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Summary
We describe a new rich VRP model that captures many real-world constraints, following a recently
proposed taxomomy that addresses both scenario and problem physical characteristics. The model is used
to generate 4800 new instances of rich VRPs which is made freely available. To the best of our knowledge
this represents the most comprehensive resource of rich VRP problems available, and provides a platform
for researchers to conduct rigorous comparisons of new methods and solvers, moving academic research
much closer to real practice in the future.
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1 Introduction

More than half of century since Dantzig and Ramser [1] first introduced the Vehicle Routing Problem (VRP)
in 1959, academics and practitioners continue to actively explore variants of this problem and introduce new
methods to provide solutions. A survey in 2009 by Laporte [2] summarised the state-of-the-art in research
into the classical VRP charting the developments in exact methods and heuristics, noting that heuristics
now enable realistically sized instances of VRP to be solved adequately. However, the author points out the
gap between classical VRP models and the stochastic and dynamic features of problems that are apparent in
many real world problems. Caceres-Cruz et al [3] go further in recognising that in addition to stochastic and
dynamic features, real VRP problems deal with multi-objective optimisation functions and a wide variety
of constraints that cover factors such as heterogeneous fleet, time factors relating to congestion, the need to
combine routing with driver scheduling and the increasing need to provide compliance with environmental
regulations. In response to this, the term rich VRP has been coined to describe VRP instances that account
for some or all of these factors.

Much research has been published under this heading: two recent surveys [3, 4] provide a detailed
summary of the state-of-the art including problem combinations, constraints defined, and approaches found,
demonstrating the rich variety of problems now being tackled. However, we note that unlike in the classical
VRP literature, it is difficult to find datasets containing sufficient benchmark instances to fairly evaluate
new approaches; many of the published works refer to real-world problems where only a few instances are
described and often datasets are not published. To address this issue, we describe a new model of a rich VRP
that encapsulates many real constraints, informed by input from practitioners1. The model is instantiated in
an extensible software-framework that is straightforward to extend with additional constraints. Using the
framework, we generate a significant resource of 4800 problems that are made freely available. Instances
cover a wide range of sizes and are generated on a map of the UK; driving distances and times are generated
from mapping software utilising actual road-networks and thus potentially includes asymmetric distances

1Optrak Vehicle Routing Software www. optrak.com
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between points. The instances provide a foundation for rigorous comparisons of algorithms and methods,
that it is hoped will drive forward academic research within this area in the future.

In the next section we provide some background to the RVRP, grounding our model in a recently
proposed taxonomy for RVRP. The software framework and problem instances are then described. All
instances are downloadable from [5].

2 Background

Motivated by the need to address the gap that is clearly apparent between the complex characteristics of
real-life VRPs and much academic research, increasingly more complex variants of the classical VRP
problem are tackled, often referred to as Rich VRP problems. However, Lahyani et al recently observed
that across the wide-range of research published under this heading, there was no precise definiton of what
criteria led to a problem being classified as rich, and proposed a generic taxonomy for RVRP. The taxonomy
differentiates between Scenario Characteristics and Problem Characteristics; within each class, subclasses
describe characteristics at the strategic, tactical and operational levels within a hierarchical structure.
The taxonomy is shown in table 1 (note that no characteristics at the operational level are described for
Scenarios).

Based on this taxonomy and an extensive analysis of literature, Lahaynai et al propose a precise
definition of a VRP, given below:

Definition 1 RVRP extends the academic variants of the VRP in the different decision levels by considering
at least four strategic and tactical aspects in the distribution system and including at least six different daily
restrictions related to the physical characteristics. When a VRP is mainly defined through strategic and
tactical aspects, at least five of them are present in a RVRP. When a VRP is mainly defined through physical
characteristics, at least nine of them are present in a RVRP.

The authors note that under this definition, many papers previously considered as ‘rich’ may not comply.
Caceres-Crux et al note that in fact, the RVRP definition evolves continuously and conclude that “the RVRP
reflects, as a model, most of the relevant attributes of a real-life vehicle-routing distribution system”, and
therefore should be seem as an accurate representation of a real-life distribution system, and hence methods
for solving instances characterised as RVRP should be directly applicable to a real-life scenario.

