

Strategic Integrated Research in Timber

Making the Grade & Maximising the Opportunities

Dan Ridley-Ellis BEng MRes PhD FIMMM

The Centre for Wood Science and Technology Institute for Sustainable Construction, Edinburgh Napier University

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Further Education 2015

blogs.napier.ac.uk/cwst #ICFTimberCon 28 April 2016

Issues - wood in construction

- Water
- "Figure" and "Defects"
- Anisotropy
- Inhomogeneity
- Variation and uncertainty
 - All materials have some variation and uncertainty
 - Main difference is we don't manufacture the wood
 - ...Trees do
 - Well...actually...trees and foresters do

Construction timber

- Structural design is about buildings
 - Staying safe
 - Staying fit for use
- More specifically
 - Safety of the people and the structure
 - Problem e.g. collapse due to lack of strength
 - The structure remaining functional
 - Problem e.g. too much movement due to lack of stiffness
 - In part, handled by grading provides the numbers for engineers to use in their design calculations

Grade-determining properties

- Strength
 - Usually major axis bending (aka Modulus of Rupture, MoR)
- Stiffness
 - Usually major axis bending (aka Modulus of Elasticity, MoE)
- **Density** (at 12% moisture content)
 - Also an indirect measure of strength in some elements of timber design
- All the other strength class properties are derived from these 3 main properties (By conservative relationships. Equations are in EN 384)

Dealing with uncertainty

blogs.napier.ac.uk/cwst #ICFTimberCon 28 April 2016

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FORTHER EDUCATION 2015

Characteristic values

ANNIVERSARY PRIZES FOR HIGHER AND FURTHER FORCATION 2015

Characteristic values

- Timber grades are assigned to a class
- EN 338 lists strength classes
- C classes for softwoods (/hardwoods)
- D classes for hardwoods
- These are not the only strength classes

EN338:2016

	C14	C16	C18	C20	C22	C24
--	-----	------------	-----	-----	-----	-----

Strength properties in N/mm²

Bending	14	16	18	20	22	24
Tension parallel	7,2	8,5	10	11,5	13	14,5
Tension perpendicular	0,4					0.4
Compression parallel		very different to mean				
Compression perpendicular	2,0	values from small clear testing			ing	
Shear	3,0	3,2	3,4	3,6	3,8	4,0

Stiffness properties in kN/mm²

Mean modulus of elasticity parallel bending	7,0	8,0	9,0	9,5	10,0	11,0
5 percentile modulus of elasticity parallel bending	4,7	5,4	6,0	6,4	6,7	7,4
Mean modulus of elasticity perpendicular	0,23	0,27	0,30	0,32	0,33	0,37
Mean shear modulus	0,44	0,50	0,56	0,59	0,63	0,69
Density in kg/m ³						
5 percentile c density	290	310	320	330	340	350
Mean density	350	370	380	400	410	420

Critical property

- To comply with the grade, characteristic values must be met (at least*)
- For a species and grade combination usually one property is limiting
 - Strength
 - Stiffness
 - Density
- So strength grading isn't always about predicting strength
 - * subject to adjustments

THE OUEEN'S

ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

Critical property for spruce

British spruce: Sitka spruce and Norway spruce combined from UK and Ireland (WPCS)

SIRT benchmarking validation, 957 pieces

British spr	uce	C14	C16	C18	C20	C22
Strength	20.9 N/mm	1 ² 14	16	18	20	22
Stiffness	8.2 kN/mm	1 ² 7	8	9	9.5	10
Density	338 kg/m	n ³ 290	310	320	330	340

It isn't density (or strength) that is limiting - it is stiffness

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Further Education 2015

13

blogs.napier.ac.uk/cwst #ICFTimberCon 28 April 2016

Grading trades yield for class

The other 74% is C16

(with perfect grading – knowing the actual properties of each piece) British spruce: Sitka spruce and Norway spruce combined from UK and Ireland (WPCS)

 Image: Single grade / reject is single grade / rejec

For higher grades, density becomes critical. Yield of C27 ~ 9%

14 THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHRA AND FORTHAR EDUCATION 2015

blogs.napier.ac.uk/cwst #ICFTimberCon 28 April 2016

Grading methods for timber

- Visual strength grading
 - (not the same as appearance grading)
 - Knots, grain, species, origin...
- Machine strength grading
 - Machine control (pre-determined settings)
 - Output control (continuous testing)
- Additional overrides
 - Distortion, cracks, rot, insect damage, etc

