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Abstract  1 

Low carbohydrate diets (LCD) are increasing in popularity, but their effect on vascular 2 

health has been questioned.  Endothelial microvesicles (EMV) are membrane-derived 3 

vesicles with the potential to act as a sensitive prognostic biomarker of vascular health 4 

and endothelial function.  The aim of this study was to examine the influence of a LCD 5 

on EMV and other endothelial biomarkers of protein origin. Twenty-four overweight 6 

women (aged 48.4±0.6 y, height 1.60±0.07 m, body mass 76.5±9.1 kg, BMI 28.1±2.7 7 

kg
.
m

-2
, waist circumference 84.1±7.4 cm; mean±SD) were randomised to either 24 weeks 8 

on their normal diet (ND) or a LCD after which they crossed over to 24 weeks on the 9 

alternative diet.  Participants were assisted in reducing carbohydrate intake but not below 10 

40 g
.
day

-1
.  Body composition and endothelial biomarkers were assessed at the cross-over 11 

point and at the end of the study.  Daily carbohydrate intake (87±7 vs. 179±11 g) and the 12 

percentage of energy derived from carbohydrate (29 vs. 44%) were lower (p<0.05) on the 13 

LCD compared to the ND but absolute fat and saturated fat intake were unchanged.  14 

Body mass and waist circumference were 3.7±0.8 kg and 3.5±1.0 cm lower (p<0.05) 15 

respectively after the LCD compared with the ND phases.  CD31
+
CD41

-
EMV, soluble (s) 16 

thrombomodulin, sE-selectin, sP-selectin, serum amyloid A and C-reactive protein were 17 

lower (p<0.05) after the LCD compared to the ND, but serum lipids and apolipoproteins 18 

were not different.  EMV along with a range of endothelial and inflammatory biomarkers 19 

are reduced by a LCD that involves modest weight loss. 20 

 21 

KEYWORDS: vascular health; endothelial biomarkers; weight loss; microparticles 22 

23 
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Introduction 1 

Low carbohydrate diets (LCD) are increasing in popularity as a means of achieving 2 

weight loss in overweight women.  LCD typically have a carbohydrate content of less 3 

than 100 g
.
day

-1
 or less than 30% of total daily energy intake (Bilsborough & Crowe, 4 

2003).  Diets such as the Atkins diet, sometimes termed very low carbohydrate diets or 5 

very low carbohydrate ketogenic diets, target a carbohydrate content of 20 – 50 g
.
day

-1
, 6 

representing less than 20% of total energy intake.  LCD generally show greater weight 7 

loss at 6 mo when compared to low fat diets (Brehm et al., 2003; Foster et al., 2003; 8 

Gardner et al., 2007; Samaha et al., 2003; Yancy et al., 2004).  The results of a meta-9 

analysis of early trials demonstrate 3.3 kg greater weight loss at 6 mo when LCD are 10 

compared to low fat calorie-restricted diets and at least as much weight loss at 12 mo 11 

(Nordmann et al., 2006).  Despite these results with respect to body weight, the safety of 12 

LCD have been questioned (Bilsborough & Crowe, 2003; Frigolet et al., 2011).  A 13 

reduction in body mass of 5-10 % following dietary restriction has the potential to 14 

improve vascular risk profile (National Institutes of Health, 1998).  However, individuals 15 

on LCD typically obtain a greater proportion of energy from fat, saturated fat and protein 16 

which may have pro-atherogenic effects on some risk markers.  In their meta-analysis, 17 

Nordman and colleagues (Nordmann et al., 2006) demonstrated pro-atherogenic changes 18 

in serum total cholesterol and low density lipoprotein cholesterol (LDL-C) following 19 

LCD compared to low fat diets but anti-atherogenic changes in serum triglycerides, high 20 

density lipoprotein cholesterol (HDL-C) and blood pressure.  Given these conflicting 21 

findings, there is a need to monitor more than traditional risk factors when assessing the 22 

impact of dietary interventions on vascular risk. 23 
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 1 

The endothelium expresses and releases a wide variety of factors relevant to vascular 2 

inflammation, coagulation, vessel tone and barrier function.  Endothelial-derived factors 3 

associated with the atherothrombotic process have the ability to monitor changes in 4 

vascular risk following lifestyle interventions. Soluble forms of selectins and cell 5 

adhesion molecules have been employed previously in intervention studies (Davis et al., 6 

2011; Keogh et al., 2008; Porreca et al., 2004; Sharman & Volek, 2004; Wycherley et al., 7 