In order for research in developing new methods that deal with the complex set of constraints associated
with RVRP to progress, it is beneficial for the community to have access to a resource of relevant benchmark
problems on which approaches can be rigorously compared. However, unlike in classical VRP in which
many datasets are well known [6], an equivalent resource of RVRP problems is not readily available. For
example, Lahyani et al [4] survey 16 recent papers relating to pure vehicle routing that describe rich
problems. Of these 15 of them focus on real world problems, each with very specific constraints, and
hence do not provide a wide ranging suite of benchmarks that enable algorithms to be easily and fairly
compared. On the other hand, the non-rich VRP literature abounds with benchmarks datasets. We briefly
examine these before proposing a new rich VRP model that is easily extensible, and a freely available
problem generator that can be used to generate multiple instances

2.1 Benchmark Data for VRP

A number of web-based resources provided aggregated collections of VRP datasets. The VRP-REP
project[6] aims to provide the VRP community with a collaborative open data platform, enabling users
to share instance files, check solutions and track solutions. It currently provides 34 datasets, the largest
of which contains 180 instances. The majority of these datasets do not meet the definition of RVRP,
although the newer additions move towards this (for example Mendoza et al [7] provide a dataset that
models stochastic demands and duration constraints). The Networking and Emerging Optimization group
[8] provide datasets for capacitated VRP, including those with time-windows and pickups and deliveries, as
well as multi-depot and periodic problems. More recently, Goeke and Schneider [9] provide instances for a
variant of VRP that includes electric vehicles, time-windows and recharging constraints.

Although many distinct data-sets are available, the relatively small size of each set limits the extent to
which rigorous algorithms comparisons can be made, particularly in research using approximation methods
that can deal with large instances and find solutions in relatively short amounts of time. A specific case of
this is recent research in hyper-heuristics which deals with methods that find cheap but acceptable solutions
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Table 1: Rich VRP Taxonomy from [4]: characteristics reflected in the proposed model are shown in italics

(a) Scenario Characteristics

Strategic Tactical
Input Data Static

Dynamic
Deterministic
Stochastic

Decision Management Options Routing
Inventory and Routing
Location and Routing
Routing and Driver Scheduling
Production/Distribution Planning

Number of Depots Single
Multiple

Operation Type Pickup or Delivery
Pickup and Delivery
Backhauls
Dial-a-ride

Load Splitting Constraints Splitting Allowed
Splitting Not Allowed

Planning Period Single Period
Multi-period

Multiple use of vehicles Single Trip
Multi-Trip

(b) Physical Characteristics

Strategic Tactical Operational
Vehicles Type Homogeneous

Heterogeneous
Number Fixed

Unlimited
Structure Compartmentalised

Not compartmentalised
Loading Policy chronological

no order
Capacity Constraints

Time Constraints Restriction on customer
Restriction on road access
Restriction on depot
Service time
Waiting time
Driver regulations

Time Window Single time window
Structure Multiple time windows
Incompatibility Equipment
Constraints Compartment restrictions
Specific Constraints
Objective Function Single Objective

Multi-objective

that generalise over very large problem sets and are often tested with problem databases containing 1000s
of instances.

Recognising the dual need for new benchmarks that capture rich vehicle routing problems that reflect
real-world constraints and diverse collections of benchmarks to encourage comparative research, we
propose a new RVRP model. The model is translated to an object-oriented software framework that is
easily extensible, therefore new scenario and problem physical constraints can be added in future. We
provide 4800 problem instances of varying size and complexity for future research. The model is described
in detail in the next section.

3 Model

The proposed model aligns with the taxonomy proposed by Lahyani[4] and shown in table 1. In this table,
features of the new model are shown in italics within the taxonomy. Note that the model contains one new
characteristic at the strategic level, in the use of real road-network data to calculate distances and times.

3.1 Scenario Characteristics

We describe a static problem p given by the tuple p = {J,V,d,M,s,E} where J is a set of jobs to be
delivered, V is a set of vehicles, d defines a single depot location and M is a set of 2 matrices giving the
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asymmetrical distances and times between all locations. Only Routing is considered, i.e. it is assumed that
a driver will be available for a particular vehicle at all times.

