
Analysing the performance of migrating birds

optimisation approaches for

large scale continuous problems

Eduardo Lalla-Ruiz1, Eduardo Segredo2,
Stefan Voß1, Emma Hart2, and Ben Paechter2

1 Institute of Information Systems
University of Hamburg
Hamburg, Germany

{eduardo.lalla-ruiz,stefan.voss}@uni-hamburg.de
2 School of Computing

Edinburgh Napier University
Edinburgh, Scotland, UK

{e.segredo,e.hart,b.paechter}@napier.ac.uk

Abstract. We present novel algorithmic schemes for dealing with large
scale continuous problems. They are based on the recently proposed
population-based meta-heuristics Migrating Birds Optimisation (mbo)
and Multi-leader Migrating Birds Optimisation (mmbo), that have shown
to be effective for solving combinatorial problems. The main objective
of the current paper is twofold. First, we introduce a novel neighbour
generating operator based on Differential Evolution (de) that allows to
produce new individuals in the continuous decision space starting from
those belonging to the current population. Second, we evaluate the per-
formance of mbo and mmbo by incorporating our novel operator to them.
Hence, mbo and mmbo are enabled for solving continuous problems.
Comparisons are carried out by applying both aforementioned schemes
to a set of well-known large scale functions.

Keywords: continuous neighbourhood search; migrating birds optimi-
sation; large scale continuous problems; global optimisation

1 Introduction

Nature-inspired computing counts with an extensive variety of algorithms mim-
icking natural processes and events from the universe that are frequently used
for tackling real-world optimisation problems. Along these algorithms, those in-
spired by the collective living and travelling of animals have attracted a con-
siderable interest from the related research community [12]. In this regard, the
collective behaviour and swarm intelligence of migratory birds and its algorith-
mic translation have been recently studied by Duman et al. [2], and Lalla-Ruiz
et al. [4]. Authors exploit, by means of their corresponding proposed algorith-
mic approaches, the advantage of sharing information and cooperating among



2

a group of individuals. While Migrating Birds Optimisation (mbo), which is in-
spired by the V-flight formation of migratory birds with one leader, was proposed
in [2], in [4], based on field studies, Multi-leader Migrating Birds Optimisation
(mmbo) was introduced, which allows different types of flight formation shapes,
as well as several leading individuals, to be managed.

Recently, mbo has shown its good performance for combinatorial problems,
such as the Quadratic Assignment Problem (qap) [2], the Dynamic Berth Allo-
cation Problem (dbap) [5], and Hybrid Flow-shop Scheduling [8], among others.
In regard to continuous optimisation, an initial adaptation to low-dimensional
continuous problems was developed in [1]. Results provided by said scheme,
however, showed a poor performance with respect to other approaches [11]. Re-
garding mmbo, it showed to provide better quality results than those achieved
by mbo for the qap [4]. Concerning its performance for continuous optimisation,
as far as we know, this is the first time that mmbo is enabled for dealing with
these types of problems, as well as the first time that mbo is assessed when
solving large scale continuous problems.

The main goal of this work is to propose suitable adaptations of mbo and
mmbo for tackling continuous optimisation problems. In addition to these adap-
tations, we propose a novel neighbourhood structure based on the well-known
Differential Evolution (de) [10] with the aim of enabling them for operating and,
consequently, generating solutions in a continuous decision space. The compu-
tational experimentation provided in this work, which involves the use of a set
of well-known large scale continuous problems [7], indicates that our proposals
are able to improve, for some cases, the results obtained by one of the best-
performing variants of de considering that set of large scale functions [3].

2 Schemes based on migrating birds optimisation for

continuous problems

This section focuses on describing our algorithmic proposals. Section 2.1 is de-
voted to describe the scheme mbo, while the approach mmbo is depicted in
Section 2.2. Finally, in Section 2.3 we introduce our novel neighbour generating
operator based on de.

2.1 Migrating birds optimisation

Migrating Birds Optimisation (mbo) is a population-based algorithm based on
the V-formation flight of migrating birds. It considers a population or flock,
of individuals or birds, that are aligned in a V-flight formation. Following that
formation, the first individual corresponds to the leader of the flock and the other
ones define the rest of the flock. The birds maintain a cooperative relationship
among them by means of sharing information. The way the flow of information
is shared is unidirectional. Namely, one individual sends information and the
other receives it. The direction of the information shared starts from the leader
bird and goes to the rest of the flock by following the V-shape flight formation.