2009).  Selectins and adhesion molecules are involved in the rolling and tethering of 8 

circulating leukoctyes and their migration into the subendothelial layer, key processes in 9 

atherogenesis (Brevetti et al., 2006).  Thrombomodulin is a key component of endothelial 10 

thromboresistance with cell surface expression reduced, and circulating levels increased, 11 

with endothelial injury and dysfunction (Martin et al., 2013).   12 

 13 

Microvesicles are a novel class of vascular biomarker released from a range of vascular 14 

cells including endothelial cells, platelets, vascular smooth muscle cells, erythrocytes and 15 

leukocytes, into a range of body fluids including blood, urine, cerebrospinal fluid, lymph, 16 

saliva and tears.  These small vesicles, between 100 – 1000 nm in diameter, are released 17 

by outward budding of the parent cell plasma membrane.  In contrast, exosomes, a related 18 

class of extracellular vesicle between 30 – 100 nm in diameter, are released by 19 

exocytosis.  Microvesicles are not simply biomarkers but also potentially mediators of 20 

disease activity and cell-cell communication, transporting bioactive lipids, membrane 21 

proteins, mRNA and miRNA from the parent to target cells (Akers et al., 2013; 22 

Andriantsitohaina et al., 2012; Ayers et al., 2015).  Endothelial microvesicles (EMV) 23 
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have prognostic potential as vascular biomarkers that may exceed the more established 1 

soluble protein biomarkers.  They are elevated in a range of vascular inflammatory 2 

disorders and add to risk prediction in prospective studies when added to models 3 

involving more established markers (Nozaki et al., 2009) .  Recently, we have shown an 4 

association between EMV and unstable atherosclerosis (Wekesa et al., 2014).  EMV 5 

impair endothelial dependent dilation, increase arterial stiffness, promote inflammation 6 

and initiate coagulation (Chironi et al., 2009).   7 

 8 

In contrast to studies that have assessed blood lipids, blood glucose and blood pressure, 9 

only a few studies have employed endothelial biomarkers to assess the effects of LCD on 10 

vascular risk, and to our knowledge no studies have employed EMV.  Reductions in 11 

soluble intercellular adhesion molecule (sICAM-1), soluble E-selectin and soluble P-12 

selectin, (Davis et al., 2011; Keogh et al., 2008; Sharman & Volek, 2004; Wycherley et 13 

al., 2009) been demonstrated following LCD interventions, but not soluble vascular cell 14 

adhesion molecule (sVCAM-1) (Wycherley et al., 2009).  Although elevated in the obese 15 

state (Stepanian et al., 2013), EMV have not been widely employed in dietary 16 

intervention research.  Following bariatric surgery-induced weight loss however, one 17 

study reported a reduction in EMV (Cheng et al., 2013) and another no change 18 

(Stepanian et al., 2013).   19 

 20 

The purpose of this study was to examine the influence of a 24-week LCD on 21 

cardiovascular risk profile determined from changes in EMV and other endothelial-22 
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inflammatory biomarkers.  Middle-aged overweight women were chosen as the subject 1 

group of interest, given the popularity of LCD and the paucity of data in this population. 2 

 3 

 4 

Methods 5 

Study overview 6 

In this randomised crossover study, participants were randomised to either 24 weeks on 7 

their normal diet (ND) or a LCD after which they crossed over to the alternative diet for a 8 

further 24 weeks.  A fasting blood sample was obtained at the cross-over point (Week 24) 9 

and at the end of the study (Week 48) from which circulating microvesicles and protein 10 

biomarkers were determined.  Body composition and blood pressure were also evaluated 11 

at these time points.   12 

Study population and ethics 13 

Twenty-eight women were recruited into this intervention study though 4 dropped out at 14 

various stages. The final analysis was therefore based on 24 participants (aged 48.4 ± 0.6 15 

y, height 1.60 ± 0.07 m, body mass 76.5 ± 9.1 kg, body mass index (BMI) 28.1 ± 2.7 16 

kg
.
m

-2
, waist circumference 84.1 ± 7.4 cm, % body fat 43.5 ± 5.0; mean ± SD) who 17 

completed both phases of the study.  The inclusion criteria were women in their late 18 

reproductive or post-menopausal years, a BMI between 25 and 30 kg
.
m

-2
 and not having 19 

engaged in dieting practices in the previous 6 months.  Exclusion criteria included 20 

participation in intense physical activity (> 3 times per week of vigorous physical 21 

