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Abstract

The heart is a fundamental aspect of the human body. Significant work has

been undertaken to better understand the characteristics and mechanisms

of this organ in past research. Greater understanding of the heart not only

provides advances in medicine but also enables practitioners to better as-

sess the health risk of patients. This thesis approaches the study of the heart

from a health informatics perspective. The questions posed in this thesis is

whether research is capable of describing and modelling heart data from

a statistical perspective, along with exploring techniques to improve the

accuracy of clinical risk assessment algorithms that rely on this data.

The contributions of this thesis may be grouped into two main areas: statis-

tical analysis, modelling and simulation of heart data; and improved risk

assessment accuracy of the Early Warning Score (EWS) algorithm using

a quartile-based technique. Statistical analysis of heart data, namely RR

intervals, contributes to more informed understanding of the underlying

characteristics of the heart and is achieved using null-hypothesis testing

through the Anderson-Darling (AD) test statistic. The modelling process

of heart data demonstrates methodologies for simulation of this data type,

namely individual distribution modelling and normal mixture modelling,

and contributes to assessing techniques that are most capable of modelling

this type of data.

For improved accuracy on the EWS algorithms, a quartiles technique, in-

spired by anomaly-based intrusion detection systems, is presented which

enables customisation of risk score thresholds for each patient defined dur-

XIV



ing a training phase. Simulated heart data is used to evaluate the standard

EWS algorithm against the quartile-based approach. The defined metric of

accuracy ratio provides quantitative evidence on the accuracy of the stan-

dard EWS algorithm in comparison with the proposed quartile-based tech-

nique.

Statistical analysis in this thesis demonstrates that samples of heart data

can be described using normal, Weibull, logistic and gamma distribution

within the scope of two minute data samples. When there is strong evi-

dence to suggest that RR intervals analysed fits a particular distribution, in-

dividual modelling technique is the ideal candidate whilst normal mixture

modelling is better suited for long-term modelling, i.e. greater than two

minutes of heart data. In comparative evaluation of the standard EWS algo-

rithm and the quartile-based technique using modelled heart data, greater

accuracy is demonstrated in the quartiles-based technique for patients whose

heart rate is healthy, but outside the normal ranges of the general popula-

tion.

Owen Lo, School of Computing XV PhD Thesis
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Chapter 1

Introduction

WITH the growth of information technology much of our ev-

eryday activities are now conducted using electronic de-

vices and computing software. There is no exception to this

trend in the domain of healthcare. Patient data, traditionally recorded in a

paper-based format, is now not only managed in electronic databases, but

the use of modern communication infrastructures, i.e. the Internet, has

enabled rapid sharing of such records on a worldwide scale. In modern

times, the provision of health care too has changed. Clinical Decision Sup-

port Systems (CDSSs), knowledge-based and machine-learning software,

is a prime example of the use of information technology in the provision of

improved healthcare. Through rapid computational abilities in modern IT

systems, analysis of patient data has greatly improved along with under-

standing on how it may correlate with a person’s wellbeing.

The work of the thesis continues the trend of improvements towards health

care through the analysis and modelling of heart data along with its appli-

cation towards improved risk assessment of a category of CDSS known

as the Early Warning Score (EWS) system. Using statistical techniques, it

is demonstrated that RR intervals may be modelled using a group of sta-

tistical distributions. Simulation of heart rate, derived from RR intervals,

is used to evaluate a novel EWS algorithm which is capable of customis-

1



CHAPTER 1. INTRODUCTION

ing risk thresholds for each individual patient. The proposed algorithm

is inspired by Intrusion Detection Systems (IDSs) - a form of security soft-

ware used to detect computer threats. Furthermore, the success of this al-

gorithm is also defined based upon evaluation methodologies and metrics

from research conducted in IDS. Quantitative results from experimentation

demonstrates evidence to support the argument that an anomaly-based

EWS system provides greater accuracy in risk assessment of heart rate in

comparison with the standard approach. The overall findings in this thesis

provide greater insight to the underlying distribution of RR intervals whilst

improved accuracy of the anomaly-based EWS algorithm shows there is

potential for this approach to be improved upon by medical experts and

even applied in real-life clinical environments in the future.

1.1 Background

This thesis stems from prior work conducted on the Cloud4Health [1] project.

The primary aim of the Cloud4Health project was to provide a robust and

scalable platform for the secure storage of electronic patient data. Ap-

pendix A gives further details on this area of work. The Cloud4Health

project provided background on the subject of e-Health along with recog-

nition on the shortcomings in two areas of research: vital physiological

simulation and clinical risk assessment techniques.

Although an insight has been given on the average values of vital sign data,

research towards realistic modelling of such data has yet to be fully re-

alised. The work of Fox et al. shows that the mean value of heart rate is

between 75 to 82 Beats Per Minute (BPM) while Pesola et al. demonstrates

that systolic blood pressure is 112 mmHg [2]. Studies carried out by Mack-

owiak et al. and Shoemaker show that mean temperature of the human

body is 36.8 ◦C [3, 4] whilst oxygen levels of a human body are generally

between 96-98% as described by ODriscoll [5]. Finally, both Sherwood and

Owen Lo, School of Computing 2 PhD Thesis



CHAPTER 1. INTRODUCTION

Tortora et al. agree that the mean respiration rate is found to be 12 breaths

per minute [6, 7]. The average values of a human bodies vital physiological

sign data may formulate the starting point for successful modelling of such

data however further facts must be known to achieve an accurate model

including the underlying distribution and characteristics of each vital sign

data in relation to a bodies state of being. Given the significant scope of

work required for such a goal, the choice was made to focus on one specific

aspect for this thesis: the analysis and modelling of heart data.

Complimentary to the goal of heart data analysis and modelling, potential

was noted to improve the EWS algorithm, one of the most popular clinical

risk assessment techniques used in real-life healthcare environments, via

computational power. The standard EWS algorithm defines risk values in

a patient’s vital physiological sign based on static predefined thresholds.

The decision-making process is conducted using a series of conjunctions,

e.g. if heart rate is less than 40 raise an alarm, therefore the assumption

in this technique is that values of normality are the same for each patient

assessed. This thesis argues that an IDS inspired technique using quartiles

statistics can achieve more accurate results when assessing the health risk

of a patient. The goal of increased accuracy in the electronic EWS system

runs in parallel with the analysis and modelling of heart data, the key form

of data that may be used to test and validate the improved EWS algorithm.

1.2 Research Aim and Objectives

This thesis aims to analyse, model and simulate heart data to evaluate a

novel quartile-based EWS algorithm, which enables customisation of risk

thresholds for each individual patient, to demonstrate increased accuracy

on the proposed approach taken for risk assessment. It has been identified

that heart data, especially heart rate variation (HRV), has been analysed

and modelled in research of others but disparity of results in regards to the

Owen Lo, School of Computing 3 PhD Thesis



CHAPTER 1. INTRODUCTION

underlying distribution is found. In regards to the EWS system, it is found

that the current approach taken to risk assessment produces a number of

inaccuracies due to the static approach of the algorithm.

This thesis argues that no one single distribution is capable of describing

and modelling all heart data. Instead, it is proposed that a select group of

statistical distributions may be used to encapsulate heart data in the gen-

eral population. Similarly, like heart data, it is argued that the existing EWS

algorithms do not provide a viable results in regards to accuracy due to the

wide number of variation in patient’s vital physiological sign data. It is

proposed that a customisation approach to risk assessment, which consid-

ers the normal starting values of patient’s parameters which are monitored,

produces better accuracy in comparison to a static predefined rule set. To

achieve the overall aim of this thesis, the follow three objectives are given

focus:

• The establishment of simulation and modelling techniques applica-

ble in healthcare and computer based simulation. Review on existing

simulation and modelling methods applicable to healthcare need to

be conducted in order to not only identify current trends, but show

the novelty in the method applied in this thesis. Furthermore, iden-

tification on existing analysis and modelling methods for heart data

need to be reviewed along with assessment on the shortcomings of

the existing techniques employed.

• The creation of an improved algorithm for risk assessment in the elec-

tronic EWS system. A key goal to this objective is in the identification

of not only limitations of the existing EWS algorithms but also show

its current application in the context of health care. The techniques

employed by both CDSS and IDS may be both applicable to improve-

ments towards the accuracy of the EWS system. Thus, it is justifiable

that a thorough review on both CDSS and IDS techniques is applica-
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ble in this thesis.

• The creation of metrics which define experimental success in both

heart data modelling and improved accuracy in the EWS algorithm.

Evaluation and validation results must be shown for both the mod-

elling method applied to heart data along with techniques towards

demonstrating improvements to the EWS system. Metrics of evalu-

ation need to be addressed in the literature to establish a standard

approach to presentation of findings.

1.3 Contributions

In achieving the aim of the thesis, the three main contributions made are:

• Statistical analysis and formal hypothesis testing demonstrates that

four primary distributions may describe small samples of RR inter-

vals: normal, logistic, Weibull and gamma. RR intervals are the fun-

damental values of heart data analysed and modelled in this thesis.

Qualitative and quantitative validation shows that RR intervals, mod-

elled using one of the four identified distributions, is statistically sim-

ilar to real-life counterparts. The finding that no one single distribu-

tion is capable of describing or modelling each patient’s heart data

is built upon previous work in the analysis of heart data including

[8, 9, 10, 11].

• Recontextualisation of methodologies in evaluation of IDSs, especially

the Defense Advanced Research Projects Agency (DARPA) evalua-

tion [12] show that it is possible to apply such techniques to the eval-

uation of the EWS system in a quantitative manner. Metrics for eval-

uation in IDS, as originally presented by [13, 14], are modified to pro-

duce an accuracy ratio capable of assessing the sensitivity of the EWS
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algorithm. The accuracy ratio is a measure of false-positives raised

when analysing normal healthy patient’s heart data.

• Contribution towards improved accuracy in the EWS algorithm pro-

duced two novel risk assessment techniques: a quartile-based and hy-

brid approach. Based on the method defined by [15] and inspired by

the work of [16], the quartile approach is an anomaly-based IDS tech-

nique which demonstrates a higher degree of accuracy when assess-

ing the risk of healthy patient’s heart data which is outside the nor-

mal ranges of the general population. A minimum accuracy ratio of

0.14 was observed for the standard EWS algorithm while the quartile-

based approach produced a minimum accuracy ratio of 0.66. How-

ever, inaccuracies are still produced using the quartile-based tech-

nique during some experiments that involved patients with heart rate

within the range of normality. Thus, a hybrid approach, integration of

both knowledge-based and anomaly-based techniques, demonstrates

a higher degree of accuracy in comparison with both the National

Early Warning Score (NEWS) algorithm and the quartile approach

with a minimum accuracy ratio of 0.92 in experiments conducted.

1.4 Thesis Structure

The thesis is structured as follows:

• Chapter 1. Introduction - The aim and objectives of this thesis are

presented. Contributions made in the work conducted in this thesis

is presented too.

• Chapter 2. Theory - The core subjects of computer simulation, proba-

bility statistics, clinical risk assessment systems and fundamentals on

heart data is provided to give background on the topics of this thesis.
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• Chapter 3. Literature Review - The literature review gives focus to

two main themes: simulation and CDSS. The first goal of this chapter

is to explore current work related to simulation and decision support

in the context of healthcare. Specific methodologies for analysis and

modelling of heart data is reviewed along with CDSS techniques. Re-

view of evaluations, i.e. clinical trials, conducted on the EWS outlines

the need for improved methods in risk assessment which reduces the

sensitivity of the algorithm.

• Chapter 4. Heart Data Analysis - Distribution identification of real-

life patient’s heart data, in the context of RR intervals, is conducted

via formal hypothesis testing. Results give evidence that four pri-

mary distributions may be used to describe this form of data in small

samples (up to two minute durations).

• Chapter 5. Heart Data Modelling - Methodology of heart data mod-

elling via individual distribution is presented along with comparison

with another common technique found in the literature named nor-

mal mixture distribution. Quantitative comparison of the two mod-

elling methods with real-life patient data is provided to show the ad-

vantages and limitations of each approach.

• Chapter 6. Heart Data Risk Assessment - A quartile and hybrid ap-

proach to the EWS algorithm, which enables customisation of risk

scores for each patient, is presented. Modelled heart data derived

from the previous chapters are used to evaluate the accuracy of the

three approaches to risk assessment. Results show that there is great

potential in the quartile and hybrid approach to reduction of sensitiv-

ity, i.e. false-positives, compared to the standard NEWS algorithm.

• Chapter 7. Conclusion and Future Work - A conclusion is drawn

from work conducted in this thesis. Areas of future work are de-

fined which also aim to address any limitations noted in the work
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conducted.

1.5 Publications

There are two publications which which are related to the core work of this

thesis:

• O.C.W. Lo, J.R. Graves, and W. J. Buchanan. Towards a framework

for the generation of enhanced attack/background network traffic for

evaluation of network-based intrusion detection systems. In Euro-

pean Conference on Information Warefare 2010, 2010.

• O. Lo, L. Fan, W. Buchanan, C. Thuemmler, and A. Lawson. Towards

simulation of patient data for evaluation of e-health platform and ser-

vices. In PGNET 2012, pages 160-165, 2012.

Additionally, publications which provide background and context to this

thesis include:

• L. Fan, W. Buchanan, C. Thuemmler, O. Lo, A. Khedim, O. Uthmani,

A. Lawson, and D. Bell. DACAR platform for ehealth services cloud.

In 2011 IEEE International Conference on Cloud Computing (CLOUD),

pages 219-226. IEEE, 2011.

• L. Fan, O. Lo, W. Buchanan, E. Ekonomou, C. Thuemmler, O. Uth-

mani, A. Lawson, T. Sharif, and C. Sheridan. SpoC: protecting patient

privacy for e-health services in the cloud. In eTELEMED 2012, The

Fourth International Conference on eHealth, Telemedicine, and So-

cial Medicine, pages 98-104, 2012.

• O. Lo, L. Fan, W. Buchanan, and C. Thuemmler. Technical evaluation

of an e-health platform. In IADIS E-Health 2012, pages 21-28, 2012.
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• O. Lo, L. Fan, Buchanan W., and C. Thuemmler. Conducting perfor-

mance evaluation of an e-health platform. Isaas P. Kommers P. Issa,

T., editor, Information Systems and Technology for Organizations in a

Networked, chapter 16, pages 295-315. Society IGI Global Publishing,

2013.
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Chapter 2

Theory

2.1 Introduction

ACross discipline of various fields of research need to be under-

stood in order to achieve the aim of this thesis - modelling of

heart data and its application towards evaluating a customis-

able version of the electronic Early Warning Score (EWS) algorithm using

anomaly detection techniques. The core subjects include computer sim-

ulation, probability statistics, clinical risk assessment systems and funda-

mental knowledge of heart data acquisition and analysis via electrocardio-

gram (ECG) recordings. To provide background knowledge for later parts

of the thesis, this chapters set out to provide theoretical concepts behind

each of the noted subject areas. Overview on the Track and Trigger (TT)

system is first given - the formal category in which EWS algorithms fall un-

der. Simulation and modelling techniques is discussed to show the current

widely accepted methodologies which are applied in this field of study.

Probability statistics follows with focus on description on the primary dis-

tributions which modelled heart data is based upon in this thesis. Finally,

a return to a clinical context is made, with overview given on the concepts

behind ECG recordings, heart data terminology and units of measurement.

10
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2.2 Track and Trigger Systems

The primary goal of TT systems is to monitor patient’s wellbeing and pro-

vide some form of trigger if a health risk is detected. One of most com-

monly used TT system in hospitals throughout the world is the EWS algo-

rithm. The EWS was initially developed by Morgan et al. [17] and is a risk

based scoring system used by nurses and other healthcare staff in rating a

patient’s health status, e.g. in Accident and Emergency departments. Like

all TT systems, the risk of mortality in a patient is generally correlated with

a higher risk score.

As shown in a literature review conducted originally by [18] many varia-

tions on the EWS algorithm exist including the Modified EWS [19], Aggregate-

weighted track and trigger system (AWTTS) [20] and Multiple-parameter

track and trigger system (MPTTS) [21]. A more recent approach is the Na-

tional Early Warning Score (NEWS) algorithm that attempts to standard-

ise the approach to clinical risk assessment within UK healthcare environ-

ments [22].

This thesis acknowledges variations in the EWS system, but in-depth anal-

ysis on the differences between each approach is outside the scope of this

work. Instead, latter parts of the thesis give focus to the two most com-

monly referenced variations: NEWS and Modified Early Warning Score

(MEWS) system both of which are still currently used in the hospital en-

vironment within the UK. Table 2.1 presents the scores related to each pa-

rameter based upon the NEWS system.

2.2.1 Risk Score Calculations

Despite numerous algorithms being presented, calculation of risk scores

within this form of TT system is relatively straight forwards. At peri-

odic intervals, one or more parameters of a patient are monitored. Some

Owen Lo, School of Computing 11 PhD Thesis
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Table 2.2: NEWS Clinical Risk Outcome
Clinical Risk NEWS score

Low
0

Aggregate 1-4

Medium
Individual Parameter Scoring 3

Aggregate 5-6

High
Aggregate 7

or more

of the most commonly monitored parameters include the five primary vi-

tal physiological signs of a patient including heart rate, blood pressure,

body temperature, respiratory rate and oxygen levels [19]. The standard-

ised NEWS system propose for UK healthcare environments also considers

the attributes of oxygen supplement and level of consciousness in a patient.

Depending on the parameters values observed a number ranging from 0 to

3 is assigned for each parameter and an aggregation of the result gives the

patients risk score. A risk score of between 0 to 1 relates to low risk, 5 to 6

medium risk and greater than 7 high risk [22]. Table 2.2 presents the NEWS

system’s risk outcome based on the aggregated score.

Traditionally, the EWS system - and its variations - requires manual calcula-

tion of a patient’s risk using paper-based charts (Figure 2.1). With advances

in computing, automated systems are now also viable which take advan-

tage of IT infrastructure to automate the monitoring and calculation of risk

scores. An implementation of the algorithm which makes use of modern

technology for calculation of risk scores is referred to as a electronic EWS

in this thesis.
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Figure 2.1: EWS Paper-based Chart

2.3 Simulation

Focus is given to fundamentals of simulation and modelling which are ap-

plicable to the work conducted on heart data in this thesis.

The concept of simulation dates back to many centuries with military es-

tablishments using simulation to conduct war games both for training and

strategy decision making purposes. Perhaps one of the most well known

traditional military simulations, which has evolved into a game still played

today, is chess [23]. Similar to its roots, some of the first ever computer

based simulation implemented were of a military nature [24] including the

Manhattan Project [25] in which the simulation of nuclear detonations were

carried out using the Monte Carlo algorithm [26].

Simulation techniques have progressed a significantly from its early begin-

nings. The applications of simulation is widespread, with many usages,

including aerospace simulation [27], finance simulation [28] and, perhaps
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most relevant to this thesis, medical simulation. Each method of simula-

tion may differ based on the algorithms and implementation method used

however, the end goal of each simulation will generally fall under one of

the following categories: understanding a system, prediction of behaviour,

training or entertainment. Furthermore, in some cases, simulation may

breach more than one category, a prime example being Flight Simulators

which can provide both entertainment and education for users.

2.3.1 Modelling

Ambiguities exist between the concept of simulation and the term mod-

elling. In general discussions, it is common to find both terms used syn-

onymously. However, although the differences are subtle, it is important

to differentiate between a model and a simulation. This thesis shares the

same views as Maria [29] in which a model is viewed as the representation

of the inner workings of a system whilst the concept of simulation is the act

or operation of the model for evaluation purposes.

A simple example of this in the context of healthcare is to consider comput-

erised physical mannequins, otherwise known as Human Patient Simula-

tors (HPS) used for medical training purposes. In this instance, the model

is considered the physical representation of a human’s body whilst simu-

lation may consist of actions which the mannequin is capable of such as

imitating breathing patterns which more advanced simulators are capable

of. A prime example of a Human Patient Simulator (HPS) capable of such

actions is the mannequins developed Laerdal [30] named SimMan R⃝ as de-

picted Figure 2.2.

2.3.2 Taxonomy of Simulation

In providing a taxonomy for computer based simulation, the work con-

ducted by Sulistio et al. [31] group this subject matter into three main prop-
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Figure 2.2: SimMan R⃝: Human Patient Simulator [30]

erties: Presence of Time, Basis of Value and Behavior. Figure 2.3 presents

the three main components of simulation.

Simulation

Basis of ValuePresence of Time Behavior

DiscreteStatic DeterministicDynamic Continuous Probabilistic

Figure 2.3: Simulation Core Components Taxonomy [31]

• Presence of Time relates to whether or not a simulation will consider

the attribute of time. The concept behind the Presence of Time prop-

erty is quite simple: either a simulation uses a time function (increas-

ing or decreasing), or it does not. A simple example of presence of

time is in the simulation of patient waiting times in a hospital envi-

ronment. Such a simulation will consider presence of time important

in order to keep track of how efficient the hospital environment is

running.

• Basis of Value refers to the range of the entity modelled which the

simulation is capable of generating. This can either be discrete enti-
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ties or continuous entities. Discrete entities are limited in their range

whilst continuous entities can have an infinite range. Simulating the

growth of a human may consider the use of discrete entities, i.e. age

in the unit of years, whilst simulating the act of running in a person

may consider continuous entities since the body does not conduct

movement at specific intervals.

• Behavior of simulation refers to whether or not repeated simulation

using the exact same parameters, and values will result in the same

results occurring. In other words, the behaviour of a simulation is

either deterministic or probabilistic. In deterministic simulation, no

random events will occur therefore, repeated simulations will always

result in the same outcome. In probabilistic simulation, the oppo-

site is true, and repeated simulations may produce slightly differ-

ent results. Simulating the growth of cancer may consider probabil-

ity based behaviour whilst simulation of a perfect hospital environ-

ment’s waiting times may be more deterministic in nature.

2.3.3 Simulation Methods

The taxonomy of simulation in the previous section shows that three main

components are required in the implementation of a simulator: presence of

time, basis of value and behaviour. Presence of time is considered a binary

choice, either a simulator uses a time keeping function or it does not. In the

case of a presence of time being made available in a simulator, the basis of

values are generated using one of two main techniques: discrete-event or

continuous-event based simulation. Furthermore, regardless of time being

a attribute of simulation, the method employed to simulate data, e.g. vari-

ables, will come under one of two methods: deterministic or probability

based behaviour.

In applying a dynamic presence of time property, implementations of simu-
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Figure 2.4: Discrete vs. Continuous Event Based Simulation

lations using discrete simulation is commonly referred to as Discrete-Event

Based Simulation (DES) whilst continuous simulation is referred to as

Continuous-Event Based Simulation (CES) [32]. The event refers to a sim-

ulation process taking place at a dynamic point in time which can either

be specific time intervals, in the case of discrete simulation, or continuous

time intervals, in the case of continuous simulation.

For example, consider a simulation which has a total duration of five sec-

onds. Employing a DES method, an arbitrary timer interval of 1 second

may be specified. Hence, at every 1 second interval, some form of process-

ing, e.g. generation of a variable, in the simulation will be conducted for

a total of five times, since the duration of simulation is 5 seconds. In com-

parison, employing a CES method will result in simulation processes being

carried out continuously throughout the duration of simulation. Therefore,

processing in the simulation begins from Time 0 and continues until a du-

ration of 5 seconds has been completed. Figure 2.4 provides a comparison

of these two techniques. On the left graph, a representation of discrete-

simulation is shown where processing only occurs at specific time intervals

whilst the right graph shows a continuous simulation whereby processing

is conducted throughout the duration of simulation.

Since DES models variables which only change at specific defined points in

time, it is well suited to simulating the events which take place at specific

time intervals. CES will model events continuously, therefore this method
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is better suited to simulating systems which will have constant changes

[33, 34].

An example of a DES implementation can be found in the network simula-

tor known as Ns-2 [35]. Ns-2 provides simulations of networks, including

TCP, routing and multicast communication for research purposes. Ns-2 is

defined as a DES [36] method since it only simulates network communica-

tion at specific intervals in time. In comparison, a stock market simulation

using CES as the implementation basis is presented by Muchnik et al. [37].

Their justification for using CES is that stock prices will fluctuate in a con-

tinuous manner with no specific time intervals in which changes are con-

ducted unlike the Ns-2 simulator. In other words, the stock market prices

will rise or fall continuously throughout simulation.

Although simulation for a certain goal can be achieved using either DES

or CES, the results of the experiments may differ drastically. As demon-

strated in one study, both DES and CES methods were applied in simulat-

ing vehicle, i.e. a car, interactions by Jamison and McCartney [38]. In this

study, it was found that widely different behaviors in the vehicles were

produced depending in the basis of values. Using DES shows that the ve-

hicle would behave in a chaotic manner, especially with increments in time

interval whilst CES resulted in vehicles behaving in a more fluid manner.

Hence, although neither method is better or worse, it can be stated that the

choice of either DES or CES must be considered in great detail since the

results may be skewered in a favourable or negative direction based on the

method chosen.

In terms of calculation and output of results, the simulation can be con-

sidered either deterministic or probabilistic. It should be made clear that

both DES and CES methods may be employed in producing deterministic

or probabilistic calculations.

In deterministic behaviour, given one or more input parameters, calcula-
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Input A Simulation Process Output X100%

Figure 2.5: Deterministic Behaviour Example

Input A Simulation Process

Output X

Output Y

60%

40%

Figure 2.6: Probabilistic Behaviour Example

tion will result in either one, or a set number, of possible outcomes [39].

As an example, given the inputs a or b, input a will also result in output x

whilst input b will always result in output y (Figure 2.5). Hence, repeata-

bility and predictability of results [40] is the key attribute in deterministic

simulation.

In comparison, the opposite is true of probabilistic behaviour. Probabilistic,

also referred to as stochastic, behaviour introduces the concept of random-

ness in simulation [40]. Using a similar example as deterministic behaviour,

given the input a, probabilistic results may return x with only 40% certainty

or it may return result y with 60% certainty (Figure 2.6). Hence, there is a

certain element of unpredictability in probabilistic behaviour.

Probabilistic behaviour is well suited to simulation where elements of un-

certainty are required. As an example, a simulation of a slot machine

(found in casinos) will require the use of probabilistic behaviour since there

must be a degree of randomness in order to ensure users do not attempt to

cheat the system. In comparison, a simulation of a factory production line
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may employ deterministic behaviour since, based on the inputs of the sim-

ulation, it can be certain what the output produced by the production line

may be.