3

Algorithm 1: Migrating Birds Optimisation pseudocode ([2])

Require: n, K, m, k, and x

1: Generate n initial solutions in a random manner and place them on an hypothetical
V-formation arbitrarily

2: g = 0
3: while (g < K) do

4: for (j = 1 : m) do

5: Improve the solution of the leader bird by generating k neighbours
6: g = g + k

7: for all (non-leader bird s in the flock) do

8: Improve the solution of the non-leader bird by using k − x generated neighbours
and x unused best neighbours from those birds in the front of it

9: g = g + (k − x)
10: end for

11: end for

12: Move the leader bird to the end and forward one of the birds following it to the leader
position

13: end while

14: Return best solution in the flock

Algorithm 1 depicts the pseudocode of mbo. The input parameters are: (i)
the number of birds in the flock (n), (ii) the maximum number of neighbour
solutions generated by the birds (K), (iii) the number of iterations performed
before changing the leader bird (m), (iv) the number of neighbours generated
by each bird (k), and (v) the number of best discarded solutions to be shared
among birds (x). The first step consists of generating n individuals or birds (line
1). The number of neighbour solutions generated by the population of birds, i.e.
g, is initially set to zero (line 2). During the search process, firstly, the leader
bird generates k neighbour solutions. In case the best solution generated leads
to an improvement in terms of the objective function value, the leader bird
replaces its solution by that neighbour solution (line 5). Secondly, each follower
bird generates a number of k − x neighbour solutions (lines 7–10) and receives
the best x neighbour solutions from the bird in front of it. If one of the generated
or received solutions leads to an improvement, then that follower bird is replaced
by that bird that allows the maximum improvement (line 8). This V-formation is
maintained until a prefixed number of iterations, m > 0, is reached. Once that,
the leader bird becomes the last bird in the V-formation and one of its immediate
followers becomes the new leader (line 12). Then, the search process is restarted
until m iterations are reached again. mbo is executed until a maximum number
of neighbour solutions, i.e. K, are generated (line 3). Finally, we should mention
that, in our case, neighbours are created (lines 5 and 8) by using the operator
described in Section 2.3.

2.2 Multi-leader migrating birds optimisation

Multi-leader Migrating Birds Optimisation (mmbo) is a novel population-based
meta-heuristic inspired by the flight formation of migratory birds which tries
to improve its predecessor mbo. In mmbo, birds are distributed in a line for-
mation mimicking the flight formation of migratory birds, which is determined
according to given relationship criteria, e.g. by means of the objective function



4

Algorithm 2: Multi-leader Migrating Birds Optimisation pseudocode ([4])

Require: n, K, k, and x

1: Create the initial population P by randomly generating n individuals
2: while (K neighbours have not been generated) do

3: Determine the interaction among individuals of P and establish the formation
4: while (stopping formation criterion is not met) do

5: Generate k neighbour solutions for each individual included into PL ∪ PI

6: Replace each individual included into PL for its best neighbour solution if
it leads to an improvement

7: Replace each individual included into PI for its best neighbour solution
8: for all (individual ∈ PF ) do

9: Generate k − x neighbour solutions
10: Get best x unused best solutions from the previous individual in the group
11: Replace individual for its best found solution if leads to an improvement
12: end for

13: end while

14: end while

15: Return best solution found by some individual from P

of the problem at hand. Depending on those criteria, we can have birds located
at positions that are closer than others regarding the front of the migratory for-
mation during the flight. Each individual generates a given number of feasible
solutions through a predefined neighbourhood structure. The obtained solutions
reflect the particular point of view about the solution space of each individual.
As mentioned above, during the search of mmbo, and depending on the relation-
ship criteria and the share of information among individuals, different roles can
be defined:

– Leader. It is that individual which has provided the best objective value when
compared to the adjacent ones. Therefore, it does not receive information
from any individual, but shares x solutions with each adjacent individual.
The leader generates k neighbour solutions. Since the objective function
value determines the position within the formation, the leader is the best-
behaved individual, and consequently, the most advanced one in its group
within the formation. The set of leader individuals is denoted as PL.