activity), high alcohol consumption (> 14 units weekly), currently pregnant, lactating or 22 

taking hormone replacement therapy, previous hysterectomy or a history of chronic 23 
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menstrual irregularities, diabetes mellitus, kidney disease, chronic illness, inflammatory 1 

conditions, renal, gastrointestinal or hormonal disorders.  Each participant completed a 2 

health screening form to determine eligibility for the study.  From an ethical standpoint, 3 

the study was conducted in accordance with the Declaration of Helsinki.  Ethical 4 

approval was obtained from Waterford Institute of Technology Research Ethics 5 

Committee and written informed consent was obtained from each participant.  Details of 6 

the trial protocol have been published (www.isrctn.com, ISRCTN 48034106). 7 

Diet 8 

During the LCD period participants were assisted in to reducing their carbohydrate intake 9 

considerably, but not below 40 g
.
day

-1
.  Participants were also provided with information 10 

on what constituted carbohydrate foods, a list of the macronutrient content in the most 11 

commonly consumed foods and a booklet with LCD recipes, meal plans and advice. In 12 

addition, they attended cooking classes that demonstrated how to make LCD meals that 13 

were not readily available in stores.  Participants completed weekly food frequency 14 

questionnaires for self-monitoring purposes and to assist with compliance.  These were 15 

discussed with participants at the mid-point of each phase but were not analysed for 16 

research purposes.  Four individuals exited the study because of an inability to adhere to a 17 

LCD.  In contrast, the ND group were monitored via the weekly food frequency 18 

questionnaires. 19 

Dietary assessment  20 

A 3 day food diary was completed at baseline and at weeks 12 (mid-point phase 1), 24 21 

(cross over), 36 (mid-point phase 2) and 48 (end of study).  Participants were instructed 22 

to maintain current phase-dependent dietary practices and to estimate food quantities.  23 
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Visual and instructional cues were given to assist with portion size estimation.  The food 1 

diaries were analysed using CompEat
TM

 analysis software.  Intake of selected macro-2 

nutrients (energy, carbohydrate, fat, saturated fat and protein) and micro-nutrients during 3 

the ND and LCD phases were calculated by averaging daily values at the mid-point and 4 

end of each phase from these 3 day food diary analyses.   5 

Physiological Measurements 6 

Height, body mass, waist circumference and blood pressure were measured at baseline, 7 

week 24 and week 48.  Blood pressure was determined using an automated blood 8 

pressure monitor (Omron Healthcare, USA) and appropriate cuff size, with participants 9 

seated and resting for 10 min before assessments were made.  Body fat was determined 10 

by DEXA (Norland XR-46, USA). 11 

Blood collection and processing  12 

All blood samples were taken in the morning following an overnight fast. The first 3.0 13 

mL was discarded. Samples were kept at room temperature prior to centrifugation and 14 

processed within 2 hours of collection.  The serum tubes were centrifuged for 15 minutes 15 

at 1500g at 20
o
C. The upper part of the serum and plasma was collected down to 1 cm 16 

above the buffy coat layer. The sodium citrate tubes (3.2%), for MV analysis, underwent 17 

a double centrifugation protocol. They were first centrifuged for 15 minutes at 1500g at 18 

20
o
C, followed by 2 minutes at 13,000g at 20

o
C to produce platelet poor plasma, with the 19 

pellet discarded. Aliquots of ~350 mL of serum and plasma were stored at -80
o
C for later 20 

analysis. 21 
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Microvesicle and soluble protein biomarker analysis 1 

MV were defined based on size and fluorescence using flow cytometry (FC500, Beckman 2 

Coulter, USA).  Microvesicles were defined as particles < 1.0 µm in diameter with 3 

fluorescence greater than that of negative control samples.  A microvesicle size gate was 4 

established on forward vs. side scatter using 0.5 and 0.9 µm sizing beads (Megamix, 5 

Biocytex, France).  This bead combination can be used to establish the upper limit of the 6 

size gate and to standardize MV enumeration by calibrating the lower limits of the gate 7 

just above the noise of the instrument.  Two different EMV subsets were enumerated, 8 

MV expressing CD31 but not expressing the platelet marker CD41 (CD31
+
CD41

-
 EMV) 9 

and MV expressing the endothelial specific markers CD144, CD146 or CD105 in a 10 

monochrome multimarker assay (mmEMV). This monochrome multimarker approach 11 

was previously employed (Duval et al., 2010) to improve the signal to noise ratio, given 12 

the low number of these endothelial specific markers on particles of small surface area.  13 