In the case of implementing probabilistic behaviour, some form of random

generation technique must be applied in order to provide the randomness

of the simulation. One of the most well known techniques used is the

Monte Carlo Method mentioned briefly in a previous section. In essence,

this technique enables the of use repeated random sampling of numbers

in order to come to a result [41]. It should be noted that there is no one

singular Monte Carlo algorithm but instead, it is a group of mathematical

algorithms.

2.3.4 Challenges in Successful Simulation

Analysis of the key challenges in conducting a successful simulation is

given in this section. The work of Law [42] states that there are seven stages

that must be carried out in the successful implementation of a simulator.

The seven steps include formulation of the problem, gathering data, val-

idating the model, programming the model, validating the implemented

model, conducting and analysing experiments and presenting the results.

Detailed description on each of these seven steps from the work of [42],

supplemented with additional literature, follows:

1. Formulation of Problem - This first step involves defining what, ex-

actly, the aim of the simulation is. One could argue that the formu-

lation of a problem is not the challenge itself but rather it is defining

how the simulation seeks to solve the problem. Hence, this first step

is of great importance in providing a successful simulation since it

provides the overall objectives of the simulation.

2. Data Collection - The second step to simulation is in conducting re-

search to gather data that can be used as a baseline for the simulation.
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In other words, this involves gathering information that the design

and implementation of the simulator will be based on. It has been

stated that data collection is perhaps one of the most time consuming

aspects of conducting a simulation [43] with one source saying that

it takes up to 40 percent of a project’s time [44]. Though data collec-

tion is time-consuming, this step is fundamental as it is from the data

gathered that a simulator will be modelled against. Thus, it is impor-

tant to ensure the data collected is accurate since it will influence the

simulators results [45].

3. Validation of Conceptual Model - From the data gathered, a theo-

retical model should be presented and validated to ensure it meets

the aims of the simulation (as defined in step one). Validation, in

this context, refers to ensuring that the right model is being built [46].

In other words, it is ensuring that the model presented is an accu-

rate representation of the object(s) or system(s) which the simulator is

simulating. Law formally refers to this step as conceptual-model val-

idation [42] which is the process of ensuring any assumptions made

about a model is accurate prior to implementation.

4. Implementation of Model - This step involves the actual creation of

the simulation. The choice of either using a programming language

or existing simulation software is entirely up to the developer’s pref-

erence.

5. Validation of Implementation - Similar to step 3, upon successful

implementation of the simulator, it is important to validate that the

actual implementation is a valid representation of the model the sim-

ulator is attempting to simulate. The work of Law places special em-

phasis on two types of validation: face validity and results validation

[42]. Face validity refers to whether the results appear to be correct

from a subjective perspective while results validation assesses the im-
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plementation in comparison with a real-life existing system [47]. In

other words, validation can be conducted in two manners: qualitative

validation and quantitative validation.

6. Experiment and Analysis - Once a valid implementation is achieved,

experiments can then be conducted, and results analysed. The exper-

iments carried out will relate back to what the initial aim of the sim-

ulation was (as stated in Step 1). After experimentation, the results

can be analysed to determine whether the simulation was successful

in solving the original problem.

7. Presentation of Results - The final and perhaps simplest step, assum-

ing all previous steps have been carried out correctly, the results of the

simulation can be documented and presented.

It is identified that the steps presented is similar to the iterative process

conducted in a system development life cycles, e.g. analysis, design, test-

ing, implementation, testing etc., and although carrying out simulation is

a challenging task, breaking down the challenge into smaller steps makes

the task much more achievable.

2.4 Probability Distribution

From the previous section, it has been shown that a wide variety of method-

ologies exist in the scope of simulation. The analysis, modelling and simu-

lation of heart data conducted in this thesis makes significant use of contin-

uous probability distributions thus this section provides some fundamental

background to this subject. In particular, specific types of probability dis-

tribution including normal, logistic, Weibull and gamma distribution are

covered. Figure 2.7 gives a visual representation on the four types of prob-

ability plots derived from the Probability Density Function (PDF) of each

distribution. Definition of key terminology follows.
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• Cumulative Distribution Function (CDF) - The Cumulative Distri-

bution Function (CDF) describes the probability of a variable X oc-

curring which is less than or equal to x within a given distribution.

Each probability distribution will have a respective CDF. The CDF

is defined as F(x) = P(X ≤ x) where F is the CDF of the chosen dis-

tribution. A CDF value should range from 0 to 1, i.e. 0% to 100%

probability.

• Probability Density Function (PDF) - Whilst the CDF is capable of

giving the probability of a variable occurring less than or equal to

x, the PDF gives the density of a variable occurring in a given inter-

val. The PDF, which is a derivative of the respective CDF, is used to

calculate the probability of a variable X occurring that is within the

range of a < X < b. Thus, if f (x) represents the PDF, then the prob-

ability of a variable X occurring within a given interval [a,b] can be

represented as P(a < X < b) =
∫ b

a f (x)dx so long as two primary con-

ditions are met: 1) f (x) ≥ 0 and 2)
∫ +∞
−∞ f (x)dx = 1 [48]. The term

density describes how common a value is within a given distribution

and it should be noted that this is a unit-less measurement. Inferring

the probability of P(a < X < b) from the PDF is given in Appendix B

using normal distribution as example.

• Parameters - The term parameter relates to a quantifiable form of in-

put which affects the output of a function. In the context of probabil-

ity distribution, parameters will affect the overall form of the distri-

bution including aspects such as shape, scale and location.

2.4.1 Normal Distribution

Alternatively known as Gaussian distribution [49], normal distribution is

used to describe data which is both symmetrical and with data samples
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Figure 2.7: Probability Density Plot Examples

which cluster around a mean value [50, 51]. The two parameters for this

distribution are µ (mean) and σ (standard deviation). Standard deviation,

referred to as variance when squared, describes how wide spread the data

is towards the mean value. The CDF of normal distribution is:

1
2
[1 + er f (

x − µ√
2σ2

)] (2.1)

while the PDF is calculated as:

1
σ
√

2π
e−

(x−µ)2

2σ2 (2.2)

2.4.2 Logistic Distribution

Logistic distribution is very similar in shape to normal distribution but

with greater tails. In other words, wider variance will exist in logistic dis-

tribution in comparison with normal distribution. The two parameters of

logistic distribution is s (location) and µ (scale). Location dictates the shift
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in the distribution, relative to the x-axis, whilst scale dictates the pattern of

the curve. The CDF of logistic distribution is:

1

1 + e−
x−µ

s
(2.3)

whilst the PDF is calculated as:

e−
x−µ

s

s
(

1 + e−
x−µ

s

)2 (2.4)

2.4.3 Weibull Distribution

The Weibull distribution is of significant interest in this research due to

previous application in modelling of heart rate variation (HRV) by [52].

The two parameters of Weibull are k (shape) and λ (scale). Unlike normal

and logistic distribution, Weibull shares the same attribute with gamma

in that the x-axis cannot be less than 0. It can be considered unique in

that, unlike other distributions described in this section, there is no one

specific shape or form which enables this distribution to be easily identified

through visual analysis. In other words, it can be considered a general

fitting distribution. The CDF of Weibull distribution is:


1 − e−(x/λ)k

x ≥ 0

0 x < 0

whilst the PDF is calculated as:


k
λ

( x
λ

)k−1 e−(x/λ)k
x ≥ 0

0 x < 0
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2.4.4 Gamma Distribution

Gamma distribution tends to follow the characteristics of having a drop

off in density of variables as the x-axis increases. This has resulted in its

application in many economic type simulations to model stock markets and

trades. The primary parameters of the gamma distribution are k (shape)

and θ (scale) parameter. Depending on parameters, it can be often be seen

that gamma looks visually very similar to Weibull. The prime difference in

this distribution is that it has a slower or faster drop off point depending

on the value of the k parameter. The CDF of gamma distribution is:

1
Γ(k)

γ
(

k,
x
θ

)
(2.5)

whilst the PDF is calculated as:

1
Γ(k)θk xk−1e−

x
θ (2.6)

2.5 Heart Data Fundamentals

Monitoring and analysis of patient heart data is conducted using ECG mon-

itors. An ECG monitor consists of various electro nodes which, when at-

tached to specific parts of the human body, will pick up electrical impulses

and report these results in a waveform drawn on ECG graph paper. The

leads of an ECG monitor consists of, e.g. 3-lead, 5-lead or 12-lead, relates

to the number of maximum electro nodes which the machine is capable of

using. Figure 2.8 gives a visual representation on how the leads may be

connected to the human body. Generally, having a greater number of leads

will result in a more accurate waveform of a patient’s electrical impulse.

The electrical impulses of the human bodies heart activity is measured in

amplitude (mV).
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Figure 2.8: ECG attachments on the Human Body [53]

Owen Lo, School of Computing 28 PhD Thesis



CHAPTER 2. THEORY

Figure 2.9: 4-Lead Holter Monitor [55]

Traditionally, heart activity of a patient is recorded on tracing paper - and

still is - but advances in technology have enabled more mobile and compact

versions of this monitoring device to be developed with one example being

the series named Digital Holter Monitor [54]. Example of a portable Digital

Holter Monitor is given in Figure 2.9. In the case of tracing paper record-

ings, the ECG signal is considered analogue whilst devices such as Holter

will capture signals in a digital format. In the latter, a sampling frequency

is defined which defines the level of capture detail (of electrical impulses)

at each sample (of electrical impulses) per second. In other words, the rep-

resentation of digital ECG data, in this thesis, is interpreted to be discrete

values. Note that sample frequency is synonymous with the term sample

rate.

2.5.1 ECG Waveforms and Terminology

The waveforms of a ECG follow a distinct pattern. One complete heart-

beat of a patient can easily be identified based the unique pattern of a P-

Wave, QRS complex, T-Wave and U-Wave as depicted in Figure 2.10. The
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Figure 2.10: ECG waveform of one complete heart beat

unique peak of R, generally much sharper in comparison with the other

waves, allows medical experts to easily identify each separate heart beat.

The time taken between consecutive beats is referred to as the inter-beat-

interval (IBI). When taken from ECG signals, this is more commonly re-

ferred to as the RR interval as shown in Figure 2.11. The RR interval is

measured to be the time noted for a chosen R peak subtracted against its

prior R peak. The RR interval is considered to be the one of the primary

measures of HRV in a patient [56, 57, 58].

From the RR intervals one may derive the instantaneous heart rate (IHR) of

a patient. The IHR is expressed as the average number of Beats Per Minute

(BPM) - otherwise referred to as simply heart rate in this thesis. It can be

stated that RR interval provide the fundamental base values for heart rate

analysis in this thesis. The data source used for acquisition of ECG data

along with conversion to different units of measurement is given next.

2.5.2 Data Acquisition and Unit Conversions

Description and methods applied here for acquisition and conversion of

heart data is given with specific reference to digital ECG signals provided
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RR Interval

Figure 2.11: RR Interval in ECG waveforms

by Physionet [59] databank. This form of data is used during the experi-

mental phases of this thesis for the goal of analysis and modelling of heart

data. The purpose of this subsection is to give overview on Physionet’s

digital ECG data along with presentation of equations used in conversion

of units; applied example of extrapolation of heart data from digital ECG

signals using methods specified by Physionet is given in Chapter 4.

Physionet is a open-source database which contains a vast quantity of anonymised

signals relating to the physiology of individual patients. The main data

type of interest is ECG recordings in this thesis. The ECG records provided

by Physionet are in a digital format. In other words, conversion from a con-

tinuous signal to a discrete signal has already been carried out. One of the

key aspects of interpretation of the digital ECG records provided by Phys-

ionet is knowing the original sampling frequency ( fs) of the record. The fs

dictates the number of samples per second taken during the conversion of

a continuous ECG signal to a discrete digital one. The optimal range for fs

is found to be between 250 Hz to 500 Hz [60, 61] for ECG recordings. Fur-

thermore, in each of the records analysed for this thesis, an annotation file

accompanies the digital record. The annotation file describes the time and

occurrence of each individual heart beat in relation to the digital record. In

other words, the R peak of each record is marked. The annotation file is cre-

ated by medical experts who originally captured, analysed and uploaded

the signal for public use.
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The base unit of ECG recordings provided by Physionet is the RR sampling

interval (is). The sampling interval relates to the time interval between each

sample. In the case of ECG recordings, the is refers to the sample interval

between two consecutive R peaks. To provide an example, assume that an

ECG signal’s fs is 250 Hz. The standard equation for sampling frequency

in relation to time T (in seconds) is as follows:

fs =
1
T

(2.7)

Therefore, sampling occurs every 0.004 seconds (1/250). If the is for two

consecutive R peaks is known, e.g. 249, then calculation of RRinterval, ex-

pressed in units of seconds, can be achieved as follows:

RRinterval =
is

fs
(2.8)

Continuing with the example given, the result would be an RRinterval of

0.996 seconds (249
250) which is the same as is × 0.004. Once the RRinterval is

obtained, conversion to IHR can be conducted. The IHR is the average

number of heart beats per minute in a patient. The unit of measurement of

IHR is referred to as BPM and can be calculated as follows:

IHR =
60

RRinterval
(2.9)

The IHR for this example would be equal to approximately 60.24 BPM

( 60
0.996 ).
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Chapter 3

Literature Review

3.1 Introduction

THE literature review gives focus to the concepts of simulation and

modelling, with emphasis given to related works within the con-

text of healthcare. Techniques applied to analysis of heart data

is reviewed, along with specific methodologies employed to model such

data. The subject of Clinical Decision Support System (CDSS) becomes the

focal point in the latter part of the review. The two primary implementa-

tions of CDSS, knowledge-based and machine-learning, is objectively com-

pared. Within the technology of CDSS a focal point of this review is in

analysing implementation’s of the family of Track and Trigger (TT) systems

more commonly referred to as the Early Warning Score (EWS) system. The

final part of the review focuses on the concepts related to Intrusion Detec-

tion System (IDS) evaluation - a security software which is arguably similar

to CDSS.

Review of simulation and modelling serves the goal of achieving the objec-

tive of heart data modelling whilst the concepts of CDSS serves to highlight

the techniques which may be applicable to risk assessment. Review of the

TT systems, in particular the EWS system, serves the goal of highlighting
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the current issues related to this algorithm. Finally, review of IDS evalua-

tion techniques is given since this technology forms the primary inspiration

for the evaluation work conducted the latter chapter of this thesis.

3.2 Healthcare Based Simulations

A vast number of simulators are currently available, both commercially

and for the purpose of research. It would not be conceivable to cover all

simulators in existence, hence, in the scope of this thesis, a focus on simu-

lation and modelling which are applicable in health care is given. In partic-

ular, this section of the chapter aims to present approaches simulators have

been used to enhance healthcare environments.

3.2.1 Human Patient Simulators

Laerdal [30] presents SimMan R⃝, a full-scale robotic mannequin, otherwise

known as a Human Patient Simulator (HPS), which is capable of simulating

the physical attributes of a patient. Dedicated software (Figure 3.1), which

can either be run on a personal computer or a replicated patient monitor, al-

lows for the simulation of vital physiological signs of the mannequin. Vital

signs includes heart rate, blood pressure, temperature, respiratory rate and

oxygen levels whilst the simulator is also capable of simulating the breath-

ing patterns of a human being. In evaluations conducted on SimMan R⃝,

Hesselfeldt et al. [62] concluded that the simulated airway of the man-

nequin, though acceptable, was lacking in realism due to the mannequin

having anatomic insufficiencies in comparison to a real-life human. In re-

gards to the generation of vital signs, the studies carried out by Wyatt et

al. [63] found that 36 out of 54 features of SimMan were rated at least aver-

age physiologically accurate by health professionals. Thus it can be stated

that SimMan R⃝ has generally faced favourable reviews in the simulation of
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Figure 3.1: SimMan R⃝ Software [30]

a patient.

Hwang et al. [64] proposes the integration of both HPS and Virtual Patient

Simulator (VPS) to provide a physical simulation of a patient, and a vir-

tual simulation of the clinical environment. The HPS component of their

work is a mannequin which models the clinical signs, e.g. heart rate, blood

pressure and body temperature of a patient using scripts whilst the VPS

component acts as a interactive clinical environment allowing users to con-

trol the mannequin with predefined commands. One novel feature of this

work was the ability of the HPS to react to speech commands via the VP

system. This feature is achieved using a HPS Internal Data Exchange Pro-

tocol (HIDEP), a Java based communication protocol, which enables two

way communication between the virtual aspect and the physical aspect of

the simulated patient. A high level depiction of the HIDEP protocols work

flow is given in Figure 3.2.

Both the work of Laerdal and Hwang et al. present novel features in the im-

plementation of simulated patients. However, both works conducted relate

to the implementation of HPSs, whereby the main aim of such simulation

is for the purpose of educating medical personnel for training purposes by

providing a physical representation of a human body [65]. The work of
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Figure 3.2: HPS and VP integration via HIDEP protocol [64]

Hwang et al. propose the use of VPs, but the purpose of this is for provid-

ing a script based approach in the control of their mannequin.

3.2.2 Traffic Flow Simulator

Using the technique of discrete-event based simulation, Meng et al. [66]

propose the modelling of emergency hospital environments, i.e. Accident

& Emergency, in order to understand traffic flow of patients and provide

solutions to overcome overcrowding issues. Using a number of predefined

scenarios, e.g. increment or decrement waiting times to see a consultant,

and modelling patient arrival times using predefined schedules along with

random arrivals, their simulation is capable of determining the time peri-

ods in which the increase in waiting times occurred. Example of factors

which contributed to waiting times include scenarios such as patient con-

sultancy time, number of available hospital beds and wait time for blood

tests to be completed. In order to validate the simulation, simulated sce-

narios of both scheduled and stochastic arrival times where verified with

medical staff’s observations in their day-to-day work.

In similar work, Kolb et al. [67] propose five patient buffering concepts

in order to reduce the traffic flow and overcrowding in emergency depart-
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ments. Once again discrete-event based simulation was the technique cho-

sen to test their five buffering techniques. The results of this work show

show that the buffering techniques all improve upon the traffic flow of

emergency departments. In terms of validation, the authors claim to follow

the validation principles of work discussed previously including [32, 46]

along with the work of Balci [68] discussed later in this review.

3.2.3 Vital Physiological Sign Simulation

With focus on work towards vital physiological sign simulation, Agar et

al. [69] presents a simulation system which is capable of simulating blood

glucose and insulin levels of both healthy patients and patients with Type 1

diabetes for educational and training purposes (Figure 3.3). Named GLU-

COSIM, this simulations purpose is on the modelling of physiological com-

partments which relate specifically to blood glucose and insulin levels in-

cluding within the heart, brain, liver and kidney. The key novelty in their

work is that the simulator allows for the input of parameters including

time of meals, carbohydrate intake, insulin dosage, patient’s weight and

so on. By running the simulation, correlation between input parameters

and output of glucose and insulin concentrations in blood and liver can be

observed. It is explicitly noted in this work that the tool is not designed

for clinical decision making processes. Instead, it can be stated the primary

aim in the work of Ager et al. is in providing better understanding of dia-

betes from the educational perspective.

An interesting note on GLUCOSIM is that mobile applications have suc-

ceeded this area in more recent work. As the demonstrated by Eng and

Lee [70], approximitely 33% of mobile health apps achieve the same goal

as GLUCOSIM within the iPhone store, i.e tracking blood pressure, carbo-

hydrate intake and so on, while 22% are focued on provided education on

diabetes. The primary difference between mobile health apps and GLU-
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Figure 3.3: GLUCOSIM Software [69]

COSIM in that the input of data is achieved via user interaction rather than

through the use of simulation.

3.3 Heart Data Analysis and Modelling

This section focuses on review of methodologies which have been applied

specifically for analysis and modelling of heart data. It begins by reviewing

the application of heart analysis before showing the existing work which

has been conducted in analysis of heart data - which is achieved via sta-

tistical analysis of distributions. Formal methods of statistical analysis are

reviewed as part of this process, with a focus given on specific techniques

applied to modelling heart data in previous research.

3.3.1 Application of Heart Data Analysis

Analysis of heart data, especially RR intervals, by medical experts provides

a wealth of knowledge about the human body, along with its overall well-
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being. Research has shown that there is a direct correlation between res-

piratory rate and RR intervals by Brown et al. [71]. The impact of this

study shows that the current physical state of a patient, e.g. standing, sit-

ting, running, walking and so on, must be considered when analysing heart

data since all these activities affect breathing patterns. This finding is fur-

ther backed up by Tulppo et al. in which the authors show that RR interval

times is related to the amount of physical exercise due to breathing patterns

[72].

Analysis of RR interval also shows that there is a possible link between

fractal-like, i.e. self-similar, patterns in the consecutive heart beats and the

onset of atrial fibrillation (irregular and generally faster than normal heart

rate) [73]. This infers that heart data may be a chaotic system. Better un-

derstanding between RR interval and possible heart issues has also lead to

development of detection systems for abnormalities such as [74]. Other re-

search on heart rate variation (HRV) has also shown many links to patient

well-being, including higher risk of mortality after heart attacks [75] and a

greater risk of infant mortality [76, 77] in when lower variation is observed.

However, it must be noted the second finding has been disputed with find-

ings by Antila et al. and Mehta et al. showing no significant correlation

between infant mortality and variation of the heart [78, 79].

3.3.2 Statistic Analysis of Heart Distribution

The prior section has shown that potential correlation exists between heart

behaviour and the detriment of a patient’s health. Thus, analysis of heart

data may provide significant information on the wellbeing of a patient. Ad-

ditionally, to achieve the goal of successful modelling of RR intervals in this

thesis, thorough understanding of its underlying statistical distribution is

essential.

The study of irregularities in heart data conducted by Hashida et al. [9]
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Figure 3.4: Positive Skewed Distribution of Heart Rate Variation [10]

shows that it is possible to classify a patient’s RR interval with a gamma-

like distribution during analysis of a 30 minute electrocardiogram (ECG)

recording. In the work of O’Brien et al. [10], their analysis of 310 patient’s

HRV, over a period of 2 minutes, demonstrate a trend of positive skewered

distribution, with a bias towards the right tail. Measurements included pa-

tient’s being in a state of rest, inspiration (deep breathing), Valsalva (deep

exhale), and standing. Figure 3.4 shows the result of positive skewness

in heart data presented by O’Brien et al. when patients are in a state of

standing. In a more recent study, the work of Mandrekar et al. [52] has hy-

pothesised that RR intervals may be described statistically via the Weibull

distribution.

Given the visual similarities between gamma and Weibull distributions, as

shown in the Theory chapter, one may infer that either distribution type

may be used to describe RR interval from the studies shown so far. How-

ever, a 24 hour analysis of RR interval by Tebbenjohanns et al. [11] showed

that patient’s with atrial fibrillation tend to follow a bimodal (two peak)

distribution which differs entirely from both gamma and Weibull distri-

bution. Additionally, in the work of Jennings et al. [8] their result shows

that four patient’s RR intervals may be described as normally distributed

in 40-minute recordings in ten patients tested.

In regards to specific statistical methods, the primary technique that Hashida

et al., O’Brien and Tebbenjohanns et al. used for concluding their findings
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on heart distribution is through visual analysis of histograms. A more for-

mal method, as applied by Jennings et al. and Mandreker et al., is the use

of Kolmogorov-Smirnov (KS) test statistic. Given the qualitative nature of

histograms, in comparison with the quantitative nature of test statistics, it

can be stated that test statistics provide greater significance in proving the

distribution of this data type while visual analysis compliments this goal

by providing adding feedback of results in a visual manner.

3.3.3 Distribution Identification

It can be stated that heart data may follow many different forms of distri-

bution. Identification of a statistical distribution in a set of data, e.g. RR

intervals, is referred to as distribution fitting in this thesis. The concept

of distribution fitting is concerned with calculating the probability that a

set of data fits a certain statistical distribution. The primary technique for

distribution fitting can be found in the work of Law [80] and Ricci [81],

in which both authors agree that distribution fitting may be conducted in

three primary steps, described as follows:

1. Hypothesizing the Families of Distribution - The first step in dis-

tribution identification is identifying the family of distributions in

which the data may come from. This may be through visual anal-

ysis, e.g. plotting a histogram and observing the shape of the data, or

through more quantitatively sound techniques such as calculating the

underlying data’s summary statistics including mean, median, vari-

ance, coefficient and skewness.

2. Estimation of Parameters - Having identified a family of distribu-

tions in which the a set of data best fits, the next step is to calculate

the parameters of the distribution. Calculation of parameters serves

the purpose of enabling one to generate random samples to compare
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against a theoretical distribution, i.e. a goodness of fit test as de-

scribed in the next step. Estimated parameter values also serve as

the basis for modelling future heart data.

3. Performing a Goodness of Fit Test - A goodness of fit test is the for-

mal technique used to hypothesize whether a sample of data comes

from a specific distribution. It is a form of null-hypothesis testing

where H0 is the null-hypothesis and HA is the alternative hypothesis.

Many techniques may be used for this, whilst the two most relevant

to this thesis include the KS and Anderson-Darling (AD) test statistic.

3.3.3.1 Parameter Estimates

Given a sample dataset where the precise distribution is unknown (but can

be hypothesised as shown in the previous section), an estimate of the pop-

ulation parameter values based on the sample dataset can be achieved us-

ing parameter estimation techniques. Parameter estimates enable the gen-

eration of independent, and identically distributed, random variables for

formal hypothesis testing via goodness of fit evaluation. Furthermore, es-

timated parameters allows for modelling of future samples of heart data as

is shown in Chapter 5. Two of the most common applied parameter esti-

mate techniques are Method of Moment (MOM) and Maximum Likelihood

Estimate (MLE).

