
 
2.2.1 Fetal, lamb and adult animal sacrifice 
 
Euthanasia was performed in accordance with the regulatory outline of 

Schedule 1: Appropriate Methods of Humane Killing of the Animals (Scientific 

Procedures) Act 1986. At day 90 of gestation, pregnant ewes and their 

fetuses were euthanized by intravenous overdose of sodium pentobarbitone 

(150mg/kg; i.v.; Euthetal; Merial Animal Health Ltd., Essex, UK) and lambs at 

3 months age and young adults at 11 months age as detailed in table 2.1 

were killed similarly. 

 

2.2.2  Tissue collection  
 
A range of tissue samples destined for numerous different studies (many out 

with the scope and remit of this thesis) were collected from fetuses (d90 

gestation), lambs (3 months age) and young adults (11 months of age). 

Tissues such as adrenal and pancreas were divided into two pieces, one each 

for fixing and freezing. Immediately after dissection, a part from each tissue 

type was either snap frozen in dry ice followed by storage at -800C, to prevent 

RNA degradation or placed in Bouins fixative for 24 hours (to prevent tissue 

degradation and maintain tissue integrity) prior to storage in 70% ethanol for 

subsequent histological processing. In adult cohorts, an additional muscle and 

liver sample was collected and snap frozen on dry ice and stored at -800C. 
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Gestational 

Day (d) 

 
Treatment 

 
Concentration 

 
Collection Stage 

    
Fetal Treatment Regime 

 

 
 
 
 
 
d62 and d82 

 

 

Vehicle 

control 

 

 

_ 

Fetal d90 

Lamb (12weeks) 

Adult (11 months) 

 

 

TP 

 

 

20mg 

Fetal d90 

Lamb (12weeks) 

Adult (11 months) 

 

 

DES 

 

 

50µg 

Fetal d90 

Lamb (12weeks) 

Adult (11 months) 

 

 

DEX 

 

 

100µg 

Fetal d90 

Lamb (12weeks) 

Adult (11 months) 

Table 2.1 The pregnant ewe treatment regime and resulting 

offspring.  

Timings of treatment regimes for pregnant ewes and a breakdown of 

treatment cohorts, listing concentration of TP delivered, age of sacrifice and 

collection. 

 

2.3 Gene expression analysis 
 
2.3.1  RNA extraction 
 
RNA extraction methods employed were based upon tissue type and 

structural characteristics e.g composition of fibrous, lipid or blood material, 

explained in specific chapters.  
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RNA was isolated from pancreas (fetal only) and adrenal (fetal, lamb and 

adult) tissues by making use of the Qiagen RNeasy Mini Kits (QIAGEN Ltd., 

Crawley, UK). Working under sterile conditions, approximately, ~30mg of 

either pancreatic or adrenal tissue piece was weighed (without thawing, all 

procedures carried out on dry ice) from the snap frozen tissue and transferred 

to a separate RNase- free magnetic bead (Qiagen Ltd) containing 2ml 

eppendorf tube placed over dry ice. This was followed by addition of 600µl of 

RLT lysis buffer (Qiagen RNeasy Mini Kit, Crawley, UK) to each tube 

supplemented with 10ul per ml of β-mercaptoethanol and these tubes were 

loaded for homogenization onto a tissue lyser (Qiagen Tissue Lyser LT, 

Qiagen) and processed for ~3 minutes at 50Hz. The guanidine thiocyanate 

present in the RLT buffer inactivates RNases and denatures proteins present 

in the sample. Following homogenisation, the tissue samples were centrifuged 

at 13000 rpm for 3 minutes and the supernatant was collected into a 1.5ml 

eppendorf. The supernatant (Lysate) was mixed with 600µl of 70% ethanol 

(prepared from 100% ethanol diluted in distilled water) and washed thoroughly 

by using RNeasy minispin columns (Qiagen Ltd) by centrifugation for 5 

seconds at 13000 rpm. Then, the columns were washed with RW1 buffer for 

15 seconds at 13000 rpm followed by washes using RPE buffer for 15 

seconds at 13000 rpm and a final wash with RPE buffer for 2 minutes at 

13000 rpm and the flow through was discarded. Finally, spin columns were 

placed in new 1.5ml eppendorfs and centrifuged twice for 1 minute at 13000 

rpm using RNase free water (33µl final volume) and the eluted samples were 

collected in sterile eppendorfs and stored at -80oC for further use. 

 

2.3.2 RNA concentration measurement 
 
Prior to cDNA synthesis, RNA concentration was measured using a 

NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Loughborough, 

UK). Purity of RNA concentration was determined by 260/280 ratio and a 

value of ~2.0 was considered indicative of suitable purity for downstream 

applications.  
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2.3.3 DNaseI digestion 
 
RNA extracted from the above tissue samples was prepared for DNaseI 

treatment to rid the samples genomic DNA. The concentration of RNA 

measured via Nano Drop was normalized to 2µg, by adding RNase- free 

water to make a final volume of 15µl for each sample. The DNaseI mastermix 

comprised 10X DNase1 buffer (2µl/ sample)(Sigma Aldrich), and DNaseI 

enzyme (3µl/sample) making up a final volume of 5µl, to be added to each of 

the RNA sample making a final volume of 20µl (Table 2.3). These samples 

were then incubated at room temperature for 15 minutes followed by the 

addition of 1µl of EDTA (Sigma Aldrich) stop solution, which chelates the 

calcium and magnesium ions to stop the DNase activity. The samples were 

then loaded onto a bench time PCR thermocycler (Thermal cycler, 2720, 

Applied Biosystems, Life Technologies, Glasgow, UK) and heated at 70oC for 

10 minutes to completely denature the DNase enzyme.  

 

2.3.4 Complementary DNA (cDNA) synthesis 
 
To carry out the reverse transcription step, the RNA samples from the above 

DNase treatment were divided into two (run in duplicates to ensure sufficient 

production of cDNA to cover all analyses initially envisaged but also to ensure 

that future analyses that may be desirable are also encompassed by a single 

synthesis) aliquots of 10µl each. 1µl of random nonamer primers 

(PrimerDesign, Southampton, UK) was added to each sample tube and 

incubated at 650C for 5 minutes on the thermocycler. Both RT+ve and RT-ve 

sample mastermixes were prepared. The RT+ve mastermix, which was made 

up to a final volume of 10µl mastermix per reaction contained 2µl of 10X RT 

buffer, 2µl of 100nM DTT, 1 µl of dNTP, 1µl of RT enzyme and 4µl of PCR 

water (Entire Kit- Precision Reverse Transcription kit, PrimerDesign) (Table 

2.2). The RT-ve mastermix excluded the RTase enzyme and instead 1µl of 

PCR water was added to make up the final volume of 10µl. The cDNA 

synthesis was paused after the annealing reaction and 10µl of the extension 

mastermix was added to each sample appropriately, before resuming the 
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reaction for the extension process, which was programmed at 4oC for 5 

minutes, 25oC for 5 minutes, 55oC for 20 minutes, 70oC for 15 minutes and 

finally 4oC for 5 minutes. Once the reaction was completed, the samples in 

duplicate were pooled together and mixed to make a final volume of 40µl and 

stored at -20oC until further use. 

 

DNase Treatment  

Reagent Volume (µl) 

10X DNase buffer 2µl 

DNase 1 enzyme 3µl 

3µg RNA diluted in  

Nuclease free H2O (final volume) 

15µl 

EDTA 1µl 

Total 21µl (2 aliquots of 10.5 µl each 

(duplicates) for cDNA synthesis 

cDNA synthesis  

Random Nonamers 1µl 

10X RT buffer 2µl 

10mM dNTPs 1µl 

100mM DTT 2µl 

RTase 1µl 

Nuclease free H2O 4µl 

DNase treated RNA (100ng/µl) 10.5µl 

Total 21.5µl X 2 (Final volume 43µl) 

Table 2.2 The cDNA reagents, volume and final concentrations 

required for cDNA synthesis. 

(dNTP- dinucleotide tri phosphate; DTT- Dithiothreitol). 

 

2.3.5 Quantitative Real-Time PCR (q-RT-PCR) 
 
Quantitative real time PCR allows the mRNA quantification in a specific and 

reproducible manner, where the amplification is proportional to an increase in 
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fluorescence as measured by a detector thereby quantifying gene expression. 

SYBR Green detector was utilised in this thesis. 

2.3.5.1  SYBR Green qRT-PCR chemistry 
 
SYBR Green is a dye, which intercalates to dsDNA and then emits green 

fluorescence, such that the amount of fluorescence emitted (λmax = 520 nm) is 

directly proportional to the quantity of product present in each cycle. However, 

during the denaturation step of the PCR cycle, dsDNA is denatured by high 

temperature to single stranded DNA and hence the fluorescence capacity of 

SYBR Green is lost, as it is no longer intercalated. But when primers anneal 

(annealing step) to their target and extension occurs, then dsDNA is produced 

and subsequently fluorescence occurs due to SYBR green intercalation, 

which is measured at the end of the every single amplification cycle. The 

mRNA abundance is determined by the cycle threshold (Ct) value, which is 

the fluorescence threshold reached above that of background fluorescence, 

and is recorded during the exponential phase of the reaction. The above 

cycles are repeated 40 times such that even low abundance transcripts can 

be detected. Inclusion of RT-ve samples gave an indication of where 

fluorescence was due to factors other than amplicon accumulation e.g primer 

dimerization- (as a quality control method all data had to be a minimum of 6 

cycles earlier than respective RT-ve detection-personal communication, 

Primer Design Ltd). In practice >10 cycles earlier than negative controls was 

the normal situation. To ensure reaction specificity a disassociation (melting) 

curve was included in all runs, which was performed by the PCR instrument at 

the end of PCR cycling. A single high peak indicates a single fluorescent 

product (gene of interest) therefore discriminating between non-specific and 

specific binding of the fluorescent reporter and more than one peak would 

invalidate results (Figure 2.1). To validate the cDNA synthesis, each and 

every sample was checked using GAPDH primers, as GAPDH is a more 

stable and constitutively expressed gene at high levels in most tissues. 
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Figure 2.1 Dissociation or melting curve using SYBR Green detection 

method.   

PDX-1 primers used in female fetal pancreas generated this curve. 

 

2.3.6 GeNorm reference gene analysis 
 
Even though the highly expressed GAPDH was used to validate the cDNA 

quality, GAPDH regulation can differ under specific conditions. Therefore, this 

thesis analysed a set of 12 ovine reference genes to determine the most 

stable housekeeping gene(s) under the experiment conditions (steroid 

manipulations) employed, using the geNormPLUS reference gene selection 

kit (PrimerDesign, UK) for each tissue. The 12 ovine housekeeping genes 

chosen were as follows: 18s, YWHAZ, aCOA, RPS26, B2M, MDH1, RPS2, 

RPL19, ATP synthase, GAPDH, Cyp1A1 and β-actin. Four samples were 

chosen from each treatment group (Control, TP, DES and DEX) and two PCR 

plates (MicroAmp®, Applied Biosystems) were setup for analysis (1 for control 

and TP; 1 for DES and DEX). Firstly, the four chosen cDNA samples were 

diluted to 1:10 dilution, (7µl of cDNA was combined with 63µl of PCR water) to 

make sure that 5µl of cDNA was available for each sample well.  A volume of 

15µl of Mastermix was prepared for all 12-reference genes, which comprised 
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of 10µl 2X SYBR Green Mix, 1µl primers (0.5µl of forward and reverse each), 

and 4µl of PCR water. 5µl of the chosen cDNA sample was added to the 96-

well plate across the entire row followed by the addition of 15µl of mastermix 

down the column making up a final volume of 20µl per well. The PCR plates 

were then loaded into the qRT-PCR instrument and once the reaction was 

completed the data was analysed using BioGazalle qBase Plus software 

(Biogazalle, Ghent, Belgium) which determined the stable reference genes for 

both pancreatic and adrenal samples separately. Lists of stable reference 

genes used are mentioned in the materials and methods within specific 

chapters. Figure 2.2 represents an example of most stable reference genes 

analysed for female fetal pancreas at d90 gestation- the ‘housekeeper’ 

reference value used was the geometric mean of the Ct values of G3PD, 

ATPsynth and β-actin. 

 

Figure 2.2 Representational image of stable reference genes analysed using 

geNorM analysis in the female fetal pancreas at d90 gestation. 
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2.3.7 SYBR Green qRT-PCR protocol 
 
A mastermix solution of 19µl per reaction, sufficient for 70 reactions was 

prepared consisting of 10µl of 2X SYBR green with ROX PCR mix, 0.25µl of 

forward primer (25 µM), 0.25µl of reverse primer (25 µM) and 8.5 µl of PCR 

water and added into a 96-well plate inside a PCR preparation hood (UV 

sterilised and HEPA filtered, using only dedicated pipettes for this stage of the 

analyses). 1µl of cDNA sample, negative samples or reference sample 

(endogenous control/calibrator sample-comprising of a pool cDNA from a 

number of samples of the tissue being analysed) and PCR water in duplicate 

according to the well plan were added. The 96-well plate was then sealed with 

optical adhesive film MicroAmp®, Applied Biosystems) to prevent further 

evaporation of samples and centrifuged for uniform mixing of samples. The 

PCR plate was then loaded on to a real-Time PCR machine (StepOnePlus™ 

Real Time PCR System, Applied Biosystems). 

 

Step Temperature (0C) Time (min/sec) 

Enzyme activation 95 10 minutes 

Denaturation  95 15 seconds 

Primer 

annealing/extension 

x40 

cycles 

60 1 minute 

 

Melting curve stage 

95 15 seconds 

60 15 seconds 

95 15 seconds 

Table 2.3 QRT-PCR cycling stages performed by ABI 7900HT fast 

Real Time PCR instrument. 

2.3.7.1 SYBR Green qRT-PCR data analysis 
 
Real time PCR data was compiled using ABI 7900HT v2.2 software (Applied 

Biosystems) and exported as an excel file. Sample duplicates were checked 

for precision (<0.5 Ct drift was deemed acceptable) and the dissociation curve 

was inspected to confirm specificity of PCR product. Finally, delta (Δ) Ct 

method was employed to analyse raw Ct values and obtain an expression 
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values normalised against housekeeping gene(s) (depending on the tissue 

type) as follows: 

 

ΔCt = Mean Ct of Gene of Interest- Mean Ct of housekeeping gene 
(geometric mean of stable housekeeping gene panel) 

Once ΔCt was calculated for particular gene of interest, later the comparative 

ΔΔCt  was calculated for the same as follows: 

 

ΔΔCt =   ΔCt   of  Gene of Interest- ΔCt   of reference(endogenous 
control/calibrator) sample 

 
Finally, the fold difference of expression levels of gene of interest relative to 

reference sample was calculated using the formula 2(-ΔΔCt). 

 

2.4 Histology 
 
2.4.1 Tissue fixation 
 
Tissue blocks fixed in Bouins solution for 24 hours after collection were 

transferred to 70% ethanol. Samples were processed in an automated tissue 

processor (Leica Microsystems, Milton Keynes, UK) as per manufacturer’s 

instructions, using the processing parameters detailed in the Table 2.4. Later, 

the tissues were embedded into paraffin wax blocks using the paraffin-

embedding centre (Leica–EG 1160, Leica Microsystems) and left to 

cool/solidify and stored at room temperature prior to further use.  

 

2.4.2 Tissue processing and sectioning  
 

Paraffin embedded fetal and adult pancreatic blocks were cut into 5µm thin 

sections using a rotary microtome (RM2125 RT, Leica Microsystems, 

Heidelberger, Germany) and sections placed on the surface of a water bath 

(Grant Instruments, Cambridge, UK) to float at 41oC prior to transference onto 
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charged slides (Superfrost® Plus, Thermo Scientific, Epson, UK), then dried 

in an oven at 650C for 30 minutes to bond the tissue to the glass. 

 
2.4.3 Dewaxing and rehydration 
 
The sections were dewaxed by submerging in xylene for 10 minutes (2 

separate baths, 5 minutes each) and rehydrated using a standard ethanol 

series (100% ethanol, 95% ethanol, 70% ethanol) and finally distilled water (5 

minute each bath). 
Solution  

    

Time Temp 

Ethanol 70% 1hr 30 min Ambient 

Ethanol 80% 1hr 30 min Ambient 

Ethanol 90% 1hr 30 min Ambient 

Ethanol 95% 1hr 30 min Ambient 

Ethanol 95% 1hr 30 min Ambient 

Abs Ethanol 2hr Ambient 

Abs Ethanol 2hr Ambient 

Xylene 1hr Ambient 

Xylene 1hr Ambient 

Xylene 1hr Ambient 

Paraffin wax 1hr 60oC 

Paraffin wax 1hr 60oC 

Paraffin wax 1hr 30 min 60oC 

Table 2.4 Steps involved in automated tissue processor.  

(Leica Microsystems) 

 

2.4.4 Immunohistochemsitry 
 
Immunohistochemistry (IHC) bridges between three different scientific 

disciplines namely, immunology, histology and chemistry. IHC involves the 

localisation of antigens (Ag) (in this case specific proteins) within tissue 

sections by making use of specific antibodies (Abs). Post antigen-antibody 

binding, normally a secondary antibody (raised against the host species of the 

primary antibody) is used, labelled with either a fluorophore or a reactive 
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moiety which after a histochemical reaction can be visualised using under 

light microscopy or in the case of fluorescent reporters with suitable 

excitation/emission microscopy. In this thesis an indirect IHC technique was 

employed, where primary antibody applied will bind to the epitope on the 

surface of antigen within the tissue. A labelled secondary biotinylated 

(conjugated to biotin) antibody binds to the unlabelled primary antibody. The 

streptavidin-peroxidase detection method was employed to detect the 

biotinylated portion of the secondary antibody, as the Avidin (conjugated to 

horseradish peroxidase-HRP) in the ABC complex has high affinity for the 

biotin label on the secondary antibody. The HRP conjugated to the Avidin now 

bound to the biotin label of the secondary Ab reacts with 3,3’-

diaminobenzidine (DAB) dye, a commonly used organic compound, oxidising 

it to form an insoluble brown precipitate.  

 

2.4.5 Antigen Retrieval 
 

Fixation with reagents such as the Bouins solution used here can cause 

unwarranted masking of antigens. This thesis employed the heat induced 

method of antigen retrieval as it works through breaking the cross linkage 

between the Ags, however the actual mechanism is still unknown, but 

appears to be pH and heat dependent; in this regard both acidic and alkaline 

conditions can be employed. Following dewaxing and rehydration processes, 

slides were incubated in a container of 0.1M-citrate buffer, pH 6.0 (final 

volume of 500ml) for low-pH antigen retrieval by heating them in microwave 

on full power for 5 minutes X 2 with 1-minute rest each, and microwaved on 

full power (750W) again for 5 minutes before resting for 20 minutes. Before 

proceeding to next step, the slides were cooled by washing under running tap 

water. 

 
2.4.6 Blocking 
 
IHC involves several steps to prevent/minimise background and non-specific 

staining. Endogenous peroxidase activity must be quenched in order to avoid 

false-positive signal generation where the detection system relies upon 
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exogenous peroxidase activity. In this thesis, following antigen retrieval, slides 

were treated with 3% hydrogen peroxide (H2O2) (diluted using distilled H2O) 

for 5 minutes on a shaker, which quenches the peroxidase activity. This was 

followed by two separate changes of washes in TBS for 5 minutes each.  

 

An additional blocking step was included where tissues were incubated in a 

humidified chamber for 30 min using 2.5% normal horse serum (Vectastain 

Universal Quick Kit R.T.U, Vector Laboratories, Peterborough, UK, PK-7800) 

– the serum chosen is the species of the secondary Ab. Proteins present in 

the serum can therefore bind to non-specific sites present in the tissue so that 

they will be inaccessible to the secondary antibody. 

 

2.4.7 Primary Antibody 
 
Even though both monoclonal and polyclonal antibodies are used in IHC, this 

thesis employed only monoclonal antibodies. An advantage of using 

monoclonal antibodies (mAbs) over polyclonal is that the former binds to a 

single specific antigen-binding site (epitope) and therefore reduces the 

possibility of cross-reactivity with other Ags. Further details of primary 

antibodies are mentioned in specific chapters. Following incubation with 

blocking serum, slides were cleared of excess serum and primary antibody 

(diluted appropriately in blocking serum solution) was applied. Negative 

control slides were treated with IgG at an equivalent concentration (from same 

species as primary Ab) to primary Ab and all slides were incubated overnight 

at 4oC.  

 

2.4.8 Colourimetric detection, counterstaining and mounting 
 
Following overnight incubation with the primary antibody, sections were 

washed with TBS containing 0.1% tween (TBST) twice for 5 minutes each and 

incubated with biotinylated secondary antibody (Anti-Rabbit/Anti-Mouse IgG 

(H+L), for 30 minutes (Vectastain Universal Quick Kit R.T.U, Vector 

Laboratories, Peterborough, UK PK-7800) at room temperature. The negative 
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controls were washed separately. Then sections were washed twice in TBST 

(0.1% Tween) for 5 minutes each and incubated with Streptavidin-HRP 

Conjugate (ABC) (Vectastain Universal Quick Kit R.T.U, Vector Laboratories, 

Peterborough, UK, PK-7800) complex for 1 hour, and then washed twice in 

TBST for 5 minutes before colorimetric detection. This was followed by 

addition of DAB (3’3- diaminobenzidine [SK-100, Vector Laboratories, 

Burlingame, U.S.A]) substrate as per manufacturer instructions, and 

incubated for 30 seconds-1 minute until sufficient staining was evident by 

monitoring under the microscope for suitable colour development. Slides were 

then washed in distilled water for 5 minutes followed by counterstaining with 

haematoxylin for 15 seconds, then ‘blued’ under tap water until all 

haematoxylin had changed colour from purple to blue. The slides were then 

dehydrated in an ascending alcohol series (70% ethanol, 90% ethanol, 100% 

ethanol) for 5 minutes each and placed in xylene for 5 minutes prior for 

mounting. Finally, the sections were mounted with Pertex (mounting medium) 

prior to applying cover slips and air dried for 24 hours before analysis or 

storage. 

 

2.4.9 Light microscopy and imaging 
 
Cells in the sections that were positive for antigen of interest were localised 

and counted (detailed in specific chapters) under the 10X objective of a light 

microscope (Leitz Wetzlar, Germany). Protein immunolocalisation images 

were captured under 10x objective using a Olympus light microscope 

(Olympus BH-2, UK) fitted with a Olympus DP25 camera (Olympus 

Corporation, UK). Images were processed using cellSense® Image 

processing software v.1.4 (Olympus Corporation, GmbH) and were exported 

as Jpeg files.  

 

2.5 Western Blotting  
 
Western blotting (immunoblotting) methods are based on antigen-antibody 

interactions. A known quantity of total protein is separated based on 
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molecular weight (Mw) using sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE). Seperated proteins are then transferred from 

the gel to a membrane prior to probing of interest-specific antibody and a 

labelled secondary antibody.  Fluorescent detection is employed in this thesis 

to visualise protein bands: the fluorophore attached to the conjugated 

secondary antibody is excited by specific wavelength light and a photo sensor 

such as charged coupled device (CCD) camera equipped with appropriate 

emission filters detects emission.  The captured digital image of the western 

blot can then be used for quantitative analysis such as determination of 

protein band size.  

 

2.5.1 Protein Extraction and Precleaning  
 
A small piece of tissue (~30mg) was cut on dry ice and added to 2ml tubes 

containing magnetic beads and 200µl of Tris Lysis buffer [50mM Tris/HCl (pH 

8.0), 1% (v/v) Triton X-100, 150mM NaCl, 5mM EDTA, complete protease 

inhibitor tablets (1ml of 0.1% of lysis buffer comprising of protenase 

phosphatase), which was followed by homogenizing the tissue on Tissue 

Lyser LT (Qiagen, Germany) for 2 minutes. Each sample was then transferred 

to a different 2ml tube and centrifuged at 4°C for 5 minutes at 10000g after 

which the protein supernatant was removed and stored. 

 

The protein samples were precleaned using Sepharose conjugate (Rec-

Protein Sepharose 4B Conjugate, Invitrogen Ltd, USA), washed in lysis buffer 

twice and then added to each sample at a 0.1v/v dilution. The samples were 

then rotated for 2 hours at 4°C followed by microcentrifugation at 4°C for 10 

minutes at 10000g. Later, the supernatants were transferred to clean 2ml tube 

and stored at  -80°C until further analysis. 

 

2.5.2 Protein concentration measurement 
 
Protein concentration was measured using Bradford dye-binding (Protein dye-

BioRad) assay (Bradford 1976). The Coomassie Blue G-250 dye within the 
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Bradford reagent binds to the protein sample, which shifts the absorbance 

from 465nm to 595nm and this change in absorbance at 595nm is directly 

proportional to the amount of protein present in any given sample. Bradford 

reagent was prepared by adding 100mg of Comassie Brilliant Blue G-250 

(Bio-Rad) to 50ml of 95% ethanol. To this, 100ml of 85% (w/v) phosphoric 

acid was added and the solution was placed on a stirrer for 30 min, then 

made up to a final volume of 1L by adding dH2O and filtered through 

Whatman grade 1 filter paper. 5µl of protein samples were added to the wells 

of 96-well plates (Costar 96-well Polystyrene plate, NY, USA) followed by 

addition of 250µl of Bradford reagent and incubated on a plate shaker at 370C 

for 3 minutes. The microplate was then read at 595nm using microplate 

reader (Dynex Technologies, MRXII) and software Revelation V.4.25. The 

software extrapolated the concentrations of samples by providing a standard 

curve constructed from the different dilutions of bovine serum albumin (BSA) 

used as standards, ranging from 0-3mg/ml. Samples were diluted using dH2O 

in order to fall within the linear range of the standard. Quality control was 

included in every assay to ensure assay precision. Inter- and intra assay CVs 

were <5% and <2%, respectively. 

 

2.5.3 Preparation of Gels  
 

1.5mm thick polyacrylamide gels were made in advance and stored at 40C for 

up to 2 days before use. Glass plates (Mini PROTEAN® System, BioRad 

Laboratories Ltd, USA) were used to make up resolving and stacking gel as 

outlined in Table 2.5, however, TEMED and APS were added just before 

casting the gels. The glass plates were assembled and the resolving gels 

poured carefully (making sure of no leakages and also keeping free from any 

air bubbles) up to the level 1cm below the comb teeth. Finally, 4% stacking 

gel was poured gently, avoiding air bubbles before the 10-well comb (1.5mm 

spacer) (Mini PROTEAN® Comb 10-well, BioRad Laboratories Ltd, USA) was 

inserted and incubated to polymerize for 30 min. 
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Reagent Resolving (12%) Stacking (4%) 

Acrylamide 4ml 670µl 

Tris-HCl           2.5ml (1.5M; pH 8.0) 2.4ml (0.5M; pH 6.8) 

20% (w/v) SDS 50µl 50µl 

dH2O 3.4ml 3.075ml 

APS  (10%w/v)  50µl 50µl 

TEMED 15µl 15µl 

Table 2.5 Components of western blot resolving and stacking gels 

used in SDS-PAGE. 