Representative plots (figure 2) are included as supplementary data. 14 

 15 

Plasma samples were thawed on ice prior to analysis.  Exactly 330 µl of thawed plasma 16 

was washed twice in PBS-citrate (19,000g for 30 min).  After the first wash the pellet (~ 17 

30 µL) was resuspended in PBS-citrate.  Following the second wash the pellet was 18 

resuspended in 80 µL PBS-citrate and vortexed thoroughly, resulting in a sufficient 19 

sample volume for all assays (CD31
+
41

-
, mmEMV and negative control samples).  The 20 

following reagents were used to stain the samples, CD31-PE, CD41-PECy5, CD144-PE, 21 

CD146-PE, CD105-PE, IgG1-PECy5 and IgG1-PE (all BD Biosciences, UK).  All 22 

antibodies were diluted in PBS and centrifuged at 13,000g for 3 min to remove 23 
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aggregates.  For the CD31
+
41

-
 EMV assay, 20 µL of resupended pellet was incubated in 1 

the dark for 30 min with CD31-PE (final conc. 0.68 µg
.
mL

-1
) and CD41-PECy5 (final 2 

conc. 0.12 µg
.
mL

-1
).   The negative control sample employed IgG1-PECy5.  For the 3 

mmEMV assay, 20 µL of resupended pellet was incubated in the dark for 30 min with 4 

CD144-PE (final conc. 0.19 µg
.
mL

-1
, CD146-PE (final conc. 0.12 µg

.
mL

-1
) and CD105-5 

PE (final conc. 0.38 µg
.
mL

-1
).  The negative control employed IgG1-PE (final conc. 0.69 6 

µg
.
mL

-1
).  Then, 500 µL of phosphate buffered saline was added to each sample, 7 

followed immediately by flow cytometric analysis for 3 min at medium speed.  8 

Instrument flow rate was calculated using flow count beads (SPHERO Accucount, 9 

Spherotech, USA).  EMV counts were converted to event
.
µl

-1
 taking into account the 10 

flow rate of the instrument, the 500 µl of PBS added prior to analysis and the 11 

concentrating effects of the wash protocol which reduced a starting plasma volume from 12 

330 µl to 110 µl. 13 

 14 

Endothelial-inflammatory biomarkers of protein origin were analysed in duplicate using 15 

commercially available immunoassays (Meso Scale Discovery, Rockville, MD, USA) 16 

employing multiplexing technology and electrochemiluminescence detection.  Serum 17 

cholesterol, high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) 18 

cholesterol, triglycerides, apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB) were 19 

determined via spectrophotometric assays performed on an automated clinical chemistry 20 

system (ACE® Wassermann B.V., Netherlands) using appropriate reagents, calibrators 21 

and controls (Randox Laboratories, UK).  22 
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Statistics 1 

All data was checked for normality using the Kolmogorov-Smirnov test.  The effect of 2 

the LCD on all variables was determined by comparing values at the end of the ND and 3 

LCD phases using paired t-tests.  The potential for carryover between phase 1 and phase 4 

2 of the study was checked by comparing the delta scores (ND – LCD) for each variable 5 

between the group that was first randomised to the ND phase (n=12) and the group first 6 

randomised to the LCD phase (n=12) using independent t-tests (Wellek & Blettner, 7 

2012).  Associations between the between-phase differences in body mass and the 8 

differences in circulating biomarkers were determined using Pearson correlations.  9 

Significance was set at p<0.05.  Data are presented as mean ± SEM. 10 

 11 

Results  12 

Carryover 13 

With respect to body mass, blood pressure, EMV and all soluble endothelial and 14 

inflammatory biomarkers, delta scores between the ND and LCD phases were not 15 

different between the group first randomised to the ND phase and the group first 16 

randomised to the LCD phase.  17 

Mean daily intake of various nutrients 18 

Daily intake of energy and macronutrients on the ND and LCD (table 1) were calculated 19 

by averaging the 3 day food diary analysis at the mid-point and end of each phase.   Mean 20 

daily energy and carbohydrate intake were 398 kcal and 92 g lower (p<0.05) respectively 21 

on the LCD compared to the ND.   Mean daily intake of fat, saturated fat and protein was 22 
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not different on the LCD and ND (table 1) but the percentage of energy obtained from fat 1 

and protein was higher (p<0.05) on the LCD compared to the ND (figure 1).   2 

Body composition  3 

Body mass, body mass index and waist circumference were 3.7 ± 0.8 kg, 2.4 ± 0.3 kg
.
m