See "strength grading of timber explained"

#ICFTimberCon 28 April 2016

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Further Education 2015

Visual strength grading

- Overarching requirements in EN 14081-1
- But done according to national standards
 - BS 4978 (softwoods)
 - BS 5756 (hardwoods)
 - Also German, Canadian, French, Italian, Dutch, Nordic, Spanish...
 - Need not be a formal standard can make your own
- Assignments to classes in EN 1912
- According to testing to EN 384
- Can also be assignments elsewhere

Machine strength grading

- Machine grading
 - Relates an 'indicating parameter' to the critical gradedetermining parameter(s)
 - Better accuracy than visual grading...
 - ...due to the parameters being measured
 - ...and the automation
 - ...so assignment to grade is less conservative
 - Fast but expensive equipment
 - but getting cheaper and more portable

Important to realise

- Timber grading does not operate on a piece by piece basis
- Pieces are individually assigned to grades
- ...but it is the population of timber in that grade that matters
- And how an individual piece is sorted into the grade depends on the machine operation / visual grading standard
- Collectively, the grade should meet the strength class characteristic values

Bending graders Minor axis bending stiffness

Cook-Bolinder

Computermatic

Timgrader

Figures from BRE Digest 476 "Guide to machine strength grading of timber"

blogs.napier.ac.uk/cwst

#ICFTimberCon 28 April 2016

Acoustic graders

Acoustic velocity, maybe density - effectively stiffness Work well on British spruce because stiffness is the critical property

VISCAN (MICROTEC)

Precigrader (Dynalyse AB)

MTG (Brookhuis)

Triomatic (CBS-CBT)

Acoustic graders

Same principle as tools for forestry (either resonance or time of flight) Not "grading" ... but big potential for segregation or pre-grading

Clear wood and average density, knot size and location Main machine for UK...because very fast

e.g. GOLDENEYE 702 (MiCROTEC)

Lately also machines based on grain angle e.g. WoodEye

22

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

blogs.napier.ac.uk/cwst #ICFTimberCon 28 April 2016

UK larch with mtgBATCH 962

(in-line version of hand-held MTG with balance)

	% of required					
	Bending strength	Bending stiffness	Density			
Class	%	%	%			
C16	143% ✓	105% 🗸	129% 🗸			
C27	100% 🗸	103% 🗸	122% ✓			

Example, grading with stiffness UK larch (WLAD)

23

THE QUEEN'S

ANNIVERSARY PRIZES

FOR HIGHER AND FURTHER EDUCATION

Variation in the resource

e.g. British spruce (mixture of Sitka spruce & Norway spruce)

Strength class definitions themselves overlap (because they describe a population with certain variation)

Variation in the resource

Sources of the variation

Source	Density	Strength	Stiffness
Between sites	23%	18%	26%
Between trees on a site	51%	25%	36%
Between logs in a tree	2%	5%	2%
Within log	25%	52%	35%

Moore, J. R., Lyon, A. J., Searles, G. J., Lehneke, S. A., Ridley-Ellis, D. J. Within- and between-stand variation in selected properties of Sitka spruce sawn timber in the United Kingdom: implications for segregation and grade recovery. Annals of Forest Science (February 2013) DOI 10.1007/s13595-013-0275-y

THE QUEEN'S

ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

blogs.napier.ac.uk/cwst #ICFTimberCon 28 April 2016

Reducing wastage

blogs.napier.ac.uk/cwst #ICFTimberCon 28 April 2016

THE QUEEN'S ANNIVERSARY PRIZES For Hieuna and Feature Education 2015

Since 2003

Forest Research. Forestry Commission. Aberdeen University. Growers. Edinburgh Napier University. Processors.

The University of Glasgow.