 

2.5.4 Western Blot Protocol  
 
All reagents used in this protocol were purchased from Sigma-Aldrich, USA, 

unless otherwise stated. All samples were diluted to 1µg/µl in lysis buffer, 

(0.1M Tris-HCl pH 6.8, 20% glycerol, 4% (w/v) SDS, 1% bromophenol blue 

and 3% β-mercaptoethanol) (final volume of 100µl). Protein samples were 

denatured by heating at 700C for 5 minutes and were loaded (10/20µg per 

well depending on the protein of interest) with the addition of a full-range pre-

stained protein molecular weight marker (PageRuler™Plus, Thermo Scientific, 

USA; Product No. 26619; Lot No. 00112289) into one well per gel and 

electrophoresed at 200V for 60 minutes. Sponges, blotting paper (Gel Blotting 

Paper Gb002; Scientific laboratories Ltd, Nottingham, UK), and nitrocellulose 

membrane (Amersham™ Hybond ECL, 0.45µm thick, GE healthcare Life 

Sciences, UK) were cut to size and soaked in transfer buffer before use. The 

gel was carefully separated from the glass plates by making use of transfer 

buffer (pH 8.0) and was ‘sandwiched’ between sponges (x2), filter paper (x2) 

and nitrocellulose membrane (x1) as shown in Figure 2.3. The cassettes were 

placed between electrodes in the gel tank and incubated with an ice block to 

prevent the apparatus from over heating and finally the blot transfer was run 

at 25V for 2 hours. Transfer was confirmed visually by placing the blot in 0.2% 

Ponceau S staining solution. Later the blots were blocked in 5% BSA in TBST 
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for 1 hour at room temperature. Blots were then incubated overnight at 40C 

with the primary antibody of interest (diluted in 5% TBST). 

Blots were washed extensively 4 times for 5 minutes each using wash buffer 

(TBST) and then incubated in darkness for 2 hours with fluorescent secondary 

antibody specific to the species of the primary antibody. Blots were again 

washed using TBST every 5 min (x4) before visualisation. The blots were 

scanned under the Odyssey® Infrared Imaging System (LI-COR Biosciences, 

Cambridge, UK) using appropriate filters (700/800nm channel) and finally 

proteins bands were visualised and quantified using the software Image 

Studio Lite™ v.2.0. The size of the visualised protein band was confirmed with 

the position of the molecular weight marker. 

 

 

Figure 2.3 Gel assembly set up utilised during transfer process for western 

blotting. 

 

Contents Running Buffer  Transfer Buffer  Wash Buffer 
(TBS)  

Tris  0.025M 0.025M 20mM 

Glycine 0.192M 0.192M _ 

SDS 0.1% _ _ 

NaCl _ _ 0.15mM 

Table 2.6 Components of buffers utilised in western blotting 

protocol. 
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2.6 Radioimmunoassay (RIA) 
 
Radioimmunoassay (RIA) is the ‘gold standard’ to measure plasma steroid 

concentrations, as it is highly sensitive allowing the detection and 

quantification of small amounts of antigen in the sample. RIA works on the 

‘competitive binding’ principle, where a competition exists between unbound 

antigen (analyte) within the given sample and radioactive labelled antigen 

(tracer) (usually gamma emitting radioiodine (125I) to a given concentration of 

primary antibody specific to antigen of interest), therefore inversely measuring 

the quantity of antigen (analyte). The analyte (amount of hormone of interest 

in a sample) competes with the tracer for antibody binding, displacing it, so 

that as the concentration of the antigen in the serum sample increases, the 

quantity of bound radioactive tracer decreases. The bound antigens are 

separated from unbound antigens by adding secondary antibody specific to 

the primary antibody, and a further wash using appropriate wash buffer. The 

bound fraction of antigen-antibody-secondary antibody complex is centrifuged 

to form a pellet, and the supernatant containing unbound antigen is discarded. 

Finally, the radioactivity of the bound fraction is measured using a gamma 

counter. By making use of known antigen concentrations (calibrated standard 

concentration of the hormone being measured), a standard curve is 

generated, allowing sample concentrations to be derived from the linear 

portion of the standard curve. 

 

2.6.1 Serum Extraction 
 

To separate steroids from binding proteins present in plasma samples and 

thereby to maintain accuracy of the assay, sheep plasma samples, along with 

standards and quality controls (high, medium and low) were extracted using a 

diethyl ether/ethanol ice bath. The protocol is as follows: 200µl of standards 

controls and sheep plasma samples were added into separate glass tubes, 

(16x150mm), followed by addition of 2ml diethyl ether (Fischer Scientific) and 

vortexed for 10 minutes using a multi-vortex. Tubes were then snap frozen in 

a tray containing ethyl alcohol (VWR International, France) and dry ice. After a 
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few seconds, the ether/organic layer containing extracted steroids was 

decanted into fresh glass tubes, 12x75mm (Borosilicate Glass, Pyrex®) and 

dried down under a stream of nitrogen on hot block at 400C. The dried 

extracts were reconstituted in 250µl of reconstitution buffer (Table 2.7) stored 

at 40C prior to assay. 

 

2.6.2 Radioimmunoassay protocol  
 
RIA was carried out over three days, in which the tracer and the testosterone 

antibody were added on day 1, secondary antibody incubation on day 2 and 

separation of the antigen-antibody complex on day 3. The assay was set up in 

duplicate in 10x75mm polypropylene tubes (Sarstedt ltd, Leicester, UK), and 

in each case total counts (T0), non-specific binding (NSB; assay buffer and 

tracer), (B0; assay buffer, primary antibody and tracer) standards, low, 

medium and high quality controls (QC) were included along with unknown 

samples. Firstly, the plasma extracts were resuspended in 250µl of 

testosterone assay buffer (10% Triton X in PBS in 0.1% BSA) at room 

temperature for 1-hour prior to start of the experiment. Later, both primary 

antibody (Rabbit anti-testosterone-19, AMS Biotechnology) (1:250000 working 

dilution made up in assay buffer) and tracer (Testosterone 125I, MP 

Biomedicals) diluted in assay buffer to give a count rate of 15,000cpm/100µl) 

were added to the tubes. Total count (T0) tubes received only 100µl, and NSB 

tubes, tracer and assay buffer (thus any counts bound in these tubes are a 

reflection of non-specific binding, not Ab binding, and are used for correction 

of assay data); and both tracer (100µl) and antibody (100µl) were added to 

the tubes containing standards and sample. Tubes were vortexed, covered 

with paraffin laboratory film and incubated overnight at 40C to attain 

equilibrium.  

 

Following overnight incubation, 100µl of secondary antibody, a combination of 

normal rabbit serum (NRS; 1: 600 dilution; SAPU, Carluke, Lanarkshire, 

Scotland) and donkey anti-rabbit serum (DARS; 1:60 dilution; SAPU, Carluke, 

Lanarkshire, Scotland), both diluted in assay buffer was added to all the tubes 
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except the total counts (T0). Tubes were vortexed, covered using laboratory 

film and incubated overnight at 40C.  

 

On day 3, 2ml of wash buffer (polyethylene glycol 4%, saline 0.9%, triton 

0.2%) was added into each tube (apart from T0 tubes) and centrifuged (Sigma 

laboratories, 6K15) at 3000G for 30 minutes. Supernatant was discarded and 

tubes inverted on tissue paper to remove residual liquid before counting 

radioactivity on the gamma counter (LKB Wallac, 1261, MultiGamma), which 

gave the raw γ counts.  

 

2.6.3 RIA analysis 
 
The assay was analysed using computational software AssayZap (Biosoft, 

Cambridge, UK), which analysed the raw data (γ counts per min) generated 

from each bound fraction (pellet) plotted a standard curve automatically from 

a pre-determined method file and calculated the results based on the 

interpolation of unknown values with those of standard binding curve. Data 

were exported to an Excel file for further analysis. Intra and inter-assay co-

efficient of variation (CVs) was determined by the quality control samples 

included in each assay and were 8.7% and 7.9% respectively. 

 

2.7 Enzyme-linked immunosorbent assay (ELISA) 
 
Enzyme-linked immunosorbent assay (ELISA) works on the antigen-antibody 

binding principle similar to immunohistochemsitry and is an alternate to 

radioimmunoassay to quantify protein (antigen) in a sample. The 96-well plate 

is coated with a primary capture antibody and the added sample antigen binds 

to specific binding sites. A second detection primary antibody added binds to 

sample antigen creating a ‘sandwich’ between two layers of antibody, hence 

the name sandwich ELISA, which is employed in this thesis. A secondary 

detecting antibody conjugated to HRP or AP is directed against primary 

detection antibody, in case the latter is not conjugated to an enzyme for 

detection purpose. The amount of bound antigen is determined using 
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colorimetric substrates such as 3,3’,5,5’- tetramethylbenzidine (TMB), which 

initiates an enzymatic colorimetric reaction post binding to HRP producing 

blue colour. The enzymatic reaction is terminated by adding an acidic stop 

solution (e.g HCl), which results in a colour change from blue to yellow, and 

the colour intensity is directly proportional to the amount of antigen present in 

the sample. The plate is spectrophotometrically read at 450nm. This thesis 

employed two ELISA, one for cortisol, which was optimised and validated 

before measuring actual samples (detailed in section 2.7.1) and the other for 

insulin (using commercially available kit; section 4.2.2). As the two assays 

were performed at two different places, two different locations, two different 

instruments and software were used to determine the standard curve and 

calculate the concentrations of hormones in the unknown samples.  

 

2.7.1 Cortisol Enzyme Immunoassay - optimization and 
validation 
 
During certain stress responses (such as trauma, travel stress, castration, 

intense heat, infection and diseases) plasma cortisol levels are elevated. 

Therefore, measurement of cortisol concentration in blood is an indicator of 

presence of stress (Sapolsky et al., 2000).  There are EIAs developed for 

measurement of plasma and salivary cortisol in cattle (Chacon Perez et al., 

2004), dogs (Ginel et al., 1998) and pigs (Kaneko et al., 2003).  Even though 

there are commercially available validated ELISA kits for plasma cortisol in 

sheep, these were prohibitively expensive and could not be made available 

for this study. Thus, it was essential to develop, optimize and validate a 

specific ELISA protocol to measure cortisol in sheep plasma samples with a 

dynamic measurement range wide enough to encompass both basal and 

increased plasma concentrations in order to assess adrenal function in terms 

of glucocorticoid output from Synacthen (ACTH analogue) challenges. 
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2.7.2 Standards for cortisol calibration curve  
 
1mg/ml standard stock solution of cortisol was prepared in ethanol. 500ng/ml 

final concentration (standard spiking solutions) of cortisol standard was 

prepared by diluting the stock in steroid-striped sheep serum to achieve the 

following calibration standard concentration range: 0ng/ml, 10ng/ml, 25ng/ml, 

50ng/ml, 100ng/ml, 250ng/ml and 500ng/ml.  

 

2.7.3 Optimization 
 
Developing an ELISA protocol to measure cortisol in sheep plasma consisted 

of optimizing several parameters such as anti-cortisol CMO concentration 

used for coating the micro titre plate, blocking buffer constituency, primary 

antibody concentration, horseradish peroxidase (HRP) conjugate 

concentration, concentration of cortisol standards and finally incubation times 

of TMB. The following summarises the parameters optimised and outcomes of 

these trials: 

a. CMO concentration range tested: 1:5000-1:10000; 1:10000 was found 

to be optimal for further experiments 

b. Blocking buffer: 1% gelatin dissolved PBS: BSA concentration range 

tested: 0.5%, 2% and 4% BSA in PBS; 2% BSA in PBS was found 

optimal which provided a sensitive standard curve. 

c. Primary antibody concentration range tested: 1:5000-1:20000 dilutions 

were tested for each concentration where a different variable was 

being optimised-under the condition that were chosen to be optimal. 

1:10000 dilution gave most sensitive standard curve. 

d. HRP secondary Ab concentration range tested: 1:2500-1:10000 tested 

for each of the two different preparations, against the full range of 

primary antibody concentrations tested- 1:10000 Goat anti-rabbit, 

(Immunopure, Thermo Scientific, Rockford, USA) was found optimal in 

terms of sensitive standard curve obtained when tested along with 

1:10000 of primary antibody. 
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e. TMB incubation time range tested: 5- 10 minutes- 10 minutes 

incubation time was optimal, which was based on, the sensitive 

standard curve obtained. 

Overall optimization from the above trials indicated that using 1:10000 of 

CMO to coat the plate, 2% BSA in PBS blocking buffer, 1:10000 of primary 

antibody and 1:10000 of secondary antibody (HRP conjugate) (Goat 

Antirabbit, ImmunoPure, Thermo Scientific, Rockford, USA) gives a sensitive 

sigmoidal standard curve (Figure 2.4). 

2.7.4 Validation of the technique 
 
Cortisol assay specificity was determined by calculating the percentage cross-

reactivity with a range of different steroids supplied by Sigma, USA and intra 

and inter-assay CVs were also determined. 

2.7.4.1 Specificity- Cross reactivity test  
 

The cross reactivity test showed acceptable levels of cross reactivity with all 

steroids tested apart from 11-deoxycortisol (22.8% cross reactivity) and 

corticosterone (18% cross reactivity). Since 11-deoxycortisol is found at a 

concentration of 100 times lower than cortisol and does not have any 

glucocorticoid or mineralocorticoid effect (Lopez-Calderon, 1999), it is very 

unlikely that this steroid could be a source of false elevation of cortisol in data 

sets obtained. Corticosterone, on the other hand is not the dominant hormone 

in sheep unlike in rats and birds, it showed 18% cross reactivity in our 

experiments, however, since this is not the primary end product of 

glucocorticoid synthesis in sheep, then similar to 11-deoxycortisol, 

corticosterone is present at much lower concentrations in cortisol dominant 

species, and thus is unlikely to pose real issues in terms of inaccuracy in 

sheep. It should also be remembered that the primary purpose of 

development of this assay was to measure cortisol pre and post adrenal 

stimulation in sheep, and that the other steroid under examination would be 

testosterone; neither testosterone, nor the other steroids tested showed any 

appreciable cross reactivity and hence the cortisol ELISA was deemed 
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precise enough for the use intended. Therefore the hormone does not 

interfere with the assay sensitivity. 

 

      

Figure 2.4. Cortisol standard curve representing selection of optimal 

concentrations of CMO, blocking buffer, primary and secondary antibody used 

in optimizing the EIA.  

A. CMO- 1:10000, blocking buffer-2%BSA in PBS, Primary Antibody- 

1:10000, secondary antibody- 1:10000. 

 

2.7.5 Intra-assay and interassay coefficient of variances (CVs) 
 
Two different intra-assay CVs were calculated based on the cortisol 

concentration obtained from the samples which were <100ng/ml and  

>100ng/ml. The intra-assay CV for samples <100ng/ml concentration was 

6.6% and for those samples >100ng/ml the CV was 11.8%. This compares 

well with commonly used commercial ovine cortisol ELISA eg. Abnova 

(<100ng/ml=9.4%; >100ng/ml=6.2%) and was considered acceptable for use. 

Since all samples from experimental animals showed less than 100ng/ml 

cortisol, 6.6% intra-assay CV was considered to be the most accurate CV in 

terms of the data generated. Inter-assay CV was calculated over 10 different 

cortisol assay plates based on a QC of intermediate range (318ng/ml) of 

cortisol. This gave an inter-assay CV of 10.1%, again comparing reasonably 

well with commercially available assays (eg.Abnova interaasay CV of 8.6-

15%). 
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Hormones % Cross-reactivity 

11-deoxycortisol 22.8% 

Corticosterone 18% 

Androstedione 0.47% 

Cortisone 10.4% 

DHEA <0.1% 

Progesterone 2.7% 

Testosterone <0.1% 

DHT <0.1% 

Estradiol <0.1% 

Table 2.7. Percentage cross reactivity of different steroids tested 

against cortisol using the enzyme immunoassay (EIA) using the 

optimized parameters. 

 

Intra-assay CV CV 

<100ng/ml 6.6% 

>100ng/ml 11.6% 

Table 2.8. Intra-assay coefficient of variation expressed as 

percentages of low and high concentrations.  

 

2.7.6 Serum extraction 
 
See details of extraction procedure for testosterone assay (Section 2.6.1).  

 

2.7.7 Enzyme linked immunosorbent assay (ELISA) protocol – 
Cortisol 
 

The optimized protocol was as follows. A 96-well plate (Microlon®, Germany) 

was coated with 200µl of Cortisol- carboxymethyloxime (CMO) (Biogenesis, 

Poole, England) conjugate anti-antigen IgG (1:10000 dilution) in coating buffer 
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(Table 2.9). Plates were then covered with parafilm (Greiner Bio-One, 

Stonhouse, Glasgow) and incubated overnight at 40C. Plate contents were 

discarded and the plate was washed five times in wash buffer (Table 2.9) 

using an automatic plate washer (CAPP, Wash™) and then tapped on a paper 

towel to remove any residual liquid in the plate. The plate was blocked by 

adding 250µl of 2% blocking buffer in BSA for 1 hour at room temperature to 

avoid non-specific binding of the antigen. The plate was washed X5 in wash 

buffer prior to adding the sample and primary antibody.  200µl volume 

containing 100µl of the sample or standards or controls and 100µl of cortisol 

primary antibody (1:10000 dilution) was added to the 96- well plate in 

duplicate according to the plate well plan using a Hamilton diluter instrument 

(Microlab®, Switzerland) for accuracy and the plate covered with parafilm and 

incubated for 2 hours at room temperature.  Plates were then washed five 

times in wash buffer and dried on paper towels followed by addition of 100µl 

of 1:10000 dilution of donkey anti-sheep horse radish peroxidase (HRP) 

(ImmunoPure®
 ThermoScientific, USA) (detection antibody) using a 

multichannel pipette and incubated for 1 hour at room temperature. The plate 

was given a final wash five times in wash buffer and then 100µl of tetra methyl 

benzidine (TMB) (Millipore, Termacula, California) was added and incubated 

in darkness until a blue colour developed. Once the colour was developed, 

100µl of stop solution (1M H2SO4 ; Table 2.9) was added to stop HRP activity. 
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Buffer Chemicals/Stock pH Final 
volume 

Manufacturer 

Coating 

buffer 

Na2CO3 :2.12g 

NaHCO3 :2.02g 

9.6 1L Sigma, USA 

Blocking 

Buffer 

PBS 

(NaCl        :8g 

KCl           :0.2g 

Na2HPO4 :1.44g 

KH2PO4   : 0.24g) 

+ 2% BSA 

 

 

 

         7.4 

 

 

1L 

 

 

Sigma, USA 

Assay Buffer DPBS + 0.1% 

BSA 

+preservative 

7.4 1L BioWhittaker®, 

Lonza, 

Germany 

Wash Buffer Tris 250mM: 

30.285g 

NaCl 250mM 

:43.83g 

19mL of 

Conc.HCl 

7.4 1L Sigma, USA 

Stop 

Solution 

1M Sulphuric 

Acid 

         _        _         _ 

Table 2.9. Constituents of reagents used for Cortisol ELISA 

optimization and validation. 

 

Finally, the plate was read on a plate reader (Multiskan Ex, LabSystems) at 

450nm using Multiskan Transmit software to obtain absorbance values of 

standards, controls and samples. The absorbance data obtained from the 

plate reader was opened using Microsoft excel software and copied onto 

MasterPlex™(MiraiBio Group, Hitachi Software solutions, USA) which plotted 
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a standard curve (five parameter logistics cubic spline) and measured the 

concentration of the samples and quality control (QCs) included in each which 

were used to calculate assay coefficient of variance.  

 

2.8 Statistical Analysis 
 

Statistical analysis was performed using the computational software 

GraphPad Prism v6.0 (GraphPad Software Inc., San Diego, CA). The majority 

of data dealt with in this thesis was the comparison of raw data between 

control and 3 other treatment groups (TP, DES and DEX). One-way ANOVA 

was employed for fetal control, TP and DES treatment and Student’s unpaired 

t-test was performed Control and DEX treatment and control groups between 

sexes. In all cases, data was considered significant where P<0.05. Where any 

data manipulation/transformation was required prior to statistical testing this is 

mentioned in each specific case. 
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Chapter 3 The effects of direct prenatal steroidal 
excess exposure on developing fetal pancreas 
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3.0 Introduction 
 
Variables in the maternal or placental environment, such as hormonal or 

nutritional indices, can have effects on the developing fetus, which can later 

lead to metabolic associated health consequences during adulthood (Barker, 

2004; Godfrey and Barker, 2001). The fetal pancreas is one such tissue, 

which is vulnerable to in utero exposure to altered nutritional or hormonal 

environments (Petrik et al., 1999; Rae et al., 2013) with consequences 

observed in adult life in both humans and animal models (Kanaka-

Gantenbein, 2010; Rae et al., 2013; Roland et al., 2010). 

 

Fetal pancreatic development in sheep beings at approximately dGA 25-26, 

where two parts of the epithelium forms distinctive buds (Slack, 1995), 

however after primary (24dGA) and secondary (24-29dGA) transition, the islet 

like structures are formed around  d33GA (Cole et al., 2009) (Figure 3.1) and 

finally distinctive insulin (β) and glucagon (α) secreting cells are present 

around d40 (A L Fowden and Hill, 2001). This study focuses on the effects of 

midgestation (d62 & d82) direct in utero steroid exposure (Figure 3.1) on the 

developing pancreas in terms of gene expression, islet morphology and 

function, as we know from our previous work that midgestational (d62-102) 

maternal androgen exposure in pregnant sheep leads to altered fetal 

pancreatic gene expression and function in female fetuses. This was carried 

into adtulhood further leading to altered pancreatic β-cell mass (Rae et al., 

2013) and function in adulthood (Hogg et al., 2011) and is relevant to clinical 

conditions such as polycystic ovary syndrome (Dumesic et al., 2007). Women 

with PCOS suffer from not only reproductive abnormalities (Teede et al, 2010)  

but also metabolic associated abnormalities such as hyperinsulinemia, insulin 

resistance, hyperglycemia, obesity and type 2 diabetes (Dantas et al., 2013). 

 

The rationale behind the direct fetal injection of steroid employed here is that 

there are certain drawbacks in the previous maternally androgen exposed 

models, where placental aromatase can metabolise androgens to estrogens 

including estrone and estradiol, meaning prenatal androgen exposure leads to 
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elevated fetal circulating estrogen levels in addition to male androgen 

concentrations in female fetuses (Rae et al., 2013). 

 

 

Figure 3.1. Sheep fetal development and mid-gestational direct fetal steroid 

treatment regime in our sheep model.  

At d33 gestation, islet-like structures are formed in sheep fetus and later by 

d40 gestation the islets are differentiated into insulin and glucagon secreting 

cells (Cole et al., 2009). Sheep fetuses were directly exposed to TP, DES and 

DEX (20mg) at d62 and d82 gestation and the fetuses were sacrificed at d90. 

Term~147 days 

  

This then begs the question as to whether the effects observed are 

androgenic or estrogenic. Recently, it has been shown that testosterone 

exposure to pregnant ewes from d30-d90 led to increased fetal serum 

estradiol and estrone levels (Almudena Veiga-Lopez et al., 2011), which may 

have programming effects in adulthood (Steckler et al., 2007; West et al., 

2001). Another reason behind developing the direct fetal injection model was 

to allow manipulation of the dose of steroids to which the fetus was exposed. 

Dihydrotestosterone (DHT), which is a non-aromatizable androgen, has been 

used in sheep studies to delineate androgenic effects from estrogenic during 

fetal programming (Steckler et al., 2007; West et al., 2001), where the 
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pregnant mother was injected with TP or DHT. However, this does not give a 

clear picture for dosage control and thus the amount of DHT or TP reaching 

the fetus via placental route could remain variable. In addition, there could be 

androgenic placental effects, which could modulate potential estrogenic 

effects, masking the true situation. 

 

In the current chapter, we have investigated the effects of direct 

administration of different classes of steroids such as TP (aromatizable 

androgen), DES (synthetic estrogen) and DEX (synthetic glucocorticoid) on 

the developing female fetal pancreas. Readouts from these experimental 

manipulations are expression profiles of key genes involved in regulating β-

cell development and function at d90 gestation. This study also utilized male 

fetal pancreas samples, wherever possible, in order to examine differences 

between the male and female fetal pancreas, and differences in their 

responses to prenatal steroid excess. 

 

The aims of this chapter were to measure the effect of mid-gestation direct 

steroid exposure on the developing pancreas, addressing the following 

research questions: 

 

a. Do excesses of androgens, estrogens or glucocorticoids have effects 

on key genes associated with pancreatic development? 

b. If effects of genes involved in pancreatic development are noted, is 

there evidence of downstream structural alterations in the developing 

pancreas? 

c. Do consequences of steroidal excesses during development have 

functional effects upon insulin secretion from developing fetal 

pancreas? 

d. Are responses to steroidal excesses fetal sex-specific? 
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3.1 Materials and methods 
	  

3.1.1 Experimental animals 
 
Ethical approval, animal husbandry, treatment regime, sacrifice, fetal tissue 

collection are detailed in section 2.1-2.2. The female and male fetuses 

assessed in this chapter are listed in the table 3.1. 

 

 
Analysis 

 
Female fetuses 

 
Sample Number (n) 

RNA (qRT-PCR) study 

 
Injection at d62 and d82, 

collection and assessed 

at d90 

C=7;TP=7(20mg) 

DES=5 (50µg); DEX=4 

(100µg) 

Histology Injection at d62 and d82, 

collection and assessed 

at d90 

C=5;TP=5 (20mg) 

DES=5 (50µg); DEX=4 

(100µg) 

Tissue Culture Injection at d62 and d82, 

collection and assessed 

at d90 

C=5;TP=7 (20mg) 

DES=4(50µg); DEX=4 

(100µg) 

 
Fetal injected fetuses 

 

 
Male fetuses 

 
Sample Number (n) 

RNA (qRT-PCR) study 

 
Injection at d62 and d82, 

collection and assessed 

at d90 

C=7;TP=7(20mg) 

DES=5 (50µg);DEX=4 

(100µg) 

Histology Injection at d62 and d82, 

collection and assessed 

at d90 

C=5;TP=5 (20mg) 

DES=6(50µg); 

DEX=6 (100µg) 

Table 3.1 Animal treatment cohorts discussed in this chapter, 

treatment regime and relevant sample numbers. 