-2 
4 

and 3.5 ± 1.0 cm lower respectively (p<0.05) at the end of the LCD compared to the ND 5 

phases (table 2). Systolic blood pressure was not different but diastolic blood pressure 6 

was 5 ± 2 mmHg lower at the end of the LCD compared to the ND phases.   7 

EMV and endothelial-inflammatory biomarkers  8 

CD31
+
CD41

-
 EMV (p<0.05) but not mmEMV (p=0.08) were lower at the end of the 9 

LCD compared to the end of the ND (table 3).   Soluble E-selectin, sP-selectin, soluble 10 

thrombomodulin (sTM), C-reactive protein (CRP) and serum amyloid A (SAA) were 11 

lower (p<0.05) following 24 weeks on the LCD compared to 24 weeks on the ND (table 12 

3).  Soluble ICAM-1, sICAM-3 (p=0.08) and sVCAM-1 were not different following 24 13 

weeks on the LCD compared to the ND (table 3).  Serum lipids, apolipoproteins and 14 

glucose were not different at the end of the LCD compared to the ND phases (table 4). 15 

Associations 16 

The difference in CD31
+
CD41

-
EMV between dietary phases was correlated with the 17 

difference in mmEMV (r=0.51) but with no other biomarker or dietary variable.  The 18 

difference in waist circumference was correlated (p<0.05) with the difference in 19 

mmEMV (r=0.47).  The difference in body mass between phases was correlated (p<0.05) 20 

with the difference in diastolic blood pressure (r =0.44), sE-selectin (r=0.68) and CRP 21 

(r=0.56).   22 

 23 
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Discussion 1 

The purpose of this study was to determine the influence of a 24 week LCD on EMV and 2 

soluble endothelial biomarkers of protein origin in overweight women.  CD31
+
41

-
EMV, 3 

sE-selectin, sP-selectin, sTM, SAA and CRP were all reduced as a result of the LCD. 4 

These changes were accompanied by a modest reduction in body mass, waist 5 

circumference and diastolic blood pressure.   6 

 7 

This dietary intervention targeted a reduction in carbohydrate intake but not the near 8 

elimination of carbohydrate from the diet.  Participants were not permitted to reduce 9 

carbohydrate intake below 40 g
.
day

-1 
in order to avoid ketogenesis.  Otherwise the 10 

participants were free to devise their own strategies to help them achieve the reduction in 11 

carbohydrate intake.  Carbohydrate intake was ~90 g
.
day

-1 
lower on the LCD compared to 12 

the ND.  With no meaningful increase in absolute fat or protein intake when consuming 13 

the LCD, the resultant daily energy deficit was ~400 kcal.  However, the percentage of 14 

energy obtained from carbohydrate decreased from 44 % to 28 % with the percentage of 15 

energy from fat increasing from 38 % to 47 % and protein from 17 % to 23 %.  There was 16 

no difference in saturated fat intake between the LCD and ND phases, whether expressed 17 

in g
.
day

-1
 or as a % of total fat intake.  The energy deficit over the course of the 24 weeks 18 

resulted in a moderate reduction in body mass and waist circumference, respectively.  19 

The percentage reduction in body mass was ~5 %, which according to some sources 20 

(National Institutes of Health, 1998) is the threshold at which health benefits are 21 

observed. 22 

 23 
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This is the first study to demonstrate a reduction in EMV and adds to the body of 1 

evidence demonstrating an improvement in cardiovascular risk profile following a 2 

reduction in dietary carbohydrate intake leading to moderate weight loss.  EMV are 3 

emerging as a novel marker of vascular risk in cross-sectional but also in prospective 4 

studies (Lee et al., 2012; Nozaki et al., 2009) where they can add to risk prediction.  This 5 

reduction in CD31
+
CD41

- 
EMV was accompanied by a reduction in soluble endothelial 6 

markers and acute phase inflammatory proteins.  The difference in the mmEMV subset 7 

between diet phases did not reach statistical significance.  There is evidence that specific 8 

EMV subsets exist and respond differently to cell activation and apoptosis (Jimenez et 9 

al., 2003).  Two other studies have examined changes in EMV following bariatric surgery 10 

induced weight loss. Paradoxically, Cheng and colleagues (Cheng et al., 2013) 11 

demonstrated a reduction in CD144
+
 EMV (CD144 was part of our EMV multimarker 12 

panel that was unchanged by our LCD) while Stephanian and colleagues (2013) reported 13 

no change in CD31
+
41

- 
EMV. 14 

 15 

Of the various circulating MV populations, those of endothelial origin are typically the 16 

most difficult to enumerate.  This may relate to the low abundance in the circulation of 17 