Planning is over a single continuous time period given by s. Multi-trips by the same vehicle are allowed
in a day.

The remaining term E defines the time constraints imposed on the driver and are described in Section
3.2.2.

We consider delivery problems only. Each job ji ∈ J is described by ji = {li,Ui,Ci}. li gives the
location of the customer the job is to be delivered to, Ui is the set of pallets of a product to be delivered.
Ci = {wi, ti,qi,αi,βi,γi,δi} describe the set of constraints associated with the physical characteristics of a
job and are described in sections 3.2.2 and 3.2.3. Splitting is allowed — the pallets associated with a job ji
can be delivered by multiple vehicles.

3.2 Scenario Characteristics

3.2.1 Vehicles

A fixed and heterogeneous vehicle fleet V is defined for each problem.
Each compartmentalised vehicle v j ∈ V is described by v j = {Tj,e j,q j} where Tj describes the set of

temperature controlled compartments on the vehicle, e j defines the vehicle’s engine type and q j indicates
the availability of any additional equipment (tailgate) for the vehicle. Each compartment tk ∈ Tj is described
by tk = {rk,nk} where rk defines the compartment type and nk indicates the capacity of the compartment.
The values of rk,nk,e j,q j considered are listed below:

• rk ∈ {FROZEN,REFRIGERAT ED,AMBIENT}

• nk ∈ {6,12,24}

• e j ∈ {DIESEL,HY BRID,GAS}

• q j ∈ {TAILGAT E,NONE}

Vehicles do not have a loading policy, that is, compartments can loaded and unloaded in any order.

3.2.2 Time constraints and time-windows

Each problem has employee constraints E = {x,b} which define the maximum driving time allowed x
before a compulsory break of length b is imposed. The set of physical constraints associated with a job ji,
given by Ci = {wi, ti,qi,αi,βi,γi,δi}, are described in this and the following section. A single time-window
for delivery wi is assumed for each job (customer restrictions) during which the job should arrive at the
customer location. In addition, each job has 4 terms defining service times (αi,βi,γi,δi). αi and βi give the
fixed loading time per job and loading time per pallet respectively at the depot . These terms are not applied
for the first route assigned to a vehicle as this is generally completed prior to the service period. Similarly
γi and δi define the fixed unloading time per job and unloading time per pallet at the customer’s location.
All durations are defined in minutes.

It is assumed that all vehicles are available for the duration of the planning period during which all
routes must start and finish at the depot. When a vehicle (and its driver) return the depot, it immediately
becomes available for reuse (the driver’s cumulative driving time is reset).

3.2.3 Incompatibility Constraints

All pallets from a job have the same type ti ∈ {FROZEN,REFRIGERAT ED,AMBIENT} and must be
placed in a compartment of the corresponding type. Some customers require that the vehicle that a load is
delivered on must have particular equipment given by qi ∈ {TAILGAT E,NONE}.

3.2.4 Driving Times/Distances

The manner in which driving times are computed is not included in the RVRP taxonomy. We consider
routing performed on a real road-network. Distances and times between any two locations are obtained
from the open-source mapping product GraphHopper [10]. This returns asymmetric distances (and times)
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between any two points (e.g. accounting for one-way streets). Travel times are stored in the matrix mt
and distances in md . In the model supplied, the time between any two points is fixed and therefore does
not account for rush-hour driving. The model could be extended to account for this using stepwise linear
functions that then have to be combined in order to calculate (and minimise) travel times across the day.

3.2.5 Customer Locations

The depot and the customers are located at geographical locations derived from actual postcodes within the
UK. In the model supplied, customer locations are selected at random from all locations listed in the UK
postcode database that can be serviced within a maximum time-scale from the depot. This process ensures a
realistic distribution of customer locations based on the actual distribution of residential and retail dwellings
in the geographic area surrounding the depot.