 
 



Chapter 3                                   Effects of prenatal steroids on fetal pancreas  

97	  

3.1.2 Tissue collection 
 
Fetal pancreas from both male and female fetuses were collected after 

dissection at d90, where one part of the tissue was snap frozen at -800C and 

the other half was stored in Bouins fixative for 24h prior to transfer to 70% 

ethanol and embedded in paraffin wax for histological studies. In all cases 

tissue was sampled from the mid portion of the fetal pancreas to make 

samples as comparable as possible. 

 

3.1.3 Analysis of Gene expression in the fetal pancreas 
 
Fetal Pancreatic tissues were collected and the RNA extracted was reverse 

transcribed to cDNA as detailed in Chapter 2, Section 2.3.1-2.3.3), then qRT-

PCR was performed to measure the relative gene expression (details in 

Chapter 2, Section 2.3.5). Table 3.2 is the summary of forward and reverse 

primers used to quantitate gene expression of genes of interest and 

housekeeping/reference genes identified as stable by GENORM algorithm 

analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3                                   Effects of prenatal steroids on fetal pancreas  

98	  

 
Table 3.2 List of forward and reverse primer sequences (genes of 

interest and reference genes) for ovine fetal pancreas.  

Genes of 
Interest 

Forward primer(5’-3’) Reverse primer(5’-3’) 

INS CCAGCGGGAAATCAAGAGA

GA 

CCCTAGGGAGCTGGTCACTT 

INSR GCTTCGAGGCTGCACCAT AGCTCAGCTGCCAGGTTGTT 

PDX-1 CAGAGCCGGAGGAGAACAA

G 

CTGGAGATGTATTTGTTGAAAAGG 

GLUT-2 CGAAATTGGGACCATCTCAC

AT 

CACCGATAGCACCCCTGAGT 

IGF-1 GCTTCCGGAGCTGTGATCTG GACTTGGCGGCCTTGAGA 

IGF-II GGCGGGGAGCTGGTGGACA TCGGTTTATGCGGCTGGATGGT 

IGFR-I GAATCTGCCAAGGAGACTCG CCTGACAGCTGGACTACAGGCATC

A 

IGFR-II ATGAAGCTGGACTACAGGCA

TCA 

GCTCGCCGTCCTCAGTTTC 

AR GCCCATCTTTCTGAATGTCG CAAACACCATAAGCCCCATC 

ER-α GAATCTGCCAAGGAGACCG CCTGACAGCTCTTCCTTCTG 

ER-β GAGGCCTCCATGATGATGTC GGTCTGGAGCAAAGATGAGC 

GR AAGTCATTGAACCCGAGGTG ATGCCATGAGGAACATCCAT 

Reference 
genes  

Forward primer (5’-3’) Reverse primer (5’-3’) 

GAPDH GGCGTGAACCACGAGAAGT

ATAA 
AAGCAGGGATGATGTTCTGG 

RPL19 SEQUENCE NOT AVAILABLE SEQUENCE NOT AVAILABLE 

ATP Synth SEQUENCE NOT AVAILABLE SEQUENCE NOT AVAILABLE 

β-actin SEQUENCE NOT AVAILABLE SEQUENCE NOT AVAILABLE 
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Where sequences are unavailable, this is due to the primers used being part 

of the GENORM kit as supplied, where sequence information was 

manufacturers proprietary information. 

 

3.2 Fetal Pancreatic Histology 
 
Fetal pancreatic tissue was immersion fixed in Bouins solution at the time of 

collection for 24h, and then embedded in paraffin wax as detailed in Chapter 

2, Section 2.4.1-2.4.3. 

 

3.2.1 Tissue sectioning  
 
Paraffin embedded fetal pancreatic blocks were cut into 5µm thin sections 

using a microtome (RM2125 RT, Leica Microsystems, Heidelberger, 

Germany) and wax ribbons were placed on surface of the water bath (Grant 

Instruments, Cambridge, UK) to float at 41oC. Each slide contained three 

sections/animal (selected sections 1, 11 and 21) separated by 50µm apart 

each to avoid the same cells being represented in more than one section. 

Sections collected onto charged slides (Supraflost Plus, Thermo Scientific, 

Epson, UK) were dried in an oven at 650C to bond the tissue to the glass and 

finally slides were stored at room temperature for immunohistochemical 

studies.  

 

3.2.2 Immunohistochemistry  
 

Immunohistochemistry on fetal pancreatic tissue was carried out as detailed in 

Chapter 2, section 2.4.4. Table 3.3 lists the antibodies used for fetal pancreas. 

 
3.2.3 Cell counting  
 
Cells in the sections (3 section/animal) that were positive for insulin and 

glucagon (separate slides) were visually scored under the 10X objective of a 

light microscope (Leitz Wetzlar, Germany). Five random fields were chosen 
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from each section and the stained cells were counted in a 10 by 10 grid. A 

mean of the counts from the 5 fields in each section was calculated and 

divided by 1.16 (correction factor- to correct to mm2) to obtain the number of 

stained cells per mm2 per section. In the same way, a mean value from all 

three sections per slide was taken into account to get a value for each animal 

subjected to analysis. 

 
Antigen to be 

detected 

Antibody Dilution Manufacturer Secondary 

antibody 

Insulin  Mouse 

monoclonal anti-

insulin antibody 

1:1000 abCam® GAMB (Vector 

laboratory) 

Glucagon Mouse 

monoclonal 

glucagon 

antibody 

1:4000 abCam® GAMB (Vector 

laboratory) 

Table 3.3. List of antibodies analysed by Immunohistochemsitry in 

fetal pancreas. 

Listed are the concentrations of primary antibody and secondary antibodies 

applied were universal goat-anti mouse biotinylated (GAMB) antibody.  

 

3.3 Tissue culture 
 
Fetal pancreatic tissue biopsies collected from the fetal injected (FI) fetuses 

were minced finely under aseptic conditions and later re-suspended in 

collagenase (3mg/ml) (Sigma Aldrich, Poole, UK) containing HEPES buffered 

saline solution (HBSS) and incubated at 37oC for 20 min. Suspensions were 

further disaggregated by passing through a 10G needle 3 times, then 

centrifuged (600g, 10 min). Collagenase containing medium was aspirated, 

then 2ml HBSS (wash solution) was added and the centrifugation step 

repeated, prior to re-suspension in 1ml culture medium (Dulbecco’s Modified 

Eagle medium (DMEM), 2mM L-glutamine, 100U/ml penicillin, 0.1mg/ml 

streptomycin, 0.25% bovine serum albumin (BSA), pH 7.4 (final glucose 

concentration 5.5mM) (Sigma Aldrich). 100µl aliquots of cell suspension were 
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added to 300µl of culture medium containing glucose (5.5mM, euglycaemic), 

and incubated for 3 hours at 37oC/5% CO2 (balance was air) with gentle 

agitation in sterile tubes with vented lids. At the end of the incubation time, 

samples were centrifuged (600g, 15 min), then supernatants removed and 

frozen at -20oC until insulin measurement. Cell pellets were washed twice with 

1ml of PBS, pH7.4 after re-suspension and were centrifuged to repellet and 

stored at -20oC until protein determination. Prior to performing protein 

estimation assays, pancreatic cell pellets were resuspended in lysis solution 

(50nM Tris-HCl, pH8.0, 150mM NaCl, 0.1% Triton-X-100) and sonicated for 2 

minutes, followed by a one-minute incubation on ice, then a further 2 minutes 

sonication on ice. 

 

3.3.1 Hormone determination 
 
ELISA kits for ovine insulin (ALPCO, Salem, NH) were used to measure 

insulin in tissue culture supernatants. The data were collected by making use 

of a Dynex Technologies Revelation 4.25 plate reader (dual wavelength 

detection) using a detection wavelength of 450nm and a reference 

wavelength of 630nm as per manufacturer instructions. Curve fitting was 

cubic spine fit. Samples were assayed in duplicate on a single plate per 

experiment to avoid any plate-to-plate variation. In our hands this ELISA kit 

had an intra assay coefficient of variation of 4.5% and sensitivity of 0.14ng/ml. 

 

3.3.2 PCR data derivation and Statistical Analysis 
 
A comparative Ct analysis was used in order to establish the mRNA 

expression of the genes of interest (GOI) relative to untreated samples. The 

geometric mean of the most stable housekeeping genes analysed (using 

GeNorm analysis) for both female (ATPsynth and β-actin) and male tissues 

(ATPsynth, RPL19, GAPDH) was utilised as a housekeeping score in order to 

determine the ΔCt value (Ct of target gene- Ct of housekeeping gene). The 

ΔΔCt value for each gene of interest was determined by calculating the 

difference between the ΔCt of a sample from that of ΔCt of a reference 
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sample, constructed from a pool of ovine pancreatic samples (sufficient was 

prepared such that all analyses included this reference sample in all PCR 

runs). 2(-ΔΔCt) was calculated for each gene of interest, in which the data was 

converted to a fold change further to give relative expression of the gene in 

treated samples as compared to control (untreated) animals. 

 

All the above, along with the cell counts data from immunohistochemistry, and 

in vitro insulin secretion experiments, was transferred to GraphPad Prism 

(v.6.0, Graphpad software, San Diego, California, USA). Log transformation, 

(base10), was carried out where data sets displayed unequal skew. Statistical 

analysis was carried out relevant to research questions, hence, due to the 

interest in comparing and contrasting effects of TP and DES, data from 

Control, TP and DES were analysed using one-way ANOVA (analysis of 

variance) followed by Tukey’s post-hoc test to determine specific differences 

between groups. Differences between Control and DEX group were analysed 

using unpaired two-tailed Student’s t-test. Results are presented as +SEM 

and p-value, where P<0.05 was considered significantly different. 
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3.4 Results 
 
3.4.1 Effect of direct fetal steroid exposure on ovine male and 
female fetal pancreas 
 
qRT-PCR analysis on fetal female and male pancreas was performed in order 

to determine changes in the relative expression levels of genes due to the 

prenatal over-exposure of TP, DES and DEX in comparison to control groups 

(listed in the figure 3.2-3.5 below). Since DES is a synthetic estrogen, and TP, 

an aromatizable androgen, analysis of these treatment groups together 

permitted resolution of androgenic and estrogenic effects. Dexamethasone 

(DEX), a synthetic glucocorticoid, was compared against control groups 

independent of the above analysis to determine the relative gene expression 

levels in the fetal pancreas in response to elevated glucocorticoids, as a 

surrogate of maternal/fetal stress and aberrant adrenal function. Insulin and 

glucagon immunohistochemistry was quantified in fetal pancreata from both 

sexes (Figure 3.7.2 and 3.8.2). Furthermore, in vitro insulin secretion in 

response to static, euglycaemic glucose load was also measured. This latter 

analysis was only conducted in female tissue due to practical constraints of 

time during tissue collection sessions (Figure 3.9). 

 

3.4.1.1 Male and female comparative fetal pancreatic gene 
expression  
 
Pdx-1 mRNA expression was significantly higher (P<0.01; Figure 3.2.A) in 

male fetal control animals compared to female controls and there was a trend 

towards increase in AR (P=0.0542; Figure 3.2.G) gene expression in male 

controls compared to female control animals. None of the other genes 

analysed showed any significant difference between sexes in terms of gene 

expression analysed in this study. 
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Figure 3.2 Comparative gene expression analysis in male and female control 

fetal pancreas at d90 gestation the d90 fetal control. Female Control (n=7), 

Male Control (n=7) **P<0.01.  

 

3.4.1.2  Fetal pancreatic gene expression responses to TP and 
DES treatments 
 
Figures 3.3 and 3.4 summarize the effects of TP and DES on the developing 

pancreas due to steroid application in both female and male fetuses 
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respectively. PDX-1 (key transcription factor driving insulin gene transcription) 

mRNA abundance was significantly increased (P<0.001; Figure 3.3.A) by TP 

treatment in females, but no effect was seen with DES treatment in females 

and males showed no effect with either treatment (Figure 3.4.A). Insulin gene 

(INS) mRNA abundance was significantly increased (P<0.05; Figure 3.3.B) by 

TP treatment, but was unaffected by DES in females, whereas there was no 

significant effect in male pancreas from either treatment (Figure 3.4.B). Insulin 

receptor (INSR) was significantly increased by TP treatment (P<0.05; Figure 

3.3.C), but not with DES treatment, in females and there was no effect of 

either treatment in males (Figure 3.4.C). IGF- receptor type-1 (IGFR-1) mRNA 

abundance displayed a strong trend (P=0.06;Figure 3.3.D) towards increased 

expression driven by TP treatment in females, and once again there was no 

change with either treatments in male fetuses (Figure 3.4.D). IGFR-II mRNA 

abundance was not significantly altered by TP or DES treatment in either 

sexes (Figure 3.3.E and Figure 3.4.F). Slc2a2, the gene coding for membrane 

bound transport protein GLUT-2, which imports glucose in β-cells and is also 

a mediator of insulin secretion was unaffected in females (Figure 3.3.F) by 

either TP nor DES treatment, however, it was significantly decreased by TP 

treatment in males (Figure 3.4.F). Androgen receptor (AR) mRNA abundance 

was significantly increased (P<0.05; Figure 3.3.G) by TP treatment when 

compared to control group in female fetuses only. 
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Figure 3.3 Effect of fetal TP and DES exposure on expression of PDX-1, INS, 

INSR, IGFR-1, IGFR-II, Slc2a2, AR, ERα, ERβ, GR, IGF-I and IGF-II (A-L) in 

female fetal pancreas at d90 gestation in comparison to controls. (Control 

n=7;TP n=7; DES n=5) *P<0.05; ***P<0.001 
 

Estrogen receptors, namely ERα (Figure 3.3.H; Figure 3.4.H), ERβ  (Figure 

3.3.I; Figure 3.4.I) and glucocorticoid receptor (GR) (Figure 3.3.J and Figure 

3.4.J), were unaffected by any treatment in either fetal gender.  Insulin like 

growth factor type-1 (IGF-1) and type-2 (IGF-II) mRNA abundance (studied 
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only in females) were not significantly altered by any treatment in females 

(Figure 3.3.K-L). 

 

Figure 3.4 Effect of fetal TP and DES exposure on expression of PDX-1, INS, 

INSR, IGFR-1, IGFR-II, SLC2A2, AR, ERα, ERβ and GR (A-J) in male fetal 

pancreas at d90 gestation in comparison to controls. (Control n=7;TP n=7; 

DES n=5) *P<0.05. 
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3.4.1.3 Fetal pancreatic gene expression responses to 
DEX exposure 
 

PDX-1 (P<0.001; Figure 3.5.A) and ER-α (P<0.05; Figure 3.5.H) mRNA 

abundances were significantly increased by DEX treatment in female fetal 

pancreas, but no effects were noted in males (Figure 3.6.A; Figure 3.6.H-F). 

Insulin receptor (INSR) mRNA expression (P<0.01; Figure 3.5.C) was 

significantly decreased in the fetal female pancreas, but was unaffected in 

male pancreas (Figure 3.6.C). GR mRNA abundance was unaffected by DEX 

treatment in females (Figure 3.5.J), however was significantly increased (~2 

fold) in DEX treated males (P<0.01; Figure 3.6.J) compared to controls. INS, 

IGFR-I, IGFR-II, Slc2a2, ERβ, IGF-1 and IGF- II (studied only in females) 

mRNA abundances were not altered in either fetal sex by DEX treatment. 
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Figure 3.5 Effect of fetal DEX exposure on expression of PDX-1, INS, INSR, 

IGFR-1, IGFR-II, SLC2A2, AR, ERα, ERβ, GR, IGF-I and IGF-II (A-L) in 

female fetal pancreas at d90 gestation in comparison to control (Control n=7; 

DEX n=4)*P<0.05; ***P<0.001. 
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Figure 3.6 Effect of fetal DEX exposure on expression of PDX-1, INS, INSR, 

IGFR-1, IGFR-II, SLC2A2, AR, ERα, ERβ and GR (A-J) in male fetal 

pancreas at d90 gestation. (Control n=7; DEX n=4)**P<0.01. 
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3.5 Effects of excesses of TP, DES and DEX upon pancreatic 

β-cell morphology in females and male fetuses. 
 
In order to investigate the effect of mid-gestation steroid exposure on female 

and male ovine fetal pancreatic morphology, alpha and beta cell numbers 

were quantified for each treatment group. 

 

3.5.1. α- Cell Morphology 
 
 

Number of glucagon secreting α-cells were significantly increased in male 

control animals (P<0.01; Figure 3.7.1.A) compared to female controls. 

However, none of the prenatal steroids (TP, DES and DEX) had any effect on 

α-cell numbers in either fetal sex (Figure 3.7.1 B-E). 
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Figure 3.7 Effect of direct prenatal steroid treatment on glucagon secreting α-

cell numbers in the female and male ovine fetal pancreas at gestational d90  

A) Glucagon secreting α-cells in female control animals. (B-D) Glucagon 

secreting α-cells in female TP, DES and DEX animals respectively (Control 

n=5, TP n=5, DES n=5, DEX, n=4) (E-H). E) Glucagon secreting α-cells in 

male Control animals. (F-G) Glucagon secreting α-cells in male TP, DES and 

DEX animals (Control n=5, TP n=5, DES n=6, DEX, n=6). Arrows indicate 

glucagon-secreting α-cells. Inset boxes are negative control sections for 

comparison. Scale- 50µm 
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Figure 3.7.1 Effect of direct prenatal steroid injection on α-cell numbers in the 

male and female ovine fetal pancreas at gestational d90.  

A)  α-cell counts between male and female control B) Female- α-cell number 

after direct fetal injection of TP or DES compared to Control (Control n=5, TP 

n=5, DES n=5). C) female- α-cell number after direct fetal injection of DEX 

compared to Control (DEX n=4). D) Male- α-cell number after direct fetal 
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injection of TP and DES compared to Control in males. E) α-cell number after 

direct fetal injection of DEX compared to Control (DEX n=6) in males. Values 

represent mean ± SEM. 
 

3.5.2 β-cell counts/islet morphology  
 

Figure 3.8. Effect of direct prenatal steroid treatment on β-cell numbers in the 

female ovine fetal pancreas at gestational d90  

(A-D). A) Insulin secreting β-cells in Control animals B) Insulin secreting β-

cells were significantly increased (P<0.01) by TP treatment but not with DES 

(C) or DEX (D) in female fetal pancreas (DES; Control n=5, TP n=5, DES n=5, 

DEX, n=4). Arrows indicate insulin-secreting β-cells. Inset boxes are negative 

control sections for comparison. Scale- 50µm 
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Figure 3.8.1 Effect of direct prenatal steroid treatment on insulin secreting β-

cell numbers in the male ovine fetal pancreas at gestational d90. 

 A) Insulin secreting β-cells in Control animals. B-D) Insulin secreting β-cells in 

Control, TP, DES and DEX animals (Control n=5, TP n=5, DES n=6, DEX, 

n=6). Arrows indicate insulin-secreting β-cells. Inset boxes are negative 

control sections for comparison. . Scale- 50µm 

 

Number of insulin secreting β-cells was significantly increased in male control 

animals compared to female controls (P<0.05; Figure 3.8.2.A). Interestingly, 

number of insulin-secreting β-cells were significantly increased in female 

fetuses (P<0.001) in response to TP treatment (Figure 3.8.B and 

Figure.3.8.2.B) but not with DES, which had no effects in either sex. DEX 

treatment also had no effect on β-cell numbers in either sex. 
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Figure 3.8.2 Effect of direct prenatal steroid injection on β-cell numbers in the 

female and male ovine fetal pancreas at gestational d90.  

A) Insulin secreting β-cells in female and male fetal control pancreas (Control 

n=5 B) β-cell number exposed to direct fetal injection of TP and DES 

compared to Control in females (Control n=5, TP n=5, DES n=5). C) β-cell 

number exposed to direct fetal injection of DEX compared to (Control n=5; 
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DEX n=4) in females. D) β-cell number exposed to direct fetal injection of TP 

and DES compared to Control in males (Control n=5, TP n=5, DES n=6).E) β-

cell number after direct fetal injection of DEX compared to Control (Control n= 

5; DEX n=6) in males. One way ANOVA used for C, TP and DES and student 

unpaired t-test for C and DEX (non parametric). Values represent mean ± 

SEM. *P<0.05; *P<0.01 

 

3.5.3 Functional analysis- direct prenatal androgen (TP) 
exposure altered in vitro insulin secretion in female fetal 
pancreas 
 

In vitro insulin secretion was significantly increased (P<0.05; Figure 3.9.A) by 

prenatal TP treatment in female fetal pancreatic tissue culture in response to 

euglycaemic glucose concentrations (5.5mM) but not with DES or DEX 

(Figure 3.9.B) treatment. 

 

 

Figure.3.9 In vitro insulin secretion in response to euglycaemic culture.  

A) Insulin secretion post glucose stimulation (5.5mM) in vitro by TP treatment 

and DES in female fetal pancreatic culture (Control n=5, TP n=7, DES n=7) B) 

insulin secretion after direct fetal injection of DEX in females (Control n=5, 

DEX n=4). Values represent +SEM compared to control. *P<0.05. 
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3.6 Discussion 
 
During fetal development, nutritional or hormonal challenge occurring during 

critical periods of organogenesis can lead to alteration of developmental 

processes (Godfrey and Barker, 2001). As the pancreas is a sex steroid 

responsive tissue (Morimoto et al., 2010), in utero steroid exposure can give 

rise to altered fetal pancreatic gene expression, structural changes (Rae et 

al., 2013) and functional changes during adulthood (Roland et al., 2010), 

which may underpin health issues later in adult life as seen in clinical 

conditions such as PCOS (Dumesic et al., 2007). It is evident from several 

animals models of polycystic ovary syndrome, such as rodents, sheep and 

monkeys that maternal steroid (androgen) exposure during pregnancy can 

lead to metabolic abnormalities such as altered glucose tolerance, β-cell 

morphology, insulin resistance and hyperinsulinemia during adulthood (Bruns 

et al., 2004; Hogg et al., 2011a; Rae et al., 2013; Roland et al., 2010).  

 

The effects of testosterone on fetal development could be androgenic or via 

metabolism to estrogens in the maternally androgen exposed sheep model 

(Veiga-Lopez et al., 2011), where placental aromatase can metabolise 

androgens to estrogens including estrone and estradiol, begging the question 

as to whether the effects observed in the metabolic tissues are androgenic or 

estrogenic (Veiga-Lopez et al., 2011). Earlier, we observed that maternal 

androgen exposure in sheep from d62-102 gestation increased plasma 

estradiol concentrations in female fetuses at d90 gestation (Rae et al., 2013) 

and androgen exposure to pregnant ewe from d30-d90 lead to increased fetal 

serum estradiol and estrone levels (Almudena Veiga-Lopez et al., 2011), 

which may have programming effects in adulthood (Steckler et al., 2007; West 

et al., 2001). Therefore, the current study also looked at DES exposed groups 

from d90 gestation as a direct comparator group against the TP treated 

fetuses. Finally, DEX exposed fetuses were included as a surrogate of stress 

and altered HPA axis activity. 

 

 



Chapter 3                                   Effects of prenatal steroids on fetal pancreas  

120	  

3.6.1 Effects of excesses of steroid treatment on female and 
male ovine fetal pancreas 
 

Previous work from our laboratory indicated AR colocalisation with insulin, 

indicative of β-cell androgen receptivity (Rae et al, 2013). AR has also been 

observed in the rat pancreas, and has testosterone mediated insulin promoter 

activity (Morimoto et al., 2001). Key regulators involved in both β-cell 

development and function, such as IGF1 and IGF2 (Fujimoto and Polonski, 

2009; Gatford et al., 2008) mRNA expression were unaffected by either FI-TP 

or FI-DES exposure in female sheep fetuses in this study, however we 

observed a strong trend (P=0.06) towards increased IGFR1 expression in 

females due to FI-TP but not FI-DES exposure. Maternal androgen 

administration in utero in sheep resulted in elevated expression of IGFR-1 in 

female fetal pancreas (Rae et al., 2013), and the trend towards increased 

expression seen here, given its female specificity, would appear likely to 

ascribe this modulation of expression to an androgenic effect (Rae et al., 

2013). Although not β-cell specific, IGF’s are of key importance in pancreatic 

islet cell development and function (van Haeften and Twickler, 2004). IGFs 

initiate key signalling pathways relevant to cell differentiation and maturation 

(Rhodes and White, 2002; Withers and White, 2002 and Burks and White, 

2001), which have clear implications for fetal life (Holt, 2002).  

 

Here we demonstrate that insulin receptor (INSR) mRNA abundance was 

significantly increased by TP treatment and not by DES in the female fetal 

pancreas. This is consistent with our previous work, where in utero maternal 

androgen (TP) exposure (d62-102) to pregnant sheep led to a significant 

increase in INSR mRNA abundance in d90 female fetal pancreas (Rae et al, 

2013). Thus our previously reported effect of TP on INSR mRNA was an 

androgenic effect, since DES could not replicate this. Whilst there was no 

difference in terms of basal INSR expression between male and female 

control fetuses, the lack of response to TP in males could be due to pre-

exposure to endogenous androgens secreted by the fetal testes from d30 

onwards. Insulin receptor facilitates insulin gene transcription downstream 
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from the insulin-signalling pathway (Saltiel and Kahn, 2001). Illustrating the 

importance of insulin signalling in β-cells, specific knockout of β-cell INSR 

(βIRKO) during postnatal life (4 months age) led to selective loss of insulin 

secretion in response to intraperitoneal glucose load in mice (Kulkarni et al., 

1999). Another study from the same group demonstrated decreased 

glucokinase and Slc2a2 gene expression along with beta cell mass in βIRKO 

mice female offspring (Otani et al., 2004), which clearly suggests that any 

changes in INSR mRNA may have a significant bearing upon insulin 

secretion.  