MOMs, first described by Karl Pearson in 1894 [82], is a technique for esti-

mating distribution parameters based on comparing sample moments (of

the data) with the population distribution moments. For k parameters in a

population distribution, there must be E(Xk
i ) estimates which is a derived

equation relating to the distribution’s parameter at mk moment. Generally,

moments is the average power in the data samples of interest [83]. Thus,

sample moments mk of variables {x1, x2...xi} can be calculated as follows:
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mk =
1
n

n

∑
i=1

xk
i (3.1)

As an example, assume variables {x1, x2...xi} follow a normal distribution

with unknown parameters mean, µ, and variance, σ2. MOM can be used to

estimate the parameter where E(Xi) = µ and E(X2
i ) = µ2 + σ2. Therefore,

the derived equations for mean and variance are:

E(Xi) = µ =
1
n

n

∑
i=1

xi E(X2
i ) = µ2 + σ2 =

1
n

n

∑
i=1

x2
i (3.2)

and solving them results in estimate for population mean, µ̂, and variance,

σ̂2, as follows:

µ̂ = X̄ σ̂2 =
1
n

n

∑
i=1

x2
i (xi − X̄)2 (3.3)

Another common parameter estimate technique is MLE. First proposed by

C.F Guass in 1821 [84] before being reintroduced by R.A. Fishers in 1922

[85], ML estimates parameters by calculating, based on the sample data,

values which has the most likely fit for a given distribution’s probability

density function [86]. The likelihood function may be represented as fol-

lows:

L(w|y) = f (y|w) (3.4)

which states the likelihood of parameter w, given sample data y, is equal

to function f (y|w). The function to be applied is based on the probability

density function of the distribution in which sample data y are observed to

have originated from [86]. To put it another way, the likelihood of param-

eter w is based on a value of w which produces the highest probability of

L(w|y) occurring (hence maximisation).

In referring back to the variables {x1, x2...xi}, which is assumed to follow

a normal distribution, the unknown parameters mean and variance can be

Owen Lo, School of Computing 43 PhD Thesis



CHAPTER 3. LITERATURE REVIEW

calculated using the MLE by solving Equation 3.5. Note that the equa-

tion presents the Probability Density Function (PDF) of normal distribu-

tion. The example, and detailed proof in solving the equation which is out

with the scope of this research, can be found in the work of Cassella and

Berger (2002) [87]:

L(µ,σ2|x1, x2...xi) =
n

∏
i=1

1√
2πσ2

e−
(xi−µ)2

2σ2 (3.5)

Considered by some to be one of best parameter estimation technique [48],

the MLE method is generally unbiased in larger sample sizes and has the

smallest variance for parameter estimation [88]. This gives it the narrowest

confidence interval, therefore the highest accuracy in estimates. In compar-

ison, MOM has potential for strong bias, e.g. preference in calculating pa-

rameter values of sample data rather than population data. Furthermore,

unlike MLE, the MOMs technique has the potential flaw of producing es-

timate parameters which are outside the bound of a distribution. An ex-

ample of this may be seen in the work of [89] where method of moments

was used to estimate parameter in log-normal distribution resulted in ini-

tial values which were negative which are generally meaningless in such a

distribution - as log-normal does not accept negative values.

However, limitations also exist with the MLE method. One limitation to

this technique is strong bias in small sample sizes, as demonstrated by [90].

At the same time, it is of note that they concluded that MLE was the best

candidate for parameter estimates when sample size n ≥ 50. A second limi-

tation, in comparison with MOMs, is the non-trivial calculations which are

necessary in the MLE estimate thus increased complexity and potential for

mistakes to be made during estimation.
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3.3.3.2 Goodness of Fit Test

The most commonly applied test statistic found in many areas of research

is the KS test. The test statistic is:

Dn = sup
x

|Fn(x)− F(x)| (3.6)

where F(x) is the given Cumulative Distribution Function (CDF) to test for,

i.e. if the null-hypothesis is normal distribution then F(X) takes the form

of this distribution’s CDF. An alternative to the KS test is the Anderson-

Darling test statistic. The AD test statistic, A2, is calculated as follows:

A2 = −n − S , (3.7)

The variable S is derived from the following equation, where F is once

again the CDF of the chosen distribution to test against, ln is the natural

logarithm of F, and Yi is a ordered list of the sample data:

S =
n

∑
i=1

2i − 1
n

[ln(F(Yi)) + ln (1 − F(Yn+1−i))] (3.8)

Similar to KS, the AD test is used to define how likely a chosen sample

of data fits a distribution by comparing the sample data’s CDF against the

chosen distribution’s CDF [91]. In both cases, the tests are considered a

null-hypothesis test, where H0: the sample data comes from the specified distri-

bution and the alternative hypothesis HA:the sample data does not come from

the specified distribution. Therefore, in the example of the AD test, if A2 is

greater than, or equal to, the critical value, the null-hypothesis is rejected

and it may be stated that the data sample does not come from the distribu-

tion tested against. On the other hand, if A2 is less than the critical value

then there is not enough evidence to reject H0.

In the context of distribution fitting, failure to reject H0 does not give ev-

idence that a set of sample data follows a specific distribution since the
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alternative, HA, is: the sample data does not come from the specified distribution.

In other words, evidence has been produced to show that a sample of data

does not follow a specified distribution. However, by testing multiple com-

mon distributions it is proposed that it can be shown which distribution

has the highest likelihood of fitting. Critical values, for most of the com-

mon distributions, have been calculated in previous research by the author

Stephens including [92, 93, 94, 95, 96, 97]. In practice, most statistical soft-

ware which is capable of conducting AD test will already have critical val-

ues in-built thus removes the burden of looking up p-values in relation to

critical values when conducting distribution testing.

Although both the KS and AD tests are capable of achieving the same goal

- assuming the goodness of fit in a sample of data - one limitation subject to

the KS test is the inaccuracy of results when there is significant outliers in

the data [98]. Furthermore, research conducted by Razali and Wah [99] has

shown that the AD test has far greater test power than the KS test in tests

for normality in data. In the context of this thesis, the term test power relates

to the probability of not accepting H0 when it is false [100]. Failing to reject

a false null-hypothesis is referred to as a Type II error [100]. Therefore, the

evaluation conducted by Razali and Wah shows that the AD test has in-

creased capabilities in correctly identifying a null-hypothesis and reduced

probability in producing a Type II error. Finally, the work of Shapiro and

Wilk [101] shows the AD test comes second only to the Shapiro-Wilk (SW)

test but this test statistic is not ideal in most cases since it is designed to

only test for normality in data samples [99].

3.3.4 Heart Data Modelling Techniques

With a focus specifically on the modelling aspects of heart data, three com-

mon techniques this thesis found include: mixture distribution, Weibull

distribution and Artificial Neural Networks (ANNs) modelling. In mix-
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ture distribution, one assumes that a distribution of data may be modelled

by combining a group of distributions with different weightings. A com-

mon technique is to assume the entire distribution may be modelled via a

normal distribution and perform a estimate of parameters for each curve

in observed data. Such a technique is employed by both Costa et al. [102]

and Ketchum et al. [58] for modelling of heart data. Costa et al. shows that

it is possible to model heart data using three normal distribution compo-

nents whilst the work of Ketchmum et al. proposes that such data can be

modelled using only two components.

Alternatively, as shown in the work of Mandrekar et al. [52], there is the

possibility of modelling heart data using only a single distribution: the

Weibull distribution. The Weibull distribution is a flexible probability dis-

tribution capable of taking on many shapes. Mandreker et al. found that

most heart data within the time frames of up to two minutes could be fitted

to a Weibull distribution, leading to the hypothesis that Weibull distribu-

tion is capable of modelling small samples of heart data. Experimentation

results in this work that marginal fits are achievable for most heart data

modelled using the Weibull distribution.

A rather novel method applied to heart data modelling is in the use of

ANN as demonstrated by Saalasti [103]. ANNs are based on the concept of

synapses in the biological nervous system and consists of a series of nodes

which are capable of learning patterns in data through various learning

algorithms [104]. In essence, though more complicated algorithms exist,

the simplest implementation of a ANN consists of various nodes which

aim to fit data to a curve based on input data.

3.4 Clinical Decision Support Systems

The work of [105] defines CDSS as computer software which primarily aim

to make decisions along with recommendations for a patient’s clinical out-
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come. Such results are directed at either the patient themselves or the clin-

ician responsible for further action, e.g. proceed with a treatment plan or

propose an alternative solution. The taxonomy of CDSS described by [106]

found that 96% of such systems are developed for providing better patient

outcome whilst only 4% of such systems are used for other purposes such

as administrative tasks including calculation of clinical costs or resource

utilisation.

Traditionally, much like paper-based patient records, CDSSs have been used

in a standalone manner with no interoperability between different clinical

environments. However, with the growth of e-Health technologies recent

research including [107, 108] have proposed and shown the capability of

sharing patient data between clinical environments and integrating CDSSs

within differenc environments to enable rapid identification of patient ill-

nesses.

The decision making methodology of CDSSs may be grouped into two pri-

mary categories: knowledge-based decision making and machine-learning

decision making. In knowledge-based systems, experts in certain fields of

medicine may input all their data into the decision support system and

such system can then be used to decision making processes by other med-

ical staff [109]. Alternatively, machine-learning algorithms in CDSS make

use of artificial intelligence for the decision making process.

The work of Berner and La Lande [110] show that the most applicable

technique for knowledge-based CDSS is rule-based implementations while

machine-learning approach are generally applied using artificial intelligence

techniques including ANNs and genetic algorithms. Figure 3.5 depicts the

most common techniques applied to CDSS. Berner and La Lande’s finding

correlates with a study conducted by Berlin et al. [106] which the authors

found that the most common implementation of CDSSs is rule-based tech-

niques whilst ANNs and probabilistic models are also applicable. Given

the wide scope of work conducted on CDSS implementation techniques,
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Figure 3.5: Categories and common techniques in CDSSs

this section focuses on review of the three most common approaches in-

cluding: rule-based,ANN and genetic algorithms.

3.4.1 Rule-Based Approach

The most common knowledge-based approach to CDSS is the technique of

a rule-based approach for decision making. One of the earliest examples

of a rule-based technique using predefined expert medical knowledge, is

the MYCIN project described by Buchanan et al. [111]. The primary goal

of MYCIN is to produce an expert system capable of identifying and pro-

vided diagnostics on bacterial diseases. The name of this project is derived

from the fact that many antibiotics will end with the suffix -mycin. MYCIN

uses a set of semantic rules predefined as a series of IF and ELSE state-

ments, thus leading to a logical flow during the decision making process.

Expert knowledge on bacterial diseases was pre-populated in the system

prior to the decision making process. A pseudo-code example of the rules

implemented for MYCIN is:

IF: There is evidence that A and B are true

THEN: Conclude there is evidence that C is true.
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Although the MYCIN project was never applied in live clinical settings,

many researchers have followed similar approach in the implementation

of CDSS. The work of Achour et al. [112] demonstrates the capabilities of

rule-based CDSS by integrating it with the Unified Medical Language Sys-

tem (UMLS) with the aim of providing a standard approach to deciding

what type of medical data should be shared between, and within, clinical

environments. Their implementation is tested against the use case of de-

ciding whether or not a patient requires a blood transfusion. Achour et

al. evaluated their implementation by comparing their systems decision

output against the decision a medical professional, i.e. a physician, would

make in the same scenarios. More recent work by Rahaman and Hossain

[113] show the author’s using rule-based techniques for decision making

on heart failure. Evaluation of their system shows that the CDSS produces

less deviation in comparison with clinical history results in detection of

heart failure.

One of the main limitations in the approach of rule-based implementations

is the possibility of an incorrect decision made by the system. In one of

the results presented by Achour et al., only 40% of physicians agreed with

the CDSS decision hence showing the importance to ensuring accuracy in

input data of both rules and expert knowledge during the implementation

stage. Furthermore, as rule-based techniques make use of logical opera-

tions, i.e. IF and ELSE statements, as the complexity of the CDSS increases,

so does the number of rules. In the MYCIN project by Buchanan et al.,

around 600 rules were implemented, whilst the heart failure detection sys-

tem by Rahaman and Hossain made use of 216 rules. The work of Achour

et al. does not provide a rule count, but given their goal of defining medical

sharing decisions, it can easily be stated that the number of rules will grow

significantly as the number of clinical environments are integrated with

the system. Not only does maintenance of rules become difficult but it’s

proposed that rule-based systems may face the similar issue as computer
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network firewall rules with anomalies such as overlapping, conflicting and

redundant rules, as described by [114].

3.4.2 Neural Network Approach

As already discussed in Section 3.3.4, neural network is a form of artificial

intelligence which makes use of numerous nodes for the learning pattern

in data. In the context of CDSS, one example of the use of neural networks

is in the detection of myocardial infarction in heart data. As originally de-

scribed by Berner and La Lande, the neural network first goes through a

training phase where it learns the patterns of normal and abnormal heart

data. Testing and usage of the CDSS can then take place by feeding it new

heart data. The decision on whether a patient displays symptoms of my-

ocardial infarction will be decided based on the patterns recognised during

the training phase. Naturally, such a technique is beneficial for early de-

tection of any potential health problems with heart patients. Application

of neural networks in CDSS is varied including over 300 articles of its ap-

plication in cancer studies [115], determining well being in patients with

diabetes [116] and even homeopathic medicinal systems [117].

One of the prime advantages of neural networks in comparison with rule-

based system is the self-learning nature of this technique. This, in turn,

eliminates the need for defining a set of rules thus eliminating potential

issues in regards to human error. This, in turn, reduces the possibility of

overlapping, conflicting and redundant rules [114] which rule-based ap-

proach may be susceptible to. Since training of neural networks is con-

ducted through analysis of previous datasets, it also eliminates the need

for predefined expert knowledge. Although one may see this point as ad-

vantageous it has been argued that the self-learning process eliminates ac-

countability [110] in the decision making process if no (human) expert in-

put is given along with difficulties in reverse engineering the logic behind
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the neural networks decision due to complexity in the algorithms.

Furthermore, it has been argued that the complexity of neural network al-

gorithms, from a medical perspective, may limit the use of this type of

CDSS in healthcare environments [118]. Lisboa and Taktak demonstrates

this fact in their review of neural network’s application to cancer studies by

stating that out of over the 300 articles reviewed only 27 studies resulted

in clinical trials [115]. The overall impression on neural networks is that

although numerous prototypes have been successfully implemented they

do not fit into the work flow of existing healthcare environment thus the

lack of adoption and usage in day-to-day clinical assessments [118].

3.4.3 Genetic Algorithm Approach

Genetic algorithms are derived from concepts of the biological organism

and attempt to apply the theories of evolution and the principle of survival

of the fittest [119] to computing-related problems. Through the process

of reproduction and elimination using numerous methods, the theory of

a genetic algorithm is that an optimal solution will be left which aims to

address the issue it is attempting to solve.

Similar to neural networks, a wide number of research papers have been

published in its application to CDSS including diagnostic of brain tumours

[120] and diagnostic of heart diseases [121]. Furthermore, a data mining

technique, through a combination of both genetic algorithms and neural

networks, was applied by Amin et al. [122] for decision-making related to

heart diseases in large a dataset of patient data. It can be stated that genetic

algorithms share the same advantage as neural networks: there is no need

for predefined expert knowledge nor the implementation of rules for the

decision making process.

Unfortunately, genetic algorithms also share similar limitations as neural

networks. Berner and La Lande backs this statement up by stating that al-
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though "genetic algorithms may be more accurate than the average clinician in

diagnosing the targeted diseases, many physicians are hesitant to use these CDSS

in their practice because the reasoning behind them is not transparent" [110]. In

other words, there is limited use of genetic algorithms in real-life healthcare

environments due to the lack of understanding of the technique employed.

Additionally, it can be inferred that the issue accountability, which affects

neural networks, is also applicable to genetic algorithms due to their com-

plex nature. Finally, referring back to the work Amin et al., it should be

noted that although their experiments in the use of a genetic algorithm and

neural network techniques produced positive results, no mention of live

clinical trials or usage in real-life scenarios were noted.

3.5 Track and Trigger Systems

TT systems, especially the EWS algorithm, is one of the most common tech-

niques used in healthcare environments for the assessment of a patient’s

health and wellbeing. Furthermore, the background section has shown

that although such systems have been traditionally paper-based numerous

research and development projects have been produced which have been

successful in migrating the algorithm to electronic formats.

3.5.1 Application of the EWS System

Sufi et al. [123] proposes the use of mobile phone technology for automated

calculation of the EWS algorithm, as employed by Walsall Hospitals NHS

Trust. A standard client-server architecture is adopted whereby the client

(mobile phone) acts as input medium for each parameter required by the

EWS algorithm and the server (clinical infrastructure) receives the input via

standard protocols including HTTP or SMS/MMS. The server calculates an

aggregated score and returns clinical feedback to the client.
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A similar methodology is employed by de Jager et al. [124] in which the

authors propose the use of Wireless Sensor technology in place of mobile

technology for automated calculation of the risk score. The primary differ-

ence in this work is the EWS algorithm used is the MEWS system rather

than the traditional EWS system. Another similar field of work is con-

ducted by O’Kane et al. [125] in which the authors propose the use of wire-

less body area networks (BAN) for automated capturing and monitoring of

vital sign data using the MEWS system. A survey conducted on 71 health

professionals showed that the system was widely more favourable in com-

parison with the traditional paper-based system, especially in regards to

increased accuracy and maintenance of patient data along with reduction

in paperwork and time saving.

3.5.2 Evaluation of EWS Systems

Each of the areas of work related to automated risk assessment in patient’s

using variations of the EWS algorithm are valid in their approach, however

it does not address a fundamental issue related to the algorithm: effective

and accurate assessment of patient risk and outcome. From existing lit-

erature, the work of Subbe et al. [19] shows that higher aggregated scores

resulted in increased mortality rates in patient, but they also explicitly state

that the Modified Early Warning Score (MEWS) algorithm should be anal-

ysed objectively by a clinical expert given the wide number of possible

variation of results. A second study of the MEWS algorithm by Gardner-

Thorpe et al. [126] concludes that the algorithm offered predictive capabili-

ties in enabling rapid intervention for patients whose aggregated risk score

were equal or greater than 4. Although the EWS algorithm applied differs

slightly, similar results to the previous two research works were obtained

in a study conducted by Goldhill et al. [127] where the authors show that

increased abnormalities in vital parameters resulted in greater intervention
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and mortality rates.

Despite the apparent positive effect of the EWS system for prediction of

illness in patients conflicting opinions on this matter are found in more re-

cent publications. In introducing a Medical Emergency Team (MET), one

form of TT systems, the results of Hillman et al. [128] show that there was a

greater number of overall emergency responses yet no correlation between

incidences of mortality and abnormal vital sign parameters in the patient.

Furthermore, a thorough review on all forms of TT algorithms conducted

by Gao et al. [129] lead to the conclusion that not only was sensitivity in

the algorithms poor, but no significant data exists to demonstrate strong

evidence in the "significance, validity, and utility" of proposed EWS systems.

In a similar review, conducted by Johnstone et al. [130], the authors also

find that there is a lack of statistical techniques applied to defining risk as-

sessment systems thus demonstrating a potential lack of rigour on defining

what ranges of vital signs should be considered a risk along with providing

a potential answer to the issue of sensitivity in the algorithm.

Finally, in a publication by Carberry et al. [131], the authors shares the same

sentiment and agree with the view of Goa et al. that the EWS system, alone,

is insufficient in providing accurate assessment on clinical outcomes due to

factors including lack of communication between health care professionals

and insufficient evidence to demonstrate efficacy when analysing patient’s

risk scores. Ultimately, the opinion of Carberry et al. is that the EWS system

should only be used in conjunction with training professional’s medical

experience for increased accuracy of assessment.

3.6 Intrusion Detection Systems

In conducting review on CDSS and TT systems, it was noted that such sys-

tems share many similar characteristics with the computer security con-

cept of IDSs. In particular, the experiments conducted on risk assessment
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Figure 3.6: Comparison between CDSS and IDS

of heart rate in the later chapter, especially the metrics of evaluation, are

greatly inspired by the methodologies applied to evaluation of intrusion

detection systems. This section addresses similarities between IDS and

CDSS along with review on methodologies which have been applied to

evaluation of IDS.

3.6.1 Comparison to CDSS

In computing, IDSs are used for detection of threats and malicious traffic.

In the taxonomy presented by Debar et al. [132], IDSs consist of two pri-

mary techniques for detection of threats behaviour-based and knowledge-

based. Behaviour-based detection makes use of statistical analysis, and in-

ference on detecting malicious traffic, whilst knowledge-based IDSs make

use of predefined rules which contain signatures of known threats. As de-

picted in Figure 3.6, it can be stated these two detection categories of IDS

are very similar to the concepts of knowledge-based and machine-learning

found in CDSS.

Knowledge-based IDS, similar to rule-based CDSS techniques, consists of

semantic rules, which are more commonly referred to as signatures in this

field of research. In essence, signatures predefine known threats in com-

puter systems. A prime example of a signature implementation comes from

the IDS known as Snort [133] used for detection of malicious network traf-
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fic. An example rule for Snort follows, which will simply produce an alert

whenever TCP traffic is seen on the specified IP address:

alert tcp 192.168.1.1 any -> any any (msg:"Alert!";)

It can be stated the above rule is very similar to the concept of the elec-

tronic EWS system where an alert may be raised if a patient’s heart rate is

less than 40 Beats Per Minute (BPM) as would be in the case of the National

Early Warning Score (NEWS) algorithm [22]. In comparison, anomaly de-

tection techniques in IDS apply very much the same type of techniques

as are applicable in machine-learning CDSS. From a study conducted by

Garcia-Teodoro et al. [134] two common techniques, neural networks and

genetic algorithms, are also applicable to behaviour-based IDS. Their work

also covers a third technique in detection methods: statistical based ap-

proach. Literature review on neural networks and genetic algorithms has

been conducted in prior sections of this chapter thus it is not repeated here

for IDS since they share the same advantages and limitation. Instead focus

is given to review on statistical approaches in the following section.

3.6.2 Statistical-Based Approach

One of the earliest works which proposes the use of statistical methods for

detection of threats was proposed by Dennings [135] through the concept

referred to as Mean and Standard Deviation Model. As the name implies,

this technique involves the calculation of the mean and standard deviation

of observed normal activity and for any future activity which falls outside

this confidence interval may be considered anomalous therefore potentially

a threat. Dennings also discusses another technique generalised as multi-

variate models which is based on profiling the correlation between two or

more activities. By capturing the mean and standard deviation of all pro-

filed activities, anomalous activity may be detected based on calculation of
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confidence levels as before.

Following on from multivariate models, the work of Helman and Liepins

[136] extends upon this idea through the concept of Bayesian analysis. In

essence, Bayesian analysis makes use of statistical inference to calculate the

probability of happening based on prior probability. In the case of detec-

tion of anomalous network transactions, the learning phase of the IDS will

profile activity whilst the detection phase will apply Bayesian theorem to

calculate the probability of the event occurring:

P(A|B) = P(B|A)P(A)

P(B)
(3.9)

The primary advantage of Denning’s approach of mean and standard de-

viation model is the simplicity of the technique. However, it does make

the prior assumption that activity to be profiled follows a normal distri-

bution which may not always be applicable, i.e. heart data is not always

normally distributed. On the other hand, a Bayesian approach does not

make assumptions on distribution of data and although the equation is

easy enough to interpret, the primary challenge involves the correct cal-

culation of prior probabilities which can be exceptionally difficult, even if

sufficient prior data exists.

A more recent application of the statistical approach, as originally dis-

cussed in Wang et al. [16], is the use of quartiles and windowing techniques

for detection of anomalies in data centres. Quartiles, originally formalised

by Tukey [15], is the statistical technique of defining data range as 25%

components, therefore thresholds can be obtained, whilst windowing in-

volves segmenting the time series of data into collections of equal pieces.

Thus, a combination of the two techniques enables one to identify outliers

in data (thresholds) along with summary statistics for each windowed seg-

ment, e.g. distribution, mean, standard deviation, and so on. Quartiles,

like the techniques of Helman and Liepins, make no assumption on dis-
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tribution whilst the advantage of a windowing technique is that a data

segment’s distribution may be identified and compared with previously

trained datasets for detection of any deviation of characteristics [16].

3.6.3 Evaluation Methodologies of IDS

A wide number of evaluation methodologies have been proposed for IDS.

The two primary techniques for conducting evaluation is either real-time or

offline evaluation [137, 13]. Real-time evaluation makes use of live network

traffic and activities for assessing how well an IDS is capable of detecting

threats, whilst offline evaluation makes use of datasets and simulation for

evaluation purposes. Examples of real-time evaluation can be seen in the

work of the Lincoln Adaptable Realtime Information Assurance Testbed

(LARIAT) [138] and Trident framework [13], whilst work including the

Defense Advanced Research Projects Agency (DARPA) evaluation [12] and

research by Massicotte et al. [139], where a scripted approach is taken,

make use of offline evaluation.

It can be easily stated that the prime advantage in real-time evaluation is

in enabling realistic conditions during the testing process. Since threats are

generated and applied to the IDS in a real-time manner, this methodology

is better able to represent the actual environments in which an IDS may be

deployed in [138, 140].

On the other hand, given the dynamic nature of live activities, reproduction

of results may be difficult due to slight variations in the testing conditions.

Reproducibility is perhaps the key advantage in offline evaluation meth-

ods. This is especially true of the DARPA evaluation, in which an offline

dataset of both normal and malicious network traffic was made public for

future research. Although the DARPA dataset has been critised due to be-

ing out of date [141], it is still one of the most widely cited and researched

datasets within this field of work. Furthermore, it has been the inspiration
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Table 3.1: Alarm Types in IDS

Alarm Definition

True-Positive Malicious activity has been taken place and alert has been raised.

False-Negative Malicious activity has taken place but no alert has been raised.

False-Positive No malicious activity has taken place but alert has been wrongly raised.

True-Negative No malicious activity has taken place and no alarm has been raised.

for development of more recent offline datasets. A prime example is the

KDD 99 dataset, produced by Mei-Ling et al., which claims a detection rate

of 98% and less than 1% false-positive ratio during evaluation [142]. It is

proposed that part of the reason for the popularity in offline datasets is due

to the ease of availability (DARPA datasets: [143]; KDD 99 datasets: [144])

and the fact that there simply is no better alternative, as recently stated by

Tavallaee et al.: "due to the lack of better datasets, the majority of the research in

the field of network intrusion detection is still based on the synthetic sets" [145].

3.6.4 Metrics of Evaluation

Caswell et al. [146] defines the primary alarm types which an IDS is ca-

pable of triggering including true positives, false negatives, false positives

and true negatives. Table 3.1 provides brief definition on each alarm type.

Metrics of evaluation in IDS aims to describe how effective the implementa-

tion is in terms of each of these alarm types. Generally, an ideal result from

evaluating an IDS should yield a high number of true-positives whilst false

positives and false negatives should be limited.