3.2.6 Cost model

Vehicles incur different costs depending on their size and engine type. Three costs are considered;
fixed, running and environmental costs. The problem model does not contain actual costs but contains
3 multipliers for each vehicle v ∈ V which show the relative costs compared to a standard vehicle which
we define as a large vehicle fitted with a diesel engine having one large ambient container of capacity 24
product units. Tables 2 and 3 show the values used to calculate the cost multipliers based on the vehicle’s
engine type and total capacity respectively. The 3 cost multipliers supplied with each vehicle are calculated
by multiplying the values obtained from each of the two tables corresponding to the vehicles size and engine
type.

Table 2: Cost multipliers corresponding to engine type

Cost Multiplier
Engine Type Fixed Running C02
Diesel 1.00 1.00 1.00
Hybrid 1.07 0.80 0.80
Gas 1.04 0.70 0.95

Table 3: Cost multipliers corresponding to vehicle size

Vehicle Size (Capacity) Cost Multiplier
Small (6) 0.35
Medium (12) 0.60
Large (24) 1.00

The actual costs associated with any vehicle can be calculated by scaling the costs incurred by a standard
vehicle. Suggested costs for the standard vehicle type, based on current market prices, are given in table 4.
The actual costs associated with any vehicle are described and calculated as follows.

Table 4: Costs associated with the standard vehicle type

Cost Value

Fixed Cost Âč242/day[11]
Running Cost Âč0.36/KM[11]
Environmental Cost Âč0.015/KM[12]

• Fixed Costs f c j is the fixed cost associated with vehicle j and is calculated by multiplying the fixed
cost multiplier of that vehicle by the standard vehicle cost per day. The standard vehicle fixed cost per
day typically includes driver costs / depreciation, servicing, taxes and other costs that are independent
of the distance covered by the vehicle.
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• Running Costs dcr is the running cost associated with route r which varies depending on the distance
covered and the vehicle used. This is calculated as the standard vehicle running cost per km * distance
covered by route * vehicle running cost multiplier. The standard vehicle cost per KM typically
includes fuel, tyre wear and other distance dependent costs.

• Environmental Costs ecr is the environmental cost associated with route r which varies depending
on the distance covered and the vehicle used. This is calculated as the standard vehicle environmental
cost per km * distance covered by route * vehicle environmental cost multiplier.

3.2.7 Objectives

Any single objective function can be defined as a sum over the costs described; alternatively, the problem
can be treated as a multi-objective problem. An example single objective function that takes into
consideration all the costs described as well as penalties incurred for breaking soft constraints is given
by:

f (x) =
n
∑
j=1

f c j + ∑
r∈R

dcr + ∑
r∈R

ecr +Zl +Zo

The fixed cost f c j is applied once for each vehicle used (any unused vehicle does not incur a cost). The
total running cost ∑r∈R dcr and environmental costs ∑r∈R ecr are summed over all routes R conducted by all
vehicles. Zl +Zo are financial penalties imposed as described below.

• Time Penalties Zl is the late/early penalty which is incurred for all pallets arriving at a customer’s
location outside of the specified time window. Each pallet arriving outside the time window incurs a
fixed penalty of (£1× time)2 where time is the the number of minutes that the delivery is either early
or late. Research on real world problems [] has shown that using a quadratic function to penalise
broken time windows minimises the number of potential solutions that incur equal penalties.

• Outsourcing Penalty Zo is the outsourced pallet penalty per pallet per KM. This is calculated using
argmax{£5/pallet/KM,£50/pallet} where the distance is measured from the depot to the associated
customers location. The second term defines a minimum cost for outsourcing a pallet.

Solutions can be evaluated using the suggested metric or may be evaluated using any user specified
objective function. The model allows for relaxation of both hard and soft constraints as required. For
example the end user could ignore suggested penalties for breaking soft constraints and disregard all
costs focussing only on total distance, effectively turning the RVRP model into a conventional VRP. Hard
constraints could also be ignored. For example jobs marked as having to be transported on an ambient
container could be allowed to be delivered on any container type. This abstraction of the objective function
allows the RVRP model implemented to be easily transformed using different scenarios.