 

In addition to the latter elevated INSR expression, INS, a β-cell specific gene 

was also significantly increased due to TP and not DES treatment in females 

in terms of mRNA expression. Our previous work also demonstrated elevated 

INS gene mRNA abundance in female fetal pancreas whose mothers were 

exposed to androgens during pregnancy (Rae et al., 2013), which clearly 

suggests that the effect observed in previous study was androgenic with no 

estrogenic contribution. Okada et al., (2007), have also shown that insulin 

acting via insulin receptor is important for β-cell proliferation, suggesting that 

any changes in the level of insulin receptor may lead to alteration in β-cell 

function. This is supported by the studies of Morimoto et al., (2001), where 

testosterone increased INS mRNA abundance in male adult Wistar rats, 

however in the current study we saw no changes in the INS mRNA in male 

fetuses exposed to TP nor DES, which is again consistent with our previous 

work, where INS gene expression was unaltered in male fetal pancreas due to 

TP exposure (Rae et al., 2013), suggesting sex-specific differences in such 

androgen responses (Palomar-Morales et al., 2010). Maternal androgenic 

exposure route to some extent at least is compensated for by reduced 

endogenous testicular androgen synthesis (Connolly et al., 2013). However, 

direct fetal injections employed here are less likely to be explained by this due 

to the larger doses delivered to the fetus suggesting that there may be sex-

specificity in terms of effects that are additional to pre-exposure. Interestingly, 

INSR expression was significantly decreased by DEX treatment in females 

and the lack of this effect in males also points towards sex specificity of the 
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developing pancreas in terms of responses to steroid excess. To our 

knowledge this is first study to show such decreased expression of INSR 

mRNA in response to glucocorticoid excess in the female developing 

pancreas. Previously, in a prenatal protein restriction sheep model, increased 

pancreatic INSR expression in female lamb offspring was noted, indicative 

perhaps of a permanent programmed change in pancreatic function, but there 

was no change in β-cell mass observed (Gatford et al., 2008). 

 

In this study, PDX-1, also a β-cell specific gene, was significantly increased in 

terms of mRNA expression due to prenatal TP but not DES, once again in 

females only. IGF-1 signalling regulates β-cell mass upstream of PDX-1 

(Babu et al., 2007) In our previous study, maternal TP exposure led to 

increased PDX-1 mRNA expression in female fetal pancreas (Rae et al., 

2013). Thus these data indicate that the mode of action of TP on PDX-1 

expression in our previous study was androgenic and not via metabolism to 

estrogens. Interestingly, basal PDX-1 mRNA abundance was also significantly 

greater in males compared to females; consistent with the idea that 

androgens regulate the expression of this gene. Increased Pdx-1 expression 

in male fetuses could be due to the fact that PDX-1 expression and 

localization is seen at 33dGA in sheep fetal pancreatic β-cells (Cole et al., 

2009) coincidental with sexual differentiation at this gestational time point and 

thus endogenous androgen production. This then raises the hypothesis that 

prenatal androgenisation may to some extent give rise to a phenotypically 

male β-cell located in a female pancreas. As an aside, if as these data 

suggest, pancreatic sensitivity to androgenic steroids may be differentially set 

in male and females during the time of sexual differentiation, with functional 

consequences, then this may have implications in terms of origins of cells for 

transplantation. PDX-1 is involved in initiating differentiation and 

morphogenesis of the mouse pancreatic epithelial progenitor cells, later 

restricted to mature β-cells in adult life (Offield et al., 1996), hence increased 

PDX-1 expression noted here has the potential to drive increased β-cell mass 

and in tandem with increased INS expression, also insulin secretion. PDX-1 is 

also involved in transactivation of β-cell specific genes (Sander et al., 1997) 
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such as INS in rats (Gremlich et al., 1997), hence there is likely a functional 

relationship between elevated expression of PDX-1, INS (acting via INSR or 

IGFR-1) and in vitro insulin secretion in our FI-TP injected female fetal 

pancreas at d90 gestation, underscoring functional protein translation 

changes with potential consequences for long-term consequences due to 

steroidal alteration during fetal life (Rae et al., 2013). Summarising the 

changes in gene expression discussed above, if anything these would predict 

the possiblilty of increased insulin secretion and increased β-cell numbers in 

TP- exposed females. 

 

Examination of pancreatic tissues from d90 gestation revealed insulin 

secreting β-cell numbers were indeed increased in female fetal pancreas due 

to FI-TP exposure and not FI-DES nor FI-DEX suggesting that androgen 

overexposure stimulated β-cell mass regulation as predicted by the gene 

expression alterations discussed above. Interestingly, both basal α and β-cell 

numbers were significantly higher in males compared to females, once again 

suggesting that the FI-TP females may to some extent have a masculinised β-

cell phenotype in an otherwise ‘female pancreas’. However, there was no 

alteration in terms of α-cell numbers by any of the treatment groups applied in 

this study. This is in agreement with maternal nutrition manipulation: 

pancreatic developmental studies, where the sheep fetuses have 

demonstrated plasticity with regards to β-cell but not α-cell development (Ford 

et al., 2009). 

 

In terms of pancreatic function, as predicted by mRNA analyses and β-cell 

counts, TP treatment was associated with increased insulin secretion from 

isolated pancreatic tissue in response to a fixed, euglycaemic dose (5.5mM) 

of glucose in vitro in female fetuses. This is in accordance with our previous 

work in sheep, where in vitro insulin secretion was significantly increased in 

the prenatally androgenised female fetal pancreatic cultures. In the current 

study we did not measure fetal plasma concentrations because fetal insulin 

secretion is responsive to maternal glucose fluctuations. Instead we opted to 

examine potential secretory responses in vitro, and this demonstrated 
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increased insulin secretion in female fetuses exposed to TP during 

development, but not those exposed to either DES or DEX, indicative of an 

androgenic mode of action congruent with histological and molecular 

analyses. Similarly, rat female offspring, derived from pregnancies where 

maternal exposure to dihydrotestosterone (DHT) occurred, exhibited excess 

insulin secretion in cultured islets and impaired glucose sensing compared to 

control animals (Roland et al., 2010) indicating that the effects reported here 

may have consequences postnatally. In summary, excess fetal androgenic 

signalling in female fetuses was associated with increased β-cell numbers and 

gene expression alterations, which likely underpin increased β-cell numbers 

and functionally, increased insulin secretion. 

 

Given the presence of AR in insulin secreting β-cells (Rae et al., 2013) and 

upregulated AR expression in this study by TP treatment and not DES or DEX 

treatment in female pancreas, it is possible that these TP-treated pancreata 

may be more responsive to androgens. Interestingly, AR gene expression in 

control males as compared to females showed a trend towards being higher 

(P=0.054) and, in combination with basal Pdx-1 mRNA expression being 

higher in male controls than females, suggests androgens may enhance the 

receptive capacity of the developing pancreas to endogenous androgens. 

Again this points to the possibility of there being distinct male or female 

pancreatic phenotypes derived from fetal life steroid exposures.  

 

Both TP and DEX treatments caused increased PDX-1 expression in female 

fetuses. However, unlike the scenario discussed above with FI-TP, there was 

no change in expression of INSR, INS, IGFR-1, β-cell numbers or in vitro 

insulin secretion, associated with DEX stimulation. This is difficult to explain 

from current data sets, however it may suggest that since IGF signalling is so 

important for islet and β-cell development (Fujimoto and Polonski, 2009 and 

Gatford et al., 2008) and as there is a trend towards increase in IGFR-1 gene 

in the current study by TP (which was also evident in maternally exposed 

androgenized pregnancies- Rae et al., 2013) and not by DES or DEX, then it 

is possible that androgens mediate their effects via both IGF and insulin 
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signalling pathways, driving up downstream insulin gene transcription and 

insulin secretion. 

 

In addition to changes in pancreatic AR expression, estrogen receptor α (ER-

α) mRNA expression was also significantly increased following DEX treatment 

in females and increased GR in males, effects not replicated by TP or DES.  

Again, this demonstrates intrinsic differences between male and female 

pancreatic tissue, which we again suggest may at least in part be due to 

endogenous exposure to androgens from d30 onwards in males via testicular 

development. ERα is expressed in insulin secreting β-cells (Alonso-

Magdalena et al., 2008) and treatment with ERα agonist in Swiss albino male 

mice caused a significant increase in insulin secretion in vitro, indicating that 

estrogenic action on insulin biosynthesis is mediated by ERα (Alonso-

Magdalena et al., 2008). Steroids bind to their specific receptors and this 

steroid-receptor complex binds to a hormone response element (HRE) of 

DNA further activating gene transcription (Hut et al., 1997). ER and GR 

interactions are highly specific, because of their differences in DNA- binding 

regions and also as the cognate response elements remain sequence specific 

(Mader et al., 1989 and Klock et al., 1987). ER and GR can alter transcription 

by binding to activator protein-1 (AP-1) (Gaub et al., 1990; Webb et al., 1995) 

and, as pancreas is also known to express high levels of AP-1 (at least in the 

case of pancreatic cancer cells) (Shin et al., 2009), in the current study, there 

is a possibility that exogenous DEX treatment augments interaction of ERα 

mRNA at the AP-1 response element site further leading to an increase in 

ERα. Our data is supported by Hut et al (1997) studies, which demonstrated 

that transcriptional properties of ER are integrated with GR via the AP-1 

response element. However, we did not see any morphological or functional 

change in response to DEX treatment in female or male fetal pancreas. This 

study has for the first time, indicated elevated GR expression in male fetal 

pancreas due to prenatal DEX exposure, suggesting potential pancreatic 

sensitivity to glucocorticoids such as cortisol, and it is important to note that 

enhanced cortisol secretion can lead to glucose intolerance and insulin 

resistance in males (Walker et al., 1998). Maternal glucocorticoid 
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(dexamethasone) exposure in pregnant sheep resulted in excess insulin 

secretion in adult male offspring suggesting the long term effects of 

glucocorticoid excess during early pregnancy might lead to altered pancreatic 

function (De Blasio et al., 2007).  

 

Collectively, the data gathered in the current study suggests that the 

increased mRNA expression of INSR, INS, PDX-1, IGF-1 and AR, β-cell 

numbers and in vitro insulin secretion in female pancreas during fetal life in 

response to androgenic excess is a direct androgenic effect with no 

estrogenic contribution. Given previous evidence of permanent alterations in 

PDX-1 originating in fetal life and remaining evident postnatally (Gatford et al., 

2008) the potential consequences for adult health were investigated and are 

reported in Chapter 4. At this stage it is also intriguing to consider that 

previously implied altered β-cell function in animal models of PCOS, and 

indeed human clinical PCOS (Abbott et al 2005; Goodarzi et al., 2005) may 

have an early life origin and thus such models/ conditions may have a primary 

pancreatic phenotype masked by altered pancreatic function in response to 

downstream development of insulin resistance.  
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Chapter 4 The effects of prenatal steroidal excess on 
ovine adult pancreatic function 
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4.0 Introduction 
 

In Chapter 3 the effects of direct fetal steroid exposure to Testosterone 

propionate (TP), Diethylstilbestrol (DES) and Dexamethasone (DEX) on 

pancreatic development and the potential legacy of this in terms of adult 

health and disease was examined. As a result of the fetal androgen (TP) 

exposure, genes involved in fetal pancreatic development (IGRF1 and AR) 

and function (INS, INSR and PDX-1) were altered in terms of expression, 

which was further associated with increased numbers of insulin secreting β-

cell numbers. Functionally, this was in turn associated with increased insulin 

secretion in vitro due to TP treatment in the female fetuses at d90 of 

gestation. Thus the conclusions drawn were that there were sex-specific and 

potentially direct effects of androgens (TP) on the developing fetal pancreatic 

beta cells. Whilst such studies invariably lead to speculation as to what the 

postnatal legacy of such altered in utero environments could be, in order to 

definitively address such speculation a follow up study on adult pancreas was 

necessary to determine any long-term legacy of fetal steroid exposure. 

 

We therefore hypothesize, based on fetal data presented in Chapter 3, that 

fetal steroid exposure permanently programs the female adult sheep 

pancreas in terms of insulin secretion leading to hyperinsulinemia. 
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4 .1 Materials and methods 
 

4.1.1 Animal Husbandry 
 
The tissues and blood samples used in this study were collected from lamb (2 

months) and adult (11 months old) Scottish Greyface ewes derived from 

directly steroid manipulated fetuses as explained in materials methods 

chapter section. 

 

 

Study 

 

 

Treatment 

 

 

Time of 

analysis/ 

sacrifice 

 

 

Sample Number 

(n) 

               
Lamb (females only) 

 

  

 

Fetal Treatment 

 

Injection at d62 and 82 

gestation (20mg TP) 

 

2 months old 

postnatal 

 

Control=4, 

TP=13, 

                  
Adult (females only) 
 

  

 

 

Fetal Treatment 

 

 

Injection at d62 and 82 

gestation (20mg TP; 50µg 

DES; 100µg DEX) 

 

 

11 months old 

postnatal 

 

 

Control=6, TP 

20mg=13;  

Control=4;DES=

7;DEX=11 

Table 4.1 The experimental cohorts for the study of female adult 

pancreatic structure and function, treatment regime and 

corresponding sample numbers.  
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Differing numbers of animals in each study group, and limited steroids studied 

at lamb stage are reflective of focused effort where main effects were noted 

balanced with available resources. 

 

4.1.2 In vivo function tests and tissue collection 
 
In this study only female animals were studied. This was due to a combination 

of two factors. Firstly in none of the work reported here did we have male 

offspring beyond lamb stages of life due to the practical constraints of housing 

large groups of post-pubertal rams. Secondly, and specific to this aim of the 

part of the project, since pancreatic effects of steroidal excesses during fetal 

life were only noted in terms of female fetuses, it was decided that resources 

would be employed in this direction only, thus permitting all steroid classes to 

be examined in a single sex offspring cohort. 

 

Glucose tolerance tests (GTT) were carried out in both female lamb (2 

months) female adult (11 months) animals, which had been overnight fasted. 

Bolus glucose administration (I.V) (500mg/ml, 20ml volume, therefore 10g 

glucose) occurred immediately after collecting the basal/zero time blood 

sample via jugular venipuncture. In lambs, blood was collected 15 and 30 min 

post glucose administration.  

 

In adult animals (same animals as lamb cohort), blood was again collected at 

0 min and also at 15 and 30 minutes post glucose administration and 

simultaneously, muscle biopsies were collected and snap frozen at -80°C 

from 15 time points post-glucose administration for both RNA and protein 

study. Blood samples were collected into sodium fluoride combined 

anticoagulant (Sarstedt Ltd, Numbrecht, Germany) S-monocuvettes for 

glucose measurement and heparinized glass tubes for insulin determination. 

Blood samples were placed upon ice and then centrifuged at 3000rpm for 

15min at 4°C, then the plasma fraction was carefully aspirated and stored at -

20°C until further analysis.  
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Two weeks later, the adult sheep were sacrificed and liver and pancreas 

tissue collected was snap frozen and stored at -800C. 15 minutes prior to 

sacrifice, in order to make hepatic samples comparable with previously 

collected muscle biopsies in terms of contemporary glucose exposure, a 10g 

glucose bolus was given intravenously as described above. Thus both muscle 

and hepatic biopsies were controlled in terms of glucose exposure at the time 

of collection. A portion of pancreatic tissue was stored in Bouins fixative 

solution for 24 hours, transferred to different grades of alcohol (see section 

2.4.1-2.4.2) for histological processing and embedded in paraffin wax.  

 

4.1.3 Glucose measurement  
 
A colorimetric glucose assay kit (Alpha laboratories Ltd, Eastleigh, UK) was 

used to measure glucose concentrations using a Cobas fara centrifugal 

analyzer (Roche Diagnostics LtD), which was operated by Dr Forbes Howie, 

The University of Edinburgh. Glucose gets oxidized into gluconic acid and 

hydrogen peroxide via glucose oxidase, which, in the presence of peroxidase 

enzyme reacts with 4-animoantupyrine and hydroxynenzioic acid, forming a 

red compound at the end of the reaction. Colour intensity was monitored at 

500nm, which is proportional to the concentration of glucose in the sample. 

Assay sensitivity was 0.2mmol/L and intra and inter assay CVs were <2% and 

<3%, respectively. 

 

4.1.4 Enzyme linked immunosorbent assay (ELISA)- Insulin 
measurement 
 
Insulin ELISA (‘sandwich’ enzyme immunoassay) was carried out using a 

commercially available ELISA kit (ALPCO Diagnostics, 80-INSOV-E01, 

Salem, NH, USA) for the determination of sheep plasma insulin, according to 

manufacturers instructions without any modifications. Optical density (OD) 

was measured on a spectrophotometer (Molecular Devices, CA, USA) at 

450nm wavelength. A standard curve was plotted using Softmax Pro software 

(Molecular Devices) using a cubic spine curve fit as recommended by ELISA 
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manufacturers protocols, and insulin concentrations of the samples were 

determined. The assay sensitivity was 0.14ng/ml and inter and intra assay 

CVs for insulin ELISA were (<6%) and (<5%) respectively. 

 

4.1.5 Pancreatic Immunohistochemistry 
 
Adult pancreas was fixed in Bouins solution for 24 hours prior to processing 

and blocking in paraffin wax. Sections (5µm) were cut and mounted onto 

charged microscope slides as explained in section 3.2.1. Pancreatic sections 

underwent immunohistochemical staining as described in section 2.4.4. 

Antibodies and optimized working concentrations are detailed in Table 4. 

 
Receptor 

Type 

Antibody Dilution Manufacturer Secondary 

antibody 

 

 

Insulin 

 

 

Mouse monoclonal 

anti-insulin antibody 

 

 

1:1000 

 

 

AbCam® 

Goat anti-mouse 

universal 

biotinylated 

secondary 

antibody (Vector 

laboratory) 

Table 4.2. Insulin antibody analyzed by Immunohistochemsitry in 

fetal pancreas and the concentrations of primary antibody and 

secondary antibodies applied were universal goat-anti mouse 

biotinylated (GAMB).  

 

4.1.6 Cell counting 
 
Cells in the sections that were positive for insulin were counted under the 10X 

objective of a light microscope (Leitz Wetzlar, Germany). 5 random fields 

were chosen from each section and the insulin stained cells were counted 

using a 10 by 10 grid. A mean of the counts from the 5 fields was calculated 

and divided by 1.16 (correction factor) to obtain the number of cells per mm2 

per section. In a similar fashion the mean value for all three sections per slide 

was taken to get a value for every animal subjected to analysis. 
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4.1.7 RNA extraction  
 
As muscle and liver are fibrous and lipid-rich tissues, extracting RNA by 

column based methods results in low RNA yield due to column blockage 

issues. Therefore in this study, a TRI-reagent, phenol-based method to 

extract RNA from muscle and liver tissues was utilised. The TRI-reagent 

method is a combination of lysis and purification of tissue samples with 

guanidine-thiocyanate and that of phenol and chloroform to achieve RNA 

isolation. Approximately ~50mg of muscle/liver tissue was added into a 2ml 

RNase free tubes (autoclaved) containing magnetic beads and 1ml of Trisure 

(Trisure™, BioLine, USA, Cat No. BIO-38033) reagent and homogenized on 

the tissue lyser (Qiagen Tissue Lyser) at 50Hz for 4 minutes. Homogenates 

were then transferred into clean, autoclaved 1.5ml tubes and incubated at 

room temperature for 5 minutes. Following the incubation, 200µl of chloroform 

was added and mixed vigorously for 15 seconds by shaking and incubated for 

5 minutes at room temperature, which was followed by centrifugation at 

12000g (114000rpm, 40C) for 20 minutes. After centrifugation, the upper 

aqueous phase was carefully collected without disturbing the lower organic 

phase into a clean 1.5ml tube, then 500µl of isopropanol was added and 

incubated at room temperature for 10 minutes. Samples were then 

centrifuged at 12000g (40C) for 15 minutes, and supernatant aspirated and 

discarded leaving behind the pellet at the bottom of the tube. 1ml of 75% 

ethanol was added, vortexed and then centrifuged at 7500g and 40C for 10 

minutes to wash the nucleic acid pellet. After pipetting and air-drying the 

ethanol for ~5-10 minutes, the pellet was dissolved in 20µl of RNase- free 

water (Sigma Aldrich). Finally, RNA concentration was measured using a 

spectrophotometer (NanoDrop 1000, Fisher Scientific UK, Ltd, Leicestershire, 

UK) before being stored at -800C. Selected samples were also scanned using 

an Agilent Bioanalyser 2100 to ensure that isolates were to sufficient quality 

(RIN>7.5) DNase treatment, cDNA synthesis and qRT-PCR were performed 

in adult muscle and liver (see section 2.3.3 and 2.3.5) The primer sequences 

used for PCR are listed in Table 4.2. 
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Table 4.3 List of primer sequences used in qRT-PCR for muscle and 

liver. 
 

4.2 Western blotting 
 
Protein extraction, purification, gel preparation and western blotting were 

performed as explained in section 2.5.1-2.5.4. The antibodies used for 

western blotting are listed in Table 4.4.  
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Table 4.4 List of primary and secondary antibodies used for western 

blotting. 
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4.3 Statistical analysis 
 
Graph Pad prism v.6.0 (San Diego, USA) was used to perform all statistical 

analysis. Difference between Control vs TP cohort (2010 cohort), Control vs 

DES (2012 cohort) and Control vs DEX (2012 cohort) was measured using 

Student’s unpaired two-way t-test. One-way ANOVA was used to analyze the 

difference between different time points (0,15,30) with the analyzed blood 

samples. The same software was used to calculate area under the curve 

(AUC) (a built-in algorithm utilising trapezoidal rule) for insulin and glucose 

secretion post glucose administration.  
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4.4 Results 
 
4.4.1 Direct prenatal steroidal exposure altered β-cell 

numbers in female adult pancreas at 11 months age postnatal 
 
In order to investigate the effect of mid-gestation steroid exposure on female 

adult pancreatic morphology, insulin secreting beta cell numbers (per mm2) 

were quantified for each treatment group after performing the 

immunohistochemistry.  

 

Insulin secreting β-cells/mm2 were significantly increased (P<0.01) in female 

adult pancreas by TP treatment (Figure.4.1.A and Figure 4.1.1 A-B) but not 

with DES (Figure.4.1.B an Figure 4.1.1.C-D) compared to control animals. 

However, prenatal DEX treatment (Figure.4.1.C and Figure 4.1.1.E) 

significantly decreased (P<0.05) β-cell numbers in female adult pancreas 

compared to control animals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4                                  Effects of prenatal steroids on adult pancreas  

138	  

 

Figure 4.1 β-cell content in the female adult offspring from FI-TP and control 

treatment pregnancies were assessed by immunohistochemistry.  

A) Insulin secreting β-cells exposed to TP treatment B) Insulin secreting β-

cells exposed to DES treatment C) Insulin secreting β-cells exposed to DEX 

treatment (Control n=6, TP n=13; Control  n=4, DES n=6, DEX, n=9). *** 

P<0.001 
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Figure 4.1.1 Immunohistochemical representation of insulin secreting β-cells 

in the pancreas of female adult offspring.  

(A-B) Insulin secreting β-cells were significantly increased (P<0.01) by TP 

treatment ((Control n=6, TP n=13) (C-D) prenatal DES exposure has no 

effects on adult beta cell numbers E) prenatal DEX treatment decreased beta 

cell numbers in female adult pancreas; Control  n=4, DES n=6, DEX, n=9). 

Scale- 50µm. 

 

4.4.2 Direct prenatal androgen exposure altered female adult 
pancreatic function 
 
In order to determine potential effects of direct prenatal steroid exposure on 

insulin/glucose homeostasis, blood samples were collected at 0 time point in 

adult female (11 months old) animals who were then administered with an 
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intravenous bolus glucose (10g) glucose and blood collected post stimulation 

(15 and 30 min). 

 

None of the steroids that the ewes were exposed to prenatally had any effect 

upon plasma glucose concentrations (Figure 4.2.A-F) in female adult animals, 

suggesting that these animals had unaltered glucose dynamics. 

 

However, glucose stimulated insulin concentrations showed a significantly 

augmented increase at 15 (P<0.05) and 30 min intervals (P<0.01) (Figure 

4.2.1 A-B) in female adult animals by FI-TP treatment compared to controls. 

There was also a trend towards increased basal insulin concentrations in the 

TP treated animals (Figure 4.2.1.A), but this was not significant. FI-DES 

treatment had no effect on insulin secretion (Figure 4.2.1.C-D) pre and post 

glucose stimulation in female adult offspring compared to controls.  

 

Similarly, FI-DEX was not associated with altered insulin secretion in 

response to glucose challenge (Figure 4.2.1 E-F), as compared to cohort 

control animals.  
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Figure 4.2. in vivo glucose secretion in response to glucose administration in 

female adult animals at 11 months old postnatal.  

(A-B) TP treatment had no effect on glucose secretion in FI adult female 

sheep (11 months) post glucose stimulation compared to controls in response 

to glucose administration 
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(Control, n= 6, TP, n=13). (C-D) DES and (E-F) DEX treatment also had no 

effect glucose secretion in FI adult female sheep (11 months) compared to 

controls in response to glucose administration. (2012 cohort, Control, n=4; 

DES, n=7 and DEX, n=11. Values are represented as ± SEM 
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Figure 4.2.1 Insulin secretion in response to external glucose administration 

in female adult animals at 11 months old postnatal.  

(A-B) TP treatment increased insulin secretion in FI adult female sheep (11 

months) at 15 (* p<0.05) and 30 min (*** p<0.01) post glucose stimulation 

compared to controls in response to glucose administration (2010 cohort, 

Control, n= 6, TP, n=13. C-D) DES and E-F) DEX treatment had no effect on 
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insulin secretion in FI adult female sheep (11 months) compared to controls.  

(Control, n=4; DES, n=7 and DEX, n=11. Values are represented as ± SEM. 

*P<0.05; *** P<0.01 

 

4.5 Prenatal androgen exposure has no effect on peripheral 
insulin signaling associated gene expression in muscle and 
liver in female adult offspring 
 
Since we observed increased β-cell numbers and also an exaggerated insulin 

secretory response to glucose, but no alterations in glucose concentrations 

under test conditions in TP exposed offspring, it was important to focus on 

any potential of altered insulin signaling in these ewes. To this end, we 

assessed insulin signaling in terms of mRNA encoding relevant genes, and 

downstream pathway activation (phosphorylation of MAPK and AKT 

pathways) in muscle and liver biopsies, which had been bolus glucose 

exposed for 15 minutes prior to collection. Due to the labour and expense 

intensive nature of such analyses, only control and TP treated animals were 

analysed. There was so significant difference in the mRNA abundance levels 

of GLUT-1 (SLC2A1), GLUT-2 (SLC2A2) (expressed only in liver), GLUT-4 

(SLC2A4), INSR and IRS-1 in liver tissues post glucose stimulation (Figure 

4.3 A-E) or skeletal muscle biopsies (Figure 4.4 A-D) due to prenatal 

androgen exposure. 
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FIGURE 4.3 EFFECT OF FETAL TP EXPOSURE ON EXPRESSION 
SLC2A1, SLC2A2, SLC2A4 INSR, IRS-1 (A-E) IN FEMALE ADULT 
LIVER AT 11 MONTHS OLD.  (BOLUS GLUCOSE WAS 
ADMINISTERED 15 MIN PRIOR TO SACRIFICE).  
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Figure 4.4 Gene expression analysis in the fetal TP injected female adult 

skeletal muscle biopsies at 11 months old.  