The work of Sommers et al. [13], in presenting the Trident framework,

proposes two primary forms of metrics for evaluation of IDS, the efficiency

metric, defined as:

E f f iciency =
TruePositives

AllAlarms
(3.10)
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and the effectiveness metric, defined as:

E f f ectiveness =
TruePositives
AllPositives

(3.11)

Efficiency is a measurement on the overall performance of the IDS, i.e.

false-positive ratio, whilst effectiveness is a measurement on the overall ac-

curacy, i.e. false negatives, in the IDS [13]. The resulting value of 1 in either

equation is ideal. Similar metrics are employed by related works includ-

ing both the DARPA evaluation and LARIAT project where measurements

consisted false alarms and attack detection rates [12, 138].

On the other hand, the work of Massicotte et al. make use of all four pri-

mary alarm types during evaluation but propose that the conjunction of

these alarm types may allow for further classification of IDS metrics. A

total of fifteen classifications are provided which may be split into three

subcategories named success and failed attempts, failed attempts only and

successful attempts only. Classification of detection metrics enables more

meaningful and fine grained presentation of results in comparison with

simply showing the number of true-positive or false-positive values as a

numeric value.

Rab and Kalam [14] share a similar goal to Massicotte et al. when it comes

to defining IDS metrics. In their work, they propose that detection met-

rics can be classified as both macroscopic and microscopic. Macroscopic

metrics consist of detection ratio and false alarm ratio, calculated as:

DR =
TruePositives
AllPositives

(3.12)

and:

FAR =
FalsePositives

AllAlarms
(3.13)
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whilst microscopic metrics relate to similar calculations but for each in-

dividual attack. It can be seen that detection ratio is the same metric as

proposed by Sommers et al. thereby validating the correctness in this cal-

culation whilst false alarm ratio can simply be derived from:

FAR = 1 − E f f iciency (3.14)

In other words, one can consider this the inverse of the efficiency metric.

3.7 Conclusions

The literature review has demonstrated that modelling and simulation, in

a healthcare context, is primarily focused on the goal of providing of edu-

cation and training. Similarly, it may be stated that this same goal is shared

when applied to analysis and modelling of heart data. Review shows that

modelling of heart data may be achieved via mixture distribution, Weibull

distribution and neural networks from the works of [102, 58][52][103] re-

spectively. On the analysis aspect of heart data, it is found that focus is

given to analysis of HRV and a multitude of results are found with evi-

dence to suggest that gamma [9, 10], normal [8], Weibull [52] and bimodal

distributions [11] are all applicable.

Review of CDSS techniques shows that implementation of this system is

achieved using one of two categories: knowledge-based and machine-learning.

Review of one specific group of knowledge-based systems, TT systems,

which encapsulates the electronic EWS show that the sensitivity of the al-

gorithm is poor [129], there is a lack of statistical techniques in defining the

potential risk of a patient [130] and not enough evidence exists to demon-

strate a direct correlation between high risk score and further illness in a

patient [128, 131]. The literature review demonstrates that CDSSs share

many similarities with the computer security software known as IDS. In
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particular, methodologies of clinical decision making and intrusion detec-

tion both apply the concepts of knowledge-based and machine-learning

approaches. In the context of IDS, a commonly applied approach to detec-

tion of threats is through statistical analysis using anomaly detection tech-

niques. One particularly relevant technique from this part of the review

is the quartiles technique as applied by [16], which makes use of training

datasets to define normality in data.

Given the many distributions found in heart data from the literature re-

view, this thesis proposes that no one single distribution is capable of de-

scribing all heart data found in patients. The knowledge acquired on sta-

tistical analysis and modelling is brought forward in the next two chapters

to demonstrate novel findings on plausible distributions which heart data

fall under along with comparison of modelling techniques. In identify-

ing the optimal techniques for modelling of heart data, instantaneous heart

rate (IHR) values (derived from modelled RR intervals) are then applied

to testing and validation of the NEWS algorithm. To address the issue of

sensitivity in EWS algorithm as noted by [129], a novel approach to risk as-

sessment is proposed which applies the knowledge-based technique of the

EWS algorithm along with the anomaly detection technique of quartiles-

based statistics as seen in the work [16]. The use of a statistical approach

enables customisation of risk threshold for each individual patient’s heart

data analysed along with addressing the concern made by Johnstone et al.

[130] that prior EWS algorithms do not consider the underlying statistics of

vital physiological data when defining risk values. To provide for a bench-

mark comparison between the existing EWS algorithm and the novel tech-

nique, an accuracy ratio metric - inspired by IDS evaluation methodologies

- is defined to provide a quantitative evaluation on each algorithm.
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Chapter 4

Heart Data Analysis

4.1 Introduction

THIS chapter focuses on the analysis of real-life RR interval for iden-

tification of underlying distribution. RR intervals form the base

values from which heart rate can then be derived from. The pur-

pose of this objective to apply the knowledge obtained in order to model

heart data for application in risk assessment. RR intervals are analysed in

place of the derived instantaneous heart rate (IHR) values in order to give

the most statistically accurate results in regards to the inter-beat-interval

distribution of a human bodies heart. Since heart rate is simply the aver-

age beats per minute, it is argued that analysis of this data type does not

give as much precision of underlying distribution in heart data in compar-

ison with RR intervals.

Findings of the literature review have shown evidence of gamma [9, 10],

Weibull [52] and normal distribution [8] in heart data. Based on this result,

the primary hypothesis of this chapter is that one of four distributions are

capable of describing the statistical distribution of RR intervals including

normal, gamma, logistic and Weibull distribution. Distribution identifica-

tion is performed using the using the Anderson-Darling (AD) test statistic,
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in place of the more commonly technique referred to as the Kolmogorov-

Smirnov (KS) test, due to being less susceptibility to outliers in data and

demonstrating greater test power as shown in the literature review by [99]

and [98] respectively.

4.2 Analysis Methodology

The methodology of Law [80] and Ricci [81], as discussed in the literature

review, form the primary basis for the technique applied to distribution

of heart data. Figure 4.1 depicts the methodology applied to heart data

analysis:

1. Acquisition of real-life heart data.

2. Extrapolation of data to a format suitable for statistical analysis, i.e.

RR intervals.

3. Hypothesis of distribution of acquired heart data, based on findings

in the literature review.

4. Parameter estimation on the hypothesised distribution using Maxi-

mum Likelihood Estimate (MLE) method.

5. Goodness of fit, via the AD test statistic is applied to compare sam-

pled values against real-life heart data samples.

6. Presentation of results is given in the form of AD value and related

p-value to demonstrate whether there is significant evidence that the

hypothesised distribution is plausible.

In reference to the last item, the success rate of the within the scope of ex-

periments conducted in this chapter is defined in terms of whether there is

significant evidence that one of the four hypothesised distribution is plau-

sible in describing heart data analysed.
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Figure 4.1: Steps in Heart Data Analysis

4.2.1 Data Source

It can be stated that analysis of patient’s heart data provides significant

indicators to a person’s well-being [73, 74, 75]. In order to achieve suc-

cessful modelling of heart data, for application within the Early Warning

Score (EWS) risk assessment system, a key starting point is to acquire real-

life data relating to RR intervals - the base value in which IHR may be

derived from. The acquisition of such data enables the analysis of subtle

behaviour in RR interval along with the ability to assess whether such data

follows specific distributions.

In this thesis, acquisition of hearth data was achieved using the database

known as Physionet [59]. Physionet is a open-source database which con-

tains a vast quantity of anonymised signals relating to the vital physiologi-

cal signs of individual patients. The data type of interest for this research is

electrocardiogram (ECG) signals which allows one to derive the heart ac-

tivity of a patient. The ECG signal of patients from the database, known as

Fantasia, was acquired for the purpose of analysing RR interval data. The
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Fantasia database was uploaded for public research purposes by Iyengar et

al. [147] and their original work involved assessing age related differences

in heart rate of both elderly and young patients [147]. Each record consists

of approximately 120 minutes of ECG recordings, sampled at 250Hz, and

all subjects remain in a resting state while watching the Disney movie Fan-

tasia - hence the name of the database. In total, there are twenty young and

twenty elderly patient records available in the dataset. To provide evidence

of this chapter’s hypothesis, that one of four distributions is capable of de-

scribing RR interval data, the scope of this thesis focuses on the first ten

elderly (f1o01...f1o10) and young (f1y01...f1y10) patient’s datasets. There-

fore, a sample size of twenty datasets is used in this experiment.

To justify the choice of a sample size of twenty, it should be first noted that

the work of Iyengar et al. makes a similar decision in their study of fractal

dynamics of RR intervals where the sample size was twenty patients from

the same database (i.e. ten elderly and ten young) [147]. In comparison, the

work of Hashida et al. [9] analyses only one single patient while Jenning et

al. [8] consists of a sample size of ten patients. More recently, the study of

Mandrekar et al. [52] has a sample size of nine patients. Of the reviewed

work on heart data analysis, only O’Brien et al. [10] has a greater sam-

ple size (310) of patients in comparison with this thesis - unfortunately this

dataset is not made public. In this experiment, the use of twenty patients

from the same publicly available database ensures not only reliability in

results, since any other research may acquire the dataset and replicate the

findings, but also ensures a level of control since all patients are deemed

healthy by a medical expert and in the same (resting) state during acquisi-

tion of ECG data.
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4.2.2 Data Extrapolation

As described in background of this thesis (Chapter 2), each record of the

Fantasia database contains the digital ECG signal and an annotation file.

Furthermore, a header file accompanies each record. The ECG signal itself

is a digital representation of the patient’s heart activity in the form of elec-

trical impulses whilst the annotation file describes the time and occurrence

of each individual heart beat in relation to the ECG signal. The header file

provides meta data on the record. In viewing the header file for record

f1o01, it can be seen that this record belongs to a 77 year old female, the

duration of the signal is approximately two hours, and the sampling fre-

quency ( fs ) of the ECG signal is 250 Hz:

Record fantasia/f1o01

Notes

=====

Age: 77 Sex: F

=====

Starting time: not specified

Length: 2:00:51.612 (1812903 sample intervals)

Sampling frequency: 250 Hz

Wave Form Database (WFDB) [148] is used to extrapolate the RR intervals

from the ECG signal of each record, and designed specifically for analysis

and visualisation of ECG signals. The software converts each ECG signal

(stored in a binary format) into a human readable format using the ann2rr

executable. Extrapolation of normal heart data from Patient f1o01 is given

as follows:

ann2rr -r f1o01 -a ecg -c -P N -p N > f1o01.txt

The flag -r specifies the record to be read whilst -a specifies the annotation

file related to the record. The annotation file consists of labels which point
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to specific time of occurrence, and type, of each individual heart beat [149].

Annotations are manually added by the researchers, generally clinical ex-

perts, who chose to upload the record. The -p and -P flag enables filtering

of specific heart beat types in the record. A value of N means normal heart

beat only. The omission of the -p and -P flag will result in all beats being ex-

trapolated, regardless of normality. A full list of annotation codes relating

to types of non-normal heart beat may be found in the previous reference

given. Finally, the -c flag is used to omit any RR intervals which are not

annotated.

The results of using ann2rr to extrapolate normal heart data from Patient

f1o01 results in 7166 data samples. The unit type for each sample is known

as the RR sample interval (is). The RR sample interval is the interval be-

tween two consecutive R peaks. The is relates back to the initial fs of the

ECG signal which, as shown in Section 4.2.1, happens to be 250 Hz for each

record in the Fantasia dataset. Thus, a is of exactly 250 means the RR in-

terval for that sample is 1 second whilst a is of 243 would result in a 0.972

second RR interval. Conversion from is value to RR intervals, in the units

of seconds, is achieved by performing the division of is
fs

as described earlier

in the Theory chapter of the thesis.

Table 4.1 shows the first five RR samples acquired using ann2rr, the equiv-

alent RR interval for each sample and also the IHR expressed in Beats Per

Minute (BPM) which can be derived from 60
RRinterval

. Of significant note in

unit conversion is the possibility of rounding errors when converting IHR,

in the units of BPM, back to RR intervals, in the units of seconds as orig-

inally discussed by Saalasti [103]. This would result in distortion of data

and demonstrate the importance of ensuring the correct units are analysed.

Table 4.2 demonstrates the issue of rounding errors which are applicable

when converting IHR back toRRinterval and RRinterval to is. The same for-

mulas as previously discussed are used in the manner where the reverse

conversion of from IHR to RRinterval is:
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Table 4.1: Conversion of RR Samples at 250 Hz Sample Frequency
is RRinterval IHR

248 0.992 60.4

245 0.98 61.2

247 0.988 60.7

250 1 60

243 0.972 61.7

Table 4.2: Example of Rounding Errors in Reverse Conversions
IHR RRinterval is

60.4 0.9933775 248.344375

61.2 0.9803922 245.0981

60.7 0.9884679 247.117

60 1 250

61.7 0.9724473 243.1118

RRinterval =
60

IHR
(4.1)

and the reverse conversion of RRinterval to is is:

is = RRinterval × fs (4.2)

In practice it is found that RR intervals are expressed most commonly in

units of milliseconds but this chapter and other portions of the thesis presents

findings and results of this data type in the units of seconds. Since the base

unit for frequency is Hz, i.e. samples per second, conversion to millisec-

onds would need to be applied at some point in the equation to present the

results in this manner. The decision was made not to perform this conver-

sion to eliminate the possibility of distortion and irregularities which may

occur as Table 4.2 has demonstrated. Furthermore, given that past medical

studies on this type of data, examples including [150, 72, 147, 151], have
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presented RR intervals in the units of seconds justification exists that this

choice is not completely against standard convention.

4.2.3 Hypothesizing RR interval distribution

It can be made apparent, from the literature review, that attempting to clas-

sify heart data under one specific distribution is simply too naive an ap-

proach. There are many factors which result in different distribution of

heart data in patients including age, gender, existing diseases and even the

time period of the recording. Based on the findings of the literature review,

it is hypothesised that RR interval data may be described as one of four

primary distributions including normal, gamma, logistic and Weibull.

The choice of gamma and Weibull distribution are derived from results pro-

duced by Hashida et al. [9], O’Brien [10] and Mandrekar et al. [52] where

it was found that heart variation tends to follow a skewered distribution.

The choice of normal distribution is derived from the work of [8] where it

is found that a normal-like distribution is demonstrated in heart rate varia-

tion (HRV) in four out of ten patient’s data analysed in their work. Logistic

distribution is also chosen since this distribution is very similar to normal

distribution. It is argued that logistic fit will preside over a normal fit if the

tails of the data analysed are longer - a highly likely case in instances where

RR intervals have greater time differences.

4.2.4 Parameter Estimates

The choice of MLE for distribution identification when analysing RR inter-

vals was made since analysis of every dataset in this thesis had a sample

size n ≥ 50, consequently mitigating the potential bias of MLE estimations

originally described in the work of [90]. Furthermore, given that MLE has

greater accuracy, in comparison with Method of Moment (MOM) [88], it
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is natural to make use of this technique for parameter estimation. Finally,

to address the complexity of calculations required in MLE, as discussed

in the literature review, mitigation of the non-trivial calculations is over-

come since almost all statistical software packages come inbuilt with the

MLE algorithm. Thus, this thesis makes use of an existing implementation

which also has the advantage of reducing the potential of any inaccuracies

in calculation of results.

4.2.5 Goodness of Fit Test

The AD test statistic is applied for testing of distributions in RR intervals.

This differs in the technique of previous work including [8, 52] since the KS

test was used. From the literature review (Section 4.2.5), it has been shown

that the AD test comes only second to the Shapiro-Wilk (SW) in test power

[99]. The SW test is dismissed for use in this thesis since it is designed to be

applied only under the assumption of normality in data.

Additionally, it has been shown that KS is subject to inaccuracies in distri-

bution identification when there are outliers in the data [98]. The KS test,

in comparison, does not share this same limitation. Given the nature of the

data which the AD test statistic is to be applied against, i.e. RR intervals,

where significant variance may exist in a patient’s heart beats, it can justi-

fied that this test statistic is the most ideal for producing accurate results in

the identification of the distribution.

4.3 Identification of normal healthy patients

For each of the ten young and elderly patients in the Fantasia dataset, dis-

tribution identification via the AD test for the full sample of each patient’s

RR interval data (approximately 2 hour recording) was conducted. All sta-

tistical analysis was conducted using Minitab 17 [152] and the significance
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level for p-value is 0.05 for each test. The AD test statistic is automated

generated by Minitab 17 when analysing data. To provide proof of valid-

ity in Minitab’s calculation, Appendix C presents evidence that the AD test

statistic, calculated manually, and the test statistic produced by Minitab are

the same.

Distribution identification of patient’s 2 hour RR interval proved inconclu-

sive. A lack of fit for any of the hypothesised distributions i.e. normal,

logistic, Weibull, gamma, was produced. As example, Figure 4.2 demon-

strates the probability plot of Patient f1o01. The Y-axis represents the Cu-

mulative Distribution Function (CDF) of each distribution tested while the

X-axis represents the RR intervals values expressed in the unit of seconds.

With a p-value of < 0.05 for each of the tested distributions, this result

demonstrates that there is not enough evidence that the RR interval data

comes from any of the tested distributions.

The possible reason for this result is due to the unpredictable nature of

a patient’s physiology. Even in patient’s ECG recording, where they re-

main motionless, external stimuli such as sound and motion will result in

changes to their resting heart rate over certain periods of time as shown in

the work of [10]. Furthermore, general fitness levels [153] and even posture

[154], will result in variation with heart rate over short periods of time.

4.3.1 Small Sample Identification

Due to this initial finding, the distribution identification method is refined

by analysing smaller samples of the each patient’s RR interval. The point

at which RR interval distribution was successfully identified for most pa-

tients was found to be a maximum of 120 seconds. It can be stated that

the methodology applied here, i.e. two minute sample analysis, is similar

to the work of Mandrekar et al. [52] however the technique applied here

differs, as the aim of this work is to assess whether RR intervals may fit
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Figure 4.2: Two Hour Sample Distribution Identification of Patient f1o01

families of distribution rather than just Weibull distribution. Furthermore,

the test statistic of AD is used rather than KS which, as the previous section

explains, is considered to have greater test power in distribution identifica-

tion.

Two minute samples of patient’s RR interval data are acquired directly

from the datasets by once again using the ann2rr command:

ann2rr -r f1o01 -a ecg -c -P N -p N -t 120 > f1o01.txt

where -t defines the time in seconds for the extrapolation process to stop at.

Although this results in small differences in sample size n in each dataset

to be analysed, the results enabled more accurate result of a patient’s RR

interval distribution over small periods of time. The small difference in

sample size results from the fact that each patient has variations in the time

taken for each individual heart beat. Thus a lower heart beat intervals will

will result in less RR intervals within two minutes in comparison with a

patient who has a higher heart beat interval. Figure 4.3 shows the results
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Figure 4.3: Two Minute Sample Distribution Identification of Patient f1o01

of the two minute sample distribution identification of Patient f1o01. The

results for normal distribution fit show an AD test statistic of 0.660, and a p-

value of 0.083. With significance level of 0.05, there is insufficient evidence

to reject H0. Given that the lowest AD test statistic and highest p-value is

observed for normal distribution, it can be stated that this distribution is

most plausible fit for f1o01’s two minute RR interval sample.

The same technique is applied to identifying the distribution for each of the

other nine elderly and ten young patient’s chosen for analysis.

4.3.2 Results of Distribution Fitting

Table 4.3 and 4.4 gives summary on the best distribution fit in two minute

samples for each of the ten elderly and young patient’s from the Fantasia

dataset. The parameter estimate, conducted using the MLE method, is also

provided in each distribution. Param Est. 1 and Param Est. 2 relate to the

following parameters respectively: mean and standard deviation (normal),
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location and scale (logistic), shape and scale (gamma), and shape and scale

(Weibull).

In the 20 distribution identification tests conducted, the applied technique

was able to identify 16 distributions successfully in the patient’s RR inter-

vals thus a success rate of 80%. The most commonly identified distribution

is Weibull (f1o04, f1yo04, f1yo05, f1yo06, f1y08 and f1yo09), while normal

is the second most regularly occurring fit (f1o01, f1o06, f1o10, f1yo02 and

f1yo07). Gamma distribution and logistic distribution were identified three

times (f1o02, f1o08 and f1o09) and two times respectively (f1o07 and f1y01).

An asterisk (*) accompanies results where each distribution tested led to

rejection of H0 but, rather than omit such results, the distribution with the

highest p-value, namely Weibull and gamma, in comparison with other

distributions in the sample tested, is presented.

The primary novelty of the analysis conducted in this chapter is in demon-

strating that numerous statistical distributions may be used to describe RR

intervals. Although the results complement the work of Mandreker et al.

[52], since Weibull comes first for fittings of RR interval data, it would be

naive to describe all RR intervals as a Weibull distribution since results re-

port much better fits for logistic, normal and gamma distribution in some

patients. Fittings of the gamma distribution correlate with the results of

Hashida et al. [9] while findings of the normal distribution can be backed

up by the work of Jennings et al. [8]. It is reiterated that the AD test statis-

tic, in place of the more common KS test as employed by Jennings et al.

and Mandrekar et al., has been used in this analysis. The AD test comes

second only to the SW test in terms of test power [99] thus it is proposed,

and demonstrated in the results, that this test statistic serves to produce

more accurate distribution results then past research in this area of work.

Finally, an explanation for why the Weibull distribution occurs various

times during the analysis is due to this distribution being very versatile in

both its shape and scale, in comparison with the other distributions tested.
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Table 4.3: Distribution Fit for Elderly Patients
Dataset AD Value P-Value Best Fit Param Est.1 Param Est. 2

f1o01 0.66 0.083 Normal 0.9692 0.04389

f1o02 0.74 0.055 Gamma 2296.39891 0.00043

f1o03 0.782 0.042 Weibull* 25.17597 0.98128

f1o04 0.501 0.216 Weibull 34.64655 1.23427

f1o05 1.84 <0.010 Weibull* 52.45041 1.04237

f1o06 0.316 0.536 Normal 1.19325 0.02648

f1o07 0.56 0.102 Logistic 0.9827 0.0167

f1o08 0.635 0.098 Gamma 636.92991 0.00123

f1o09 0.628 0.102 Gamma 296.59721 0.00473

f1o10 0.566 0.14 Normal 0.88009 0.0409

This is more apparent when referring to results in Table 4.3 and 4.4 where

the asterisk symbol marks the best fit. Although none of the distributions

tested proved a good fit in such tests, the result with the highest p-value

was Weibull in three out of four cases (f1o03, f1o05 and f1y03). In one in-

stance, gamma was the closest fit possible (f1y10). Given this observation,

the next chapter, modelling of heart data, provides a potential solution to

how one may model heart data on samples where there is no good fit under

the hypothesised distributions.

4.4 Conclusion

This chapter has focused on distribution identification of heart data, namely

RR intervals. Identification of the statistical distribution of RR intervals

serves the goal of modelling heart rate, a value that may be derived from

RR intervals. Distribution identification was conducted in three steps: hy-

pothesis of heart data distribution based on existing literature, parameter

estimates using MLE and performing goodness of fit to validate results via

the AD test.
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Table 4.4: Distribution Fit for Young Patients
Dataset AD Value P-Value Best Fit Param Est.1 Param Est. 2

f1y01 0.457 0.215 Logistic 0.76866 0.03145

f1y02 0.352 0.464 Normal 0.90868 0.10745

f1y03 0.761 0.046 Weibull* 12.96976 0.94428

f1y04 0.312 >0.250 Weibull 12.24812 1.3771

f1y05 0.165 >0.250 Weibull 26.66953 0.96275

f1y06 0.485 0.232 Weibull 14.87207 1.02397

f1y07 0.434 0.297 Normal 1.11738 0.13236

f1y08 0.381 >0.250 Weibull 14.00713 0.96614

f1y09 0.625 0.101 Weibull 16.20404 0.8534

f1y10 0.904 0.022 Gamma* 232.26905 0.00335

The chapter has hypothesised that RR intervals may be described by four

primary distributions: normal, gamma, logistic and Weibull. The choice

of normal, gamma and Weibull distributions is based on findings from

the literature review including works by [8], [9, 10] and [52]. In addition,

this chapter proposes that there is a high likelihood of RR interval being

identified as logistic distribution in cases where RR interval displays wider

variation. Parameter estimates was conducted using the MLE method, jus-

tification for this choice is due to its wide application in statistics along

with unbiased results in n ≥ 50 sample sizes. The AD test was chosen for

distribution identification in place of another common test, KS, because it

demonstrates greater test power and less limitation in sample data with

outliers.

The results from distribution identification of small samples of RR intervals

(up to two minutes) prove the validity of the hypothesis. Also, the proposal

that RR interval with wider variation may be better identified as logistic

rather than a normal distribution is proven. In conducting an analysis of 20

datasets from the Fantasia database, it has been shown that the technique

has a success rate of 80%. The most common distribution fit was found
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to be Weibull, and second most common was normal. Third was gamma

while logistic is least common. The results in this chapter demonstrate that

no one single distribution is capable of describing all heart data. Further-

more, it is shown that the AD test statistic is not perfect since four cases

of RR intervals analysed resulted in no good fit for the hypothesised dis-

tributions. The next chapter describes the modelling methodology applied

for RR intervals based on parameter estimates gathered from this chapter

along with comparing it to another common technique: mixture modelling

as applied by previous researchers including [102, 58].
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Chapter 5

Heart Data Modelling

5.1 Introduction

THE literature review of this thesis shows that the three primary

techniques used in heart data modelling include normal mix-

ture distribution, Weibull distribution and neural networks mod-

elling. Although each of the related areas of work provide valid solutions

to modelling of heart data, it is the opinion of this research that the prime

limitation that these three techniques apply generalisation to heart data

modelling. In mixture distribution, it is assumed that heart data may be

modelled using various mixtures of normal distribution whilst Mandrekar

et al. [52] makes the generalisation that all heart data is Weibull distributed.

In the context of neural networks, the techniques employed simply offers

a form of curve fitting so that the output data will resemble the input data

curve as best as the algorithm is capable of. The hypothesis of this chapter

is that an individual distribution better describe heart data in comparison

with applying generalisation to all heart data

Findings from the previous chapter have shown that it possible to describe

each patient’s heart data, i.e. RR intervals, using individual distributions.