– Follower. It is that individual which explores the search space considering
its own information and the information received from the solutions in front
of it within the formation. Since it receives information, it generates k − x

neighbour solutions and receives x solutions from its adjacent individual.
The set of follower individuals is denoted as PF .

– Independent. It is that individual which is not currently included into any
group of the set of individuals. Thus, it does not exchange information with
any other individual. It generates k neighbour solutions. The set of indepen-
dent individuals is denoted as PI .

The pseudocode of mmbo is depicted in Algorithm 2. The first step is to
generate the set of individuals, i.e. P , which consists of n randomly generated
individuals (line 1). As long as the stopping criterion is not met, the mmbo

iterates (line 2). In this work, we consider a stopping criterion based upon a
maximum number of neighbour solutions to be generated (K). The relationship



5

criteria among individuals are based on the objective function value. This allows
to recognise the groups, as well as the formation (line 3). Then, the search
process starts (lines 4–13) and it is executed until a stopping formation criterion
is met. In case that said criterion is satisfied, the search process is stopped
in order to establish a new formation. During the search process, firstly, each
individual i ∈ PL ∪ PI generates a population of k neighbour solutions (line 5).
In case the best generated neighbour solution leads to an improvement in terms
of the objective function value, the individual moves to that solution (lines 6–7).
Secondly, each follower individual i ∈ PF , generates k − x neighbour solutions
(line 9) and receives x solutions from its adjacent individuals according to the
formation (line 10). Then, if some solution, either received or generated, leads the
follower individual to an improvement, then it will be replaced for that solution
(line 11). The remainder of the best discarded solutions will be shared with its
adjacent individual. As in the case of mbo, in mmbo neighbours are generated
(lines 5 and 9) by applying the operator introduced in Section 2.3.

2.3 Neighbour generating operator based on differential evolution

In this work, we introduce a novel neighbour generating operator to be used with
mbo and mmbo in order to enable their operation with continuous optimisation
problems. This operator is based on the well-known Differential Evolution (de),
a search algorithm which was specifically proposed for global optimisation [10].

For encoding individuals, a vector of D real-valued decision variables or di-
mensions xi is used, i.e. X = [x1, x2, . . . , xi, . . . , xD]. The objective function
f(X)(f : Ω ⊆ R

D → R) determines the quality of every vector X. Hence, find-
ing a vector X∗ ∈ Ω, where f(X∗) ≤ f(X) is satisfied for all X ∈ Ω, is the
goal in a global optimisation problem. Considering box-constrained problems,
the feasible region Ω is defined by Ω =

∏D

i=1[ai, bi], where ai and bi represents
the lower and upper bounds of variable i.

Regarding the most widely used nomenclature for de [10], i.e. de/x/y/z,
where x is the vector to be mutated, y defines the number of difference vectors
used, and z indicates the crossover approach, our neighbour generating operator
is inspired by the scheme de/rand/1/bin. We selected this variant due to its sim-
plicity and popularity and because it was able to provide the best performance
in previous work with the set of large scale problems we consider herein [3].

Given a particular individual Xj=1...NP (target vector) from a population of
either mbo or mmbo with size NP , a neighbour individual is obtained as follows.
First, the mutant generation strategy rand/1 is applied for obtaining a mutant
vector (V j). Any vector in the population different from the target vector is
randomly selected as the base vector. Thus, the mutant vector is generated as
Eq. 1 shows. It is worth mentioning that r1, r2, and r3 are mutually exclusive
integers randomly selected from the range [1, NP ], all of them different from the
index j as well. Finally, F denotes the mutation scale factor.