Fetal TP exposure had no effect on GLUT1, GLUT4, INSR, IRS-1 (A-D) gene 

expression in the 11 months old female adult skeletal muscle. 

 

4.5.1 Prenatal androgen exposure has no effect on peripheral 
insulin signaling in muscle or hepatic protein expression in 
female adult offspring 
 
The effect of prenatal androgen exposure on insulin signaling molecules AKT, 

ERK1/2 and their respective phosphorylated proteins (pAKT and pERK) was 

determined using western blotting. The blots compared control and TP treated 

samples from both muscle (Figure 4.5 A) and liver (Figure 4.6.A) for total 

AKT, total ERK, phospho AKT and phospho ERK. β-actin was used as a 

positive control to ensure correct amounts of protein was loaded to each well 

and to correct for such discrepancies.  
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There was no significant difference between the ratio of total AKT:phospho 

AKT (Figure 4.5.B), total ERK:phospho ERK for whole ERK band (Figure 

4.5.C) or the individual bands (44kDa and 42kDa) (Figure 4.5.C-D) in the 

muscle biopsies following glucose administration (15 min) in prenatal TP 

treated female adult animals compared to controls. 
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Figure 4.5. A) Immunoblots for total AKT, total ERK, phosphorylated AKT, 

phosphorylated ERK and β-actin protein expression in skeletal muscle 

biopsies after glucose bolus in in fetal TP exposed adult female offspring.  

B) Ratio of total AKT: phospho AKT between control and TP treated animals. 

C) Ratio of total : phospho ERK (42kDa) between control and TP treated 

animals. D) Ratio of total: phospho ERK (44kDa) between control and TP 

treated animals. E) Ratio of total: phospho ERK (whole band) between control 

and TP treated animals. Values are represented as mean ± SEM 

 

4.5.2 Prenatal androgen exposure has no effect on peripheral 
insulin signaling protein expression in female adult liver  
 
In the liver samples collected 15 minutes after glucose stimulation, there was 

no significant difference in the ratios of total AKT: phospho AKT (Figure 

4.6.B), total ERK:phospho ERK for whole ERK band (Figure 4.6.C) or the 

individual bands (44kDa and 42kDa) (Figure 4.6.C-D) in prenatal TP treated 

female adult animals compared to controls. 

 



Chapter 4                                  Effects of prenatal steroids on adult pancreas  

150	  

 



Chapter 4                                  Effects of prenatal steroids on adult pancreas  

151	  

Figure 4.6 A) Western immunoblots for total AKT, total ERK, phosphorylated 

AKT, phosphorylated ERK and β-actin protein expression in liver at sacrifice 

two weeks later after glucose bolus in adult female offspring from prenatal 

androgen exposure compared to control animals.  

Quantification of total:phosphorylated AKT and ERK protein in liver at sacrifice 

after two weeks post glucose bolus in adult female offspring from A) Ratio of 

total AKT: phospho AKT in female adult liver between control and TP treated 

animals. B) Ratio of total: phospho ERK (whole band) between control and TP 

treated animals. C) ratio of total: phospho ERK (44kDa) between control and 

TP treated animals D) Ratio of total : phosphor ERK (42kDa) between control 

and TP treated animals. Values are represented as mean ± SEM of total: 

phospho  in control and TP treated animals. 

 

4.6 Direct fetal androgen exposure caused increased insulin 
secretion in prepubertal females  
 

Data from adult animals demonstrated exaggerated insulin secretion in 

response to glucose associated with direct fetal exposure to androgens (TP) 

at d62/82 in the female adult offspring. To investigate the developmental 

period during which this pancreatic phenotype might arise, pancreatic function 

was also assessed in prenatally androgenized female lambs at 10-12 weeks 

of age (Figure 4.7). There were no significant changes observed in female 

lambs that were exposed to any of the prenatal steroid exposures we have 

utilised (Figure 4.7). However, there was a strong trend towards increased 

insulin secretion in animals exposed to TP prenatally, and this was absent in 

animals exposed to DES or DEX. Hence, although not significant in a 

statistical sense, this mirrored the data obtained in adult animals; indicative 

that the altered pancreatic function noted in fetal and adult life was likely 

present in pre-pubertal animals also.  
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Figure 4.7 The hormonal secretion following pancreas stimulation (GTT) in 

fetally steroid exposed female lambs.  
Blood was sampled at a basal time point (0 min) and 15 and 30 min post GTT 

stimulation by ELISA. (A-B) Insulin secretion in fetal TP exposed lambs, (C-D) 

Insulin secretion in fetal DES exposed lambs, (E-F) Insulin secretion in fetal 

DEX exposed lambs. 
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4.7 Discussion  
 
In Chapter 3, the data derived from fetal life samples demonstrated that there 

were no changes in glucagon secreting α-cells in response to altered steroidal 

environments during pregnancy. However, during fetal life, and exclusively in 

response to excess androgen administration, there were increased β-cell 

numbers, increased expression of key pancreatic development genes and 

increased pancreatic β-cell function in the female fetal pancreas. The work 

reported in this chapter was a follow up of these fetal findings, and hence was 

focused on assessing the effects of direct fetal administration of different 

classes of steroids (TP, DES and DEX) (DES and DEX assessed wherever 

possible) on β-cell morphology and function in the female prepubertal lamb 

(function only) and adult offspring to ascertain whether there was a 

programming effect of the steroids that could have relevance to postnatal 

health.  

 

The current study showed that direct prenatally androgenized pregnancies 

were associated with increased pancreatic β-cell numbers and elevated in 

vivo insulin secretion in response to glucose stimulation in absence of notable 

peripheral or hepatic insulin resistance in the female adult offspring, 

suggestive of permanent androgenic programming of pancreatic function. 

 

4.7.1 Legacy of direct prenatal androgen and not estrogen 
exposure on pancreatic morphology and function in FI d62/82 
model 
 

Direct FI-TP exposure leads to an increase in the numbers of insulin secreting 

β-cells in female adult offspring (11 months old). As there was no such effect 

due to prenatal DES exposure, this strongly suggests an androgenic mode of 

action on β-cell/islet morphology that has persisted into adulthood. This is in 

accordance with our previous study, where female fetuses exposed to MI-TP 

from gestational d62-d102 similarly had increased β-cell numbers in female 
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adult offspring (Rae et al., 2013). The current data however provide additional 

information as regards mechanism of action, since by bypassing maternal and 

placental metabolism the applied androgens were unlikely to be sufficiently 

metabolized to estrogens, suggestive therefore that MI-TP and FI-TP 

androgenisation effects on pancreatic function are directly attributable to 

hyperandrogenaemia with no estrogenic contribution. This suggestion is 

‘double locked’ by the lack of effects of DES, a potent estrogen receptor 

agonist. We therefore conclude that the effects observed here and in previous 

studies are indeed androgenic in nature, and furthermore, that these would 

appear to be potentially at least a direct extension of the effects observed in 

fetal life, which were to some extent predictive of the altered pancreatic 

structure and function observed here. 

 

As a consequence of increased β-cell numbers, FI-TP (but not FI-DES) 

prenatally exposed female adult offspring had increased plasma insulin 

concentrations post GTT stimulation and also increased total insulin secretion 

(AUC)insulin with no changes in glucose concentrations nor (AUC)glucose. Hence 

glucose-handling issues were not evident at this young adult stage of life, 

suggesting a direct action of fetal androgens exposure in altering β-cell 

function. This is again in accordance with previous studies in sheep, where 

MI-TP administered female adult offspring showed increased plasma insulin 

levels with no changes in glucose dynamics (Hogg et al., 2011), clearly 

suggesting that effects observed during adulthood are androgen specific. 

Importantly, the observed exaggerated response to glucose in terms of insulin 

secretion raises the question as to whether or not hyperinsulinaemia is 

necessarily always a compensatory response to insulin resistance, or possibly 

a primary pancreatic phenotype preceding, and possibly predisposing to IR. 

 

To further investigate whether or not altered female fetal pancreatic 

development could directly underpin the adult female pancreatic phenotype 

observed in response to FI-TP, or if such an adult phenotype develops 

progressively as the animal matures, pancreas function was assessed in the 

10-12 week lamb. Although not statistically significant, there was a trend 
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towards increased insulin secretion, in an identical fashion to that observed in 

adulthood, and this trend was also androgen specific. This implies that there 

are indeed androgenic effects inherent in pancreas tissue, and that the altered 

structure and function observed herein is the legacy of the fetal changes 

observed in chapter 3. 

 

Similarly, prenatal androgenisation from d40-80 gestation in monkeys disrupts 

glucoregulation leading to hyperglycemia and excess insulin secretion in adult 

monkey dams and their female offspring (Abbott et al., 2010) and also in adult 

female Sprague-dawley rats (E16-19) (Demissie et al., 2008), suggesting 

early androgenization can disrupt future glucose homeostasis. Therefore, 

careful considerations are necessary with regards to the timing of steroid 

exposure and cross-species comparisons. This was one of the design drivers 

of our midgestational model (d62/82 Fi-TP), which may be more 

physiologically relevant than those that have been previously used to study 

effects of steroid hormones during pregnancy on adult health and disease. 

 

Similar to the increased β-cell numbers in adult offspring from FI-TP 

pregnancy in the current study, a recent study in a PCOS monkey model 

demonstrated infants and adult offspring from prenatally androgenized 

(maternal route) pregnancies had decreased total islet size but increased islet 

numbers in infants at 45 postnatal days but no significant morphological 

differences were observed in terms of islet size in adult animals compared to 

controls (Nicol et al., 2014). Many factors such as overexposure to androgens 

(Rae et al., 2013) and fetal undernutrition (Gatford et al., 2008) in sheep and 

maternal hyperglycemia in monkeys (Abbott et al., 2010b) within the intra 

uterine environment can affect islet morphology during postnatal life. As the 

mothers of the above infants from prenatal androgenisation (d40-80 GA) had 

hyperglycemia (Nicol et al., 2014), it remains unclear as to whether or not the 

effects observed in infants were direct consequences of excess prenatal 

androgen signaling in the pancreas, or indirect via altered maternal glucose. 

However, the data presented in our study here in sheep implies the possibility 

that direct androgenic effects may occur on pancreatic β-cell morphology, as 
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due to its unique fetal route of administration, effects noted here were 

independent of maternal glucose alterations due to elevated maternal 

androgens. In addition to the pancreatic morphology changes discussed 

above, overexposure to androgens during fetal life was also associated with a 

hyperinsulinemic phenotype (increased basal and stimulated AUC (insulin) in 

absence of glucose intolerance (normoglycemic), which clearly suggests that 

prenatal androgens excess had a direct action on the pancreas in terms of 

development and subsequent postnatal function. 

 

Since we recorded no change in glucose handling in FI-TP female adult 

offspring in the presence of increased insulin response, this then begs the 

question as to whether or not insulin resistance (IR) was present to cause 

excess insulin secretion (hyperinsulinemia). The alternative would be a 

primary pancreatic alteration- this is critically important in both PCOS 

research and indeed Type-2 Diabetes Mellitus (non-insulin dependent 

diabetes mellitus-NIDDM) research given current debate over whether or not 

hyperinsulinemia may predispose to IR development (Cao et al., 2010). It is 

not an exaggeration to state that understanding of the possibility that 

hyperinsulinaemia could underpin IR would represent a frame shift in how 

diseases such as NIDDM are considered. By 40 years of age, nearly 20% of 

obese PCOS women suffer from impaired glucose tolerance or NIDDM  

(Dunaif et al.,1987) and this incidence increases with age compared to 

controls (Dahlgren et al., 1992). The reason behind this is ascribed to the 

insulin resistant characteristic of PCOS (Holte et al., 1994). However, only a 

subset of these insulin resistant women develop further NIDDM, which begs 

the question as to whether there is pancreatic dysfunction that contribute 

towards predisposition to NIDDM in PCOS. In support of this is a study 

conducted in PCOS women, in which multiple regression analysis revealed 

that there is a strong correlation between β-cell function (but not insulin 

resistance) and bioavailable testosterone concentrations in PCOS women 

compared to controls, suggesting that there could be a under-recognized 

importance for β-cell function in PCOS (Goodarzi et al., 2005). 
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Pancreatic β-cell dysfunctions are also observed in PCOS animal models 

exposed to excess androgens in utero. Blunted intracellular calcium levels 

were observed in response to glucose in isolated islets from mice exposed to 

excess androgens in utero (Roland et al., 2010). Early prenatal androgen 

exposure resulted in decreased insulin disposition index (DI- relative index of 

the relationship between acute pancreatic insulin responsiveness and the 

ability of insulin to induce glucose uptake) and late gestation androgen 

exposure increased insulin DI in response to induced glucose tolerance test 

compared to control animals in adult female rhesus monkeys (Eisner et 

al.,2000), suggesting impaired β-cell function regardless of the timing of 

prenatal steroid exposure. 

 

Ras-ERK (extracellular-signal-regulated kinase) pathway and insulin receptor 

substrate (IRS)- protein kinase B (PKB) pathway are the two best 

characterized insulin signaling pathways (McKay and Morrison, 2007; White, 

1998), that are activated by IRS-1 proteins and involved in cell proliferation, 

resulting in growth and mitogenesis (McKay and Morrison, 2007) and insulin 

receptor tyrosine kinase mediated initiation of IRS phosphorylation (White, 

1998) respectively, leading to phosphoinositide 3-kinase activation (Alessi et 

al., 1996; Lawlor et al., 2001; Hanada et al., 2004) activation. As a result of 

insulin mediated AKT activation, many metabolic processes are regulated 

such as glucose transport (Eguez et al., 2005), gluconeogensis (Logie et al., 

2007) and glycogen synthesis (Cross et al., 1995). Altered insulin signalling in 

terms of ERK and AKT phosphorylation at the molecular level and at different 

stages of insulin signalling is evident in human PCOS cases in different tissue 

types such as skin fibroblasts (decreased insulin receptor serine 

phosphorylation), skeletal muscle biopsies, adipocytes, myotubes and ovarian 

theca cells (decreased IRS-1 tyrosine phosphorylation) (Chu et al., 2004; 

Dunaif et al., 1995; Li et al., 2002; Qui et al., 2005) in association with insulin 

resistance and hyperinsulinemia (Cao et al., 2010; Rajkhowa et al., 2009).  

 

In order to investigate whether the exaggerated insulin secretion observed in 

FI-TP female adult was associated with any molecular peripheral insulin 
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resistance, insulin signalling was assessed in terms of gene expression of 

genes key to insulin signalling, and downstream phosphorylation of signaling 

molecules in insulin target tissues (muscle, liver). There were no alterations in 

terms of expression of genes involved in insulin signalling and neither were 

there any effects upon phosphorylation of signaling proteins downstream of 

insulin receptor activation (ERK, AKT, pERK, pAKT), which clearly suggests 

the absence of insulin resistance in these 11 months old offspring. Combined 

with the fetal excess insulin secretion noted in chapter 3, this suggests the 

possibility of primary pancreatic alterations as a consequence of FI- TP 

exposure. Rae et al., (2013) also observed no alterations in terms of 

peripheral insulin signaling in the MI-TP sheep female adult offspring, 

suggesting that hyperinsulinemia (Hogg, Wood, et al., 2011) precedes insulin 

resistance in these models. Female adult offspring in the current study were 

of normal weight, which could also be one of the reasons behind the absence 

of insulin resistance at 11 months age, suggesting that the relationship 

between insulin resistance (IR) and hyperinsulinemia is weaker than perhaps 

would be assumed, similar to descriptions of lean PCOS women (Ciampelli et 

al., 1997). Due to the fact that insulin resistance reflects the presence of 

obesity related PCOS, and hyperinsulinemia being a primary metabolic 

feature at least in lean PCOS women, both entities may represent two distinct 

features of PCOS related insulin disorder (Ciampelli et al., 1997). 

 

Among PCOS associated metabolic aberrations such as impaired glucose 

tolerance (IGT) and type 2 diabetes, insulin resistance is believed to be 

playing a critical role in pathogenesis (Legro et al., 1999; Ehrmann et al., 

1999). Peripheral insulin resistance in PCOS women is of a magnitude similar 

to that observed in patients suffering from type 2 diabetes mellitus (T2DM) 

alone, independent of obesity (Ovalle and Azziz, 2002). Impaired glucose 

tolerance is evident in about 40% of obese PCOS women, with 10% of them 

developing T2DM (Legro et al., 1999; Ehrmann et al., 1999). Progression of 

the risk from PCOS associated insulin resistance into T2DM indicates that 

both the diseases might be sharing a common molecular defect, however the 

reasons for impaired insulin sensitivity/action in the peripheral tissues at the 

molecular level is still unclear.   
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4.7.2 Direct prenatal FI-DEX had no effect on pancreatic 
function in adulthood 
 

Direct prenatal glucocorticoid exposure led to decreased β-cell mass in 

female adult offspring but no significant changes in in vivo insulin or glucose 

secretion were noted. Given that the suppresive effects of DEX in terms of β-

cell numbers were subtle as compared to the more pointed increase in β-cell 

numbers seen in the case of TP treatments, it remains a possibility that the 

DEX effects do not translate into a measureable functional difference. 

However, decreased β-cell numbers could have health implications if the 

pancreas in these animals was placed under stress by eg. insulin resistance, 

as it may have a decreased dynamic range of plasticity (in terms of insulin 

secretory capability) to cope with increased demand. Late gestational 

dexamethasone exposure during fetal life, mimicking maternal stress, resulted 

in decreased β-cell pool and impaired glucose homeostasis during adulthood 

in female Wistar rats (Nyirenda et al.,1998) supporting the concept of long 

term metabolic programming effects due to prenatal DEX treatment. Maternal 

exposure to dexamethasone during late gestation also resulted in reduced β-

cell mass in the fetal rat pancreas, suggesting direct effects of in utero 

exposure to dexamethasone (Dumortier et al., 2011). Even though there were 

significantly decreased β-cell numbers and a slight trend towards decreased 

insulin secretion in female adult offspring in the current study, these were not 

of statistitical significance.  

 

4.8 Conclusion  
 
In conclusion, direct fetal androgenization (TP) in sheep (FI) has 

demonstrated a permanent legacy of a primary pancreatic alteration resulting 

in increased insulin secretion in the absence of peripheral insulin resistance.
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5.0 Introduction 
 
The human fetal adrenal cortex comprises of three zones namely; the inner 

fetal zone (FZ) (analogous to zona reticularis) and outer definitive zone (DZ) 

(analogous to zona glomerulosa) both consisting of eosinophilic cells larger in 

size in the former and small densely packed cells in the latter (Hanley et al., 

2001 and Goto et al., 2006) and a third layer, the transitional zone, which 

develops between DZ and FZ at the end of gestation analogous to adult zona 

fasiculata (Mesiano et al., 1993). The adrenal gland in the ovine fetus can be 

observed as early as gestational day (dGA) 28 (Wintour et al., 1975). 

Although both human and ovine fetal adrenal glands share development 

similarities, the ovine adrenal gland lacks a specific fetal zone during its 

development (Robinson, 1979) and the zona reticularis becomes evident only 

during postnatal life (1 month old lamb) (Naaman-Répérant and Durand, 

1997). Ovine fetal adrenal glands develop in a biphasic fashion, with rapid 

development occurring between gestational d60-120G. At d60G zona 

glomerulosa cells begin to produce aldosterone, and then the second growth 

maturation period occurring after dGA120 sees development and maturation 

of the zona fasiculata (Boshier and Holloway, 1989; Webb, 1980). The 

adrenal cortex in the ovine fetus secrets cortisol only during the first half of 

gestation (Wintour et al., 1995) and the last month of gestation, remaining 

relatively quiescent between d90-120G (term ~147days) (Wintour et al., 

1975), likely due to the inadequate production of ACTH from the fetal pituitary 

during midgestation.  However, it is apparent that cortisol secretion during the 

last few weeks of gestation helps in development of organs and is critical in 

the onset of ovine parturition (Liggins, 1994a, 1994b). In addition to the 

ovarian androgen excess, excess adrenal androgen secretion is also 

observed in PCOS women (Hague et al., 1990; Rosenfield, 1999), which 

accounts for an estimated 20-30% of androgen excess, and is manifested by 

elevated levels of circulating androstenedione, DHEA and DHEAS (Carmina 

et al., 1992; Yildiz and Azziz, 2007) along with hyper responsive ACTH 

stimulated DHEA and androstenedione (Azziz et al, 1998). Abnormal 

regulation of P450c17α in the adrenal cortex is observed in women with 

PCOS (Rosenfield et al., 1990). In utero environment alterations during fetal 
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adrenal development can have a bearing upon long-term adrenal function, 

evident from maternal androgen over exposed rhesus monkeys, which 

recapitulate features seen in PCOS women such as elevated basal circulating 

adrenal DHEA and DHEAS in the female adult offspring (Zhou et al., 2005). 

Hence it is clear that prenatal androgenization carries not only a consequence 

of altered ovarian steroidogenesis (Hogg et al., 2012), but also altered adrenal 

steroidogenesis, however, mechanisms underpinning such altered function 

remain unknown. 

 

5.1 Objectives/Hypothesis 
 
The aims of this chapter were to measure the effect of mid-gestation direct 

steroid exposure on the postnatal adrenal from steroid manipulated 

pregnancies, addressing the following research questions? 

a. Do excesses of androgens, estrogens or glucocorticoids have effects 

on key genes associated with adrenal development/function? 

b. Are responses to steroidal excesses fetal sex-specific? 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5                                  Effects of prenatal steroids on fetal adrenal gland 

163	  

5.2 Materials and methods 
 
5.2.1 Animal Husbandry and Treatment regime- midgestation 
(d62/82) FI-TP, FI-DES, FI-DEX 
 
Animal husbandry was as detailed in section 2.1-2.1.1 and fetal treatment 

regime of pregnant ewes was followed as explained in section 2.1.2. Lamb 

and adult offspring husbandry was as detailed in section 2.1.3. 

 

5.2.2 Early gestation maternal androgenisation in combination 
with mid-gestation FI-DEX 
 
The rationale behind this study was due to the increased expression of genes 

coding for adrenal steroidogenic enzymes in male fetal adrenals from FI-DEX 

exposed pregnancies. Only female fetal samples were studied in this study, 

the rationale being that our initial data derived from male and female fetuses 

(described in this chapter) indicated that this was the most direct way of 

answering the question that was raised by these initial findings. Initial findings 

appeared to indicate the possibility that differences observed in response to 

midgestational DEX between males and females may be due to endogenous, 

early gestation ‘self-androgenisation’ occurring in males. The fetal injection 

treatment regime was identical to that described in section 2.1.2 except that 

the pregnant ewes were injected (maternal injection-MI) with 100mg/ml of 

testosterone propionate (TP) (AMS Biotechnology (Europe) Ltd., Abingdon, 

UK) at d30 and d45 gestation, followed by fetal injection of dexamethasone 

(20mg) (FI-DEX) at d62/82 gestation. Vehicle controls (C) received vegetable 

oil (Sainsbury’s So organic range) and 5% ethanol alone. Maternal injections 

were delivered (i.m.; 1ml) into the flank. This protocol was designed to mimic 

d30 testicular androgenisation that occurs in males in treated female fetuses 

to determine if this could alter their response to DEX in a similar way to that 

which we had observed in males in initial gene expression examinations. 

Animal sacrifice, tissue and plasma sample collection were detailed as in 

section 2.2.1-2.2.2. Table 5.1 illustrates the animals assessed in this chapter. 
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Analysis 

 
Fetal sex 

 
Sample Number (n) 

  
Female fetuses 

 

RNA (qRT-PCR) study 
 

Injection at d62 and d82, 
collection and assessed 

at d90 

C=6;TP=6(20mg) 
DES=6 (50µg); 
DEX=5(100µg) 

RNA (qRT-PCR) study MI Injection at d30 and 
d45 followed by FI-DEX- 

d62 and d82 

C=2; DEX=3 (100µg) 

  
Male fetuses 

 

RNA (qRT-PCR) study Injection at d62 and d82, 
collection and assessed 

at d90 

C=6;TP=6 (20mg) 
DES=6 (50µg); DEX=6 
(100µg) 

Table 5.1 The experimental animals included in the assessment of 

fetal adrenal gland, treatment regime and sample numbers.  

 

5.2.3 Gene expression analysis- Quantitative real time-PCR 
 

RNA extraction, cDNA synthesis and qRT-PCR protocols were performed as 

explained in section 2.3.1-2.3.5. The expression of range of genes in fetal 

adrenal was assessed. The primer details for each gene are listed in the table 

5.2. 
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Genes of 
Interest 

Forward primer(5’-3’) Reverse primer(5’-3’) 

STAR GCATCCTCAAAGACCAGGAG CTTGACACTGGGGTTCCACT 

CYP11A1 CAACGTCCCTCCAGAACTGT CAGGAGGCAGTAGAGGATGC 

HSD3B GGAGACATTCTGGATGAGCAG TCTATGGTGCTGGTGTGGA 

CYP17A1 AGACATATTCCCTGCGCTGA GCAGCTTTGAATCCTGCTCT 

CYP21A  Not available Not available 

CYP11B1  AGAAGTACACGCCCTTGGTG AGCGCGTGGATAAAGTTCAG 

HSD11B1 AGCATTGTGGTCGTCGTCTCCT CCTTGGTCGCCTCATATTCC 

HSD11B2 TAAGGCGAGATTAGGTAGGTTG ACCCTTCAAATCACAGCACTG 

HSD17B Not available Not available 

SRD5A1 ATGTTCCTCGTCCACTATGC GTAGCCATTATAGGTGCAGAAGA 

SRD5A2 GCCGTTTCCAGTTGTATTCCT AGCAGGGTATTCAGCACAGTA 

AR GCCCATCTTTCTGAATGTCG CAAACACCATAAGCCCCATC 

ER-α GAATCTGCCAAGGAGACCCG CCTGACAGCTCTTCCTTCTG 

ER-β GAGGCCTCCATGATGATGTC GGTCTGGAGCAAAGATGAGC 

GR AAGTCATTGAACCCGAGGTG ATGCCATGAGGAACATCCAT 

MR CTTCGCCTTCTATGATCCTTG AGGGTGGAGAGCAGGTTATC 

PTCH GGACAAACTTTGACCCTTTGG CATGACCAACTTCAGCCTTATTC 

SHH CTGCTCTACAGCGACTTCCTC GCGGACCAACTTCAGCCTTATTC 

ACTH-R ATGAAACACATTCTCAATCTG AACGTTTTCCAAAATCTTGTAC 

Reference 
gene 

  

GAPDH GGCGTGAACCACGAGAAGTATAA AAGCAGGGATGATGTTCTGG 

ATPSynth SEQUENCE NOT AVAILABLE SEQUENCE NOT AVAILABLE 

RPS2 SEQUENCE NOT AVAILABLE SEQUENCE NOT AVAILABLE 

YWHAZ SEQUENCE NOT AVAILABLE SEQUENCE NOT AVAILABLE 

Table 5.2. List of forward and reverse primer sequences (genes of 

interest and references genes) for ovine fetal adrenal.  
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Where no sequences are available, this is due to the primers used being part 

of the GENORM kit as supplied, where sequence information was 

manufacturer’s proprietary information. 