4 Problem Generation

The section describes the process of generating the 4800 problem instances that are made available in XML
format. For each problem p = {J,V,d,M,s,E}, the service period s during which all customers should
be serviced is fixed to between 9am and 5pm on the 1st January 2015. The driver constraints E = {x,b}
representing the maximum continuous working time and break length are fixed for all problems at 270
minutes before which a 45 minute break is enforced such that the driver never works more than 270 minutes
continuously. The break is applied either before (where unloading takes the cumulative working time over
the threshold) or after a job is unloaded (where the next period of driving breaks the maximum working
time). A driver returning to the depot has their cumulative working time reset. All instances generated have
valid solutions that meet all hard and soft constraints without requiring any pallets to be outsourced. The
fixed and variable loading and unloading times for jobs and pallets, given by the terms αi,βi,γi,δi}, may
vary and are defined in each problem instance. Note that loading times are not applied for jobs that are
delivered on the first route by each vehicle.

Each problem instance is generated using a specific vehicle fleet and a specific customer data set. The
procedure is described in the following sections.
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4.1 Vehicle Fleet

Two parameters control the fleet of vehicles used — the size of the fleet v fs and the vehicle class. The
vehicle class describes a set of vehicles defined by the parameters (containers,engine− type,equipment).
Four classes of vehicle are considered:

• Vehicle class 1: Medium sized vehicle fitted with a diesel engine, no tailgate and a single ambient
container. (1 possible vehicle type)

• Vehicle class 2. Medium or large vehicle with a single ambient container, no tailgate and any engine
type. (6 possible combinations)

• Vehicle class 3: Medium or large vehicles of any engine type, with or without a tailgate and with
either 1 ambient container or 1 refrigerated and 1 frozen container. (24 possible combinations)

• Vehicle class 4: All possible vehicle sizes, container combinations, engine types and equipment types
(90 different combinations)

4.2 Customer Databases

Five sets of customers are used to generate problems. Each customer set has an associated distance and
time matrix which are supplied separately to minimise file sizes. A single depot for all problem instances
is used that is located in the city of Glasgow at a location roughly 7 KM from the city centre defined by the
geographic coordinates (latitude 55.853 longitude -4.309).

A class of problems is generated by considering customers that can be serviced within a service-time
rtmax minutes from the depot. We generate five classes of problems for rtmax ∈ {30,60,120,240,480}.
Within each class, 1000 customers locations are randomly selected from the subset of postcodes that lie
within rtmax; this ensures a realistic distribution of customer locations based on the actual distribution of
residential and retail dwellings in the geographic area surrounding the depot.

Figure 1 shows the distribution of customers from 2 of the 5 customer data sets generated.

Figure 1: Geographical distribution of customers that can be serviced within 480 minutes and 30 minutes.

Distances (km) and travel times (rounded to the nearest minute) between all pairs of locations are then
calculated and stored in matrices md ,mt respectively. These are derived using the Graphhopper library
as described in section 3.2.4. The library makes use of Dijkstra’s algorithm to determine the shortest path
between two locations, using a road network modelled as a directed graph. The time taken to travel between
locations is correlated with the road type used with shorter travel times returned for higher capacity roads.
A minimum driving time of 2 minutes is used where the software returns a shorter duration. The resulting
data sets require cleaning due to inaccuracies present in the open source software which on occasion returns
erroneous distance or time measurements. The resulting data sets are consequently reduced in size from
1000 to between 524 and 734 customers.
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4.3 Generating Problem Instances

For each of the five customer sets, 10 problem instances are generated using all 96 combinations of the
following parameters, resulting in 4800 problem instances in total:

• Minimum round trip : rtmin ∈ {0,rtmax/2}, where rtmax is the maximum round trip time used to
generate the corresponding customer data set.

• Vehicle Class Four distinct classes (described in section 4.1).

• Vehicle fleet size |V | ∈ {4,8,16,32}

• Time Window ∈ 60,120,240 minutes

For each instance, a fleet type is defined, and then v f s vehicle types are randomly selected from the
class. Having defined the customer set and a fleet, problem instances are generated by assigning route(s) to
each vehicle using the process described by Algorithm 1.