In two minute samples analysed from twenty patient’s datasets, the most
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common fit is found to be Weibull distribution. The second most com-

mon fit is normal distribution whilst gamma is third and logistic the least

common. This chapter aims to compare the viability of using individual

distributions in comparison with mixture distribution for modelling of RR

intervals. The individual distribution used for modelling of each patient’s

data, along with parameter values, is defined based on results acquired in

the previous chapter. Due to limitation in scope, the results are not com-

pared to neural network algorithms since this field of work encapsulates

an entirely different discipline of research. Furthermore, the scope of the

comparison relates to modelling RR intervals up to a maximum duration

of two minute though discussion on modelling longer periods of time is

also touched upon briefly in this chapter.

5.2 Modelling Methodology

For each patient of the Fantasia dataset, RR intervals values are modelled

for the equivalent of two minutes, using both individual distribution and

mixture modelling techniques. Comparison of the two techniques against

the actual real-life data is provided via histogram for visual analysis whilst

descriptive statistics are also presented to describe the results in quantita-

tive manner. The next section presents a selection of results obtained from

this validation process. Modelling of sample data is conducted using R

ver. 3.0.1 [155] whilst figures are rendered using Minitab 17. The method-

ology applied for modelling of individual distributions of RR interval data

and modelling via normal mixture distribution is described in the sections

which follow.
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5.2.1 Individual Distribution Modelling

Modelling of normal, gamma, logistic and Weibull distribution of RR in-

terval data is conducted using the libraries of rnorm,rgamma, rlogis and

rweibull respectively. Each function is designed specifically to simulate val-

ues in the chosen distribution based on the respective Cumulative Distribu-

tion Function (CDF) and Probability Density Function (PDF). The example

of modelling Patient f1o01’s two minute RR intervals is provided in this

section. Patient f1o01 has a sample size n = 123 for two minute of RR inter-

vals. From the results of identification distribution this patient’s RR inter-

vals are considered normally distributed from the Anderson-Darling (AD)

test conducted. Estimation of parameters was achieved via the Maximum

Likelihood Estimate (MLE) method and results were previously shown in

Table 4.3 and 4.4 for the ten elderly and ten young patient’s respectively.

An example of the command used in R is shown below:

# Modelling of 2 minute RR intervals in Patient f1o01

# using normal distribution

set.seed(100)

f1o01 <- rnorm(123,0.9692,0.04389)

All results generated from this chapter use a seed value of 100. The pur-

pose of the set.seed() method is to set the randomly generator to a specific

known state. This enables the exact same results to be produced on any ma-

chine, thus experiments may be replicated by other researchers for valida-

tion. Appendix D gives each of the R commands used to model all twenty

patient’s 2 minute RR intervals.

5.2.2 Mixture Distribution Modelling

For mixture distribution modelling, the R library named mixtools is used.

Similar to the work of Ketchum et al. [58], two normal distribution com-
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ponents are chosen for mixture modelling rather than three as proposed by

Costa et al. [102]. This choice is justified due to the fact that the RR intervals

analysed consists of only two minutes of data, rather than 24 hour periods

thus it is proposed that significant variation in values will not generally

take place for normal healthy patients in their heart data values.

To elaborate on the concepts of mixture distribution, as previously dis-

cussed in the literature review, one assumes that a distribution of data may

be modelled by combining a group of distributions with different weight-

ings. A common technique is to only use normal distribution and perform

an estimate of parameters for each curve in observed data, a methodology

applied by [102, 58]. In other words, generalisation of the data takes place

since the use of normal distribution assumes all heart data of all patients

is normally distributed. For the estimation of parameters, the Expectation

Maximization (EM) algorithm is used as originally described by Dempster

et al. [156]. The EM algorithm is capable of finding the MLE of parame-

ters when datasets are incomplete or missing data values [132]. Although

the mathematical proof is out with the scope of this research, the EM algo-

rithm has been widely proven to provide accurate parameter estimates in

mixture models. Works including [157, 158] provide an in-depth analysis

and discussion on the proof of the algorithm.

The R script named mixtureModel is implemented to perform both param-

eter estimates and model the chosen patient’s data. Parameter estimate is

conducted using the EM algorithm which comes inbuilt with the mixtools

library. The normalmixEM command automatically computes the mean

and standard deviation of each k component of the input data which, in

this case, is the RR intervals of each patient within the time frame of two

minutes. The parameters estimated are calculated using the EM algorithm,

and the results which are shown in the table are provided in Appendix E.

An example usage of the mixtureModel script, assuming RRintervalData is

a vector of RR intervals, is invoked as follow:

Owen Lo, School of Computing 83 PhD Thesis



CHAPTER 5. HEART DATA MODELLING

# Example vector of RR Interval data

RRIntervalData = c(1.23, 1.12, 1.31, 1.11...)

#Perform EM estimate and automatically produces model of data

model <- mixtureModel(RRIntervalData)

The full script used for mixture modelling is also presented in Appendix

D.

5.3 Modelling Results

A selection of visual graphs, i.e. histograms, comparing the real-life RR in-

tervals of the chosen patient and modelled data is given. Figure 5.1 and 5.2

gives two examples of elderly patients whilst Figure 5.3 and 5.4 gives two

examples of young patients. The x-axis of the histograms provide the RR

intervals of the patient in the unit of seconds. The full descriptive statistics

for each patient modelled, compared against the real-data, is provided in

Table 5.1 for elderly patients and Table 5.2 for young patients. The next

section discusses the results in greater detail. Note that descriptive statis-

tics have been rounded to a maximum of three decimal places for ease of

readability.

5.3.1 Results Analysis

From Figures 5.1, 5.2 and 5.3 it could be argued that individual distribu-

tions provides a better visual representation the real-life data in compari-

son with mixture distribution. On the other hand, Figure 5.4 demonstrates

that mixture modelling provides a greater resemblance in comparison with

individual distribution modelling. Analysis on the underlying statistics,
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Figure 5.1: Real and Modelled Data Comparison (Patient f1o01)
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Figure 5.3: Real and Modelled Data Comparison (Patient f1y01)
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Table 5.1: Descriptive Statistics on Modelled Data against Real Data (El-

derly Patients)
Dataset Type Mean µ SD σ Median µ1/2 Skewness γ1

f1o01

Real Data 0.969 0.044 0.972 -0.14

Normal Model 0.969 0.043 0.966 0.21

Mixture Model 0.979 0.043 0.987 -0.34

f1o02

Real Model 0.976 0.020 0.976 0.01

Gamma Model 0.987 0.019 0.989 -0.17

Mixture Model 0.975 0.019 0.972 0.34

f1o03

Real Data 0.961 0.047 0.972 -0.92

Weibull* Model 0.959 0.043 0.967 -0.82

Mixture Model 0.959 0.039 0.964 -1.12

f1o04

Real Data 1.215 0.041 1.218 -0.33

Weibull Model 1.212 0.038 1.220 -1.05

Mixture Model 1.212 0.043 1.212 -0.18

f1o05

Real Data 1.031 0.026 1.040 -0.81

Weibull* Model 1.030 0.023 1.034 -0.93

Mixture Model 1.034 0.024 1.039 -1.09

f1o06

Real Data 1.193 0.027 1.196 -0.24

Normal Model 1.194 0.027 1.192 0.15

Mixture Model 1.196 0.025 1.203 -0.57

f1o07

Real Data 0.981 0.031 0.984 -0.56

Logistic Model 0.985 0.027 0.984 0.09

Mixture Model 0.985 0.031 0.992 -0.91

f1o08

Real Data 0.781 0.031 0.776 0.29

Gamma Model 0.785 0.030 0.786 0.09

Mixture Model 0.786 0.031 0.781 0.38

f1o09

Real Data 1.402 0.082 1.388 -0.03

Gamma Model 1.402 0.079 1.402 -0.03

Mixture Model 1.407 0.078 1.423 -0.43

f1o10

Real Data 0.880 0.041 0.884 -0.15

Normal Model 0.880 0.040 0.876 0.21

Mixture Model 0.887 0.039 0.894 -0.42
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Table 5.2: Descriptive Statistics on Modelled Data against Real Data (Young

Patients)
Dataset Type Mean µ SD σ Median µ1/2 Skewness γ1

f1y01

Real Data 0.771 0.058 0.764 0.84

Logistic Model 0.769 0.055 0.768 0.1

Mixture Model 0.781 0.060 0.775 0.06

f1y02

Real Data 0.909 0.107 0.906 0.03

Normal Model 0.907 0.105 0.900 0.2

Mixture Model 0.911 0.098 0.898 0.17

f1y03

Real Data 0.907 0.085 0.920 -0.44

Weibull* Model 0.903 0.082 0.920 -0.83

Mixture Model 0.922 0.080 0.935 -0.47

f1y04

Real Data 1.321 0.126 1.338 -0.3

Weibull Model 1.312 0.114 1.325 -0.9

Mixture Model 1.336 0.115 1.338 -0.04

f1y05

Real Data 0.943 0.044 0.948 -0.87

Weibull Model 0.942 0.040 0.951 -0.82

Mixture Model 0.945 0.036 0.948 -0.49

f1y06

Real Model 0.989 0.080 0.992 -0.48

Weibull Model 0.980 0.087 0.985 -0.6

Mixture Model 0.998 0.080 1.014 -0.55

f1y07

Real Data 1.117 0.132 1.120 -0.07

Normal Model 1.116 0.134 1.108 0.19

Mixture Model 1.157 0.126 1.186 -0.41

f1y08

Real Data 0.931 0.081 0.948 -0.57

Weibull Model 0.926 0.079 0.940 -0.83

Mixture Model 0.933 0.077 0.954 -0.59

f1y09

Real Data 0.827 0.060 0.836 -0.52

Weibull Model 0.824 0.060 0.835 -0.82

Mixture Model 0.826 0.049 0.836 -0.48

f1y10

Real Data 0.778 0.052 0.772 0.41

Gamma* Model 0.780 0.050 0.781 0.12

Mixture Model 0.787 0.050 0.777 0.54
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provided in Table 5.1 and 5.2 shows deeper insight on comparison between

individual modelling and mixture modelling.

The descriptive statistics presented include mean, median, standard devi-

ation and skewness of the modelled data. Overall, it is observed that the

mean of individual distribution models better match the real-life RR inter-

val values. In total, thirteen individual distribution models have a closer

mean value to the real-life data in comparison mixture modelling whilst

four modelled patient’s resulted in equal values. Thus it can be stated

overall that the use of a individual distribution is better for capturing the

average values of RR intervals in comparison with mixture modelling.

Similarly, thirteen cases of individual distribution provide closer values in

median to the real-life data in comparison with mixture modelling. For

standard deviation, ten of the modelled data using individual distribution

provide a more accurate representation of this measurement whilst five of

the patient’s modelled provided equal results with mixture modelling. On

the other hand, mixture modelling appears more accurate for skewness

where thirteen results produced more accurate results in comparison with

individual distribution.

In the case of real-life patient data identified as normal distribution, the

descriptive statistic shows that the use of the individual distribution tech-

nique, i.e. modelling of a single normal distribution based on estimated

parameters, provides the most accurate results in regards to mean, median

and standard deviation. In the case of logistic modelling, it is found that

both individual and mixture modelling are equally valid. However, this

finding is limited due to the fact that only two patient’s RR intervals within

the datasets analysed show evidence of this distribution.

For patient’s heart data identified as gamma distribution, the use of this in-

dividual distribution proved less effective than mixture modelling in two

primary cases: Patient f1o02 and f1o08. Although the mean, median and
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Figure 5.5: Two Peak RR Interval Distribution (Patient f1o02 and f1o08)

standard deviation are quite similar, the shape of these two models are

more accurately represented by mixture modelling. Analysis on the real-

life dataset provides an answer as to why mixture modelling works better.

In both cases, it is found that two distinct peaks are found in both patient’s

RR intervals as shown in Figure 5.5. Thus, this confirms bimodal charac-

teristics in the RR interval data confirming the results of [11] and, although

statistical evidence suggests that these two datasets are gamma distributed,

mixture distribution may be better suited to modelling the characteristic of

multiple peaks in heart data. In regards to the Weibull distribution, it is

found that the use of this individual distribution for modelling is equally

comparable to mixture modelling. Both techniques provide similar values

in regards to the real-life patient data but it is found that mixture modelling

better captures the skewness of the data once again.

Results for Weibull* models - marked with the asterisk symbol - which, as

discussed previously in Section 4.3.2, relate to fits where a p-value < 0.05

therefore meaning no good fit exists for the data (though the presented dis-

tribution is deemed to be the closest fit in comparing p-values) are also

similar with mixture modelling. In two cases (f1o03 and f1yo03), the use of

Weibull* results in a better representation of the real-life patient data whilst
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the third case (f1o05) results in more accurate mean and skewness in com-

parison with mixture modelling. Despite the lack of significant evidence

that this distribution is the correct fit for these three patients, the findings

here demonstrate the flexibility in the Weibull distribution in modelling of

RR interval data and validity of this distribution for modelling of heart data

as discussed in the work of [52]. Finally, in regards to the single Gamma*

model, the finding shows that mixture modelling is the ideal technique

rather than using an individual distribution which better correlates with

the analysis conducted in the previous chapter since no good fit was found

for this sample.

It can be summarised that individual distribution modelling is preferable

in the case of evidence that RR intervals can be described using a single

distribution. On the other hand, mixture modelling is preferable to mod-

elling RR intervals where there is insignificant evidence to demonstrate

that the real-life data samples analysed follow a specific distribution. Fur-

thermore, mixture modelling is ideal in the modelling of bimodal charac-

teristics found in RR interval data. Finally, given the fact that no good fit

is produced for RR interval’s of greater than two minutes (see Section 4.3),

in circumstances where longer periods of RR interval need to be modelled,

mixture modelling proves to be a more useful tool than individual distri-

bution modelling as demonstrated in previous works including [102, 58].

5.3.2 Summary and Modelling Recommendations

From the results, the following points may be summarised when compar-

ing individual distribution against mixture modelling of RR interval data:

• Use of individual distribution better represents the mean, median and

standard deviation of a patient’s RR interval data in comparison with

mixture modelling.
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• Use of mixture distribution better encapsulates the skewness, i.e. asym-

metry, of RR intervals due to the use of two normal distributions.

Since two means and two standard deviations are defined, a positive

or negative skew can be easily produced in modelling patient’s RR

intervals which demonstrate skewness.

• Individual distribution modelling is ideal when there evidence that

the real-data values follow a specific distribution (as identified using

the AD test in the previous chapter).

• Mixture modelling proves to be valuable in modelling RR intervals

when the patient’s data does not fit a specific distribution or demon-

strates bimodal characteristics.

• Mixture modelling is ideal for modelling longer periods of RR inter-

val whilst individual distribution is ideal for short periods of RR in-

terval which fit specific distributions.

Based on these findings, Figure 5.6 presents a simple decision flow chart of

the modelling process for RR interval data which may be of use for future

research into this area.

5.4 Discussion

Modelling of RR interval data for this chapter has been conducted and pre-

sented in the frequency domain. The modelled data has been presented in

a series of histograms and descriptive statistics thus showing both quanti-

tative and qualitative validation of both individual distribution and mix-

ture modelling. However, one primary limitation still exists in the results

presented in this chapter. This limitation relates to the lack of realistic be-

haviour on RR intervals modelled. This becomes more apparent in graph-

ing a time-series plot of the first minute sample of Patient f1o01’s RR in-

terval data against the modelled data as shown in Figure 5.7. It should
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Figure 5.6: RR Interval Modelling Process
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be noted similar results are observed in using the technique of mixture

modelling. In the time-series plot, real life data of the patient’s RR inter-

val exhibits a more controlled fluctuation of peaks and nadirs whilst both

modelled data has a distinctly sharper fluctuation at any given time inter-

val. In other words, the modelled data does not have any control over the

behaviour of variation as seen in the real-life data.

Research was conducted in this area of work to determine whether it is

possible to accurately model heart rate variation (HRV) in the time domain

but results proved inconclusive. From the research carried out, there is a

lack of recent work which attempts to accurately model and simulate the

behaviour of HRV within the time domain. The work which does exist, in-

cluding McLernon et al. [159] and Georgieva-Tsaneva et al. [160], claim to

present mathematical models which are capable of providing control, and

realistic simulation, on heart flunctuations. However, neither work pro-

vides any form of validation (as Law [42] strongly emphasises for achieving

successful simulation) therefore evidence of realism, in comparison with

real-life data, is missing.

It is proposed that one primary reason for the overall lack of research in

this area may relate to the non-linear dynamics of HRV which leads to the

concept of whether the heart may be considered a chaotic system. Prior to

the conclusion to this chapter, this section provide an overview on how the

concept of chaos theory is related to HRV to provide justification for the

limitation found in the modelling of RR intervals. This section may also

prove to provide areas of future work for other researchers in the field of

heart data modelling.

5.4.1 The Chaotic Heart

The concept of chaos theory was first discussed by Jules Poincaré and fur-

ther formalised by Edward Lorentz. In short, chaos theory states that a
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Figure 5.7: Time-Series Comparison (Patient f1o01)

dynamic system is considered chaotic if it is widely sensitive to initial con-

ditions. Chaotic systems, in theory, are considered deterministic but due

to its characteristic of sensitivity to initial conditions will produce results

which are widely unpredictable over longer periods of time. An example of

this is weather forecasting systems which have capability of only predict-

ing the weather for a certain period of days before the results are widely

inaccurate. This is due to initial conditions, e.g. temperature, atmospheric

pressure, wind speed etc., which can only be submitted to the system with

a certain degree of accuracy.

Numerous discussions and publications have been produced in determin-

ing whether the heart itself is a chaotic system. Two of the main concepts

in this area of research relates to the fractal shape of heart rate variabil-

ity and the characteristic of chaos in the behaviour of heart rate within the

time domain [161]. Fractal relates to the general shape of heart variability,

which should have a self-similar pattern when analysed at different scales,

whilst the term chaos relates the actual behaviour of the heart’s fluctua-
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tion whereby it follows a nonlinear but, in theory, deterministic pattern.

It has been proposed that analysis of the chaotic nature of the heart not

only provides greater insight into the inner workings of this organ but may

also help to better identify diseases - especially in regards to age related

conditions [162, 161]. Similar view is shared by Lombardi [153] and, more

recently, Krstacic et al. [163] in which both authors observe non-linear char-

acteristics in HRV and propose that abnormalities [153] and heart failures

[163] may be detected depending on the fractal dynamics of HRV.

On the opposite side of the spectrum, research has also been published

which questions the validity of whether the heart is considered chaotic.

In the analysis of 10 healthy patients, Kanters concludes that there is no

evidence of chaos in RR interval data [164]. More recently, as stated by

Glass [165], the author proposes the question to ask is not whether the heart

displays chaotic behaviour but rather "What are the mechanisms underlying

complex cardiac rhythms and how are they manifest in the laboratory and clinic?"

[165]. The primary point of this statement relates to the fact that Glass

believes the underlying dynamics of the heart are not chaotic but simply

have yet to be explained within research. In other words, not enough data

exists to give us a full picture of exactly how the heart functions.

Despite evidence for and against chaos in the heart, it can be made clear

that many factors will affect fluctuation in HRV. As discussed previously

in this thesis, simple factors include the level of activity in a person, general

fitness level [153], posture [154] and external stimuli [10]. If these factors

are considered as initial inputs to a heart rate modelling system, one can al-

ready see the difficulty in the system producing an accurate output at any

given moment of time due to the need to correlate such variables along

with deducing such variables into values which an algorithm is capable of

interpreting, e.g. how does one define the posture of a person using an ac-

curate value? Thus, it’s proposed that attempting to accurately model the

underlying behaviour of HRV is currently out with the scope and possibil-
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ity of this research. Further work must be conducted in proving if the heart

itself is chaotic, and if so, a technique must be designed in order to accu-

rately model heart rate data’s pattern over periods time whilst considering

the vast multitude of variables which may potentially affect the fluctua-

tions of the heart. Complimentary works which are relevant to the concept

of chaos in the heart, along with biology in general, include [166, 167, 168].

5.5 Conclusion

This chapter hypothesised that an individual distribution better describe

heart data in comparison with applying generalisation technique. The suc-

cessful results of modelling RR intervals using an individual distribution,

based on parameters calculated from MLE and evidence of underlying dis-

tribution via the AD test statistic, proves that a simple technique for pro-

ducing RR intervals which are similar to real-life data is possible. The re-

sults in modelling twenty patient’s from the Fantasia dataset show that

individual distribution is suited to modelling RR intervals when there is

strong proof to show the real-life samples follow a specific distribution.

On the other hand, comparison of individual distribution modelling against

normal mixture distribution showed that when real-life RR intervals can-

not be correctly identified, i.e. no good fit with any distribution, mixture

modelling proves to a be a better choice of technique. Additionally, it is ac-

knowledged that mixture modelling is a better technique for modelling the

bimodal characteristics found in some patient’s data. Furthermore, as mod-

elling was been conducted on small samples of patient’s RR interval, it’s

proposed that mixture modelling provides a better approach when sample

size is greater than two minutes. Based on these findings, a simple deci-

sion flowchart was provided to assist in decision making when attempting

to model RR intervals for future research (Figure 5.6).

The main limitation in this chapter is modelling of variation between each
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RR interval. A discussion has been provided which shows that there is po-

tential in the heart being a chaotic system thus providing justification in

the difficulties in accurately modelling such behaviour due to the vast va-

riety of inputs required and the heart’s potential sensitivity to initial con-

ditions. Thus, although modelling of the heart data within the time do-

main is still an unsolved area of research, frequency distribution analysis

and modelling has many uses including further understanding on how the

heart works along with applications within healthcare technologies. In this

research, focus is given on the latter, and the next chapter demonstrates the

applicability of using simulated heart rate, derived from the modelled RR

intervals using both individual and mixture distribution, for the context

of demonstrating evidence towards improved accuracy in the novel Early

Warning Score (EWS) risk assessment algorithm proposed.
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Chapter 6

Heart Data Risk Assessment

6.1 Introduction

THE previous chapters have shown that it is possible to identify sin-

gle distributions in small samples of heart data through statistical

analysis and such data can then be modelled via an individual

probability distribution. In heart data samples, i.e. RR intervals, whereby

no good fit exists, it has been shown that mixture distribution is capable of

modelling such data. Having demonstrated the techniques in heart data

modelling, this chapter brings forwards these concepts and shows how

such data may be applied in scenarios on the Early Warning Score (EWS)

algorithm. In particular, by modelling RR intervals and deriving instanta-

neous heart rate (IHR) for use in simulation scenarios, this chapter demon-

strates a potential improvement to the EWS algorithm using quartile-based

statistics - an anomaly based Intrusion Detection System (IDS) technique

which enables customisation of risk thresholds for each individual patient

analysed. The quartile-based implementation aims to address one of the

noted limitations of the standard EWS algorithm, the issue of sensitivity as

discussed by Gao et al. [129]. Evidence of this sensitivity is given in this

chapter by evaluating the standard EWS algorithm against normal healthy

patient’s heart data. Although it is acknowledged that the EWS algorithm
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considers multiple vital signs, for the scope of this chapter’s experiments

focus specifically on risk assessment of heart data only.

6.2 Experiments Overview

Two minute samples of modelled heart data are used to evaluate the sen-

sitivity in different approaches for risk assessment (Figure 6.2). Simulation

of RR intervals is achieved by first modelling the values based on the Fan-

tasia dataset using a probabilistic approach. The act of simulation itself

is performed in a discrete manner. Presence of time in the simulation, as

described by [31], is not considered in the experiments conducted in this

chapter since the risk assessment algorithm’s evaluated does not consider

this parameter during analysis. Modelled heart data values are generated

using the seed values provided in Appendix D.1 for ease of reproducibility.

Individual distribution and normal mixture distribution are the two mod-

elling techniques used for modelling of heart data. From results obtained

from Chapter 4, the individual distribution method is used for modelling of

patient’s heart data when identification of distribution was successful. For

patient’s heart data that did not provide sufficient evidence to fit a particu-

lar distribution, the normal mixture modelling method is used. Specifically,

Patient’s f1o03, f1o05, f1y03 and f1y10 are modelled using normal mixture

modelling while all others are modelled based on their individual identi-

fied distribution. Although it is acknowledged that mixture modelling pro-

vided better replication of bimodal characteristics in some of the patients,

overall it is found that individual distribution more accurately modelled

mean, median and standard deviation. Mean and median, in particular,

are values that are deemed more necessary for evaluating the accuracy of

the EWS algorithm since the logic of this system calculates risk on a value-

by-value basis rather than considering the shape of the data.

The first experiment applies the modelled data against an electronic ver-
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Risk Output
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Figure 6.1: NEWS, Quartile and Hybrid Experiment Work Flow

sion of the National Early Warning Score (NEWS) algorithm while the sec-

ond experiment demonstrates the capabilities of an anomaly-based approach

via quartile statistics. The third experiment presents a hybrid approach,

which integrates the knowledge-based method, i.e. the NEWS algorithm,

with the anomaly-based approach, i.e. quartiles statistics, to demonstrate

the improved accuracy of this technique.

6.2.1 Metrics of Evaluation

Two primary sets of metrics are presented in this experiment: heart rate

risk scores (1, 2 and 3) and accuracy ratio. Any risk score of 1 or greater is

considered a false-positive in this experiment. This is due to the fact that

the dataset used consists of recordings of normal health patients. The ac-

curacy ratio is a metric presented in this thesis which represents the overall

sensitivity of the EWS algorithm when assessing normal health patient’s

heart rates.

The accuracy ratio metric is inspired and based upon work conducted by

Sommers et al. [13] and Rab and Kalam [14] on evaluation of IDSs. As

demonstrated in the literature review, Sommers et al. proposes the metric

of E f f iciency = TruePositives
AllAlarms [13] while Rab and Kalam provide the metric of
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FAR = FalsePositives
AllAlarms [14]. The review has shown that FAR is simply derived

from 1 − E f f iciency, in other words it can be considered the opposite of

the E f f iciency metric. In metrics defined for evaluation of IDS, the prior

assumption is made that testing will involve both malicious and normal

activity, thus true-positives and false-positives have the potential to occur

respectively. In other words, the variable AllAlarms derives its meaning

from inclusion of all forms of alarms, i.e. true-positives + false-positives +

false-negative, but in the case of testing of the EWS algorithm, using normal

healthy heart datasets, there is only potential for false-positives to occur

thus resulting in traditional IDS metrics providing little information except

from the fact that a value of 0 means all triggers are false-positives [13].