 

5.2.4 Statistical analysis 
 
 
Real time PCR analysis was carried out to establish relative mRNA 

expression of genes as detailed in section 3.3.2. Housekeeping genes used to 

calculate relative gene expression were RPS2, YWHAZ, ATPsynth for male 

fetal adrenal and GAPDH and RPS2 for female fetal adrenal determined via 

GeNorm algorithm as described in section 2.3.8. Due to the interest in 

comparing and contrasting effects of TP and DES, data from Control, TP and 

DES were analysed using one-way ANOVA (analysis of variance) followed by 

Tukey’s post-hoc test to determine specific differences between groups. 

Differences between Control and DEX group were analysed using unpaired 

two-tailed Student’s t-test. Results are presented as +SEM and p-value, 

where P<0.05 were considered significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5                                  Effects of prenatal steroids on fetal adrenal gland 

167	  

5.3 Results 
 
In order to investigate the effects of FI exposure to TP, DES and DEX on fetal 

adrenal development in both males and females, the genes coding for adrenal 

steroidogenic enzymes and steroid receptors were assessed. Since DES is a 

synthetic estrogen, and TP, an aromatizable androgen, analysis of these 

treatment groups together permitted resolution of androgenic and estrogenic 

effects previously noted in models where maternal treatments, and hence 

opportunity for generation of estrogens from androgens has occurred. 

Dexamethasone (DEX), a synthetic glucocorticoid, was compared against 

control groups independent of the above analysis. 

 

5.3.1 Gender associated fetal adrenal steroidogenic gene 
expression 
 
Basal levels of STAR (P<0.001; Figure 5.1.A), ACTH-R (P<0.05; Figure 

5.1.B), CYP11A1 (P<0.05; Figure 5.1.C), HSD17B (P<0.05; Figure 5.1.J) and 

MR (P<0.01; Figure 5.1.O) were significantly lower in male fetal adrenal than 

in females. However, basal SRD5A2 (P<0.01; Figure 5.1.L) and GR (P<0.01; 

Figure 5.1.N) expression was significantly higher in male fetal controls 

compared to females. None of the other genes analysed showed any 

significant difference between sexes in terms of gene expression analysed in 

this study. 
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Figure 5.1 Effect of gender on expression of genes coding for STAR, ACTH-

R, CYP11A1, HSD3B, CYP17, CYP21A, CYP11B1, HSD11B1, HSD11B2, 

HSD17B, SRD5A1, SRD5A2, AR, MR, GR, ERα and ERβ in female and male 

fetal adrenal at d90 gestation.  

(Control, Female, n=6; Male, n=6). Values represent mean ± SEM. *P<0.05, 

** P<0.01, *** P<0.001. 

 

5.3.2 Effect of excess of prenatal TP and DES treatment on 
female and male fetal adrenals  
 
Figures 5.2 and 5.3 summarize the effects of TP and DES on the developing 

adrenal in female and male fetuses, respectively. Steroid acute regulatory 

protein mRNA (STAR) was significantly increased (~ 2 fold) only by DES 

treatment in both females (P<0.001; Figure 5.2.A) and males (P<0.05; Figure 

5.3.A) compared to control animals. Adrenocorticotrophic hormone (ACTH-R) 

mRNA abundance was significantly increased by DES treatment and not by 

TP only in males (P<0.001; Figure 5.3.B) compared to controls. CYP21A 

showed a strong trend towards increased expression by DES treatment only 

in females (P=0.067; Figure 5.2.F). CYP11B1 mRNA abundance was 

significantly increased (P<0.001) by DES treatment only in females (Figure 

5.2.G) and not by TP compared to controls. HSD11B2 mRNA abundance 

showed a strong trend towards a decrease in expression by DES treatment 

and not by TP only in females (P=0.06; Figure 5.3.H-I). HSD17B mRNA 

abundance was significantly decreased by DES and not by TP treatment only 

in males (P<0.01; Figure 5.3.J) compared to control animals. 
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GR (P<0.01); Figure 5.1.N) and ERβ (P<0.05; Figure 5.2.Q) mRNA 

abundance was significantly increased by DES only in females compared to 

control animals. Interestingly, mineralocorticoid receptor (MR) mRNA 

abundance was significantly decreased by TP treatment only in females 

(P<0.05; Figure 5.2.O) but had no significant change by DES treatment in 

either sex. The remainder of the genes analysed were not altered by TP or 

DES treatment in either sex. 
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Figure 5.2 Effect of fetal exposure to TP and DES on expression of genes 

coding for STAR, ACTH-R, CYP11A1, HSD3B, CYP17, CYP21A, CYP11B1, 

HSD11B1, HSD11B2, HSD17B, SRD5A1, SRD5A2, AR, MR, GR, ERα and 

ERβ in female fetal adrenal at d90 gestation (Control n=6, TP n=6, DES n=5). 

Values represent mean ± SEM. * P<0.05, *** P<0.001. 
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Figure 5.3 Effect of fetal exposure to TP and DES on expression of genes 

coding for STAR, ACTH-R, CYP11A1, HSD3B, CYP17, CYP21A, CYP11B1, 

HSD11B1, HSD11B2, HSD17B, SRD5A1, SRD5A2, AR, MR, GR, ERα and 

ERβ in male fetal adrenal at d90 gestation  

(Control n=6, TP n=6,DES n=6,DEX n=6). Values represent mean ± SEM. * 

P<0.05, *** P<0.001. 

 

5.3.3 Effect of FI-DEX treatment on female and male fetal 
adrenal 
 
STAR mRNA abundance was significantly increased by DEX treatment in 

both females (P<0.05; Figure 5.4.A) and males (P<0.001; Figure 5.5.A). 

ACTH-R (P<0.001; Figure 5.5.B), CY11A1 (P<0.001; Figure 5.5.C), HSD3B 

(P<0.001; Figure 5.5.D) and CYP17 (P<0.05; Figure 5.5.E) mRNA expression 

were significantly increased by DEX treatment only in males compared to 

control samples. HSD11B1 mRNA abundance was unaltered in females, but 

significantly increased by DEX treatment only in males (P<0.01; Figure 5.5.I) 

compared to controls. Other genes analysed were unaffected by DEX 

exposure in either sex. 

 

SRD5A1 mRNA abundance was significantly increased (P<0.05; Figure 

5.5.K) by DEX treatment only in males, whereas, SRD5A2 mRNA abundance 

was significantly increased in both females (P<0.05; Figure 5.4.L) and males 

(P<0.001; Figure 5.5.L).  
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Genes encoding for steroid receptors such as androgen receptor (AR), 

estrogen receptor (ER) mineralocorticoid receptor (MR) and glucocorticoid 

receptor (GR) were also altered during fetal life due to prenatal DEX 

exposure. AR mRNA abundance was significantly increased (P<0.001; Figure 

5.5.M) only in males, while GR mRNA expression was significantly increased 

in both females (P<0.05; Figure 5.4.N) and males (P<0.001; Figure 5.5.N) by 

DEX treatment. Finally, ERα  (P<0.05; Figure 5.5.P) mRNA expression was 

significantly increased only in males and ERβ (P=0.06; Figure 5.5.Q) showed 

a strong trend towards increase in its expression by prenatal DEX exposure. 

The remainder of the genes analysed were unaffected. 
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Figure 5.4 Effect of fetal exposure to DEX on expression of genes coding for 

STAR, ACTH-R, CYP11A1, HSD3B, CYP17, CYP21A, CYP11B1, HSD11B1, 

HSD11B2, HSD17B, SRD5A1, SRD5A2, AR, MR, GR, ERα and ERβ in 

female fetal adrenal at d90 gestation.  

(Control n=6, DEX n=5). Values represent mean ± SEM. *P<0.05. 

 

 



Chapter 5                                  Effects of prenatal steroids on fetal adrenal gland 

178	  

 

 

 



Chapter 5                                  Effects of prenatal steroids on fetal adrenal gland 

179	  

 

Figure 5.5 Effect of fetal exposure to DEX on expression of genes coding for 

STAR, ACTH-R, CYP11A1, HSD3B, CYP17, CYP21A, CYP11B1, HSD11B1, 

HSD11B2, HSD17B, SRD5A1, SRD5A2, AR, MR, GR, ERα and ERβ in male 

fetal adrenal at d90 gestation.  

(Control n=6, DEX n=6). Values represent mean ± SEM. * P<0.05, *** P<0.01. 

 
5.4 Effect of MI-TP (d30 gestation) and FI- DEX (d62 and d82 
gestation) on female fetal adrenal steroidogenic gene 
expression. 
 
As FI-DEX treatment at d62&82 had such a profound effect on male 

steroidogenic associated gene expression, but not female, we hypothesized 

that sexual differentiation (testis formation at d30 in sheep) and subsequent 

‘natural androgenisation’ could be the reason behind this sexually dimorphic 

response. Therefore, a subset of animals exposed to testosterone (MI-TP) at 

d30 gestation (maternal route) was created, thus phenocopying male 

testicular androgenisation in females followed by FI-DEX at d62&82. Then a 

subset of genes, which were robustly elevated by DEX in male fetuses were 

studied in these ‘masculinised female’ fetuses. DEX treatment upon a 

background of androgen excess from earlier in gestation had no significant 

effect on the mRNA abundance of genes encoding for STAR, CYP11A1, 

HSD3B, SRD5A1, AR, MR and GR (Figure 5.6). Hence early gestation 

masculinisation did not appear to induce a male-type response to later 

gestation DEX in female fetuses. 
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Figure 5.6. Effect of MI-TP d30 followed by direct fetal exposure to DEX at 

d62 & 82 on expression of genes coding for STAR, CYP11A1, HSD3B, AR, 

MR and GR in female fetal adrenal at d90 gestation.  

(Control n=2, DEX n=3). Values represent mean ± SEM. 

 

5.5 Effect of d30 MI-TP on basal female fetal adrenal gene 
expression 
 
STAR mRNA abundance was significantly decreased (P<0.001; Figure 5.7.A) 

in MI-TP (d30) treated females as compared to untreated controls, reducing 

expression down to a similar level as observed in control male fetuses. 

CYP11A1 mRNA abundance followed a similar trend (P=0.07; Figure 5.7.B) 

as did MR mRNA abundance (P<0.01; Figure 5.7.F). None of the other genes 

analysed had any effect due to MI-TP at d30 in female fetuses. 
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Figure 5.7 Effect of vehicle treatment (FI d62&82 in comparison with MI-

TPd30) on expression of genes coding for STAR, ACTH-R, CYP11A1, 

HSD3B, AR, GR and MR, in fetal adrenal at d90 gestation.  

(Control, Female, n=6; Male, n=6; MI-TP d30, n=2). Values represent mean ± 

SEM. *P<0.05, ** P<0.01, *** P<0.001.  
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5.5 Discussion 
 
In this study, the effects of exposure to excess prenatal steroids (TP, DES 

and DEX) were assessed in both male and female fetal adrenal glands in 

terms of steroidogenic gene expression. Whilst the fetal adrenal gland is 

active during the first half and last month of gestation, it remains quiescent 

during midgestation (Wintour et al., 1975), likely due to the inadequate 

production of ACTH from the fetal pituitary prior to this time. Therefore, 

adrenal samples collected in this study from midgestational steroid 

manipulated pregnancies may not be optimal in terms of timing of examination 

of steroidogenic enzyme expression, however, gross alterations in gene 

expression should be evident. Timing of collection of tissues for fetal adrenal 

study resulted from the collection times (d90) which in fact designed as part of 

a larger, multi-organ study. Additionally, another aim of this study was to 

examine potential differences between male and female fetuses in terms of 

adrenal responses to exogenous steroids, and such potential gender-specific 

responses should be visible even during a quiescent period since respective 

receptor expression has already been confirmed (Rae and Duncan, 

unpublished). Hence, this work focused upon gender-differential responses by 

utilising steroidogenic GOIs as potential markers of sex-specific adrenal 

development. 

 

5.5.1 Gender associated differences in fetal adrenal gene 
expression 
 
Basal ACTH-R, STAR and CYP11A1 mRNA expression levels were lower in 

males than in females at d90 gestation, suggesting that steroidogenic 

potential is lesser in the male than the female adrenal gland. Lower STAR and 

CYP11A1 is unlikely to be a consequence of lowered ACTH responsiveness 

(lower ACTH-R) as there is no ACTH drive in fetal sheep at this time of 

gestation (Wintour et al., 1975). There was also lower HSD17B expression in 

males than in females at d90, which might indicate perhaps a lesser 

androgenic capacity in males than in females. Speculatively, endogenous 
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androgen exposure around d30/35 from fetal testis (Quirke et al., 2001) could 

be the possible reason behind low adrenal steroidogenic capacity in males as 

compared to females. Connolly et al., (2013) have demonstrated decreased 

fetal testicular steroidogenic enzyme gene expression and LH secretion along 

with abnormal leydig cell development, in response to direct in utero androgen 

exposure. Therefore, decreased adrenal androgenic potential in males may 

be indicative of a compensatory mechanism of adrenal gland to protect 

testicular development. i.e if there was significant androgen secretion from 

male fetal adrenal during development, the adrenal androgens could possibly 

act upon the hypothalamic-pituitary-testicular axis, thereby causing lowered 

LH and thus affecting Leydig cell distribution and testicular androgen 

secretion, in a similar fashion to that of exogenous androgens (Connolly et al., 

2013). ACTH secretion is negatively regulated by androgens during adulthood 

(Giussani et al., 2000), however, as noted above there is no ACTH secretion 

in the sheep during midgestation. Increased SRD5A2 in males as compared 

to females suggests the potential of the adrenal gland to regulate testicular 

androgenic signaling by potentiating androgenic signalling through 

metabolism of weaker androgens into more potent forms (Söderström et al., 

2001). In contrast, MR expression was lower in males than in females, 

however the functional significance of this is unknown. In summary, as the 

above gene expression changes are occurring during a quiescent period in 

adrenal gland development and function, the effects may not be of a 

functional relevance during postnatal life. Nonetheless it was intriguing that 

GR expression was significantly higher in males than in females, suggesting 

possible increased sensitivity to glucocorticoids in males.  

 

5.5.2 Are gender differences in adrenal gene expression due 
to endogenous androgen exposure? 
 
A limitation to this study was the relatively small sample size. Nonetheless, 

STAR, CYP11A1 and MR were masculinized, in that they were reduced to 

male levels, by excess androgen exposure at d30 in female fetuses. This 

suggested that the sex differences observed in these genes are likely due to 
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earlier exposure (d30/35) to endogenous testicular androgens in males.  In 

contrast, excess androgen exposure at d30 had no effect on GR expression in 

females, indicating that higher GR in males is independent of testicular 

androgens during sexual differentiation. However it could be a more 

fundamental gene factor that triggers dimorphic differences between male and 

female adrenal development preceding sexual differentiation. A similar pattern 

of sexual dimorphic effect was demonstrated with regards to the key genes 

involved in mouse brain development, which suggests that genetic factors 

may play a key role in differential expression of sex-specific genes (Dewing et 

al., 2003). In conclusion, lower STAR, CYP11A1 and MR in females suggests 

the existence of early androgen sensitive window in the adrenal gland, which 

permits masculinization of the adrenal via testicular androgens. This then 

implies existence of a male and female adrenal.  

 

5.5.3 Prenatal androgen excess: male fetal adrenal glands 
 
Direct fetal injection of TP had no effect on any of the GOI’s analysed in male 

adrenal glands assayed at d90 of gestation. The possible reason for such lack 

of effects, given that androgen receptors are expressed, could be pre-

exposure to testicular androgens from d30 (Quirke et al., 2001). As described 

above, testicular steroidogenic enzyme expression was decreased in fetal 

testis from midgestational androgen–excess manipulated pregnancies 

(Connolly et al., 2013). However, this was likely due to suppression of LH, and 

thus lack of trophic support for the testes, as at this stage of development 

there appears to be a functional HPG axis. There is no functional HPA axis 

during midgestation, since ACTH secretion is not activated until later in 

gestation (Challis and Brooks, 1989). Hence there is unaltered functional HPA 

and trophic support during midgestation, which could be the possible reason 

behind the apparent lack of effects in males. 
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5.5.4 Prenatal androgen excess: female fetal adrenal glands 
 
MR was the only gene which was significantly decreased by excess prenatal 

androgen exposure in female fetal adrenal. Since MR was also lower in males 

than females, and also decreased by early androgenisation at d30 in females, 

this suggests that MR remains responsive to androgens throughout gestation. 

However, the lack of effect of midgestational androgen excess on STAR and 

CYP11A1 in female fetal adrenal, suggests that these genes were only 

sensitive to excess androgens earlier in gestation (d30). Hence these data 

tentatively suggest a window of sensitivity to androgens in female fetal 

adrenal, which was operant at d30 and ended by d62 of gestation. 

 

5.5.5 Prenatal estrogen excess: male fetal adrenal glands 
 
ACTH-R and STAR mRNA were increased by excess prenatal estrogen 

exposure in male fetal adrenal. Whilst it is known that estrogens can increase 

ACTH secretion (C. E. Wood and Saoud, 1997), resulting in increased STAR 

(at least in rats) (Lehoux et al., 1998), the increased ACTH-R in males in this 

study is novel and may be indicative of increased adrenal ACTH sensitivity. 

Wood and Saoud (1997) have demonstrated that ovine fetuses exposed to 

17-β estradiol in the last month of gestation led to significantly increased fetal 

plasma ACTH and cortisol concentrations, which in turn led to parturition 4 

days prior to term (term ~ 147 days). As ACTH secretion is active in the last 

month of gestation in sheep (Challis and Brooks., 1989), the above increased 

fetal plasma cortisol and ACTH concentrations in response to estrogens (C. 

E. Wood et al., 1997) may play a key role in parturition by altering HPA axis 

activity near to term. However, given the lack of ACTH during midgestation, 

the functional significance of increased ACTH sensitivity in the current study is 

perhaps lesser than it would be at the end of gestation. Nonetheless, in the 

present study, it can be speculated that, if excess estrogens were to be 

continued till end of gestation, driving increased ACTH sensitivity, then 

coupled with the potential for estrogen induced increased ACTH, this could 

drive towards increased cortisol secretion, which may have implications in 
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terms of timing of parturition (Wood and Saoud., 1997). Finally, decreased 

HSD17B in response to excess estrogens leads to speculation that there may 

be a lowered capacity for androgen synthesis, but again, as the effects are 

during quiescent period, it is difficult to place too much emphasis on this 

finding. 

 

5.5.6 Prenatal estrogen excess: female fetal adrenal glands 
 

STAR, CYP11B1, GR and ERβ were increased by midgestational excess 

estrogen exposure in females. Increased STAR and CYP11B1 suggests 

increased steroidogenic potential, possibly in the direction of glucocorticoid 

synthesis, however, once again, functional relevance is unknown due to the 

fact that adrenal remains quiescent at this stage of development, unlike later 

in gestation where excess estrogens aid in parturition in sheep (Wood and 

Saoud., 1997). Increased GR suggests increased glucocorticoid sensitivity 

driven by excess estrogens, and in support of this are observations made in 

breast cancer cells where estrogens are known to regulate GR mRNA 

(Krishnan et al., 2001). Increased ERβ in female fetal adrenal in this study 

suggests direct effect of estrogens, hence increased sensitivity to excess 

prenatal estrogens in female adrenal at this stage of development. ERβ is 

also expressed during both mid and late gestation in primate fetal adrenal 

gland (Albrecht et al., 1999). It is also worth noting here that, during late 

gestation in sheep, estrogen is produced by the placenta at the expense of 

progesterone due to ‘fetal glucocorticoid surge’, which induces placental 

CYP17 expression and thus permits forward placental metabolism to estradiol 

(Anderson et al., 1975). The resultant increased estrogens in turn activate 

placental prostaglandin (PG) synthesis, which leads to myometrial contraction 

and initiation of parturition (McLaren et al., 2000). However, as the fetal 

adrenal gland is ‘quiescent’ during midgestation, the functional consequences 

are less when compared to the effects seen towards the end of gestation. 
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5.5.7 Prenatal glucocorticoid excess: male fetal adrenal 
glands 
 
Increased ACTH-R, STAR, CYP11A1, HSD3B, CYP17, HSD11B1, SRD5A1, 

SRD5A2, suggests altered adrenal steroidogenic potential and increased GR, 

MR, ERα, ERβ and AR, suggest altered receptivity to glucocorticoids, 

mineralocorticoids, estrogens and androgens, respectively in male fetal 

adrenals from glucocorticoid excess exposed pregnancies. Previous studies 

have demonstrated that gestational (d40) exposure to dexamethasone 

resulted in elevated ACTH-R and STAR in male sheep offspring at 7 months 

old (S. Li et al., 2012) and increased CYP11A1 at d140 gestation (Braun et 

al., 2009b). HSD3B and CYP17 were significantly elevated in male offspring 

from early glucocorticoid manipulated pregnancies (S. Li et al., 2012). 

Collectively, then, it appears that ACTH-R, STAR, CYP11A1, HSD3B and 

CYP17 are sensitive to excess prenatal dexamethasone exposure during both 

early and midgestation. This has important consequences for the current 

study, as this previous work indicates that alterations in these genes during 

fetal life by glucocorticoid excess can have postnatal consequences for male 

offspring (S. Li et al., 2012). Such potential consequences will be examined in 

the next chapter of this thesis. Elevated HSD11B1 suggests potential for 

increased conversion of inactive cortisone to active cortisol (Michael et al., 

2003), however functional relevance is unknown. Although, given the function 

of the placenta to deactivate the majority of maternal cortisol to cortisone via 

11βHSD-2 (Michael et al., 2003), this would appear to work against the 

placental barrier and hence could potentially, in the presence of inactive 

glucocorticoids of maternal origins, reverse the placental effects of 

glucocorticoids inactivation. This could then increase local adrenal cortisol 

concentrations, which could then ‘feed-forward’ by mimicking the exogenous 

dexamethasone effects noted here, amplifying glucocorticoid activity via 

increased regeneration of maternal glucocorticoids combined with increased 

sensitivity to glucocorticoids via increased GR. This is the first study to 

demonstrate increased SRD5A1, SRD5A2, ERα and AR in male adrenals as 

a result of prenatal glucocorticoid exposure. Increased MR by excess 
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glucocorticoid exposure demonstrates MR is sensitive to glucocorticoids 

during midgestation, however functional relevance is unknown. As GR 

expression is already higher in males compared to females and further 

exposure to prenatal excess glucocorticoids leading to increased GR during 

midgestation, this clearly shows that GR gene expression is sensitive to 

glucocorticoids throughout gestation. 

 

5.5.8 Prenatal glucocorticoid excess: female fetal adrenal 
glands 
 
STAR, SRD5A2 and GR were significantly increased by excess glucocorticoid 

exposure in female fetal adrenals. As the same genes were increased in 

males, this suggests that there were no gender differences in terms of 

expression of these adrenal genes in response to prenatal glucocorticoid 

exposure. The major finding of this study was that there were fewer adrenal 

genes altered in females when compared to males in response to excess 

prenatal glucocorticoid exposure, indicative of the female adrenals relative 

insensitivity to glucocorticoids as compared to the male, evidenced by the 

relatively low GR expression in females as compared to males. Even though 

GR was increased in both male and female fetal adrenal in response to 

excess glucocorticoids, basal GR expression was much higher in males (~3 

fold increase) than in females. Similarly, the increased GR observed in 

females, whilst significant was much less than that observed in males in 

response to dexamethasone. Since female GR expression could not be 

‘masculinised’ by early androgenisation, this suggested that in males that high 

GR expression likely precedes sexual differentiation i.e was not dependent 

upon testicular androgens. The sex-specific, male predominant GR 

expression may be the possible reason behind the male fetal adrenal being 

apparently more sensitive to midgestational prenatal glucocorticoid exposure 

than the female adrenal, and hence the increased adrenal steroidogenic gene 

expression in male fetal adrenal in response to dexamethasone. A potential 

mechanism for the differential expression of GR could be via gender-specific 

co-activators and transcription factors, for example gender specific TATA- box 

binding protein was higher in adult male rat liver compared to females in 
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response to glucocorticoids (Duma et al., 2010). Moreover, the dimorphic 

expression of RNA splicing, microRNAs, RNA stability, and posttranslational 

modifications of GR (Duma et al., 2010) could be also leading to the above 

gender-specific action of glucocorticoids on adrenal steroidogenic gene 

expression. GR transcript expression and the use of GR promoter region were 

differently expressed within the placentas of male and female fetuses in 

women during term of pregnancy (R. F. Johnson et al., 2008). This clearly 

suggests differential responses to increased cortisol concentrations in the 

placentas associated with male or female fetuses in women. For example, 

there was increased cortisol secretion in males sheep fetuses compared to 

females fetuses from prenatal hypoxic stress induced pregnancies (Giussani 

et al., 2011). It should be noted however that in the current study this effect 

was only noted in the adrenal glands, since as described in Chapter 3, there 

was no gender difference as regards to fetal pancreatic GR expression. 

Nonetheless, in this study, if the gender differences in responses to prenatal 

excess glucocorticoid exposure remained later in gestation, it could have 

implications for the male fetal adrenal in terms of function.  Along with stress 

responses, glucocorticoids are also known to regulate anti-inflammatory 

actions (Reynolds, 2010). In support of the latter, genome wide microarray 

data analysis revealed 84 genes involved in inflammation were sex-

specifically altered in response to dexamethasone exposure in liver of adult 

male rats compared to females, suggesting gender specific anti-inflammatory 

effects of glucocorticoids (Duma et al., 2010). This has clinical relevance 

where synthetic glucocorticoids prescribed for inflammatory disorders may be 

more potent in males compared to females, however such speculation clearly 

needs further investigation in humans. 

 

Collectively, this fetal adrenal study has demonstrated a fetal sex-specific 

effect of prenatal glucocorticoids, likely due to higher expression of GR. This 

suggests that sex hormones (androgens and estrogens) are not the sole 

contributors of sexually dimorphic effects in both physiological and 

pathophysiological conditions; instead there are other signaling pathways 

independent of sex steroids signaling such as glucocorticoids acting via GR. 