Algorithm 1 Problem Generation
1: for all v ∈V do
2: Time Vehicle Utilised = 0
3: repeat
4: Add a Route for the current Vehicle
5: repeat
6: Select a customer at random that can be serviced within the remaining time (allowing time to return to the depot and allowing for any

required driver breaks)
7: Create a job for the customer with a random number of pallets between the limits (or the available capacity) of type (temperature) that

corresponds to a randomly selected container with available capacity available to the vehicle
8: Assign the time window that corresponds with the time that the vehicle will arrive at that location
9: until Vehicle Capacity Reached OR Time Vehicle Utilised ≥ 450

10: until Time Vehicle Utilised ≥ 450
11: end for

5 Benchmark Datasets

5.1 XML Description

The problems are released as XML files that reflect the model described in Section 3. The XML files
comply to the Class Diagrams depicted in Figure 2 and Figure . In order to reduce file sizes, each problem
instance is supplied without the required matrices that specify travel times and distances between all pairs
of locations. The matrices associated with each company data set are supplied as CompanyData objects,
also in XML format. Each of the 5 files is formatted as described by Figure 4 and contain the time and
distance matrices that are required by a problem instance.

All problem instances have a unique integer ID ranging from 1000000 to 1004799. For each problem
instance all jobs, vehicles, containers and pallets have a unique ID (ranging from 1...n). Customers can be
identified by their unique ID or their location which remain the same where a customer appears in more
than 1 of the data sets. A customer may require to have more than one job delivered for a single problem
instance and therefore multiple jobs may exist where the associated customers have the same ID.

Problems are stored on the distribution site in a hierarchical directory structure that corresponds to the
parameters that the problems were generated from. Each set of 10 problem instances that were generated
using the same parameter combination are zipped in their own low level directory. The corresponding
matrices can be identified using the matrixID given in each problem instance and can be located in the
corresponding high level folder. The directory structure consists of 5 nested layers listed below from highest
to lowest.

• Company Data Set A : A ∈ {1 . . .5} corresponding to rtmax ∈ {30,60,120,240,480}.

• Minimum Trip Time B : B ∈ 0,1 corresponding to rtmin ∈ {0,rtmax/2}minimum round trip time

• Vehicle Set Type C : C ∈ {1 . . .4}

• Fleet Size D : D ∈ {4,8,16,32}
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• Time Window E : E ∈ {60,120,240}

Within each of the lowest level folders is a single zip file containing the 10 problem instances generated
using the same parameter settings. The associated distance and time matrices are accessible from the zipped
XML document to be found in the corresponding high level folder.

5.2 Parsing problems using the supplied Java Parser

The distribution web site includes an XML parser, supplied as a jar file, that includes the problem model
and a XMLParser Class containing a single method with the signature getProblem(String instance, String
companyDataSet). The method takes two strings as parameters representing the file names of a problem
instance and the corresponding CompanyData object and returns a Problem object with the associated
distance and time matrices added.

5.3 Other Formats or Programming Languages

For users wishing to use platforms other than Java, two XML schema definition files are supplied that allow
the Problem and CompanyData structures to be recreated. The matrices required for a problem instance can
be identified by the matrixId field of the Problem Class and by the ID field of the CompanyData Class.

Figure 2: The Problem Model

6 Conclusion

It is clear that if research within vehicle routing is going to address the concerns of the industry, then
large-scale instances and variants of the VRP that meet the definiton of rich problems are urgently
required. We have proposed a new rich VRP model that incorporates load-splitting and multi-trip scenarios,
combined with physical constraints that include heterogeneous fleets, multi-compartments, equipment and
compartment constraints, time-window and multiple objectives. The model utilises time and distance data
from a model of a real road-network, in which times are modified according to road capacity. The model is
described using an XML format that can be read by any parser. 4800 instances are supplied, providing the
biggest resource of rich VRP problems available to date. The framework can easily be extended to include
further constraints to capture new characteristics of problems emerging in rapidly changing industry. From
an academic perspective, the resource provides a means of rigorously evaluating new algorithms to assess
performance across a diverse range of problems. This provides an essential mechanism for highlighting
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Figure 3: The Vehicle Model

Figure 4: The Company Data Model

strengths and weaknesses of algorithms in relation to problem characteristics, rather than assuming a
’one-size-fits-all’ approach, that will drive new innovation in the field.
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