EMV above the noise of the instrument and/or to the low expression of endothelial-18 

specific markers on the MV membrane.  CD31
+ 

EMV are the most widely reported in the 19 

literature, but the CD31
+ 

EMV assay must include a platelet-specific marker to exclude 20 

PMV, as CD31 is also abundantly expressed on platelets.  Unlike CD42b, sometimes 21 

employed in EMV research for this purpose, the expression of CD41 on platelets is 22 

relatively stable and not affected by platelet activation triggers, hence our definition of 23 
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EMV as CD31
+
41

-
 events.  A novel strategy that avoids the need to gate out PMV in a 1 

two colour assay is the monochrome multimarker assay proposed by Duval and 2 

colleagues (2010).  This employs more than one endothelial-specific antibody, all tagged 3 

with the same fluorochrome to increase the signal of EMV bearing weakly expressed 4 

markers.  Using this monochrome multimarker approach, Duval et al. reported a 20 fold 5 

difference between EMV of lupus patients and healthy controls.  Although the use of 6 

single endothelial-specific markers is the ideal, this has not to date yielded clear EMV 7 

populations in our laboratory with the technology available.  The lack of consensus on 8 

how to quantify EMV is a limitation in the field.   There is scope for methodological 9 

research, possibly corroborating flow cytometric methods with ELISA-based MV assays 10 

or investigating other endothelial-specific markers such as thrombomodulin (Martin et 11 

al., 2014).   12 

 13 

The effects of the LCD on protein markers of endothelial activation and acute phase 14 

inflammatory proteins are broadly in line with the results of a small number of other 15 

studies in this field (Davis et al., 2011; Keogh et al., 2008; Sharman & Volek, 2004; 16 

Wycherley et al., 2009) with sE-selectin, sP-selectin, sTM, SAA and CRP lower at the 17 

end of the LCD phase.  Previous studies have reported reductions in sTM (Porreca et al., 18 

2004) and SAA (Yang et al., 2006) following a traditional hypocaloric diet leading to 19 

weight loss, though to our knowledge, this is the first study to demonstrate their reduction 20 

following a LCD intervention.  Soluble P-selectin is present on both endothelial cells and 21 

platelets and the source of the LCD difference is unclear.  Regardless, these changes are 22 

consistent with the cross talk that occurs between endothelial cells, platelets and 23 
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leukocytes that occur at all stages of atherosclerotic disease (Siegel-Axel & Gawaz, 1 

2007).  Contrary to other studies (Davis et al., 2011; Keogh et al., 2008; Sharman & 2 

Volek, 2004; Wycherley et al., 2009), there was no difference in sICAM-1 during the 3 

LCD and ND phases.  Crucially however, no marker measured was higher during the 4 

LCD phase.  Differential responses of soluble selectins and cell adhesions molecules to 5 

diet and pharmacological intervention are common in the literature (Abe et al., 1998; 6 

Eschen et al., 2004; Hackman et al., 1996; Wycherley et al., 2009) with sVCAM-1 the 7 

least likely to be reduced.  Hackman and colleagues (1996) speculated that the much of 8 

sICAM-1 and sVCAM-1 may arise not from the endothelium but from leukocytes and 9 

vascular smooth muscle cells, which do not always respond in the same way to treatment.   10 

 11 

The mechanisms underpinning the reduction in EMV during the LCD phase are unclear.  12 

The reduction in EMV and other markers were accompanied by a modest reduction in 13 

body mass and waist circumference.  Adipose tissue, particularly visceral adipose tissue 14 

is known to release pro-inflammatory cytokines such as tissue necrosis factor alpha 15 

(TNF-α) that stimulate the release of EMV (Brown et al., 2011).  Although not measured 16 

in this study, TNF-α is known to be reduced following weight loss (Dandona et al., 17 

1998).  These cytokines can also stimulate the production of the acute phase proteins 18 

CRP and SAA, with both proteins lower in the LCD phase of this study.  A correlation 19 

was observed between the difference in body mass and the differences in CRP and sE-20 

selectin between diet phases, with a correlation also observed between the differences in 21 

waist circumference and mmEMV.   Cheng and colleagues (Cheng et al., 2013) reported 22 

a considerable reduction in EMV one month following bariatric surgery coinciding with a 23 
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10% reduction in body mass, though there were no further reduction in EMV at 12 1 

months, despite another 10% reduction in body mass.  The timecourse for reductions in 2 