This may have possible clinical implications on HPA axis and function, 
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metabolic functions such as glucocorticoid mediated hepatic gluconeogenesis 

and anti-inflammatory actions of glucocorticoids. 

 
5.5.9 Summary and Conclusions 
 
This chapter gives insight to gender differences in fetal adrenal development, 

and responses to exogenous steroids. The data collected provides some 

evidence of apparent windows of sensitivity of adrenal steroidogenic genes to 

different exogenous steroids during development. Whilst most of the gender-

specific responses observed are attributable to masculinization effects, in turn 

attributable to testicular androgen exposure (phenotypical sexual 

differentiation) in males during early gestation, GR expression in males is 

apparently higher in expression than in females independent of any 

androgenisation effect. As the fetal adrenal samples in this chapter were 

collected during a ‘quiescent period’, it is hard to speculate any functional and 

health relevant significances from such altered adrenal gene expression. 

Furthermore, a proportion of the changes in gene expression seen in 

response to the steroids applied may be contemporary effects, which resolve 

upon cessation of the steroid excess, similar to that observed in fetal testis 

(Connolly et al., 2013). Therefore, examination of adrenal glands in terms of 

function in offspring from these steroid manipulated pregnancies is essential, 

which should provide insight of understanding possible postnatal implications. 
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6.0 Introduction 
 
In chapter 5, the effects of direct fetal exposure to androgen, estrogen and 

glucocorticoid excess in utero (TP, DES and DEX respectively) on adrenal 

development were examined. As a result of the fetal DES and DEX treatment, 

genes involved in fetal adrenal steroidogenic pathway were altered in females 

and males, respectively. However, it was DEX treatment in males that 

exhibited profound effects in terms of adrenal steroidogenic gene expression. 

Given the focus in PCOS research on androgenic programming, it was 

perhaps a little surprising that there were so few effects of androgenic excess 

in female fetal adrenal glands. It was concluded that there were sex-specific 

and steroid specific effects on the developing fetal adrenal. Whilst such 

studies can invariably lead to speculation as to what the postnatal legacy of 

such altered in utero environments could be, in order to definitively address 

such speculation a follow up study on postnatal adrenals was necessary to 

determine any long-term functional, and hence health-relevant legacy of fetal 

excess steroid exposure. The adrenal gland secretes steroids such as 

glucocorticoids and androgens in response to ACTH released by the pituitary 

gland and is a major source of androgen in addition to gonads. Adrenal 

DHEA, DHEAS, androstenedione and testosterone accounts for 

approximately about 50% of androgen load in women (Burger, 2002). This is 

important in clinical conditions such as PCOS, where women suffer from 

excess androgen secretion from both ovary and adrenal (Azziz et al., 1998; 

Rosenfield, 1999). There is also evidence from animal models that fetal 

exposure to excess androgens could lead to excess adrenal androgen 

secretion in terms of increased basal DHEA and ACTH stimulated DHEA and 

androstenedione during adulthood (Zhou et al., 2005) and increased ACTH 

stimulated corticosterone production is certainly evident in non-human primate 

PCOS animal models (Zhou et al., 2005), suggestive of altered HPA axis 

activity. 

The aim of this chapter was to assess adrenal steroidogenic gene expression 

and adrenal function in female adult offspring adrenal gland derived from 

steroid manipulated pregnancies. We also assessed adrenal gene expression 
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and function in lambs from steroid manipulated pregnancies to determine 

whether or not any effects seen in adults might develop pre or post puberty. 

Steroidogenic gene expression was measured using qRT-PCR in lamb and 

adult offspring. Adrenal function was assessed by measuring ACTH-analogue 

(Synacthen) stimulated production of cortisol and testosterone in lamb and 

adult offspring from steroid manipulated pregnancies. 
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6.1 Materials and methods 
 
6.1.1 Animal Treatment and Husbandry 
 
Animal husbandry is as detailed in section 2.1-2.1.1 and treatment regime of 

pregnant ewes was followed as explained in section 2.1.2. Table 6.1 details 

the postnatal animals used in this study. 

 
Analysis 

 
Postnatal Stage 

 
Sample Number (n) 

  
Lamb (pre-pubertal) 

 

 
 

RNA (qRT-PCR)  
 

 
Female 

C=6; TP=6(20mg) 
DES=5 (50µg);  
DEX=4 (100µg) 

 
Male 

C=6; TP=6 (20mg) 
DES=6(50µg); 
DEX=10(100µg) 

 
 

Functional Analysis 

 
Female 

 

C=4; TP=11(20mg) 
DES=7(50µg); 
DEX=5(100µg) 

 
Male 

 

C=6;DES=6(50µg); 
DEX=6(100µg) 

  
Adult (Post-pubertal 

Adolescence) 

 

 
RNA (qRT-PCR)  

 
Females 

C=6;TP=6 (20mg) 
C=4;DES=6(50µg);  
DEX=6 (100µg) 

 
Functional Analysis 

 
Females 

C=7; TP=13(20mg) 
DES=8(50µg); 
DEX=10(100µg) 

Table 6.1 The experimental animals included in the assessment of 

postnatal adrenal gland gene expression and function, treatment 

regime and sample numbers.  

 
6.1.2 Quantitative real time PCR 
 
Genes coding for adrenal steroidogenic enzymes and steroid receptors were 

assessed in adrenal glands of both lamb and adult offspring from steroid 

manipulated pregnancies. The SYBR qRT-PCR protocol is detailed in section 
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2.3.9. The primer details for each gene are as detailed in table 5.2, section 

5.2.3. 

 

6.1.3 Synacthen test to measure adrenal function  
 
To assess adrenal function a Synacthen test was performed at approximately 

10 weeks and 10.5 months of age on ewes exposed to prenatal steroids via 

the FI route. Synacthen is a synthetic analogue of endogenous pituitary 

secreted ACTH and is routinely used to investigate adrenal insufficiency in 

clinical medicine. Animals were fasted on the day of the test, which was 

carried out during late morning in groups of 8-10 animals at a time. The 

animals within treatment cohorts were randomly mixed in these test groups 

and all tests occurred at the same time of day to avoid any distortion of data 

due to circadian rhythm. A basal blood sample was drawn from the jugular 

vein prior to administration of a 2ml intravascular dose of Synacthen (50µg/ml 

in saline; Alliance Pharmaceuticals Ltd., Wiltshire, UK) and subsequent 

sampling occurred 15 and 30 min post-stimulation. Blood was decanted into 

heparin containing test-tubes, spun at 3000 rpm at 4°C for 15 min, and the 

supernatant (plasma) stored at -20°C. Trained animal husbandry staff and Drs 

Duncan and Rae performed all blood sampling. 

 

6.1.4 Enzyme Immunoassay 
 
6.1.5 Serum Extraction 
 
This step was identical for both ELISA and RIA experiments. To separate 

steroids from binding proteins present in plasma samples and thereby to 

maintain accuracy of the assay, sheep plasma samples were extracted along 

with standards and controls (high, medium and low) as detailed in section 

2.6.1. 
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6.1.6 Enzyme linked immunosorbent assay (ELISA) – Cortisol 
 
Enzyme linked immunosorbent assay (ELISA) works on the principle of 

antigen-antibody binding principle to detect the presence of proteins in the 

samples. The work in this study optimized a cortisol ELISA protocol to 

measure cortisol in sheep serum. The detailed report of the assay 

optimization is explained in section 2.7.8. 

 

6.1.7 Radioimmunoassay 
 
The RIA protocol is detailed in section 2.6.2 and was used to assess 

testosterone concentrations in sheep plasma. Intra and inter assay co-efficient 

of variation (CVs) were determined by the quality control samples included in 

each assay and were 8.7% and 7.9% respectively. Hormone measured and 

specific antibodies used are detailed in Table 6.2. 

 

Hormone Primary Antibody Tracer  
(125I labelled) 

Standards Intra and 
Inter 
assay 
CVs(%) 

Testosterone Rabbit  
anti-testosterone-19; 
AMS Biotechnology. 
Oxfordshire, UK 

Testosterone 
125I,MP 
Biochemicals, 
France 

Testosterone 
(T1268), 
Sigma Aldrich 

8.7%, 

7.9% 

Table 6.2 Antibody information used to measure plasma 

testosterone by RIA- listed are the primary antibody, tracer and 

standards. 
 
6.1.8 Statistical Analysis 
 
Graphpad Prism (v.6.0) was utilized for all data analyses and transformations. 

Student’s unpaired two-tailed t-test was performed on gene expression data 

to analyze the difference between control and treatment groups, with log 

transformation (log base 10) was carried out where the data showed unequal 

variances. One- way ANOVA followed by Tukey’s post hoc test was 

performed on values obtained from Synacthen treated plasma samples from 

0, 15, 30 time points in control and treatment groups separately and unpaired 
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t-test was carried out comparing each time point separately between control 

and treatment groups. Area under the curve (AUC) was calculated to analyse 

the overall secretion of hormones over the duration of the Synacthcen 

challenge between control and treatment groups, and an unpaired t-test 

performed on this data. In all cases, data was considered significant where 

P<0.05. 
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6.2. Results 
 
In order to examine the effects of direct fetal steroid exposure on adult 

adrenal steroidogenic gene expression at the molecular level, genes coding 

for enzymes involved in adrenal steroidogenesis such as STAR, ACTH-R, 

CYP11A1, CYP17, CYP21A1, HSD3B, HSD11B1, HSD11B2, HSD17B, 

CYP11B1, SRD5A1, SRD5A2 and steroid receptors such as AR and GR were 

assessed.  

 

6.2.1 FI-TP had different effects compared to FI-DES treatment 
on female adult adrenal (11 months) steroidogenic gene 
expression  

 
STAR mRNA expression was significantly increased by FI-TP treatment 

(P<0.01; Figure 6.1.A) but not by FI-DES (Figure 6.2.A) in female adult 

animals compared to control animals. ACTH-R and CYP11A1 mRNA 

expression was unaltered by TP, however ACTH-R was significantly 

decreased by DES treatment (P<0.001; Figure 6.2.B and Figure 6.2.C 

respectively) compared to controls. CYP21A and HSD3B mRNA abundance 

was significantly increased by FI-TP (P<0.05, Figure 6.1.E and Figure 6.1.F 

respectively) treatment but not by FI-DES treatment compared to controls. 

HSD11B1 mRNA expression was significantly increased by FI-TP treatment 

only (P<0.05; Figure 6.1.G), however HSD11B2 expression was unaltered by 

either of the treatment groups. CYP11B1 mRNA abundance was significantly 

increased by FI-TP treatment only (P<0.001; Figure 6.1.I) compared to 

controls. HSD17B mRNA abundance was significantly increased by FI-TP 

treatment (P<0.01; Figure 6.1.J), but was significantly decreased by FI-DES 

treatment (P<0.01; Figure 6.2.J). Finally, FI-TP treatment had no effect on 

SRD5A1 mRNA expression, however it was significantly decreased by FI-

DES treatment (P<0.001; Figure 6.2.K) in female adult offspring compared to 

controls. 
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FIGURE 6.1. EFFECT OF DIRECT FETAL EXPOSURE TO TP ON 
EXPRESSION OF GENES CODING FOR STAR, ACTH-R, CYP11A1, 
HSD3B, CYP17, CYP21A, SRD5A1, SRD5A2, CYP11B1, HSD11B1, 
HSD11B2, HSD17B, AR AND GR IN ADULT FEMALE ADRENAL.  

(Control n=6, TP n=6). Values represent mean ±SEM, * P<0.05, ***P<0.01. 
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FIGURE 6.2. EFFECT OF DIRECT FETAL EXPOSURE TO DES ON 

EXPRESSION OF GENES CODING FOR STAR, ACTH-R, CYP11A1, 
HSD3B, CYP17, CYP21A, SRD5A1, SRD5A2, CYP11B1, HSD11B1, 
HSD11B2, HSD17B, AR AND GR IN ADULT FEMALE ADRENAL. 
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 (Control n=4, DES n=6). Values represent mean ±SEM. * P<0.05, **P<0.01, 

***P<0.001. 

 

6.2.2 Effects of direct prenatal exposure to DEX treatment on 
female adult sheep (11 months) steroidogenic gene 
expression  
 
Direct fetal steroid exposure to DEX treatment significantly decreased the 

mRNA expression of SRD5A1 (P<0.01; Figure 6.3.K) in the female adult 

adrenal, compared to controls, however, there was no change in any of the 

other genes assessed between control and FI-DEX treated group. 
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FIGURE 6.3. EFFECT OF DIRECT FETAL EXPOSURE TO DEX ON 
EXPRESSION OF GENES CODING FOR STAR, ACTH-R, CYP11A1, 
HSD3B, CYP17, CYP21A, SRD5A1, SRD5A2, CYP11B1, HSD11B1, 
HSD11B2, HSD17B, AR AND GR IN ADULT FEMALE ADRENAL.  

(Control n=4, DEX n=6). Values represent mean ±SEM, **P<0.01. 
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6.3.1 Cortisol secretion was unaltered in female adult 
offspring (post-pubertal) (11 months) by FI-TP or FI-DES  
 
Synacthen challenge was performed in order to examine the adrenal gland 

function in the adult offspring from fetal steroid manipulated pregnancies. 

 
There was a significant increase in cortisol secretion at 30 min (P<0.05) post 

Synacthen stimulation in control group and both at 15 min (P<0.01) and 30 

min (P<0.01) post stimulation in TP treated adult females compared to basal 

levels (0), however, there was no significant difference in terms of the 

magnitude of response between control and TP treatment (Figure 6.4.A and 

B). Similarly, there was a significant increase in cortisol secretion at 30 min 

(P<0.01) post Synacthen stimulation in DES treated animals compared to 0 

time point (Figure 6.4.C), however the difference at each individual time point 

between control and DES was not significant, and similarly total cortisol 

(AUCcortisol) secretion between control and DES treatment groups was not 

different (Figure 6.4.D). 
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Figure 6.4 Cortisol secretion following adrenal stimulation in female adult 

exposed prenatally to different steroids.  

(A). Control n=7; TP n=13, (C) Control, n=4 vs DES, n=7. Area under the 

curve (AUC) for total cortisol secreted in female lamb pre and post ACTH 

stimulation between control and treatment groups. (B). Control vs TP; (D) 

Control vs DES. 

 
 
6.3.2 Cortisol secretion was unaltered in female adult 
offspring (post-pubertal) (11 months) due to FI-DEX 
  
There was an increase in cortisol secretion at 15 min (P<0.05) in control 

cohort and both at 15 (P<0.01) and 30 (P<0.01) (Figure 6.4.1.A) min post 

ACTH stimulation in the DEX treated group compared to the basal levels (0), 

however there was no difference between control and DEX at each individual 
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time points, which was reflected in the overall cortisol secretion (AUCcortisol) 

between control and DEX treatment being unaltered (Figure 6.4.1.B). 

 

 
 

Figure 6.4.1 (A) Cortisol secretion following adrenal stimulation in female 

adult exposed to Fi-DEX treatment. 

Control n=4; DEX n=11. (B) Area under the curve (AUC) for total cortisol 

secreted in female lamb pre and post ACTH stimulation between control and 

DEX group.  

 
 
6.3.3 FI-TP (but not FI-DES) exposure altered testosterone 
secretion in female adult (11 months) 
 
There was no significant increase in testosterone secretion at 0, 15, 30 min 

time intervals in response to Synacthen stimulation in the control (vehicle) 

animals, however there was a trend towards increased secretion at 15 

minutes post-stimulation. On the other hand, there was a marked, and 

prolonged significant increase at 15 (P<0.05) and 30 (P<0.01) (Figure 6.4.2.A) 

minutes post Synacthen stimulation compared to basal levels (0) in the FI-TP 

treated animals. This exaggerated increase in testosterone response in the 

FI-TP treated (P<0.001) (Figure 6.4.2.A) cohort at 30 min post ACTH 

stimulation compared to controls was reflected in the total area (AUC) 

measured showing a significant increase (P<0.001; Figure 6.4.2.B) in overall 

testosterone (AUCtestosterone) production in the TP treated animals compared to 

controls. 
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Synacthen stimulation in prenatally DES treated animals showed a significant 

increase in testosterone concentrations at 15 (P<0.05) and 30 minutes 

(P<0.01) (Figure 6.4.2.C) post stimulation compared to basal levels, however 

there was no difference in the testosterone response at different time intervals 

(Figure 6.4.2.D) or in overall testosterone production (Figure 6.4.2.D), when 

compared to control animals.   

 

 
 

Figure 6.4.2. Testosterone secretion following adrenal stimulation in female 

adult exposed prenatally to different steroids.  

(A). Control n=7; TP n=13, (C) Control, n=4; DES, n=7. Area under the curve 

(AUC) for total testosterone secreted in female adult pre and post ACTH 

stimulation between control and treatment groups. (B). Control vs TP; (D) 

Control vs DES.  ***P<0.01 
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6.3.4 FI-DEX exposure had no effect on adrenal testosterone 
secretion in female adult offspring 
 
There was no difference in testosterone response at different time intervals in 

both control and DEX treated animals compared to basal levels, however 

there was a trend towards increases at 15 and 30 min post-stimulation as 

compared to basal concentrations. Furthermore, there was an apparent trend 

towards a decrease in testosterone response in DEX treated animals (Figure 

6.4.3.A), but was not statistically significant (Figure 6.4.3.B) when compared 

to control animals. 

 

 
Figure 6.4.3. (A) Testosterone secretion following adrenal stimulation in 

female adult exposed to FI-DEX treatment. 

Control n=4; DEX, n=11. (B) Area under the curve (AUC) for total cortisol 

secreted in female lamb pre and post ACTH stimulation between control and 

DEX group. 

 
 
6.4 Prepubertal lamb adrenal steroidogenic gene expression 
 
We earlier observed in this study that FI-TP treatment, in adult female 

offspring, was associated with increased expression of key genes encoding 

for enzymes involved in the adrenal steroidogenic pathway and also elevated 

testosterone secretion in response to adrenal stimulation. In order to 

investigate whether there is a developmental period during which the above 

adrenal phenotype might arise in females due to FI-TP exposure, we studied 
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only FI-TP treated female lambs (3 months old) by assessing only those 

genes that were altered by FI-TP in female adults, however functional 

analysis was assessed in female lambs from FI-TP, FI-DES and FI-DEX 

exposed pregnancies.  

 

6.4.1 FI-TP exposure had no effect on female lamb adrenal 
steroidogenic gene expression 
 
Apart from CYP11B1, which was significantly decreased by FI-TP exposure 

(P<0.05; Figure 6.5.G), none of the other genes analysed showed any effect 

of prenatal TP exposure in the female lamb adrenal at 12 weeks postnatal life. 

Figure 6.5. Effect of direct fetal exposure to TP on expression of genes 

coding for STAR, ACTH-R, CYP11A1, HSD3B, CYP17, CYP21A, SRD5A1, 

SRD5A2, CYP11B1, HSD11B1, HSD17B in female lamb adrenal. 
(Control n=6, TP n=6). Values represent mean ±SEM, * P<0.05 
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6.4.2 Effects of direct prenatal exposure to exogenous 
steroids on cortisol secretion in female lambs (prepubertal) (3 
months old)  
   
There was a significant increase in cortisol secretion at 30 min post 

stimulation (P<0.05) (Figure 6.5.1.A) in the control group and a significant 

increase at 15 (P<0.05) and 30 min (P<0.01) post stimulation in the TP 

treated compared to the basal levels (0), but there was no significant 

difference between treatments at each individual time point (0, 15 and 30 

minutes), which was confirmed by the overall cortisol secretion (AUCcortisol)  

(Figure 6.5.1.B). 

 

There was a significant increase in cortisol secretion at 30 min (P<0.05) in the 

control animals and both at 15 min (P<0.05) and 30 min (P<0.05) in DES 

treated animals compared to their respective basal levels (0) (Figure 6.5.1.C), 

but there was no significant difference at each individual time point or in terms 

of overall cortisol secretion (AUCcortisol) between control and in utero DES 

treatment animals (Figure 6.5.1.D). 

 

There was a significant increase in cortisol secretion at 30 min (P<0.05) 

(Figure 6.5.2.A) post stimulation in both control and DEX treated female 

offspring, but there was no significant difference between control and DEX 

treated animals in terms of overall cortisol secretion (AUCcortisol) (Figure 

6.5.2.B). 
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Figure 6.5.1. Cortisol secretion following adrenal stimulation in female lamb 

exposed prenatally to different steroids. 

(A). Control n=4; TP n=10; (C) Control n=4; DES n=7. Area under the curve 

(AUC) for total cortisol secreted in female lamb pre and post ACTH 

stimulation between control and treatment groups. (B). Control vs TP; (D) 

Control vs DES. 
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Figure 6.5.2. Cortisol secretion following adrenal stimulation in female lamb 

exposed to FI-DEX treatment. 

(A). Control n=4; DEX n=11; (B) Area under the curve (AUC) for total cortisol 

secreted in female lamb pre and post ACTH stimulation between control and 

DEX group. 

 

6.4.3 Effects of direct prenatal exposure to different steroids 
on testosterone secretion in female lamb (3 month old)  
 
There was no change in testosterone secretion between control and TP or 

DES treated cohorts post ACTH stimulation (Figure 6.5.3.A, B, C, D). 

There was a trend towards a decrease in testosterone response in DEX 

treated animals, but this was not statistically significant (Figure 6.5.4.A and B). 
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Figure 6.5.3. Testosterone secretion following adrenal stimulation in female 

lamb exposed prenatally to different steroids.  

(A). Adrenal stimulation in FI-TP treated animals, Control n=4; TP n=10, (B). 

Area under the curve (AUC) for total testosterone secreted in female adult pre 

and post ACTH stimulation between control and treatment groups. Control vs 

TP; (C) Adrenal stimulation in FI-DES treated animals Control, n=4; DES, 

n=7.  (D) (D) Area under the curve (AUC) for total testosterone secreted in 

female adults pre and post ACTH stimulation between control and treatment 

groups.  
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Figure 6.5.4. (A) Testosterone secretion following adrenal stimulation in 

female lamb exposed to FI-DEX treatment. 

Adrenal stimulation in FI-DEX treated animals, Control n=4; DEX, n=11. (B) 

Area under the curve (AUC) for total testosterone secreted in female lamb pre 

and post ACTH stimulation between control and DEX group. 

 

6.5 Effects of FI-DES and DEX exposure on male lamb adrenal 
steroidogenic gene expression 
 
This study had the opportunity to study male lambs (10-12 weeks old), as the 

male animals from steroid manipulated pregnancies were sacrificed at lamb 

stage, thereby allowing investigation of any sex specific effects in terms of 

adrenal gene expression and function. In terms of gene expression, only FI-

DES and FI-DEX cohorts were assessed (only tissues available at the time of 

study), however functional analysis was assessed for all three (FI-TP, FI-DES, 

FI-DEX) steroidal treatments.  

 

FI-DES treatment resulted in a significant increase in the mRNA abundance 

levels of HSD11B1 (P<0.05; Figure 6.6.G), HSD17B (P<0.05; Figure 6.6.I) 

and GR (P<0.05) (Figure 6.6.L) in male lamb adrenals, however, there were 

no changes in expression levels of the other genes analysed attributable to 

FI-DES treatment. 
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Figure 6.6 Effect of direct fetal exposure to DES on expression of genes 

coding for STAR, CYP11A1, HSD3B, CYP17, CYP21A, SRD5A1, SRD5A2, 

CYP11B1, HSD11B2, HSD17B and GR in male lamb adrenal.  

(Control n=6, DES n=8). Values represent mean ±SEM. *P<0.05. 

 

In contrast, FI-DEX treatment resulted in increased mRNA abundance levels 

of genes encoding for HSD3B (P<0.05; Figure 6.6.1.C), HSD11B1 (P<0.05; 

Figure 6.6.1.G), HSD11B2 (P<0.05; Figure 6.6.1.H), HSD17B (P<0.05, Figure 

6.6.1.I), and a trend towards increased expression of GR (P=0.0587; Figure 
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6.6.1.L), whilst there were no differences for the remainder of the genes 

analysed. 

 

 

Figure 6.6.1. Effect of direct fetal exposure to DEX on expression of genes 

coding for STAR. CYP11A1, 3βHSD, CYP17, CYP21A, SRD5A1, SRD5A2, 

CYP11B1, HSD11B2, HSD17B and GR in male lamb adrenal.  

(Control n=6, DEX n=7). Values represent mean ±SEM. *P<0.01, ***P<0.001. 
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6.5.1 Effects of direct prenatal exposure to different steroids 
on cortisol secretion in male lamb (3 months old)  
 
There was a significant increase in cortisol secretion at 15 and 30 min in both 

control (15 min (P<0.05; 30 min (P<0.01) respectively) and TP (15 min 

P<0.01; 30 min P<0.05 respectively) treatment groups compared to their 

respective basal time point (0) (Figure 6.6.2.A) and also between 15 min and 

30 min time points by TP treatment alone. However, there was no difference 

in the total cortisol secretion between control and TP group (Figure 6.6.2.B). 

 

There was a significant increase only at 15 and 30 min time points compared 

to basal time points in control animals (P<0.05 and P<0.01, respectively; 

Figure 6.6.3.C) and only at 30 min post (P<0.01) Synacthen stimulation 

compared to basal (0) for both FI-DES and FI-DEX treatment, but no 

differences at individual time points between treatments, which was mirrored 

in the total cortisol secretion (Figure 6.6.2.D and Figure 6.6.3.B respectively). 
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Figure 6.6.2. Cortisol secretion following adrenal stimulation in male lambs 

exposed prenatally to different steroids. 

(A). Control n=6; TP n=5, (C) Control, n=11 vs DES, n=8. Area under the 

curve (AUC) for total cortisol secreted in male lamb pre and post ACTH 

stimulation between control and treatment groups. (B). Control vs TP; (D) 

Control vs DES. 
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Figure 6.6.3. Cortisol secretion following adrenal stimulation in male lamb 

exposed to FI-DEX treatment.  

(A). Control n=11; DEX n=4; (B) Area under the curve (AUC) for total cortisol 

secreted in male lamb pre and post ACTH stimulation between control and 

DEX group.  

 

 

6.5.2 Effects of direct prenatal exposure to different steroids 
on testosterone secretion in male lamb (3 months old)  
 
None of the prenatal steroid treatments caused any alterations in testosterone 

secretion, and in no case there were any effects of such synacthcen 

stimulation on overall circulating testosterone concentrations. 
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Figure 6.6.4. Testosterone secretion following adrenal stimulation in male 

lambs exposed prenatally to different steroids.  