V j = Xr3 + F × (Xr1 −Xr2) (1)



6

After obtaining the mutant vector, it is combined with the target vector to
produce the trial vector (U j) through a crossover operator. The combination
of the mutant vector generation strategy and the crossover operator is usually
referred to as the trial vector generation strategy. One of the most commonly
applied crossover operators, which is considered in this work, is the binomial
crossover (bin). The crossover is controlled by means of the crossover rate CR,
and uses Eq. 2 for producing a trial vector, where xj,i represents decision variable
i belonging to individual Xj . A random number uniformly distributed in the
range [0, 1] is given by randj,i, and irand ∈ [1, 2, ..., D] is an index selected at
random that ensures that at least one variable belonging to the mutant vector is
inherited by the trial one. Variables are thus inherited from the mutant vector
with probability CR. Otherwise, variables are inherited from the target vector.

uj,i =

{

vj,i if (randj,i ≤ CR or i = irand)
xj,i otherwise

(2)

It can be observed that the trial vector generation strategy may generate
vectors outside the feasible region Ω. In this work, unfeasible values are reini-
tialised at random in their corresponding feasible ranges. Finally, we should note
that the trial vector becomes the newly generated neighbour.

3 Experimental evaluation

In this section we describe the experiments carried out with both algorithms
depicted in Section 2. In addition to those schemes, we also considered the variant
de/rand/1/bin as an independent approach for comparison purposes.

Experimental method mbo and mmbo, as well as de/rand/1/bin, were im-
plemented by using the Meta-heuristic-based Extensible Tool for Cooperative Op-
timisation (metco) [6]. Experiments were run on a debian gnu/linux computer
with four amd R© opteronTM processors (model number 6164 he) at 1.7 ghz and
64 gb ram. Every execution was repeated 30 times, since all experiments used
stochastic algorithms. Bearing the above in mind, comparisons were carried out
by applying the following statistical analysis [9]. First, a Shapiro-Wilk test was
performed to check whether the values of the results followed a normal (Gaus-
sian) distribution or not. If so, the Levene test checked for the homogeneity
of the variances. If the samples had equal variance, an anova test was done.
Otherwise, a Welch test was performed. For non-Gaussian distributions, the
non-parametric Kruskal-Wallis test was used. For all tests, a significance level
α = 0.05 was considered.

Problem set A set of scalable continuous optimisation functions proposed in
the 2013 ieee Congress on Evolutionary Computation (cec’13) for its lsgo com-
petition [7] was considered as the problem set. We should note that this suite is
the latest proposed for large scale global optimisation in the field of the cec, and
therefore, it was also used for the lsgo competitions organised in cec’14 and



7

Table 1: Parameterisation of the approaches mbo, mmbo, and de/rand/1/bin

Parameter values for mbo and mmbo

Parameter Value Parameter Value

Stopping criterion (K) 3 · 106 evals. Number of neighbors (k) 4

Flock size (n) 150 Number of flights (x) 1

Number of flights (m) 10

Parameter values for de/rand/1/bin

Stopping criterion 3 · 106 evals. Mutation scale factor (F ) 0.5

Population Size (NP ) 150 Crossover rate (CR) 0.9

cec’15. The suite consists of 15 different problems (f1–f15) with different fea-
tures: fully-separable functions (f1–f3), partially additively separable functions
(f4–f11), overlapping functions (f12–f14), and non-separable functions (f15). By
following the suggestions given for different editions of the lsgo competition,
we fixed the number of decision variables D to 1000 for all the above functions,
with the exception of functions f13 and f14, where 905 decision variables were
considered due to overlapping subcomponents.

Parameters Table 1 shows parameter values considered in this work for mbo
and mmbo. They were selected by carrying out a previous parameter setting
study. As it can be observed in Section 2, parameter m is only considered by
mbo. In past research, a configuration of the scheme de/rand/1/bin, from among
a candidate pool with more than 80 different parameterisations of said approach,
was able to provide the best overall results for problems f1–f15 with 1000 decision
variables [3]. This is the main reason why our neighbour generating operator is
based on de/rand/1/bin. Moreover, that best-performing configuration, whose
parameter values (NP , F , and CR) are also shown in Table 1, is considered
herein as an independent method for measuring the performance attained by
mbo and mmbo. Our operator also makes use of those parameter values. Finally,
the stopping criterion was fixed to a maximum amount of 3 × 106 evaluations,
following the recommendations provided by the lsgo competition.