Given the issue faced with traditional IDS metric for measurement of false-

positives, modifications are made to the existing equations and the accu-

racy ratio in this thesis is presented as:

AccuracyRatio = 1 − FalsePositives
∑n

i=1 si
(6.1)

FalsePositives is the number of total false-positives produced by the EWS

algorithm during experimentation while si is simply the total number of

RR intervals data samples under test. As with the work of Sommers et al.,

a value of 1 in this metric shows that no false-positives occur in the EWS

algorithm under test, therefore 100% accuracy, whilst a result of 0 shows

that all values in the dataset resulted in false-positives (0% accuracy).

6.3 NEWS Approach

This section aims to demonstrate the argument put forth by [129, 131] in

that the EWS algorithm is limited due to sensitivity, and does not pro-

vide enough evidence to demonstrate positive or negative outcome in a

patient’s health. The proposed standard for NHS hospitals, namely the
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NEWS algorithm, is evaluated against modelled heart data. The back-

ground chapter has provided the full set of parameters monitored in the

NEWS algorithm, thus Table 6.1 only gives the heart rate values, and asso-

ciated risk score for ease of reference. Although the literature review has

shown that the NEWS and MEWS algorithm are the two most common

Track and Trigger (TT) systems employed in clinical environments, prelim-

inary experiments showed that little variation existed in results for these

two algorithms thus focus is given on the NEWS algorithm. Appendix F

provides further evidence on the minor variation of results between the

NEWS and MEWS algorithm when evaluated against modelled heart data.

An electronic implementation of the NEWS algorithm for assessment of

heart data was achieved in R ver. 3.0.1, and the methodology is discussed

in the next section.

6.3.1 Methodology

As noted earlier, the electronic version of the EWS system, regardless of

algorithm, is simply a set of logical conditions making it simple to migrate

to an electronic system. An example of the logic to determine if heart rate

is within 41 to 50 Beats Per Minute (BPM), written in pseudocode, is given

below:

ALERT

IF HeartRate <= 50 AND HeartRate >= 41

If this example statement is true, then the alert produced would be a risk

score of 1. Each risk score result is automatically logged in the electronic

Table 6.1: NEWS Algorithm for Heart Rate Risk Scores
Parameter 3 2 1 0 1 2 3

NEWS Heart Rate ≤40 41-50 51-90 91-110 111-130 ≥131
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NEWS algorithm, and the metric of accuracy derived from the total results.

Each modelled RR interval, derived from the Fantasia dataset, is fed into

the electronic EWS, in a discrete manner, and the NEWS algorithm’s risk

score for heart rate is automatically computed. All twenty modelled pa-

tient’s two minute samples from the Fantasia dataset are used for this ex-

periment. As previously explained, the Fantasia dataset consists of ECG

recordings of elderly and young patient’s, in a resting state. The primary

aim of the original study, conducted by [147], was to assess variations in

heart rate between healthy young and elderly individuals. The datasets

were manually reviewed by experts in this field of research to ensure the

recordings did not consist of any abnormalities. Thus, it can be justified

that models of RR interval derived from this dataset consists of heart data

which is within the scope of normality. Since the EWS systems require

heart data in the unit of BPM, the RR intervals are automatically converted

to this unit using the equation IHR = 60
RRinterval as originally presented in the

Theory chapter.

The full implementation of the electronic NEWS algorithm for risk assess-

ment in heart data is implemented using R and full source code is given in

Appendix D.5.

6.4 Quartile-Based Approach

The review on statistical-based anomaly detection techniques has shown

that the prime advantage of this approach is that there is no prior assumpt-

ing on the distribution of the data in which it is applied to. This compli-

ments risk assessment in heart rate since the analysis and modelling from

earlier chapters has shown that although there is a 80% success rate on dis-

tribution identification of RR intervals - values in which IHR may be de-

rived from. In other words, there is a wide variety of distributions which

heart data follows thus making prior assumptions on probability distri-

Owen Lo, School of Computing 104 PhD Thesis



CHAPTER 6. HEART DATA RISK ASSESSMENT

bution a research intensive task. The implementation of a quartile-based

risk assessment system for heart rate is primarily inspired by the anomaly

detection method described by [16] in which the technique was applied

successfully to detect anomalies in data centres.

6.4.1 Methodology

The methodology for the quartile-based approach to risk assessment in

heart data can be considered to encapsulate two primary steps: 1) train-

ing phase and 2) evaluation phase (Figure 6.2). The training phase can be

considered similar to the techniques applied during the DARPA evalua-

tion [12] whereby benign datasets are analysed by the anomaly detection

system under evaluation to learn the concept of normal behaviour. Train-

ing, in this experiment, is achieved using a quartiles learning approach im-

plemented in R whilst the datasets used included twenty normal healthy

patient’s RR interval found in the Fantasia database.

Once the training phase is completed, simulation of the twenty patient’s

two minute samples takes place in the same manner as applied to the

NEWS approach. For the assessment of risk in the simulated patient’s heart

data, a rule-based technique is defined for the quartile approach. The quar-

tile approach consists of three primary rule set which triggers an alert if

certain upper or lower thresholds for a specific patient’s heart data value is

produced. Thus, an example rule using pseudocode is defined as:

ALERT

IF HeartRate > UTLowRisk AND IF HeartRate <= UTMedRisk

In other words, a low risk is defined as any value of heart rate which is

greater than UTLowRisk but less than or equal to UTMedRisk. Furthermore,

similar to the NEWS approach, risk scores are automatically computed to

allow for calculation of the accuracy ratio metric. The steps taken for cal-

Owen Lo, School of Computing 105 PhD Thesis



CHAPTER 6. HEART DATA RISK ASSESSMENT

MEWS Algorithm

Fantasia Dataset 

(RR Intervals)

Conversion to 

Beats Per Minute

Calculation of

Q1

Q2

Q3

IQR

Quartile Approach

Threshold 

Calculations

 Q1 - K(IQR)

Q3 + K(IQR)

MEWS Algorithm

Modelling and 

Simulation of RR 

Intervals

Quartiles 

Approach

Method Under Evaluation

Accuracy Ratio 

Calculation
Conversion to 

Beats Per Minute

Evaluation Phase:

Training Phase:

Risk Output

Derived from

Figure 6.2: Quartiles Based Experiment Methodology

culation of quartiles in the training datasets along with definition of risk

classification based on threshold values calculated is presented in the next

section.

6.4.2 Calculation of Anomalies

Quartiles is the statistical technique of defining data range as 25% compo-

nents and has been traditionally used for generation of box plots as show

in the work of [15]. The primary attributes of quartiles are Q1, Q2, Q3 and

the IQR (Interquartile Range). The 25th percentile of data is represented by

Q1, the 50th percentile by Q2, i.e. the median, and the 75th percentile by Q3.

The IQR is the difference between Q3 and Q1. Calculations of quartiles, us-

ing the method as define by Tukey [15] is conducted in the following steps

1. Sort all data into ascending numerical order.
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2. Calculate Q2 which is the median of the whole sample. If data size n

is even, refer to Equation 6.2 else refer to Equation 6.3.

3. Calculate Q1 which is the median of the lower half of Q2.

4. Calculate Q3 which is the median of the upper half of Q2.

5. Calculate IQR, the difference between Q3 and Q1, which is repre-

sented in Equation 6.4.

Q2 =
n
2 th item + n

2+1 th item
2

th item (6.2)

Q2 =
n + 1

2
th item (6.3)

IQR = Q3 − Q1 (6.4)

Having calculated the quartiles, anomalous data can then be defined based

on the value derived for IQR. In the standard quartiles approach, as de-

scribed by Tukey, classification of anomalous data comes in two forms of

thresholds: "outside" and "far out" [15]. The work of Wang et al. [16] re-

fer to these two thresholds as "possible anomalies" and "anomalies" [16]. In

both works, the lower and upper thresholds for anomalous data is calcu-

lated using Q1 − K(IQR) and Q3 + K(IQR) where K is the values of 1.5

and 3.0 respectively. In other words, a possible anomaly is any variable

greater than the upper or lower half of median multiplied by one and half

times the IQR whilst anomalous data is considered any variable greater

than three multiplications from the same calculation.

This thesis uses the terminology as applied by the EWS system for clas-

sification of anomalous data which is referred to as low risk and high risk

for "possible anomalies" and "anomalies" respectively. Furthermore, a third

threshold is introduced in this thesis, referred to as medium risk which sits
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between the prior two thresholds. Thus K = 2.25 for medium risk. Calcula-

tion of low risk, for lower and upper threshold of data (defined as LT and

UT), is achieved as follows:

LTLowRisk = Q1 − 1.5(IQR) (6.5)

UTLowRisk = Q3 + 1.5(IQR) (6.6)

whilst calculation of medium risk is achieved as follows:

LTMedRisk = Q1 − 2.25(IQR) (6.7)

UTMedRisk = Q3 + 2.25(IQR) (6.8)

finally, calculation of high risk is calculated as:

LTHighRisk = Q1 − 3(IQR) (6.9)

UTHighRisk = Q3 + 3(IQR) (6.10)

In other words, a possible low risk in a patient’s heart data is any value

which is 1.5 times away from the IQR whilst a high risk is considered any

value which is 3 times away from the IQR. A medium risk is any value

which is 2.25 times away from the IQR. Classification of normality is de-

fined as any variable within the limits of Q1 − 1.5(IQR) and Q3 + 1.5(IQR).

Table 6.2 presents a comparison of these three classifications of risk in com-

parison with the NEWS algorithm for heart data. As it can be seen, the

primary difference between the quartile-based approach and the NEWS al-

gorithm is the fact that the quartile-based will derive the risk of a patient’s
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heart data based on learning of past values whilst the NEWS algorithm is

completely static.

An implementation of the quartiles approach is achieved using R. The script

accepts, as input, a data vector and automatically calculates the Q1, Q2, Q3,

IQR. Customised LTLowRisk, UTLowRisk, LTMedRisk, UTMedRisk, LTHighRisk and

UTHighRisk for each individual patient is then computed. Appendix D.3

provides source code on the training script whilst Appendix D.4 gives the

source code to decision making logic.

6.5 Hybrid Approach

The literature review has shown that, in the context of Clinical Decision

Support System (CDSS), two primary categories of approaches are applica-

ble: knowledge-based techniques and machine-learning techniques. Knowledge-

based techniques are widely more applicable in live healthcare environ-

ments due to lesser complexity in understanding of the system along with

the fact that knowledge-based approach provides greater transparency in

the decision making process [110]. It’s proposed that the quartiles based

approach, which may fall under the context of machine-learning, does not

share the limitation of complexity, nor transparency due to the relatively

simple mathematics involved. However, it is limited in the fact that no ex-

pert clinical input has been provided in calculation of normal data and po-

tential outliers. Thus, this section proposes an integration quartiles based

approach with the NEWS algorithm for risk assessment in heart data, with

the goal of improving accuracy whilst retaining transparency in the clinical

decision making process.
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6.5.1 Methodology

Similar to quartile approach, each patient’s real-life heart data of the Fanta-

sia dataset is placed through a training process. The attributes of LThreshold

and UThreshold which, depending on the value of K, relates to low, medium

and high risk in heart data, is calculated the same way as in Section 6.4.

Furthermore, the implementation of the scoring mechanism for heart rate

in the NEWS algorithm is the same as previous experiments. However,

rather than the quartiles approach and NEWS algorithm being assessed

independently, the hybrid approach integrates these two decision making

systems through a series of conjunction operators. Thus, a pseudocode ex-

ample of the rule which is created is as follows:

ALERT

IF HeartRate > UTLowRisk AND IF HeartRate <= UTMedRisk

AND

IF NEWS_SCORING = TRUE

Through the training process, the quartiles system has prior knowledge on

the scopes of normality in a patient’s heart data thus no alert is produced

if the value is within the bounds of LT and UT. On the other hand, if

a heart rate value does fall outside these bounds, the result is passed to

the NEWS algorithm and assessed. If the knowledge-based system defines

the observed value as normal, i.e. between 51-90 BPM, no action is taken,

otherwise an alert is produced. Thus, the above example states that if a

heart rate value is considered a low risk and if the NEWS scoring algorithm

agrees with this assessment, produce an alert. The quartiles approach aims

to act as a false-positive filtering engine, whilst the NEWS algorithm makes

use of its predefined scoring system for decision making on a patient’s risk

score. The implementation of the hybrid approach is achieved using R with

source code presented in Appendix D.7.
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6.6 Results

To provide ease of reference, the results from all three experiments are pre-

sented in Table 6.3 and Table 6.4 for elderly and young patients respec-

tively. The training results, which are applicable in the quartile and hybrid

approach, is presented in Table 6.5 and Table 6.6.

6.6.1 NEWS Approach

In the electronic version of the NEWS for risk assessment in heart data, 13

out of 20 tests resulted in an accuracy ratio of 1.00. Of the modelled data

that produced false-positives, the most significant result is in the accuracy

ratio of Patient’s f1o04, f1o09 and f1y04 all of which produced less than

50% accuracy ratio results. Overall, the lowest observed accuracy is 0.14 in

the two minute model of Patient f1o09. In other words, nearly all data in

this model resulted in the NEWS algorithm raising a false-positive.

Further analysis on each of these patient’s real life dataset, i.e. f1o04, f1o09

and f1y04, provides an answer to such a low score. The distribution of all

three patient’s heart rate, derived from RR intervals, is presented in Figure

6.6.1, and all three examples show that central tendency of values is less

than 50 BPM. It should be noted similar results were also found for the real-

life data of Patients f1o06 and f1y07 hence the reason these two patients also

produced a number of false-positives. In the standard NEWS algorithm

for scoring of heart rate, it can be seen that any value between 41 to 50

BPM entails a risk score of 1 (see Table 6.1). Given that the models used

to evaluate the NEWS algorithm are based on the first two minutes of the

real-life patient’s heart data, a wide number of false-positives will be raised

for all three patients since their median heart rate all fall under 50 BPM.

The high number of false-positives produced when evaluating the NEWS

approach highlights a potential issue with the static nature of this algo-
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Table 6.3: Accuracy Ratio Comparison (Elderly Patients)
Dataset Method Score of 1 Score of 2 Score of 3 Accuracy Ratio

f1o01

NEWS 0 0 0 1.00

Quartiles 7 0 0 0.94

Hybrid 0 0 0 1.00

f1o02

NEWS 0 0 0 1.00

Quartiles 35 7 0 0.66

Hybrid 0 0 0 1.00

f1o03

NEWS 0 0 0 1.00

Quartiles 5 1 2 0.94

Hybrid 0 0 0 1.00

f1o04

NEWS 66 0 0 0.31

Quartiles 0 0 0 1.00

Hybrid 0 0 0 1.00

f1o05

NEWS 0 0 0 1.00

Quartiles 3 0 0 0.97

Hybrid 0 0 0 1.00

f1o06

NEWS 34 0 0 0.66

Quartiles 8 3 0 0.89

Hybrid 8 0 0 0.92

f1o07

NEWS 0 0 0 1.00

Quartiles 0 0 0 1.00

Hybrid 0 0 0 1.00

f1o08

NEWS 0 0 0 1.00

Quartiles 21 1 0 0.86

Hybrid 0 0 0 1.00

f1o09

NEWS 63 0 10 0.14

Quartiles 4 0 0 0.95

Hybrid 4 0 0 0.95

f1o10

NEWS 0 0 0 1.00

Quartiles 0 0 0 1.00

Hybrid 0 0 0 1.00
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Table 6.4: Accuracy Ratio Comparison (Young Patients)
Dataset Method Score of 1 Score of 2 Score of 3 Accuracy Ratio

f1y01

NEWS 4 0 0 0.97

Quartiles 2 0 0 0.99

Hybrid 2 0 0 0.99

f1y02

NEWS 0 0 0 1.00

Quartiles 13 10 7 0.77

Hybrid 0 0 0 1.00

f1y03

NEWS 0 0 0 1.00

Quartiles 5 7 0 0.91

Hybrid 0 0 0 1.00

f1y04

NEWS 73 0 2 0.17

Quartiles 3 1 1 0.94

Hybrid 0 0 0 1.00

f1y05

NEWS 0 0 0 1.00

Quartiles 2 0 0 0.98

Hybrid 0 0 0 1.00

f1y06

NEWS 0 0 0 1.00

Quartiles 4 1 1 0.95

Hybrid 0 0 0 1.00

f1y07

NEWS 28 0 0 0.74

Quartiles 0 0 0 1.00

Hybrid 0 0 0 1.00

f1y08

NEWS 0 0 0 1.00

Quartiles 7 2 2 0.91

Hybrid 0 0 0 1.00

f1y09

NEWS 2 0 0 0.99

Quartiles 7 2 0 0.94

Hybrid 0 2 0 0.99

f1y10

NEWS 0 0 0 1.00

Quartiles 0 0 0 1.00

Hybrid 0 0 0 1.00
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Figure 6.3: Heart Rate Distribution of f1o09 and f1y04

rithm. Because it is more than possible for patients to have a normal healthy

heart beat at less than average values, e.g. high-performance athletes, a

wide number of false-positives will occur with such patients. This results

of this experiment correlates with the observations made in the literature

review by [129, 131] in which the argument put forth was that the EWS

system is too sensitive resulting in many false-positives when applied in

real-life scenarios.

6.6.2 Quartiles Approach

5 out of the 20 tests conducted resulted in an accuracy ratio of 1.00 in the

quartile approach. The minimum accuracy ratio observed in this technique

is 0.66. The results show that a higher number of false-positives were raised

in the quartile approach in comparison with the NEWS algorithm. Such a

finding correlates with one of the primary limitations of anomaly detection

techniques, as applied to IDS, in which a high number of false-alarms may
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be raised as discussed by [132]. Due to the high number of false-positives,

one may initially conclude that there is insignificant evidence to demon-

strate that the quartiles based approach provides any positive impact to

risk assessment of heart data in comparison with the NEWS algorithm.

However, the true strength of the quartiles based approach lies in patient’s

heart data which is outside of normal defined values, namely patients who

raised a high number of false-positives using the standard NEWS algo-

rithm.

A primary example is Patient f1o04 where the quartiles based approach

produced a minimum accuracy ratio of 0.94 whilst a drastically inferior re-

sult is produced by the NEWS algorithm with a ratio of 0.14. Similarly, for

Patient’s f1o06, f1o09, f1y04 and f1y07 the quartile approach produces less

false-positives in comparison with the NEWS algorithm. The wide contrast

between results in these patient’s demonstrate the primary advantage of

the quartile-based approach to defining potential risk in heart data. Given

that no predefined static normal heart rate values are classified in the quar-

tiles method, it’s proposed and shown that a learning based approach to

risk assessment provides greater flexibility for patient’s heart data which is

out with the normality of the general population.

6.6.3 Hybrid Approach

In the hybrid approach, 16 out of 20 tests resulted in no false-positives be-

ing raised. It can be stated that this approach produces less false-positives

in comparison with both the NEWS algorithm and the quartile approach.

The minimum accuracy ratio for this approach is 0.92 which, once again, is

far higher than the previous two techniques.

From the table of results, it can be seen that in most instances of < 1.0

accuracy ratios, the best result from either the NEWS algorithm or quartiles

method will be taken by the hybrid approach. This can be explained due to
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the conjunction decision making logic whereby both the NEWS algorithm

and quartile method must be produce a Boolean statement of true (in terms

of risk) in order for a heart rate variable to be considered a risk. From using

the hybrid approach, it can be seen that Patient’s f1o04, f1o09 and f1y04

produced an accuracy ratio of 1.00, 0.95 and 1.00 which is equal or better

than the quartile approach.

Thus, it can be stated that the application of a hybrid-based approach whereby

an integration of both expert knowledge and machine-learning - through

statistical analysis - provides the ideal approach for reducing the sensitivity

in the EWS. However, it is also noted that this approach may potentially

be detrimental in detection of actual risks in a patient’s heart data, i.e. false

negative. Further discussion on the success of this chapter’s experiments

and shortcomings is noted in the next section prior to conclusion.

6.7 Discussion

Despite the success of the hybrid approach to reduction of false-positives

in the EWS system for risk assessment of heart data, there are a few noted

limitations in this chapter’s work. The first limitation is a practical one

which relates to the application of a machine-learning algorithm in real-life

scenarios, e.g. hospital environments. The training period applied during

the quartiles and hybrid approach consisted of 2 hours of real-life patient

data acquired from the Fantasia database. Since the quartiles approach

requires a learning window prior to application, one may find that a 2 hour

training window is significantly long enough that a patient’s health may

deteriorate, especially in scenarios where the system is applied to intensive

care units. To address the need for a learning window, one may apply the

standard static form of the EWS algorithm whilst training occurs before

performing a handover to the hybrid approach when sufficient period of

training has passed.
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The second limitation is that although the hybrid approach performs ex-

ceptionally well in suppression of false-positives in normal healthy pa-

tient’s data, there is of suppression on true-positives when assessing risk

heart data. This, in turn, results in false-negatives which is highly detri-

mental for risk assessment.

Thirdly, a fine balance must be applied to the threshold equations as pre-

sented in Section 6.4.2. As noted, the values of K, in the equations of

Q1 − K(IQR) and Q3 + K(IQR), are derived from the work of Tukey but

the author himself states that these values are a "rule of thumb” [15]. The

limitation in using the standard suggested K values become more trans-

parent when one is to look at the training results for Patient f1y07 in Table

6.6. The calculated values for Q1 − 3(IQR) and Q1 − 2.25(IQR) is 6.39 and

15.72. In other words, the quartiles approach for this individual patient

states that a medium and high risk is only considered if the heart rate is

less than the respective lower thresholds - highly unlikely given that heart

rate usually never will be this low in the first place. Thus, scope exists to

define values of K which will result in risk thresholds more applicable to

human physiology based on expert clinical input

Finally, in reference to physiology, it is noted that this chapter’s work has

focused specifically on improvements to the sensitivity of the EWS system

for specific vital physiological sign. It is proposed that this technique may

be applicable to other vital signs, including blood pressure, temperature

and respiratory rate. The limitations noted here are addressed in the future

work section in the final chapter of this thesis.

6.8 Conclusion

This chapter has provided an evaluation on the accuracy of the NEWS al-

gorithm for assessment of heart data modelled from normal healthy pa-

tients. The metric of accuracy has been based on existing work originally
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applied to evaluation of intrusion detection systems [13, 14] and is defined

as 1 − FalsePositives
∑n

i=1 si
. The results from simulating one and two minute sam-

ple of normal healthy patient’s heart data against the NEWS algorithm,

in a discrete manner via probabilistic modelling, has shown that this al-

gorithm produces a number of false-positives especially in regards to pa-

tient’s whose heart rate falls out with the normal ranges of a population.

To address the issue of sensitivity in the EWS system, a quartile-based ap-

proach, developed originally by [15] and applied to anomaly detection by

[16], has shown that this machine-learning algorithm is better capable of

learning the ranges of normality from existing patient’s heart data through

the definition of upper and lower limits.

The results of the quartile-based approach, in comparison with the stan-

dard NEWS algorithm, shows that this technique provides better accuracy

in patient’s whose data falls out with the ranges normally catered for in the

EWS algorithms but unfortunately a high number of false-positives are still

produced for most data test. Thus, to address the sensitivity of the EWS

algorithm along with taking advantage of the quartile-based approach, a

hybrid approach is presented which integrates the knowledge-based sys-

tem with the machine-learning approach to detection of risk in patient’s

heart data. Results show that the hybrid approach is significantly better

than both the NEWS algorithm and quartile approach when applied inde-

pendently of each other with an 1.00 accuracy for 80% of modelled data

and a minimum accuracy ratio of 0.92.
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Chapter 7

Conclusion and Future Work

7.1 Thesis Summary

THIS thesis aims to analyse, model and simulate heart data to evalu-

ate a novel Early Warning Score (EWS) algorithm, which enables

customisation of risk thresholds for each individual patient, in

order to demonstrate increased accuracy on the proposed approach taken

for risk assessment.

Heart data, especially heart rate variation (HRV), has been analysed and

modelled in past research, but it is identified that there is a disparity of

results in regards to the underlying distribution. In Section 3.3, one study

conclude that heart data’s underlying distribution is a gamma distribution

[9] while results from others show normal [8], Weibull [52] and bimodal

distributions are also possible candidates [10, 11]. Applied techniques have

been proposed for modelling of heart data including the use of Weibull dis-

tribution [52], neural networks modelling [103] and normal mixture distri-

bution [102, 58]. In the Weibull distribution method, modelling is achieved

using Maximum Likelihood Estimate (MLE) for parameter estimates while

mixture distribution makes use of the Expectation Maximization (EM) tech-

nique.
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In regards to the EWS system, evidence suggests that there is a correla-

tion between the EWS system and predictive power on the deteriorating

health of patients [19, 126, 127], however limitations also exist in this sys-

tem especially the sensitivity of the algorithm as noted by Gao et al. [129].

Johnstone et al. [130] also notes a lack of statistical techniques in the devel-

opment of such risk assessment systems. From review of Clinical Decision

Support Systems (CDSSs) it has been shown that knowledge-based CDSSs,

which the electronic EWS falls under, makes use of medical knowledge in-

putted by an expert whilst machine learning techniques typically use artifi-

cial intelligence methods for the decision making process including neural

networks and genetic algorithms. Although machine learning techniques

have the advantage of demonstrating greater capabilities in the decision

making process - without the need for prior knowledge - it is shown that

the most commonly used systems are still knowledge-based. The primary

reasons for this is the lack of transparency in machine learning implemen-

tations [110] resulting in reduced accountability along with a difficulty in

such implementations fitting in with the existing work flow of clinical en-

vironments [118].

This thesis has argued that no one single distribution is capable of describ-

ing and modelling all heart data. Instead, it is proposed that one of four

statistical distributions may be used to describe heart data in the general

population. Similarly, like heart data, it is argued that the existing EWS

algorithms do not provide a viable results in regards to accuracy due to

the wide number of variations in the vital signs of a patient. It is proposed

that a customisation approach to risk assessment, which considers the nor-

mal starting values of patient’s parameters which are monitored, produces

better accuracy in comparison to a static predefined rule set.

To provide evidence on heart data distribution, the Anderson-Darling (AD)

test statistics is used in conjunction with MLE for parameter estimates.