(A). Control n=6; TP n=5, (C) Control, n=11 vs DES, n=8. Area under the 

curve (AUC) for total cortisol secreted in male lamb pre and post ACTH 

stimulation between control and treatment groups. (B). Control vs TP; (D) 

Control vs DES. 

 

 

 

 

 



Chapter 6                            Effects of prenatal steroids on adult adrenal function  

220	  

 
 

Figure 6.6.5. (A) Testosterone secretion following adrenal stimulation in male 

lamb exposed to FI-DEX treatment.  

Control n=11; DEX, n=4. (B) Area under the curve (AUC) for total cortisol 

secreted in male lamb pre and post ACTH stimulation between control and 

DEX group. 
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6.6. Discussion 
 
In Chapter 5, gene expression data derived from fetal adrenals suggested 

altered adrenal development in a sex specific manner in response to direct 

fetal exposure to steroid excesses. FI-DES and FI-DEX treatment showed 

significant effects on female and male fetal adrenal gene expression 

associated with steroid synthesis, respectively. However such steroidogenic 

associated gene expression was largely unaltered by FI-TP during fetal life, 

and collectively, the data described during fetal life left only speculation as to 

whether or not the perturbations observed could have any long-term effects 

extending into postnatal life. Therefore, in this study, we investigated the 

effects of prenatal steroid excess on both lamb and adult adrenal 

steroidogenic gene expression and physiological function. 

 

Due to animal handling housing practicalities and economical constraints only 

female adult offspring from steroid manipulated pregnancies were used in this 

study, however both male and females were studied during lamb stage, which 

will be addressed later in this discussion.  

 

6.6.1 Prenatal excesses of TP lead to adrenal 
hyperandrogenism in female adults 
 
STAR mRNA abundance was significantly increased by FI-TP in adult 

females. Increased STAR mRNA abundance indicates likely increased 

cholesterol transport for steroid synthesis as StAR is involved in cholesterol 

transport from the outer mitochondrial membrane (OMM) to the inner 

mitochondrial membrane (IMM) (Flück et al., 2011). It was important therefore 

to quantify genes encoding for steroidogenic enzymes downstream of StAR in 

the steroidogenic pathway to see if such increased substrate (cholesterol) 

availability was associated with increased adrenal steroid synthetic potential. 

Such analysis may also reveal the directionality of any altered synthetic 

potential I.e increased glucocorticoid or androgen secretion. To this end, 

CYP21A mRNA abundance was examined and found to be significantly 
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increased by FI-TP. CYP21 enzyme helps in conversion of progesterone to 

11-deoxycorticosterone and 17α-hydroxyprogesterone to 11-deoxycortisol, 

respectively, thereby providing substrates for both mineralocorticoid and 

glucocorticoid synthesis (Miller et al., 2011). HSD3B mRNA abundance was 

also significantly increased by FI-TP. The 3β-HSD enzyme converts 17α-

hydroxy-pregnenolone to 17α-hydroxyprogesterone in the zona fasiculata and 

also dehydroepiandrosterone to androstenedione in the zona reticularis region 

of the adrenal cortex (Miller et al., 2011). There was also elevated CYP11B1 

and HSD11B1 mRNA abundance associated with FI-TP. CYP11B1 catalyses 

conversion of 11-deoxycortisol to cortisol within the adrenal zona fasiculata 

(Payne et al., 2004a) whilst 11β-HSD1 converts inactive cortisone to active 

cortisol (Michael et al., 2003). Together, the steroidogenic gene expression 

data suggested that fetal androgen overexposure might promote excess 

cortisol secretion in the female adult offspring. It is important to note, however, 

that such analyses are complicated by the fact that they are an examination of 

a mixture of all three adrenal cortical zones, and hence cannot be used with 

certainly to indicate whether or not glucocorticoid or androgenic elevations are 

likely. Such data, at best, indicates only that there was a likelihood of 

increased steroid synthesis per se. In order to examine adrenal function, and 

address this issue of lack of zone specificity of mRNA analyses and thus 

identify any specific excess steroid secretion(s), animals were challenged with 

an injection of Synacthen, a potent ACTH analogue. There was no significant 

alteration in serum cortisol levels associated with any of the prenatal steroid 

treatments. This is in accordance with a previous study, which showed no 

increase in ACTH-stimulated cortisol concentrations in female rhesus 

monkeys from androgen manipulated pregnancies (Eisner et al., 2002).  

 

17βHSD is exclusively expressed in zona reticularis, the androgen secreting 

region of the adrenal cortex, where it catalyses reduction of androstendione, a 

weak androgen, to testosterone, a more potent androgen (Dufort et al., 1999; 

Lin et al., 1997). The increase in HSD17B and the aforementioned HSD3B, 

suggest the potential for excess testosterone secretion in the adult offspring 

from androgen- (TP) manipulated pregnancies. This was indeed the case, 
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since we observed an exaggerated testosterone output from female offspring 

but only from those pregnancies treated with excess androgens. The lack of 

such increased testosterone secretion in ewes derived from DES-treated 

pregnancies suggests this was a purely androgenic effect in altering adrenal 

function with no estrogenic contribution. Furthermore, this increased 

testosterone secretion with no increased cortisol secretion defines the gene 

expression alterations as being functionally only associated with adrenal 

hyperandrogenism. Since there is no expression of ACTH receptor in the 

ovine ovarian follicle (Drs Duncan and Rae, personal communication), the 

adrenal origin of such increased testosterone in response to Synacthen 

challenge is not in any doubt. 

 

Since there were no alterations in ACTH-R expression in these animals, it is 

unlikely that the increased testosterone output is in any way due to increased 

adrenal sensitivity to trophic stimulation, and the lack of effects on cortisol 

secretion also support this, however, this possibility cannot be totally excluded 

since the ACTH-R mRNA measured was not specific to any one cortical zone. 

Prenatally androgenized female rhesus monkeys exhibited increased basal 

and ACTH induced DHEA levels (Zhou et al., 2005)- criteria used for 

identification of adrenal hyperandrogenism. Similar results of elevated DHEAS 

levels were also observed in daughters of women suffering from PCOS 

(Maliqueo et al., 2009). However, even if DHEA and DHEAS levels are 

elevated as seen in aforementioned studies, they have limited physiological 

value as they both are weak androgens (or pro-androgens) (Burger, 2002) 

and their effects depend on metabolism to a potent androgen such as 

testosterone or DHT (Auchus et al., 2004). Therefore, in the current study, the 

elevated testosterone concentration in the prenatally androgenized female 

adult offspring is of direct clinical relevance.  

 

There thus appeared to be reasonable linkage between adult gene expression 

and function in all three steroid treated groups assayed in adult life, in that 

only animals with increased steroidogenic gene expression were also those 

with increased adrenal androgen output i.e the FI-TP group. Given a lack of 

adrenal gene expression alterations in fetal life (Chapter 5) that could 
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underpin the hyperandrogenaemic adult phenotype, it was important to 

examine the same genes in younger animals. Twelve week old female FI-TP 

animals were chosen for this analysis, as they were the only treatment group 

associated with adult functional perturbations. Female lambs showed no 

changes with respect to gene expression or physiological function (both 

cortisol and testosterone concentration) by FI-TP treatment compared to 

control animals, suggesting that the adult adrenal phenotype is developed as 

the animals mature and therefore suggesting that the altered adult function 

may be an indirect consequence of androgenic programming during fetal life.  

In response to prenatal estrogen excess, decreased gene expression in terms 

of ACTH-R, CYP11A1 and HSD17B mRNA abundances was noted. This 

downregulated CYP11A1 and HSD17B by DES along with the elevated 

ACTH-R expression suggests that estrogen might aid in downregulation of 

adrenal steroidogenic pathway in the female offspring from estrogen 

manipulated pregnancies, as estrogens are known to influence the ACTH 

sensitivity on the adrenal cortex (Atkinson and Waddell, 1997; Lo et al., 2000). 

Functionally, however, we observed no decrease in response to Synacthen, a 

synthetic ACTH analogue, and hence conclude that this decrease in mRNA 

encoding ACTH-R was not associated with any measurable decrease in 

sensitivity to ACTH. The data are nonetheless important in ruling out any 

potential for there being any estrogenic contributions to the aforementioned 

androgenic driven hyperandrogenism. This also serves to highlight that 

alterations in specific genes may not always marry with altered functional 

outputs and that care must be taken in extrapolation of mRNA data to 

function, particularly in the case of mRNA encoding for enzymes, since 

mature enzymatic activity is dependent upon many other factors, such as co-

factor, substrate and indeed product availability. 

 

Whilst it was intriguing to note that HSD11B1, HSD17B and GR were 

upregulated by DES treatment in male lamb adrenal glands, again, there was 

no functional significance of these alterations in terms of cortisol or 

testosterone secretion. However, although the relevance of such changes 

cannot be determined here, it should be noted that alterations in these genes 

might not manifest in, for example cortisol or testosterone concentrations. 
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This is a limitation of utilizing gene expression of multiple enzymes in a 

synthetic scheme were all have multiple substrates and products to forecast 

organ function.  

 

6.6.2 The adult legacy of prenatal glucocorticoid excess 
 
In response to FI-DEX (glucocorticoid excess) female adult offspring showed 

no significant changes in terms of gene expression apart from SRD5A1, which 

was significantly decreased however, functional consequences remain 

unknown. In male lambs, even though HSD11B1, HDS11B2, HSD3B and 

HSD17B mRNA abundance were significantly increased by FI-DEX treatment, 

and there were such profound effects upon gene expression in male fetuses 

attributable to this treatment (Chapter 5), there was no alteration in serum 

cortisol or testosterone concentrations, suggesting that prenatal DEX 

exposure had no long-term effect on adrenal function. It remains unknown if 

there may be effects in later life in adult male, as no adult males were 

available for study, but it is also a distinct possibility that the effects noted in 

fetal life were contemporary responses to elevated fetal glucocorticoids, which 

resolved once the excess steroid was removed, similar to that observed in the 

case of testosterone in male fetuses (Connolly et al., 2013). Previous studies 

in sheep have shown sex specific differences in terms of stress responses 

(Giussani et al., 2011), however, such effects are dependent upon timing of 

prenatal glucocorticoid exposure (Braun et al., 2009; Seckl, 2004; Yehuda et 

al., 2005).  

 

Collectively, the increased testosterone output of female adrenal during 

adulthood noted in the present study suggests that changes induced by 

exposure to TP by the maternal route of application in various tissue types 

(Hogg et al., 2012; Hogg et al., 2011; Rae et al., 2013) is due to androgenic 

excess and not due to placental estrogenic action derived by metabolism of 

testosterone into estradiol. Only fetal androgen excess in females was 

associated with any health relevant functional adrenal alterations. Given the 

lack of fetal effects, and the lack of effects prior to puberty in androgen-excess 
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female offspring, it is important to consider what could be a driver of adult, 

post-pubertal hyperandrogenism, specific to prenatal TP treatment.  

 

Although adrenarche has not been described in sheep, it is known to occur in 

primates and humans, and is marked by increased adrenal androgen 

secretion, associated with the time of puberty (Conley et al., 2011; Nakamura 

et al., 2009). Adrenal changes associated with sexual maturity are also 

observed in rodents (de Almeida et al., 1998). Daughters of women suffering 

from PCOS exhibit exaggerated adrenarche during puberty, suggesting that 

adrenal androgens might modulate the progression of puberty (Teresa Sir-

Petermann et al., 2009). Hence it may be the case that until the time of 

puberty altered adrenal function remains ‘silent’. However, the current study 

also throws up an alternative possibility. The previously observed 

hyperinsulinemia was evident in female offspring exposed to fetal androgen 

excess prior to adulthood, but was in fact not significantly elevated until 

adulthood. This pattern is mirrored by adrenal hyperandrogenism in the same 

animals, and resembles some but not all young girls born to PCOS mothers 

who demonstrated exaggerated DHEA and DHEAS in response to ACTH 

stimulation (Maliqueo et al., 2009). 

It is very well established that gonadal steroidogenesis can be regulated by 

insulin in both male and female (A. Dunaif and Graf, 1989; Poretsky and 

Piper, 1994). Insulin along with other growth factors such as IGF1 and IGF2 

are known to regulate ovarian thecal and granulosa cells in vitro in both 

humans and animals (Poretsky et al., 1999), and enhance the stimulatory 

effect of LH dependant androgen secretion (Barbieri et al., 1986), which 

provides the basis for insulin regulated excess ovarian androgen secretion in 

clinical conditions such as PCOS (Poretsky et al., 1999). Meanwhile, evidence 

in vitro and in humans also suggests insulin mediated adrenal 

steroidogenesis. 

Metformin induced (insulin sensitizer) decrease in adrenal androgen secretion 

in hyperinsulinaemic PCOS women in response to ACTH challenge (Marca et 

al., 1999). Couple with increased adrenal androgen secretion by modulating 
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fetal adrenal IGF-II (acting via IGFR-1) in vitro in humans (Mesiano et al., 

1997), this suggests a role for insulin action on adrenal steroidogenesis. 

Moreover, increased adrenal steroid metabolites in response to ACTH 

challenge in hyperinsulinaemic PCOS women suggests insulin mediated 

altered adrenal steroidogenic pathway (Tosi et al., 2011). Therefore it is 

possible that insulin might have a key role in adrenal steroidogenesis. 

Nevertheless, whether adrenal steroidogenesis and the possible mechanisms 

are directly regulated by insulin is still a matter of debate. 

In conclusion, direct fetal androgen exposure predisposes to adrenal 

hyperandrogenism in adulthood. This work also suggests that such altered 

adrenal function, whilst a consequence of fetal androgen excess, may be 

indirectly driven by changes in other organ function such as pancreatic 

hyperinsulinaemia. Importantly, it adds further evidence to the suggestion that 

prenatal programming of the adrenal function may well be contributing, along 

with excess ovarian androgens (Hogg et al., 2012), towards excess androgen 

secretion in clinical conditions such as PCOS (Rosenfield, 1999).
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7.0 General Discussion 
 

PCOS is a common heterogeneous disorder affecting about 6-8% women of 

reproductive age (Diamanti-Kandarakis and Piperi, 2005), comprising 

reproductive, endocrine and metabolic abnormalities (Dumesic et al., 2007). 

In addition to these observable, functional issues, PCOS also leads to anxiety, 

depression and is a frustrating experience for sufferers (Kerchner et al., 

2009), negatively impacting on their quality of life. Several societies across 

the world have provided a framework to diagnose PCOS (Rotterdam 

ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group., 2004), but 

the underlying cause(s) remain unknown. There are genetics links to PCOS 

with respect to candidate genes in both reproductive and metabolic tissues 

(Conway et al., 1994; Reddy et al., 2014; Rosenfield et al., 1994; Talbot et al., 

1996), however these lack reproducibility with respect to the main features of 

PCOS, therefore the reach of genetics in terms of PCOS development and 

severity remains unresolved. Prenatal androgen exposure is a widely 

accepted research paradigm in development of PCOS-like animal models 

including monkeys, sheep and rodents (Dumesic et al., 2005; Padmanabhan 

and Veiga-Lopez, 2013; Roland and Moenter, 2014), and these have likely 

clinical implications, namely the concept of early life programmable 

developmental origins of PCOS.  

 

In addition to reproductive disorders, fetal androgen excess also leads to 

metabolic disorders that characterize PCOS, such as pancreatic β-cell 

dysfunction, excess insulin secretion and increased adipose tissue distribution  

(Dunaif and Finegood, 1996; Hogg et al, 2011; Roland et al., 2010). This 

thesis focused upon midgestational, direct fetal exposure to excesses of 

steroids on the developing pancreas and adrenal gland and their postnatal 

structures and function.  

 

Due to limitations of maternal applications of steroids, the direct fetal injection 

employed herein represents a series of refinements designed to: 
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a. Bypass placental/maternal aromatase activity, since maternal 

androgen exposure leads to elevated fetal circulating estrogen levels in 

female fetuses (Rae et al., 2013; Veiga-Lopez et al., 2011), which may 

have programming effects in adulthood (Steckler et al., 2007; West et 

al., 2001) and thus cloud interpretations based around androgenic 

actions. 

b. Permit control of the dose of steroids to which the fetus was exposed. 

Maternal exposure of DHT or TP to pregnant ewes to delineate 

androgenic effects from estrogenic during fetal programming (Steckler 

et al., 2007; West et al., 2001), does not give a clear picture due to lack 

of fetal dosage control given variable maternal clearance and 

metabolism. In addition, there could be estrogenic effects upon 

placental function, again, potentially masking the true situation. 

c.  To avoid any effects of androgens on the pregnant mother, which 

could indirectly affect the fetus. For example androgens alter maternal 

glucose (Nicol et al., 2014). 

 

Chapter 3 defined the ovine fetal pancreas as being a target tissue of 

androgens during development. This work highlighted that the fetal pancreatic 

tissue responded to androgen excess, resulting in altered pancreatic 

development and function. This response was specific to female fetuses and 

equally specific to androgens with no estrogenic contribution. Likely, due to 

endogenous pre- and contemporary exposure to testicular androgens, mid-

gestational androgen excess exposure left males unaffected, whilst in females 

it led to a detrimental effect in terms of altered pancreatic development and 

altered postnatal structure and function. Whilst testosterone treatment’s lack 

of effects in males in maternal androgen exposure studies (Rae et al., 2013) 

could also be partially explained by compensatory reductions in fetal testicular 

testosterone output (Connolly et al., 2013), this cannot be the case here since 

direct fetal injection causes a supraphysiological increase in androgen 

concentrations. Hence, earlier physiological exposure to endogenous 

testicular testosterone in males from the time of sexual differentiation (around 

d30 gestation in sheep) would appear to be perhaps a more plausible reason 

for lack of effects in males. This led us to examine differences between males 
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and females in general. An interesting finding of this study was the differences 

observed between male control fetuses compared to females in terms of gene 

expression.  

 

Male fetuses showed greater gene expression of PDX-1 as compared to 

females. Female fetuses responded to excess androgens with elevated PDX-

1, increased in vitro insulin secretion and increased β-cell numbers. The 

female fetus does not produce such high concentrations of testosterone as 

males (Reyes et al., 1974; Reyes et al., 1973), and therefore the female fetus 

likely cannot compensate when exposed to such exogenous androgen 

concentrations, but also, in terms of timing of exposure, females are relatively 

‘androgen-naïve’ when treatments commenced, whereas males have 

developed for the previous 30 days in an androgen rich environment (Quirke 

et al., 2001). The male pancreas may already have reached a nadir of 

androgen response, whereas the female pancreas may be being altered down 

a more male trajectory by our androgen treatments- importantly however this 

is a trajectory that had been female up until treatment.  

 

Apart from the genetic associations (Florez, 2008), development of type-2 

diabetes mellitus also involves exposure to suboptimal in utero environments 

such as intra uterine growth retardation (Simmons, 2001) possibly via 

epigenetic modifications. This could be in part due to the action of Pdx-1, 

which is involved in early pancreatic development and also differentiation and 

function of β-cells during adulthood (Offield et al., 1996). Histone acetylation 

in the promoter region of the PDX-1 in IUGR rats, suggests PDX-1 is likely a 

susceptible target gene in terms of epigenetic modifications, ultimately 

affecting gene expression (Park et al., 2008). Altered regulation of PDX-1 due 

to maternal undernutrition (Gatford et al., 2008) and excess androgenic 

conditions in PCOS animal model during fetal life is also evident postnatally  

(Gatford et al., 2008), and implied in terms of altered function (Rae et al., 

2013). Collectively then these observations direct attention to PDX-1 being a 

possible candidate gene for mediation of a number of the effects observed in 

these studies and also the work presented in this thesis. Elevated PDX-1 
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mRNA abundance occurring in females during fetal life due to prenatal 

androgen exposure may be an initial occurrence underpinning a primary 

pancreatic defect observed in both fetal and adult life, and may be at least in 

part be attributable to epigenetic modification. The effects of androgen 

overexposure as noted above drive PDX-1 expression towards a male profile, 

and if indeed there is permanent epigenetic modification that maintains this 

expression profile this would fit with the idea of a male pancreas housed in a 

largely female environment. This opens up an interesting area of research in 

future to look into the epigenetic modifications of PDX-1 in excess steroidal 

conditions/models of PCOS. A recent study based in human pancreatic islets 

has demonstrated that female pancreatic islets exhibited decreased DNA 

methylation patterns on the X chromosome and autosomal chromosome 

compared to males (Hall et al., 2014). This suggests sex differences in 

epigenetic modifications (DNA methylation patterns) on both sex and 

autosomal chromosome within human pancreatic islets. Hall et al, (2014) 

study also demonstrated that there was higher insulin secretion in vitro in 

response to glucose stimulation in females compared to males (Hall et al., 

2014). With this being the case, then it suggests ‘female’ and ‘male’ 

pancreatic tissues being of great interest from the context of stem cell biology 

and transplantation. Collectively, this serves to highlight that epigenetic 

modifications remain one of the cause for sex differences in pancreatic insulin 

secretion. 

 

Insulin secreting β-cell numbers and in vitro insulin secretion were increased 

in TP treated females, giving a functional relevance to the gene expression 

alterations observed during fetal life. The forward speculation of permanent 

alteration of pancreatic function in females was addressed in Chapter 4, 

where female lambs showed a trend towards increased insulin secretion, 

which by adulthood was a significant increase in insulin secretion in response 

to controlled glucose stimulation in concert with increased β-cell numbers. 

Women with PCOS are known to suffer from increased risk of development of 

type-2 diabetes, the major metabolic link to this heterogeneous disorder 

(Ovalle et al., 2002).  Given the apparent absence of insulin resistance in our 
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study, this suggested a permanent β-cell defect due to prenatal androgen 

exposure- perhaps a mismatch in terms of a phenotypically male pancreas in 

an otherwise phenotypically female physiological environment. This is in 

accordance with a study by Goodarzi et al (2005) who have demonstrated 

that a correlation exists between bioavailable testosterone and insulin 

secretion and not insulin resistance in women with PCOS compared to 

normal, which suggests that there could be a β-cell dysfunction in PCOS 

women (Goodarzi et al., 2005). Our study provides evidence in terms of 

changes at the β-cell level in terms of altered β-cell specific gene expression, 

cell numbers and function in response to prenatal androgen exposure, 

suggesting that there could be a primary β-cell dysfunction and can have 

implications in understanding the importance of insulin secretion in PCOS. 

This could again open up directions for therapies, which could directly 

modulate insulin secretion rather than the presently used insulin-sensitizing 

therapies indirect modulation, or a combination of both. 

 

Chapter 5 revealed that fetal adrenal gland was altered by exposure to both 

prenatal estrogen and glucocorticoid excess, however the functional endpoint 

of such alterations was difficult to speculate upon as the fetal adrenal gland 

remains quiescent during midgestation. An important finding of this study was 

that there was sex-specific regulation of GR expression in the male fetal 

adrenal, which likely precedes sexual differentiation (as it could not be 

recreated by early androgenisation of females), thereby making the male fetal 

adrenal more responsive to prenatal glucocorticoid exposure as compared to 

females. To the best of our knowledge, this is the first study to demonstrate 

altered fetal steroidogenic pathway in male adrenals due to midgestational 

dexamethasone exposure. Consequences of these alterations remain 

unknown. Whilst tempting to speculate possible legacies of such changes in 

terms of adrenal function, there was no clear evidence of health-relevant 

altered function in males prenatally exposed to excess glucocorticoid. 

 

Postnatal adrenal glands did appear to be affected by prenatal 

dexamethasone exposure in males, but only in terms of gene expression. 
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Unfortunately, we could not assess effects during adulthood as males were 

sacrificed as lambs. In female adult animals, DES did not appear to have 

functional adult consequences, but prenatal androgen excess did have adult 

functional consequences. Since during fetal life, androgen excess in females 

caused very little in the way of altered steroidogenic gene expression 

changes, then speculation as to what could be inferred from male fetuses 

treated with dexamethasone must be extremely cautious. Importantly, in 

female offspring, excess adrenal testosterone secretion in response to ACTH 

was observed as a legacy of prenatal androgen exposure, suggesting the 

adrenal hyperandrogenism seen in clinical conditions such as PCOS (C. 

Moran and Azziz, 2001) may have in utero origins.  

 

In the current model presented, it is clear that adrenal gland also contributes 

towards a hyperandrogenic condition in addition to ovarian excess androgens 

(Hogg et al., 2012) due to prenatal androgen exposure- but the question 

remains, that even though apparently ‘androgens begat androgens’ is this a 

direct effect of androgenic programming or an effect secondary to such 

programming elsewhere in the endocrine system? Even though the adrenal 

gland phenotype was sex-specific, it is important to note that this tissue does 

not exhibit developmental programming effects (since there were no 

antecendental alterations in fetal life), rather, the adrenal phenotype is noticed 

as the animal matures, suggesting that adrenal phenotype may be a 

downstream effect, possibly due to previously observed excess insulin 

secretion. We saw no change in testosterone concentrations in prepubertal 

females, but observed a trend towards increased insulin secretion in female 

lambs- once this increased insulin secretion was more pointed then the 

adrenal phenotype was also more evident. This is in accordance with clinical 

studies where metabolic abnormalities arise before the onset of 

hyperandrogenic dysregulation in pre-pubertal girls (Sir-Petermann et al., 

2007; Sir-Petermann et al.,2009). It is suggested that hyperinsulinemia is the 

link between premature adrenarche and PCOS in girls born to women 

suffering from PCOS (Ehrmann et al., 2006; Ibáñez et al.. 2009). This 

hypothesis is possible from a mechanistic point of view, as IGFs and insulin 

are known to regulate adrenal steroidogenesis in vitro (Mesiano et al., 1997). 
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The absence of insulin resistance (IR) with the pancreas already 

hypersecreting insulin in the female adult offspring from androgen 

manipulated pregnancies suggests the secretory capacity of pancreas may be 

already be limited towards its maximal, and if subsequently IR develops, it 

might place the pancreas under unavoidable stress leading ultimately towards 

a faster development of complete type 2 diabetes mellitus, than would be the 

case in a non-PCO women as they would have greater plasticity in terms of 

capacity to increased insulin secretion. Thus current suggestions of insulin 

perhaps having a predisposition role in terms of development of insulin 

resistance (Cao et al., 2010) fit into this suggestion, and the work in this thesis 

presents a strong case for further examination of pancreatic dialogues with 

both peripheral insulin reception and steroidogenic organ function. In 

conclusion, I suggest that there might be altered communication between the 

pancreas and adrenal gland, and when such aberrant signalling occurs it may 

have implications for adult health and metabolism. Given the importance of 

these systems to lifelong health it is critical that this receives further study.
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