EMV may therefore not always mirror reductions in body mass.  Hypertension is 3 

associated with elevated EMV (Chen et al., 2011), consistent with the mechanosensitive 4 

properties of endothelial cells.  However, the small difference in diastolic blood pressure 5 

between dietary phases in this study was not correlated with the difference in EMV.  6 

Changes in macronutrient intake are other possibilities that could potentially influence 7 

EMV release, independent of weight loss.  High glucose can induce oxidative stress in 8 

endothelial cells triggering EMV release (Jansen et al., 2013), with EMV elevated in 9 

diabetes (Leroyer et al., 2008).   Although carbohydrate intake was reduced considerably 10 

during the LCD phase, fasting serum glucose was not different between phases however.  11 

It is not clear if a reduced carbohydrate intake can reduce endothelial stress in the absence 12 

of changes in fasting glucose.  Further research is clearly needed to elucidate the 13 

mechanisms by which a LCD, leading to moderate weight loss, can lower EMV.   In 14 

particular, it would be intriguing to examine the influence of a LCD on EMV and other 15 

endothelial biomarkers where body mass is maintained via increases in fat and protein 16 

intake.   17 

 18 

The difference in EMV and other markers cannot be attributed to differences in blood 19 

lipids as no blood lipid or apolipoprotein variable was significantly different between the 20 

LCD and ND conditions.   The absence of any absolute increase in fat, saturated fat and 21 

protein intake during the LCD phase may be relevant here.   The effects on EMV of 22 

VLCD that result in pro-atherogenic changes in blood lipids have yet to be determined.  23 
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As considerable biomarker reductions can occur in the absence of any change in blood 1 

lipids, these results also highlight the need to go beyond blood lipids when evaluating 2 

dietary interventions. 3 

 4 

This study has a number of limitations.  The study design did not involve a washout 5 

between trial phases with the mid-trial blood sample representing the end of the initial 6 

phase (ND or LCD phase) and the start of the next phase.  This was in part due to the 7 

absence of data indicating the duration of a wash out necessary following the LCD phase 8 

to return biomarkers to pre-study concentrations but also a desire not to prolong the study 9 

beyond 48 weeks.  Twenty-four weeks (duration of second phase) back on normal diets 10 

was likely to be sufficient however for a return to normal metabolic and endothelial 11 

profiles in those who were randomised to undertake the LCD phase first.  Crucially, there 12 

was no evidence of carryover between phase 1 and phase 2, with no significant 13 

differences in ND – LCD delta scores in those first randomised to the ND and those first 14 

randomised to the LCD.   As a result, the effects of the LCD were determined simply by 15 

comparing participant values at the end of their LCD and ND phases.  The results of this 16 

study do not generalise to all LCD.  With a mean carbohydrate intake of 87 g
.
day

-1
, 17 

representing 29% of daily energy needs, this LCD was not particularly extreme, though 18 

still reducing carbohydrate intake by ~90 g
.
day

-1
.  More extreme ketogenic diets may 19 

have adverse effects on endothelial health, regardless of the magnitude of weight loss.   20 

 21 

In conclusion, a diet that reduces carbohydrate intake by ~90 g
.
day

-1 
so that carbohydrate 22 

accounts for ~30% of total daily energy intake, results in modest reductions in body 23 
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mass, waist circumference and blood pressure accompanied by reductions in 1 

CD31
+
CD41

- 
EMV and multiple other endothelial inflammatory biomarkers.  It does not 2 

increase any endothelial biomarker.  Though the precise mechanisms involved are 3 

unclear from this study, the changes in endothelial markers can occur in the absence of 4 

any change in blood lipids. 5 

 6 

 7 
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Table 1    Daily energy, carbohydrate, protein, fat and saturated fat intake during the 

normal diet and low carbohydrate diet phases (n=24) 

 

Normal diet 

 

Low carbohydrate diet 

 

Energy (kcal) 1626 ± 86 1228 ± 58 * 

Carbohydrate (g) 179 ± 11 87 ± 7 * 

Protein (g) 71 ± 3 71 ± 3 

Fat (g) 70 ± 5 66 ± 4 

Saturated fat (g) 27 ± 2 23 ± 1 

 

*p<0.05 compared to Normal diet 

 

 

Table 2: Body composition and blood pressure following 24 weeks on a normal diet and 