Individual models, identified using the AD test, is then compared to an-
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other popular technique for modelling of heart data: normal mixture mod-

elling. The approach taken to implementing a customisable EWS algo-

rithm, which caters risk thresholds for each individual patient, is primarily

inspired by the anomaly-detection technique originally applied described

by Wang et al. [16] whilst calculation of risk thresholds is from the work

of Tukey [15]. Two implementations of a customisable EWS algorithm is

produced: a quartile-based approach and a hybrid-based approach. To

demonstrate viability of the two novel approaches, comparative evalua-

tion against the standard National Early Warning Score (NEWS) algorithm

is conducted using modelled data derived from both individual and mix-

ture modelling techniques. An accuracy ratio metric, based upon similar

techniques used to evaluate Intrusion Detection Systems (IDSs), is devel-

oped which enables quantitative results to be produced as a measurement

of false-positives raised by each algorithm in assessing normal healthy pa-

tients data.

7.2 Main Findings

The primary findings of this thesis are:

• The underlying distribution of heart data cannot be inferred from one

single type of distribution. Thus, Section 4.2.3 hypothesises that such

data may fall under one of four distribution types including: normal,

logistic, Weibull and gamma distribution. The hypothesised distri-

butions are based upon prior research and findings in the analysis of

HRV including the works of [8, 9, 52, 10].

• Through the use of the AD test statistic it is shown that 80% of small

samples (up to two minutes) of heart data may be categorised under

one of the four hypothesised distributions. The analysis technique

applied is similar to [52], however, the use of the AD test in this thesis
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has shown that heart data may be described by more than just the

Weibull distribution.

• Modelling of heart data is conducted in R ver. 3.0.3, and through a

combination of quantitative and qualitative validation results which

show that small samples of heart data, namely RR intervals, can be

modelled using an individual distribution, when there is significant

proof that the data is distributed under the assumed distribution. In

the case where the AD test statistic fails, normal mixture modelling,

as applied by [102, 58], proves to be valuable in modelling RR in-

tervals when the patients data does not fit a specific distribution or

demonstrates bimodal characteristics, i.e. more than one peak in the

distribution.

• Through the use of modelled heart data, evaluation results on the

three approaches to risk assessment of heart data show the hybrid ap-

proach, an integration of both knowledge-based and machine learn-

ing techniques, demonstrates the most significant improvement to

the accuracy of the EWS system, thus a reduction in the overall num-

ber of false-positives when analysing normal healthy patient’s heart

data.

7.3 Contributions

In achieving the aim of the thesis, the three main contributions made are:

• Statistical analysis and formal hypothesis testing demonstrates that

four primary distributions may describe small samples of RR inter-

vals: normal, logistic, Weibull and gamma. RR intervals are the fun-

damental values of heart data analysed and modelled in this thesis.

Qualitative and quantitative validation shows that RR intervals, mod-
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elled using one of the four identified distributions, is statistically sim-

ilar to real-life counterparts. The finding that no one single distribu-

tion is capable of describing or modelling each patient’s heart data

is built upon previous work in the analysis of heart data including

[8, 9, 10, 11].

• Recontextualisation of methodologies in evaluation of IDSs, especially

the Defense Advanced Research Projects Agency (DARPA) evalua-

tion [12] show that it is possible to apply such techniques to the eval-

uation of the EWS system in a quantitative manner. Metrics for eval-

uation in IDS, as originally presented by [13, 14], are modified to pro-

duce an accuracy ratio capable of assessing the sensitivity of the EWS

algorithm. The accuracy ratio is a measure of false-positives raised

when analysing normal healthy patient’s heart data.

• Contribution towards improved accuracy in the EWS algorithm pro-

duced two novel risk assessment techniques: a quartile-based and hy-

brid approach. Based on the method defined by [15] and inspired by

the work of [16], the quartile approach is an anomaly-based IDS tech-

nique which demonstrates a higher degree of accuracy when assess-

ing the risk of healthy patient’s heart data which is outside the nor-

mal ranges of the general population. A minimum accuracy ratio of

0.14 was observed for the standard EWS algorithm while the quartile-

based approach produced a minimum accuracy ratio of 0.66. How-

ever, inaccuracies are still produced using the quartile-based tech-

nique during some experiments that involved patients with heart rate

within the range of normality. Thus, a hybrid approach, integration of

both knowledge-based and anomaly-based techniques, demonstrates

a higher degree of accuracy in comparison with both the NEWS algo-

rithm and the quartile approach with a minimum accuracy ratio of

0.92 in experiments conducted.
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7.4 Future Work

Analysis and modelling of heart data has demonstrated capabilities in de-

scribing small samples of RR interval using a single distribution while the

use of a quartiles-based approach for risk assessment has produced evi-

dence of greater accuracy in comparison with the standard EWS algorithm.

However, several areas for improvement are acknowledged from the ex-

periments conducted. Firstly, analysis and modelling results have shown

the capabilities of modelling small samples of heart data (RR intervals) via

a discrete probabilistic approach based on MLE parameter estimates and

evidence of underlying distribution derived from the AD test statistic. As

noted earlier, this method has a success rate of 80%. In the case of non-

significant evidence or the need for modelling of heart data greater than

approximately two minutes in length, it has been shown that mixture dis-

tribution has greater power with respect to this goal.

However, regardless of modelling technique applied, one primary limita-

tion is the lack of accurate simulation of the behaviour in heart data within

the time domain. As shown in the discussion of Section 5.4, plotting of

modelled heart data as a time series shows that there is a significant dif-

ference in comparison with the real-life counterpart. Discussion is given to

the concept of the chaotic heart to give justification for this limitation. Pro-

ponent and opponent’s view on the theory that the heart is a chaotic system

is provided in Section 5.4.1 yet fundamental proof for either argument has

yet to be formally established. Thus, an area of future work is addressing

the question: is the heart a chaotic system? In developing a hypothesis and

proof to this question, one may be capable of not only producing a more

accurate simulation of the heart but also provide greater understanding of

this organ from a clinical perspective.

In the scope of risk assessment, results from Chapter 6 has shown that a

hybrid approach, using the knowledge of the EWS algorithm and a quar-
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tile learning technique, results in a reduced number of false-positives when

assessing the risk of a healthy patient’s heart data. This approach to risk

assessment provides a solution to addressing the issue of sensitivity in ex-

isting algorithms as noted by Gao et al. [129]. However, it is acknowledged

that the primary limitation of the hybrid approach is the potential for false-

negatives to occur, i.e. wrong indication that there is no risk in a patient.

Furthermore, the scope of experiments has only been evaluated for one

type of vital physiological sign data and it should be reiterated that the

EWS algorithm considers multiple parameters including blood pressure,

temperature and respiratory rate, as examples. Thus, one area of future

work in the usage of a quartile based approach for risk assessment is to

evaluate whether this approach works as effectively with other forms of

vital sign data. One potential challenge in this task is in the acquisition of

additional vital physiological data though this may be partially solved by

the Physionet databank.

Definition of suitable K values for the lower and upper threshold calcula-

tions, i.e. Q1 − K(IQR) and Q3 + K(IQR), is another area of future work.

The K values have been derived from the work of Tukey [15] for this thesis

but significant scope and future work exists in this area for further analy-

sis of vital sign data to ensure that K values defined for threshold is clini-

cally reviewed and there is potential to derive values of K catered towards

each individual patient. The definition of clinically approved K values may

also potentially reduce the number of false-positives raised by the quartile-

based approach thus removing the need for a hybrid approach and solving

the false-negative implication.

The findings of this thesis, in regards to heart data distribution and tech-

niques in improved accuracy of the EWS system, gives significant potential

for future work in clinical risk assessment. In particular, it is proposed that

future work can be conducted to bring all findings of this thesis together,

along with addressing the limitations of the experiments conducted, to pro-
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duce a CDSS which is both accurate, informative and customisable in the

goal of defining risk in a patient’s vital physiological sign data. Figure 7.1

presents the work flow of a proposed future system which is capable of

assessing a patient’s well being by observation of both the distributions in

vital sign data and the risk score output. Risk thresholds are defined us-

ing the quartiles technique; therefore each patient has customised values

for increased accuracy while distribution identification of vital sign data

can be conducted using the methodology as described in this thesis. In

achieving this future goal, it is proposed that not only can the immediate

risk of a patient be identified, i.e. using the risk thresholds calculated, but

also observation of abnormalities in vital sign data, e.g. the training phase

determines that a patient’s heart rate is normally distributed, but live mon-

itoring shows that another distribution is observed, which may not pose

immediate risk but require additional assessment by a medical expert.

Ultimately, it is recognised that although e-Health, the use of computa-

tional power for provision of health care, may provide benefits such as the

improving the accuracy of the electronic EWS service, this thesis is in agree-

ment with the recent publication by Carberry et al. [131] that such technol-

ogy should not replace the expert knowledge of medical practitioners - it

should compliment their work.
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Figure 7.1: Proposed Future Risk Assessment System
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Appendix A

Patient Simulator and

Cloud4Health Evaluation

PRIOR to refinement in scope of aim and objectives, work was con-

ducted in implementation of a patient simulator designed for

simulation of all five key vital physiological signs including heart

rate, blood pressure, temperature, oxygen levels and respiratory rate. The

design of this simulator along is presented in this chapter. The primary

goal of the simulator was to provide demonstration of the applicability of

the Cloud4Health project as discussed in the introduction of this thesis.

Evaluation results of the Cloud4Health project, via the use of the patient

simulator, is discussed from Section A.3 onwards.

It should be noted the work presented in this section was conducted prior

to further analysis on heart data, thus although the methodology applied

for modelling of vital sign data is valid, i.e. the use of normal distribution

only, findings from the core text of this thesis shows that there is future

scope in the improvement to modelling techniques applied to the patient

simulator proposed.
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Figure A.1: Patient Simulation Framework

A.1 Patient Simulator Framework

A four tiered approach has been taken in defining the patient simulator

framework. The four components which make up the simulator include:

user interface, patient models, simulation engine and communication en-

gine. An abstract view of the framework is presented in Figure A.1. A

discussion on each of the four components of this framework is presented

in this section.

A.1.1 User Interface

As highlighted by [31], the user interface of a simulation provides a far

easier means of running a simulator in comparison with a command line

driven interface. It is acknowledged that this part of the framework is not

an essential necessity in conducting research. However, as demonstrated

in previous research [169], a user interface can bring about ease-of-use,

automation and simplicity in conducting testing and validation tasks. In

other words, it makes running the application a lot simpler.
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Figure A.2: Patient Model

A.1.2 Patient Models

A variety of ontologies have been proposed by researchers in defining a

model of a patient including [170, 171, 172]. The Patient Simulator adopts a

simplified ontology, whereby two main categories of attributes are consid-

ered: non-medical attributes and medical attributes. Within the subclass

of medical attributes, these may be further split into dynamic medical at-

tributes and static medical attributes. Figure A.2 shows the current model

of a patient.

Non-medical attributes refer to attributes which, though important, do

not have significance when applied to a health care environment. In other

words, medical staff will not take these attributes into consideration when

it comes to diagnosing a patient’s health. Examples of non-medical at-

tributes are:

• Blood Type -Blood type of patient (i.e. A, B, AB or O)

• Gender - Male or Female

• DoB - Date of Birth of a patient

Finally, dynamic medical attributes relate to a patient’s vital physiologi-

cal signs, which have the characteristics of discrete change throughout a
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patient’s stay in a health care facility. Examples of the dynamic medical

attributes include:

• HR - The heart rate of a patient, measured in the unit of beats per

minute (BPM)

• BP - The systolic blood pressure of a patient, measured in mmHg

(millimetres of mercury)

• Temp - Temperature of a patient’s body, measured in degree Celsius

(◦C)

• SpO2 - Oxygen level of a patient, measured in percentage (%)

• RR - Respiratory rate of patient, measured in Breathing Frequency

(BF) per minute

The dynamic medical attributes which have been chosen to simulate in a

patient is based upon the concept of the Early Warning Score (EWS) sys-

tem discussed in prior chapters of this thesis. To provide a brief reitera-

tion, the EWS was originally developed by Morgan et al. [17] and is a risk

based scoring system used by nurses and other healthcare staff in rating a

patient’s health status (e.g. in Accident and Emergency departments). In

essence, a higher score suggests a greater risk to a patient’s life. Tradition-

ally, the EWS system has been applied as a paper-based observation chart

whereby the risk is calculated manually by a member of hospital staff.

Several attributes are taken into consideration when calculating the risk of

a patient. Generally, vital physiological sign parameters including heart

rate, blood pressure, body temperature, respiratory rate and oxygen levels

are observed [19]. Medical staff who carry out observation of the patient

will assign a numeric value for each parameter and all values calculated

together gives the patient’s risk score. By modelling the dynamic medical

attributes on the vital physiological signs which are observed in the EWS
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system, this allows for the patient simulator to cover one of the key group

of attributes of patient data.

A.1.3 Simulation Engine

The simulation engine forms the core aspect of the patient simulator frame-

work. It is within this component that the actual simulation process takes

place, including simulation of both medical and non-medical attributes of

a patient. In this framework, it is proposed that the use of Discrete-Event

Based Simulation (DES) along with mixture of both probabilistic and deter-

ministic behaviour. The simulation engine will manage the time intervals

during simulation along with producing output values during simulation.

To justify the choice in DES, it should be reiterated at this point that the goal

of this research is in the simulation of patient data rather than simulation

of the complete human body. Continuous-Event Based Simulation (CES)

would be the ideal choice for simulation of the human body since this sys-

tem works in a continuous manner but for patient data interactions only

occur at certain time intervals. To put this into perspective, consider inter-

actions in a real-life healthcare environment. In the case of a nurse taking

a temperature of a patient, this task will only ever be conducted at certain

time intervals. Similar to manual methods, in using e-Health services, the

temperatures of a real-life patient will only be read at certain time intervals

before being uploaded to a storage system. Hence, using DES method al-

lows for the simulation of such interactions with patient data as would be

seen in real life.

As part of the simulation engine, a choice of both probabilistic and de-

terministic behaviour outputs has been chosen. In the simulation of static

and non-medical attributes, deterministic behaviour of output is simulated.

However, in the case of dynamic medical attributes (vital physiological

signs), probabilistic behaviour is chosen. Vital physiological signs are, nat-
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urally, dynamic hence there is a degree of variability in a patients vital signs

at any time interval. Therefore, using probabilistic behaviour, in the sim-

ulation of vital signs, enables more realistic simulation of these attributes.

Section A.1.5 discusses the specific technique applied for simulation of vital

sign data.

A.1.4 Communication Interface

The final component of the propose patient simulator framework is the

communication interface. It is proposed this part of the framework enables

communication with e-Health infrastructures using standardised protocols.

Examples of such protocols include XML, HTTP and WML as used in the

e-Health implementation by [173] and SOAP based protocol as used by [1].

The choice of protocol used will be entirely dependent on the supported

communication method of the e-Health environment under evaluation. By

defining the communication interface as a separate component, future im-

plementations of the patient simulator can be easily upgraded and extended

without other components, i.e. simulation engine and patient models, be-

ing modified. In other words, the communication interface enables inter-

operability with both existing, and future, e-Health environments.

A.1.5 Generation of Vital Physiological Signs

The probability statistics concept of normal distribution has been applied

for the generation of vital physiological sign values. Alternatively known

as Gaussian Distribution [49], normal distribution is the theory that by gen-

erating a set of random values, and applying the mean (average) and stan-

dard deviation (variance), the values will tend to cluster around the mean

[50, 51].

Defining a mean value for each vital physiological sign is outlined later
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on in this section but, unfortunately, determining the standard deviation

proves to be a lot more difficult. In determining the standard deviation

which would be applied to heart rate, as an example, one must consider the

heart rate variation (HRV) of a patient. As discussed in the primary text of

this thesis, Section 5.4, difficulties were faced in realistically modelling the

subtle behaviour of heart variation. Given complexities in defining varia-

tion for heart rate (and the other four vital physiological signs), by default,

the Patient Simulator applies a arbitrary standard deviation for each of the

vital signs.

Table A.1 presents the default mean and arbitrary standard deviation ap-

plied to all five vital physiological signs which are simulated in a patient by

default. The mean value of blood pressure is based on the work of Pesola

et al. in which they state that a normal systolic blood pressure is found to

be 112 mmHg [2]. From studies carried out by both Mackowiak et al. and

Shoemaker the result of 36.8 ◦C [3, 4] is applied for the mean body tempera-

ture. O’Driscoll et al. defines normal Spo2 as 96-98% [5], hence the average

value of 97% is used. Finally, both Sherwood and Tortora et al. agree that

the mean respiration rate is found to be 12 breaths per minute [6, 7].

Table A.1: Default Mean and Standard Deviation of Vital Signs
Vital Sign Mean Standard Deviation

Heart Rate 80 BPM 1.5

Blood Pressure 112 mmHg 2

Body Temperature 36.8◦C 0.2

SpO2 97% 0.5

Respiration Rate 12 breaths per min 1
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Figure A.3: Normal Distribution of Heart Rate

Figure A.4: Patient Simulator GUI

A.2 Implementation of Simulator

The Patient Simulator was implemented using Microsoft .NET C#. A sim-

ple GUI interface was developed for the software to allow for ease of use

(Figure A.4). The built-in timer component provided by the .NET frame-

work is used in the implementation of the discrete event simulation tech-

nique discussed in Section A.1.3. At each “tick” interval, the simulation of

the five vital physiological signs will take place. The default time interval

is one second however, this can easily be adjusted by the user. For the gen-

eration of the vital physiological signs, a modified version of the Random

Number Generator class library [174] was used.

Within the class library, five classes are implemented, one for each vital

physiological sign. An object-oriented programming approach was taken,

whereby all five vital sign classes inherit from the abstract class "VitalSign".

Using this approach, a instance of each vital sign can be created and calling

the Generate method enables the generation of a vital sign. The Generate
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method requires the passing of two variables, the mean and standard de-

viation. The method then carries out the normal distribution calculations

and returns a value, i.e. the vital physiological sign.

A.3 Evaluation of the Cloud4Health Platform

Prior sections has presented the design and implementation of the patient

simulator. The sections which follow demonstrate the capabilities of using

simulated patient data for the technical evaluation of the Cloud4Health

platform. The methodology and presentation of results were originally

presented in [175] and used here with permission from the publisher. An

overview on the Cloud4Health project is first given.

A.3.1 Overview of Cloud4Health

The aim of Cloud4Health project is to develop, implement, validate and

disseminate a novel, secure e-Health platform for capture, storage and con-

sumption of data within a health care domain [1]. The key components of

the Cloud4Health platform include:

• Single Point of Contact (SPoC) - An authorisation gateway for a health

care domain to grant role-based access rights to sensitive medical

data and services using a policy syntax.

• Information Sharing Policy Syntax - This is a rule-based language syn-

tax inspired by firewall rules. It can be used to define access rights

and to express a variety of patient consents.

• Data Buckets - The Data Buckets offer long-term persistence of med-

ical data and support the Creation, Reading, Updating and Deletion

(CRUD) of attribute values and associated meta data.
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Figure A.5: Overview of the DACAR e-Health service platform

Figure A.5 gives an overview of the DACAR platform. Typically, a user

consumes an e-Health service developed on the DACAR platform in five

steps:

1. Authentication: The user logs on from federated identity providers

using a user name and a password, or other unique personal infor-

mation.

2. Request for a service: The user’s client software forwards the secu-

rity credential obtained in Step 1 to a responsible SPoC, together with

a service request.

3. Instantiate the service: The SPoC checks the user’s identity, resolves

it into a role, and matches the service request to existing security poli-

cies. In the case that the service is provided by the local domain, the

SPoC is able to tell whether the user is allowed to consume this ser-

vice, and to locate the service endpoint within the Cloud. However,

if the service is provided by a trustworthy foreign domain, the SPoC

will route the service request to another SPoC. For example, when a

clinician needs to make contact with a patient’s relatives in an emer-

gency, he or she sends a request for a police registry service to the

local health care SPoC, which forwards the request to a remote police
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SPoC.

4. Authorisation: If the service request is permitted by corresponding

security policies, the SPoC that made the decision creates and signs

a Service Ticket. This contains the user’s pseudonym and role, a ref-

erence to the service endpoint, period of validity, and one-off session

keys that enable the user’s client software and a service instance to

establish a secure session. Otherwise, a message is returned to tell

the reason for rejection.

5. Consume the service: Finally, the user’s client software initiates a

secure session using the information provided in the Service Ticket

and starts to consume the service. If the service requires CRUD op-

erations over certain attributes, the service itself becomes a consumer

of related Data Bucket services. In this case, the service needs to go

through Steps 1 to 4 to obtain necessary Data Tickets from a SPoC us-

ing the service’s own identity, or the service consumer’s identity and

role. In the latter circumstance the service is “impersonated”, and

shall use the Service Ticket received from its consumer as a comple-

mentary security credential.

Although this five step process in provides a secure environment for med-

ical data, the limitation in this work is attempting to validate such claims.

As described earlier, the DACAR implementation allows for the capture,

storage and retrieval of data in a highly secured cloud environment but the

solution of evaluating DACAR, and similar e-Health platforms, are still

lacking. Thus, this chapter aims to assess whether meaningful evaluation

results may be obtained from the Cloud4Health platform in conducting

performance evaluation using the patient simulator prototype. The next

section provides overview on related areas of work in regards to e-Health

evaluation.
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A.3.2 Performance Evaluation Metrics Design

As the name implies, Performance Evaluation focuses on assessing an e-

Health implementation from a technical standpoint. The model aims to

evaluate the scalability, functionality and reliability of a chosen e-Health

implementation. Scalability relates to the volume of patient data inter-

actions, i.e. uploading, downloading and processing of data, which the

implementation can handle concurrently whilst functionality aims to as-

sess how well the implementation works. Reliability aims to answer the

question the integrity of an implementation in ensuring no data loss occurs

during the evaluation process a common situation which occurs when a

system is under high load and begins dropping data packets that it is un-

able to process.

The following is an outline of performance evaluation metrics which are

defined in this work:

• CPU Utilization: relates to how much processing time is required for

the upload and/or download of health care data along with general

interaction with the e-Health implementation. The measurement of

this metrics provides us with an overview on whether the current

hardware infrastructure is up to a sufficient standard for the hosting

of a chosen e-Health solution. Results obtained via this metric are de-

pendent on the processor(s) of the hosting platform. CPU utilization

is measured under the unit of percentage (%).

• Packet Loss: relates to the number of healthcare data samples that are

lost or dropped during an evaluation. A low packet loss (preferably

zero) is highly desirable, if not essential, for e-Health implementa-

tions since the key attribute in which all interactions revolve around

is healthcare data.

• Upload / Download Time: the duration of time taken for a health-
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care data to be uploaded or retrieved from an e-Health solution. Re-

sults obtained from this metric are dependent on the network inter-

face cards (NIC) and protocols used by the e-Health implementation

under evaluation. Measured in units of ms (milliseconds).

• Round-Trip Time (RTT): the duration of time taken for healthcare

data to be uploaded to an e-Health platform, processed and then out-

putted to an e-Health service. As before, results from this metric are

also dependent on NICs and the protocol used by the e-Health imple-

mentation under evaluation. The metric of RTT enables us to assess

how well an e-Health implementation works for real-time scenarios

such as uploading of healthcare data to a platform, processing of the

data and outputting the data to an end clinical service, e.g. a patient

monitoring system. A low RTT is obviously preferable in such sce-

narios. Measured in units of ms (milliseconds).

A.3.3 Evaluation Experiments

As noted earlier, evaluation is conducted on the Cloud4Health implemen-

tation whilst data and interaction is provided by the patient simulator pro-

totype. The Cloud4Health project provides an API in order for the simu-

lated data to interact with the platform but the underlying hardware archi-

tecture or source code is not considered during evaluation, i.e. a black-box

evaluation. It’s proposed that this helps provide a non-bias evaluation of

the platform along with ensuring the defined evaluation metrics are not re-

stricted to evaluating only one specific e-Health implementation for future

work. For the scope of experimentations carried out in this chapter, the

Cloud4Health platform is hosted within a sandbox virtual environment.
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A.3.3.1 Methodology

Two primary sets of experiments in regards to performance evaluation of

the Cloud4Health platform. Both experiments were conducted using sim-

ulated patient data generated on-the-fly at the start of each test. In each

experiment, the only variation is the number of patients simulated. Experi-

ment 1 aims to measure the performance evaluation metric of Upload Time

whilst Experiment 2 measures the metrics of RTT and CPU utilization. Fur-

thermore, packet loss is monitored in all experiments. The scenario for each

experiment is outlined as follows:

• Experiment 1: Baseline Test - The first test is very simplistic in nature.

In simulating 100 samples of a single patient’s data, the upload time

was monitored for intervals of 0.5, 1 and 3 seconds. In other words,

100 samples of a single patients data was uploaded with three differ-

ent time delays in order to evaluate whether any performance impact

was found on the Cloud4Health platform based on how "talkative"

the client, i.e. Patient Simulator, is. The primary aim of this exper-

iment is establish a baseline result for how well the Cloud4Health

platform handles a single patient’s data being uploaded.

• Experiment 2: RTT and CPU Utilization - The second experiment

aimed to evaluate the RTT and CPU utilization of the Cloud4Health

platform. Up to 100 patient’s data was uploaded concurrently. Each

patient simulates 100 samples of data. The aim of this experiment is

to assess the Cloud4Health platform’s latency under a more realistic

scenario which involves the input, processing and output of patient

data. Figure A.6 provides the workflow of the second experiment.

The methodology for gathering of defined metrics is as follows:

• CPU Utilization: A Microsoft Powershell script running directly on

Cloud4Health server was used to obtain this metric. The script mon-
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Figure A.6: Workflow of Experiment Two

itors the counter referred to as \processor(_total)% processor time

[176]. This counter returns the overall CPU utilization of the server

and the current value is logged to an output file every 1 second inter-

val.

• Packet Loss: The total current samples stored in the Cloud4Health

platform for each virtual patient was noted prior to the start of an ex-

periment. The total samples simulated (100 per patient) is then sub-

tracted from the current samples for each patient. A numeric value

greater than 0 gives indication on the number of packets lost during

the experiment.

• Upload Time: Upload time is gathered directly from the Patient Sim-

ulator application via the StopWatch class [177] provided by .NET C#.