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

blogs.napier.ac.uk/cwst #ICFTimberCon 28 April 2016

Conifer species researched

- Sitka spruce (Picea sitchensis) (PCST)
- Norway spruce (*Picea abies*) (PCAB)
- Hybrid larch (aka Dunkeld larch) (*Larix x eurolepis*) (LAER)
- Japanese larch (Larix kaempferi) (LAKM)
- European larch (*Larix decidua*) (LADC)
- Douglas fir (*Pseudotsuga menziesii*) (PSMN)
- Scots pine (*Pinus sylvestris*) (PNSY)
- Noble fir (*Abies procera*) (ABPR)
- Western hemlock (*Tsuga heterophylla*) (TSHT)
- Western red cedar (*Thuja plicata*) (THPL)
- Serbian spruce (*Picea omorika*)
- Pacific silver fir (Abies amabilis) (ABAM) ۲
- Japanese red cedar (*Cryptomeria Japonica*) (CYJP)
- Grand fir (*Abies grandis*) (ABGR)
- European silver fir (Abies alba) (ABAL)

Hardwoods

Sycamore (ACPS) (Acer pseudoplatanus)

Birch (BTXX) (Betula pendula/pubescens)

Research beginning 'Resilience'

THE QUEEN'S

Range of species

Stocked area

(in Great Britain)

blogs.napier.ac.uk/cwst #ICFTimberCon 28 April 2016

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2015

Range of species

Range of species

blogs.napier.ac.uk/cwst #ICFTimberCon 28 April 2016

THE QUEEN'S ANNIVERSARY PRIZES

2015

GB volume forecast

blogs.napier.ac.uk/cwst #ICFTimberCon 28 April 2016

UK-grown timber - potential

British timber myths

- "No good for construction"
- "Because it grows too quickly"
- "Means low density and low strength"

Density and bending strength

ANNIVERSARY PRIZES FOR HIGHER AND FURTHER FORCATION 2015

Mechanical properties

- Amount of cell wall material
 - Wood density
- How that cell wall material is arranged
 - Grain, earlywood, latewood
- How that cell wall material is made up
 - Cellulose : lignin
 - Microfibril angle

THE QUEEN'S ANNIVERSARY PRIZE: For Higher and Further Education 2015

Juvenile core (softwoods)

Figure 2.15 Radial profile of Sitka spruce wood density. The green lines show profiles for five individual trees sampled at Baronscourt in Northern Ireland, while the black line represents a model fitted to these data.

Figure 2.20 Example of the radial variation in modulus of elasticity for two specimens of Sitka spruce wood. Modulus of elasticity was estimated from data on density and microfibril angle obtained from SilviScan-3.

Factors \rightarrow softwood quality

- Position within the tree
 Radially & vertically
- Silviculture

- Spacing, thinning, rotation length etc
- Site
 - Exposure, temperature, rainfall, soil type etc
- Genetics
 - Species, variety and individual

Wood properties and uses of Sitka spruce in Britain

So what's next? (1/2)

- Growth areas and variability
 Machine grading and visual grading
- Quality shifts
 - During production
 - Since settings were approved
 - Output control is too slow to adjust
 - Also better grading of "good" stands of timber?
- A better way to establish grading?
 Better for species diversity

So what's next? (2/2)

- Resource segregation
 - Standing trees, felled logs
 - Opportunities for making it work better
 - Figuring out the consequences for grading
- Tree breeding for better properties?
- Cheaper and more portable grading machines...could mean grading is done by the fabricator...no longer need to use 'commodity' strength classes...

Does not necessarily make sense to grade British spruce to C16 and then use it as studs, where bending stiffness is not as important as the strength that is reduced by the C16 strength class definition

FOR HIGHER AND FURTHER FOUCATIO 2015

#ICFTimberCon 28 April 2016

C16+

C16+ is a user defined UK grade for studs. Its primary characteristic values are:

- $f_{m,k} = 18,5 \text{ N/mm}^2$, E₀,mean = 8000 N/mm², $\rho_k = 330 \text{ kg/m}^3$
- Other characteristic values can be calculated from the equations given in EN 384.

(Strength > C18, and density of C20)

Secondary properties

- The secondary properties in EN338/EN384 are rather conservative
- You are permitted to specify your own values, established by testing

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Further Education 2015

46

blogs.napier.ac.uk/cwst #ICFTimberCon 28 April 2016

Visual grading

- For large cross-sections, visual grading will result in good yields since the knots are comparatively small
- There is good scope for improving visual grading assignments for home grown timber
- (Although that would require testing work)

THE QUEEN'S ANNIVERSARY PRIZES For Higher and Further Education 2015

Some current projects

- "Alternative" species
 - Including sawmill survey to gather information
- Drought crack in spruce
- Extractives content of UK trees
- British and European grading standards
- Improving resource segregation
- ...And early information
- Education and knowledge transfer