24 weeks on a low carbohydrate diet (n=24) 

 Normal diet Low carbohydrate diet 

Body mass (kg) 73.8 ± 1.8 70.1 ± 1.8* 

Body mass index (kg
.
m

-2
) 27.1 ± 0.6 25.7 ± 0.6 * 

Waist circumference (cm) 85.8 ± 0.5 82.3 ± 0.6 * 

Systolic blood pressure (mmHg) 130 ± 2 127 ± 3 

Diastolic blood pressure (mmHg) 84 ± 2 79 ± 2* 

 

*p<0.05 compared to Normal diet 
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Table 3:  Endothelial and inflammatory biomarkers following 24 weeks on a normal diet 

and 24 weeks on a low carbohydrate diet (n=24) 

 

 Normal diet Low carbohydrate diet 

CD31
+
41

-
EMV (events

.
µL

-1
) 29.9 ± 4.0 20.9 ± 3.0* 

mmEMV (events
.
µL

-1
) 57.0 ± 7.8 43.9 ± 6.8† 

sE-selectin (ng
.
mL

-1
) 13.1 ± 1.4 11.9 ± 1.4* 

sP-selectin (ng
.
mL

-1
) 59.9 ± 6.4 52.3 ± 5.7* 

sICAM-1 (ng
.
mL

-1
) 307 ± 26 294 ± 37 

sVCAM-1 (ng
.
mL

-1
) 320 ± 18 320 ± 14 

sThrombomodulin (ng
.
mL

-1
) 3.62 ± 0.23 3.39 ± 0.22* 

sICAM-3 (ng
.
mL

-1
) 1.25 ± 0.18 1.21 ± 0.17† 

CRP (mg
.
L

-1
) 1.49 ± 0.31 1.14 ± 0.24* 

SAA (ng
.
mL

-1
) 2556 ± 570 1546 ± 415* 

 

*p<0.05 compared to Normal diet. †p=0.08 compared to Normal diet. Values are mean ± 
SEM.  EMV = endothelial microvesicles, mmEMV = monochrome multimarker EMV and 

represents microvesicles positive for CD105, CD144 or CD146.  Samples were stained 

with these three endothelial specific monochrome antibodies in order to increase EMV 

counts, sICAM-1 = soluble intercellular adhesion molecule 1, sVCAM-1 = soluble 

vascular cell adhesion molecule, CRP = C-reactive protein, SAA = serum amyloid A 

  

 

Table 4    Serum lipids and apolipoproteins following 24 weeks on a normal diet and 24 

weeks on a low carbohydrate diet (n=24) 

 Normal diet Low carbohydrate diet 

Apolipoprotein A1 (mg
.
dL

-1
) 138 ± 3 141 ± 4 

Apolipoprotein B (mg
.
dL

-1
) 112 ± 3 110 ± 4 

Cholesterol (mmol
.
L

-1
) 5.5 ± 0.1 5.4 ± 0.1 

HDL-cholesterol (mmol
.
L

-1
) 1.67 ± 0.07 1.66 ± 0.07 

LDL-cholesterol (mmol
.
L

-1
) 3.3 ± 0.1 3.2 ± 0.2 

NEFA (mmol
.
L

-1
) 0.69 ± 0.06 0.61 ± 0.03 

Triglycerides (mmol
.
L

-1
) 0.92 ± 0.06 0.90 ± 0.10 

Glucose (mmol
.
L

-1
) 5.25 ± 0.07 5.26 ± 0.12 

 

Values are mean  ± SEM.  HDL = high density lipoprotein; LDL = low density 

lipoprotein; NEFA = Non-Esterified Fatty Acid 
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Figure legends 

 

Figure 1: Percentage of total daily energy intake obtained from carbohydrate, fat and 

protein when following a normal diet (ND) and a low carbohydrate diet (LCD) 
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Supplementary data legend 

 

Figure 2:  Representative flow cytometric plots of monochrome multimarker EMV and 

CD31
+
41

-
 EMV  

 

Plot A,  FS vs. SS plot of EMV with size gate (E) < 1.0 µm and above the noise of the 

instrument established using sizing beads.  Subsequent plots B, C, D and E are gated on 

size gate (E).  Plots B and C, monochrome multimarker EMV (in J2) expressing CD144, 

CD146 and/or CD105 and negative control sample containing IgG1-PE.  Plots D and E, 

CD31
+
41

-
 EMV (quadrant X4) and negative control sample containing IgG1-PECy5. 
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