An instance of the StopWatch class is started upon uploading of data,

and once the upload operation is complete, the StopWatch is stopped.

The elapsed time produced by the StopWatch class results in the time

taken to upload a single patient’s data to the Cloud4Health platform.

• RTT: A push notification [178] service was implemented on top of

the Cloud4Health platform. Via the implementation of a Receiver

client (acting as an example clinical service), the RTT metric is calcu-

lated based on subtracting the time stamp a packet was received (by

the Receiver service) against the time stamp of when a patient data
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Figure A.7: Average Upload Time

sample was sent to the e-Health platform (via the Patient Simulator).

Strong time synchronization was achieved via an Active Directory

server acting as time synchronizer [179] between the Patient Simula-

tor and Receiver client machines.

A.3.3.2 Results

Figure A.7 provides the average upload time for 100 samples of a single

virtual patient’s data uploaded at intervals of 0.5, 1 and 3 seconds. No

packet loss occurred during the running of this experiment. As the inter-

val time decreases, the time taken to upload a single virtual patient’s data

increases. Two conclusions can be made from this first experimental result:

1) talkativeness of a client, when upload a single patient’s data, only affects

the Cloud4Health platform in a very minor manner and 2) upload times

for a single patient’s data is exceptionally good with results of less than 58

ms when uploading data in intervals of 0.5 seconds.

As part of the second experiment, performance evaluation results of RTT

latency and CPU utilization of the Cloud4Health platform are presented.

No packet loss occurred in the instance of running this experiment. Figure

A.8 shows the average RTT latency when simulating and uploading 20, 60

and 100 patient’s data whilst Figure A.9 shows the CPU Utilization results.

Due to wide variance, Table A.2 is also presented to give an overview of

the minimum and maximum RTT latency values gathered during this ex-

periment.
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Figure A.8: Average Round-Trip Time

Figure A.9: Average CPU Utlisation

The results from the RTT graph show that in the case of simulating and up-

loading data for 20 virtual patients concurrently, the average RTT latency

was very reasonable at 62.93 ms. In simulating 60 virtual patients data con-

currently, the average RTT latency was found to be 64.80 ms which is only

a very minor increase in comparison with 20 patients. On the other hand,

simulating 100 patients produced a significantly higher latency of 173.56

ms on average. Furthermore, with a maximum latency of 6674.21 ms and

minimum latency of 51.11 ms, there is far wider range of variance in RTT

latency when simulating 100 patients. This wide range of variance is an

indication that a bottleneck may be present on the Cloud4Health platform.

CPU utilization was the primary suspect in this increased variance with

RTT latency but Figure 4 shows this is not the case. Even in the scenario of

simulating 100 patients, the average CPU utilization of the Cloud4Health

platform was only slightly greater than 20%. Hence, it can be stated from

this experiment that although RTT latency values grow as the number of

patients simulated increase there is currently no direct evidence to show

that this has any correlation with CPU utilization.

Overall, the key findings in conducting a performance evaluation of the

Owen Lo, School of Computing 168 PhD Thesis



APPENDIX A. PATIENT SIMULATOR AND CLOUD4HEALTH
EVALUATION

Table A.2: Minimum and Maximum Latency Values
Number of Patients Min RTT (ms) Max RTT (ms)

20 32.57 526.65

60 31.33 578.02

100 51.11 6674.21

Cloud4Health platform based on the criteria of functionality, reliability and

scalability using the proposed metrics is as follows:

• Functionality: Both experiments have proven the functionality of this

platform. The main goal of the Cloud4Health platform is to enable

the storage of patient data with strong focus on security. Using sim-

ulated patient data, the experiments have proven that the implemen-

tation is capable of handling both the uploading and downloading of

patient data whilst conducting authentication and authorization via

security protocols.

• Reliability: In both experiments conducted, no packet loss occurred

between the patient simulator and the Cloud4Health platform. Hence,

it can be stated that the implementation is very reliable in ensuring

that patient data is retained during any general interaction.

• Scalability: Scalability is perhaps the current primary limitation in the

Cloud4Health implementation. Experimentation results were stopped

after simulation of 100 patients data as it was found the Cloud4Health

platform was unable to handle any higher volumes of patient data

without unexpected errors. Though the Cloud4Health platform has

been resourceful in the usage of CPU utilization, there is still a wide

variance in the RTT latency values when processing 100 virtual pa-

tients data concurrently hence scope for improvement and optimiza-

tion to ensure this platform is capable of handling higher volumes of

patient data.
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Appendix B

Probability Distribution

EXAMPLE of calculation of probability distribution’s Probability Den-

sity Function (PDF) and Cumulative Distribution Function (CDF)

is given in Section C.1. The normal distribution is used. Calcu-

lations are conducted in R ver. 3.01. Note that "[1]" indicates the output of

the previous command given for each example in R.

B.1 PDF and CDF Calculation Example

The CDF of normal distribution is:

1
2
[1 + er f (

x − µ√
2σ2

)] (B.1)

whilst the PDF is:

1
σ
√

2π
e−

(x−µ)2

2σ2 (B.2)

PDF produces the density of a variable, which there is no quantifiable unit,

whilst the CDF is between 0 and 1 thus multiplication of 100 produces a

percentage. Consider parameters µ = 0, σ = 1 and x = 1. Calculation of
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CDF for x = 1, for P(a < x < b), using intervals of a = 0.99 and b = 1.01,

using R is as follows:

a = 0.5 * (1+erf((1.01-0)/sqrt(2*(1^2))))

[1] 0.8437524

b = 0.5 * (1+erf((0.99-0)/sqrt(2*(1^2))))

[1] 0.8389129

therefore:

a - b

[1] 0.004839414

where the error function, erf is defined as:

erf <- function(x) 2 * pnorm(x * sqrt(2)) - 1

The result for this calculation is a − b = 0.004839414. In other words, 0.48%

probability of the variable 1 occurring in a normal distribution given the

defined parameters. The calculation of PDF for the same parameters, µ = 0,

σ = 1 and x = 1, is as follows:

pdf = 1/(sqrt(2*pi)) * exp(-1^2/2)

[1] 0.2419707

which results in pd f = 0.2419707. To reiterate, the probability of variable X

is 0.004839414 whilst its density is 0.2419707. Given that the interval range

is between 0.99 to 1.01 the probability of X can be inferred from the PDF by

multiplying it by the Di f f erence = 1.01 − 0.99. Therefore:

0.2419707 ∗ 0.02 = 0.004839414 (B.3)

This shows that the PDF is the derivative of the CDF. Furthermore, the re-

sults may be easily verified with R’s inbuilt library for normal distribution

as follows. For CDF and PDF respectively:
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cdf = pnorm(1.01, 0, 1) - pnorm(0.99, 0, 1)

[1] 0.004839414

pdf = dnorm(1, 0, 1) * 0.02

[1] 0.004839414

Both cd f and pd f will result in value of 0.004839414.
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Appendix C

Anderson-Darling Test

EXAMPLE of calculating the Anderson-Darling (AD) test statistic

is given in this section using R. Manual calculations, via R ver.

3.0.1, is compared to the automatically generated value given by

Minitab 17 to provide proof that both methods are accurate in producing

the AD test statistic. Note that "[1]" indicates the output of the previous

command given for each example in R.

C.1 AD Test Statistic Calculations

The AD test statistic is calculated as follows:

A2 = −n − S , (C.1)

where variable S is derived as follows:

S =
n

∑
i=1

2i − 1
n

[ln(F(Yi)) + ln (1 − F(Yn+1−i))] (C.2)

Suppose variable Y = {0,0,1,2,−1,−1,1,−2,0} comes from a normal distri-

bution based on parameters µ = 0 and σ = 1.225 . The AD test statistic may

be calculated by first solving F(Yi) and 1 − F(Yn+1−i). In both instances, F
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is the Cumulative Distribution Function (CDF) of normal distribution give

as:

1
2
[1 + er f (

x − µ√
2σ2

)] (C.3)

The CDF of each value in Y is given in Table C.1. An example of calculation

for the first row of results is presented below using R:

pnorm(-2,0,1.225) # F(Yi)

[1] 0.05127099

1-pnorm(2,0,1.225) # 1 − F(Yn+1−i)

[1] 0.05127099

Next, the calculation of ln(F(Yi)) + ln(1 − F(Yn+1−i) can be achieved as

shown in Table C.2. As before, example of the first row is given in R as

follows:

log(0.05127099)+log(0.05127099) #ln(F(Yi)) + ln(1 − F(Yn+1−i)

[1] -5.94126

Each of the results from the previous table can then be multiplied by 2i−1
n

as the results show in Table C.3. The R calculation for the first row of result

is:

((2*1-1)/9)* -5.94126 # 2i−1
n [ln(F(Yi)) + ln(1 − F(Yn+1−i)]

[1] -0.66014

The ∑n
i=1 of each result in the previous table gives S = −9.26094. Thus,

A2 = (−9)− (−9.26094) = 0.26094. As shown in Figure C.1, the same AD

test statistic result (rounding to 3 decimal places) is calculated by Minitab

thus providing evidence that both techniques, manual calculation and the

use of Minitab, for obtaining the AD test statistic is valid.
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Table C.1: Result of F(Yi) and 1 − F(Yn+1−i)

Yi F(Yi) 1 − F(Yn+1−i)

-2 0.05127099 0.05127099

-1 0.2071567 0.2071567

-1 0.2071567 0.2071567

0 0.5 0.5

0 0.5 0.5

0 0.5 0.5

1 0.7928433 0.7928433

1 0.7928433 0.7928433

2 0.948729 0.948729

Table C.2: Results of ln(F(Yi)) + ln(1 − F(Yn+1−i)

Yi [ln(F(Yi)) + ln(1 − F(Yn+1−i)]

-2 -5.94126

-1 -3.14856

-1 -3.14856

0 -1.386294

0 -1.386294

0 -1.386294

1 -0.4642594

1 -0.4642594

2 -0.1052642
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Table C.3: Results of 2i−1
n [ln(F(Yi)) + ln(1 − F(Yn+1−i)]

Yi
2i−1

n [ln(F(Yi)) + ln(1 − F(Yn+1−i)]

-2 -0.66014

-1 -1.04952

-1 -1.74920

0 -1.07823

0 -1.38629

0 -1.69436

1 -0.67060

1 -0.77377

2 -0.19883
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Figure C.1: AD Test Statistic Calculation by Minitab
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Scripts

SECTION D.1 provides the R script used for modelling of each pa-

tient’s one and two minute RR interval data based on the Fan-

tasia Database. Section D.2 provides the script used to calculate

parameters based on the Expectation Maximization (EM) algorithm imple-

mented in the library "mixtools". Section D.3 provides the R script used

for quartile based learning whist the decision making process is shown in

Section D.4. Section D.5 and D.6 gives source code to the electronic version

of the National Early Warning Score (NEWS) and Modified Early Warning

Score (MEWS) algorithm for risk assessment of heart data respectively.

D.1 Individual Distribution Modelling Script

#f1o01 Normal Model

set.seed(100)

f1o01 <- rnorm(123,0.9692,0.04389)

#f1o02 Gamma Model

set.seed(100)

f1o02 <- rgamma(122,2296.39891,scale=0.00043)
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#f1o03 Weibull* Model

set.seed(100)

f1o03 <- rweibull(124,25.17597,0.98128)

#f1o04 Weibull Model

set.seed(100)

f1o04 <- rweibull(96,34.64655,1.23427)

#f1o05 Weibull* Model

set.seed(100)

f1o05 <- rweibull(115,52.45041,1.04237)

#f1o06 Normal Model

set.seed(100)

f1o06 <- rnorm(99,1.19325,0.02648)

#f1o07 Logistic Model

set.seed(100)

f1o07 <- rlogis(121,0.9827,0.0167)

#f1o08 Gamma Model

set.seed(100)

f1o08 <- rgamma(153,636.92991,scale=0.00123)

#f1o09 Gamma Model

set.seed(100)

f1o09 <- rgamma(85,296.59721,scale=0.00473)

#f1o10 Normal Model

set.seed(100)

f1o10 <- rnorm(135,0.88009,0.0409)
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#f1y01 Logistic Model

set.seed(100)

f1y01 <- rlogis(155,0.76866,0.03145)

#f1y02 Normal Model

set.seed(100)

f1y02 <- rnorm(130,0.90868,0.10745)

#f1y03 Weibull* Model

set.seed(100)

f1y03 <- rweibull(131,12.96976,0.94428)

#f1y04 Weibull Model

set.seed(100)

f1y04 <- rweibull(90,12.24812,1.3771)

#f1y05 Weibull Model

set.seed(100)

f1y05 <- rweibull(126,26.66953,0.96275)

#f1y06 Weibull Model

set.seed(100)

f1y06 <- rweibull(121,14.87207,1.02397)

#f1y07 Normal Model

set.seed(100)

f1y07 <- rnorm(107,1.11738,0.13236)

#f1y08 Weibull Model

set.seed(100)

f1y08 <- rweibull(128,14.00713,0.96614)
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#f1y09 Weibull Model

set.seed(100)

f1y09 <- rweibull(144,16.20404,0.8534)

#f1y10 Gamma* Model

set.seed(100)

f1y10 <- rgamma(153,232.26905,scale=0.00335)

D.2 Mixture Modelling Script

modelMixture <- function(dataVector)

{

require(mixtools)

DataVector = na.omit(dataVector) #trim NA values

N = length(DataVector)

set.seed(100)

mixmdl = normalmixEM(DataVector, k=2)

probs = c(mixmdl$lambda[1])

dists = runif(N)

data = vector(length=N)

for(i in 1:N)

{

if(dists[i]<probs[1])

{

data[i] = rnorm(1, mean=mixmdl$mu[1], sd=mixmdl$sigma[1])

}

else

{
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data[i] = rnorm(1, mean=mixmdl$mu[2], sd=mixmdl$sigma[2])

}

}

plot(mixmdl,which=2)

return(data)

}

D.3 Quartiles Based Learning Script

Learning <- function(training)

{

trainingData = na.omit(training)

n = length(trainingData)

sortedValues = sort(60/trainingData)

q2 = median(sortedValues)

if ( n %% 2 == 0){ #even therefore we ommit median in calculations

index = n/2

q1 = median(head(sortedValues, index))

q3 = median(tail(sortedValues, index))

}

else # odd value therefore we include the median in calculations

{

index = ((n+1)/2)

q1 = median(head(sortedValues, index))

q3 = median(tail(sortedValues, index))

}

iqr = q3 - q1

lThresholdLowRisk = q1 - 1.5 * (iqr)
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uThresholdLowRisk = q3 + 1.5 * (iqr)

lThresholdMedRisk = q1 - 2.25 * (iqr)

uThresholdMedRisk = q3 + 2.25 * (iqr)

lThresholdHighRisk = q1 - 3 * (iqr)

uThresholdHighRisk = q3 + 3 * (iqr)

results = list(Q1=q1, Q2=q2, Q3=q3, IQR=iqr,

LThresholdLowRisk=lThresholdLowRisk,

UThresholdLowRisk=uThresholdLowRisk,

LThresholdMedRisk=lThresholdMedRisk,

UThresholdMedRisk=uThresholdMedRisk,

LThresholdHighRisk=lThresholdHighRisk,

UThresholdHighRisk=uThresholdHighRisk)

return(results)

}

D.4 Quartile Approach for Heart Data Risk As-

sessment

#trainingResults is the vector which comes from the Learning() method

QuartileDetection <- function(modelDataFile, trainingResults)

{

model <- na.omit(modelDataFile)

n = length(model)

lowRiskScore <- 0

mediumRiskScore <- 0

highRiskScore <- 0
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for (i in 1:n)

{

hr = 60/modelDataFile[i]

if (hr > trainingResults$UThresholdLowRisk && hr <=

trainingResults$UThresholdMedRisk)

{

increment(lowRiskScore)

}

else if (hr > trainingResults$UThresholdMedRisk && hr <=

trainingResults$UThresholdHighRisk)

{

increment(mediumRiskScore)

}

else if (hr > trainingResults$UThresholdHighRisk)

{

increment(highRiskScore)

}

else if (hr < trainingResults$LThresholdLowRisk && hr >=

trainingResults$UThresholdMedRisk)

{

increment(lowRiskScore)

}

else if (hr < trainingResults$LThresholdMedRisk && hr >=

trainingResults$LThresholdHighRisk)

{

incement(mediumRiskScore)

}

else if (hr < trainingResults$LThresholdHighRisk)

{

increment(highRiskScore)

}
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}

results =

list(LowRiskScore=lowRiskScore,MediumRiskScore=mediumRiskScore,

HighRiskScore=highRiskScore)

return(results)

}

D.5 NEWS Algorithm for Heart Data Risk Assess-

ment

NEWSDetection <- function(modelDataFile)

{

model = na.omit(modelDataFile)

n = length(model)

lowRiskScore <- 0

mediumRiskScore <- 0

highRiskScore <- 0

for (i in 1:n)

{

hr = 60 / model[i]

if (hr >= 41 && hr <= 50)

{

increment(lowRiskScore)

}

else if (hr <= 40)

{
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increment(highRiskScore)

}

else if(hr >= 91 && hr <= 110)

{

increment(lowRiskScore)

}

else if(hr > 110 && hr <= 130)

{

increment(mediumRiskScore)

}

else if(hr > 130)

{

increment(highRiskScore)

}

}

results =

list(LowRiskScore=lowRiskScore,MediumRiskScore=mediumRiskScore,

HighRiskScore=highRiskScore)

return(results)

}

D.6 MEWS Algorithm for Heart Data Risk As-

sessment

MEWSDetection <- function(modelDataFile)

{

model = na.omit(modelDataFile)

n = length(model)
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lowRiskScore <- 0

mediumRiskScore <- 0

highRiskScore <- 0

for (i in 1:n)

{

hr = 60 / model[i]

if (hr >= 41 && hr <= 50)

{

increment(lowRiskScore)

}

else if (hr <= 40)

{

increment(highRiskScore)

}

else if(hr >= 101 && hr <= 110)

{

increment(lowRiskScore)

}

else if(hr > 110 && hr <= 129)

{

increment(mediumRiskScore)

}

else if(hr > 129)

{

increment(highRiskScore)

}

}

results =

list(LowRiskScore=lowRiskScore,MediumRiskScore=mediumRiskScore,

Owen Lo, School of Computing 186 PhD Thesis



APPENDIX D. SCRIPTS

HighRiskScore=highRiskScore)

return(results)

}

D.7 Hybrid Approach Script

HybridDetection <- function(modelDataFile, trainingResults)

{

model <- na.omit(modelDataFile)

n = length(model)

lowRiskScore <- 0

mediumRiskScore <- 0

highRiskScore <- 0

for (i in 1:n)

{

hr = 60/modelDataFile[i]

if (hr > trainingResults$UThresholdLowRisk && hr <=

trainingResults$UThresholdMedRisk && hybridNEWS(hr) == TRUE)

{

increment(lowRiskScore)

}

else if (hr > trainingResults$UThresholdMedRisk && hr <=

trainingResults$UThresholdHighRisk && hybridNEWS(hr) == TRUE)

{

increment(mediumRiskScore)

}

else if (hr > trainingResults$UThresholdHighRisk && hybridNEWS(hr)

== TRUE)

{

increment(highRiskScore)
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}

else if (hr < trainingResults$LThresholdLowRisk && hr >=

trainingResults$UThresholdMedRisk && hybridNEWS(hr) == TRUE)

{

increment(lowRiskScore)

}

else if (hr < trainingResults$LThresholdMedRisk && hr >=

trainingResults$LThresholdHighRisk && hybridNEWS(hr) == TRUE)

{

increment(mediumRiskScore)

}

else if (hr < trainingResults$LThresholdHighRisk && hybridNEWS(hr)

== TRUE)

{

increment(highRiskScore)

}

}

results =

list(LowRiskScore=lowRiskScore,MediumRiskScore=mediumRiskScore,

HighRiskScore=highRiskScore)

return(results)

}

#NEWS logic for heart rate risk assessment for hybrid approach to

query. Simply true or false is returned rather than a risk score

hybridNEWS <- function(hr)

{

if (hr >= 41 && hr <= 50)

{

return(TRUE)

}
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else if (hr <= 40)

{

return(TRUE)

}

else if(hr >= 91 && hr <= 110)

{

return(TRUE)

}

else if(hr > 110 && hr <= 130)

{

return(TRUE)

}

else if(hr > 130)

{

return(TRUE)

}

else

{

return(FALSE)

}

}

D.8 Increment Function

Simple increment script required for all scripts which call the increment()

function:

increment <- function(x)

{

eval.parent(substitute(x <- x + 1))

}
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Appendix E

EM Algorithm Parameter

Estimates

TABLE E.1 provides the parameter estimates of each elderly patient

using the Expectation Maximization (EM) algorithm. Table E.2

provides the parameter estimate of each young patient using the

EM algorithm. The script used to conduct EM algorithm estimates is pro-

vided in Appendix D. Rounding of 5 decimal places has been applied to

the reported values.
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APPENDIX E. EM ALGORITHM PARAMETER ESTIMATES

Table E.1: EM Parameter Estimate (Elderly Patients)
Dataset Mean µ SD σ Weight %

f1o01
0.906303 0.015141 0.182245

0.983221 0.034748 0.817755

f1o02
0.97246 0.017809 0.898815

1.010039 0.003689 0.101185

f1o03
0.936703 0.060282 0.388592

0.976179 0.024616 0.611408

f1o04
1.199323 0.036064 0.707871

1.253985 0.017497 0.292129

f1o05
1.013225 0.027479 0.456655

1.045795 0.009309 0.543345

f1o06
1.138268 0.014184 0.043718

1.195766 0.023921 0.956282

f1o07
0.967736 0.044999 0.287414

0.986617 0.021235 0.712586

f1o08
0.770286 0.023633 0.799428

0.822888 0.019012 0.200572

f1o09
1.402691 0.088082 0.615614

1.39973 0.06855 0.384386

f1o10
0.808166 0.009368 0.086304

0.886882 0.035694 0.913696
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APPENDIX E. EM ALGORITHM PARAMETER ESTIMATES

Table E.2: EM Parameter Estimate (Young Patients)
Dataset Mean µ SD σ Weight %

f1y01
0.710698 0.004272 0.027698

0.773136 0.058045 0.972302

f1y02
0.90013 0.101975 0.954434

1.087708 0.006257 0.045566

f1y03
0.752207 0.013877 0.120294

0.928089 0.066144 0.879706

f1y04
1.127704 0.042317 0.183187

1.364759 0.092141 0.816813

f1y05
0.860498 0.039222 0.101778

0.952684 0.033098 0.898222

f1y06
0.963736 0.077028 0.744367

1.060594 0.023428 0.255633

f1y07
0.929623 0.049472 0.166833

1.15498 0.108933 0.833167

f1y08
0.842623 0.061277 0.330639

0.973955 0.047506 0.669361

f1y09
0.80664 0.070348 0.530832

0.849503 0.031852 0.469168

f1y10
0.760249 0.02087 0.316117

0.785919 0.058684 0.683883
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Appendix F

Comparison between NEWS and

MEWS Algorithm

THIS section provides evidence on the minor, non significant, vari-

ation which exists between the National Early Warning Score

(NEWS) and Modified Early Warning Score (MEWS) algorithm

when assessing heart rate only. Furthermore, it provides additional evi-

dence to support the argument that there is sensitivity in the Early Warn-

ing Score (EWS) algorithms due to risk scores being predefined in a static

manner based on vital sign parameter values observed. A subset of the first

five elderly patients and young patients from the Fantasia dataset is used

in this experiment. Each real-life recording is converted from RR Sample to

RR Intervals to Beats Per Minute. Recordings are played back to the NEWS

and MEWS algorithm (see Appendix D.5 and Appendix D.6 for implemen-

tation) and the total number of false-positive are logged.

F.1 NEWS and MEWS Comparison

Table F.1 gives the scoring logic for heart rate in both the MEWS and NEWS

algorithm whilst Table F.2 provides the results of this experiment.
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APPENDIX F. COMPARISON BETWEEN NEWS AND MEWS
ALGORITHM

Table F.1: MEWS and NEWS Algorithm Comparison
Parameter 3 2 1 0 1 2 3

MEWS Heart Rate ≤40 41-50 51-100 101-110 111-129 ≥130

NEWS Heart Rate ≤40 41-50 51-90 91-110 111-130 ≥131

Table F.2: MEWS and NEWS Heart Score Results
Dataset Algorithm Scores of 1 Scores of 2 Scores of 3 Accuracy Ratio

f1o01
MEWS 0 0 0 1.00

NEWS 0 0 0 1.00

f1o02
MEWS 9 0 0 0.99

NEWS 9 0 0 0.99

f1o03
MEWS 13 0 0 0.99

NEWS 13 0 0 0.99

f1o04
MEWS 2253 0 1 0.64

NEWS 2253 0 1 0.64

f1o05
MEWS 9 0 0 0.99

NEWS 9 0 0 0.99

f1y01
MEWS 27 0 0 0.99

NEWS 150 0 0 0.98

f1y02
MEWS 76 0 0 0.99

NEWS 94 0 0 0.98

f1y03
MEWS 1 0 0 0.99

NEWS 1 0 0 0.99

f1y04
MEWS 4253 0 256 0.18

NEWS 4253 0 256 0.18

f1y05
MEWS 323 0 0 0.95

NEWS 323 0 0 0.95
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APPENDIX F. COMPARISON BETWEEN NEWS AND MEWS
ALGORITHM

The most interesting results can be seen in Patient’s f1o04 and f1y04 where

the accuracy ratio is approximately 64% and 18 % respectively. Such a re-

sult indicates significant false positive ratio in the EWS algorithm when

analysing these two patient’s heart data. It can be seen that any value less

than 50 Beats Per Minute (BPM) entails a risk score of 1. Although the na-

ture of the triggers are mainly low risk scores, the high sensitivity in the

overall results demonstrates that there is potential to fine tune the EWS al-

gorithm for better accuracy of results. Comparatively, the results also show

that risk assessment of heart rate in both the NEWS and MEWS algorithm

are very similar. The only deviation exists in two of the tests ran which are

found in Patient’s f1y01 and f1y02. The NEWS algorithm triggered slightly

higher number of false-positives due to the logic of defining normality as

heart rate within the range of 51 − 90 whilst the MEWS algorithm caters to

a higher range of 51 − 100.
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