Figure 1 shows box-plots reflecting the results obtained by the considered
schemes. It can be observed that, for some problems (f2, f3, f5, and f9) mbo

or mmbo were able to clearly obtain better solutions than those provided by
the best-performing variant of de/rand/1/bin found for the large scale prob-
lems we consider in this work, thus showing the benefits that can be obtained
from our hybridisation between mbo/mmbo and our novel neighbour generat-
ing operator based on de. Since our neighbour generating operator is based on
de/rand/1/bin, it was expected that results obtained by mbo and mmbo were
very similar to those provided by the former scheme executed independently.
However, the features of mbo and mmbo for sharing information among indi-
viduals, as well as for establishing a structure among them, combined with the
the exploration and exploitation abilities of our neighbour generating operator
based on de/rand/1/bin, were able to obtain even better results in 4 out of 15
problems. Taking into account the remaining functions, we should note that mbo



8

5
.0

e
+

0
6

1
.0

e
+

0
7

1
.5

e
+

0
7

Function f1 − 3e6 evals. − 30 exec.

O
b
je

c
ti
ve

 v
a
lu

e

DE MBO MMBO

7
5
0
0

8
0
0
0

8
5
0
0

9
0
0
0

Function f2 − 3e6 evals. − 30 exec.

O
b
je

c
ti
ve

 v
a
lu

e

DE MBO MMBO

2
1
.2

5
2
1
.3

0
2
1
.3

5
2
1
.4

0
2
1
.4

5
2
1
.5

0
2
1
.5

5

Function f3 − 3e6 evals. − 30 exec.

O
b
je

c
ti
ve

 v
a
lu

e

DE MBO MMBO

5
.0

e
+

0
9

1
.0

e
+

1
0

1
.5

e
+

1
0

2
.0

e
+

1
0

2
.5

e
+

1
0

3
.0

e
+

1
0

Function f4 − 3e6 evals. − 30 exec.

O
b
je

c
ti
ve

 v
a
lu

e

DE MBO MMBO

2
e
+

0
6

4
e
+

0
6

6
e
+

0
6

8
e
+

0
6

Function f5 − 3e6 evals. − 30 exec.

O
b
je

c
ti
ve

 v
a
lu

e

DE MBO MMBO

1
0
5
8
0
0
0

1
0
5
9
0
0
0

1
0
6
0
0
0
0

1
0
6
1
0
0
0

1
0
6
2
0
0
0

Function f6 − 3e6 evals. − 30 exec.

O
b
je

c
ti
ve

 v
a
lu

e

DE MBO MMBO

1
e
+

0
8

2
e
+

0
8

3
e
+

0
8

4
e
+

0
8

5
e
+

0
8

6
e
+

0
8

Function f7 − 3e6 evals. − 30 exec.

O
b
je

c
ti
ve

 v
a
lu

e

DE MBO MMBO

0
e
+

0
0

2
e
+

1
3

4
e
+

1
3

6
e
+

1
3

8
e
+

1
3

1
e
+

1
4

Function f8 − 3e6 evals. − 30 exec.

O
b
je

c
ti
ve

 v
a
lu

e

DE MBO MMBO

1
e
+

0
8

2
e
+

0
8

3
e
+

0
8

4
e
+

0
8

5
e
+

0
8

6
e
+

0
8

Function f9 − 3e6 evals. − 30 exec.

O
b
je

c
ti
ve

 v
a
lu

e

DE MBO MMBO

9
3
4
0
0
0
0
0

9
3
8
0
0
0
0
0

9
4
2
0
0
0
0
0

Function f10 − 3e6 evals. − 30 exec.

O
b
je

c
ti
ve

 v
a
lu

e

DE MBO MMBO

5
.0

e
+

1
0

1
.0

e
+

1
1

1
.5

e
+

1
1

Function f11 − 3e6 evals. − 30 exec.

O
b
je

c
ti
ve

 v
a
lu

e

DE MBO MMBO

0
.0

e
+

0
0

5
.0

e
+

0
8

1
.0

e
+

0
9

1
.5

e
+

0
9

2
.0

e
+

0
9

Function f12 − 3e6 evals. − 30 exec.

O
b
je

c
ti
ve

 v
a
lu

e

DE MBO MMBO

4
e
+

0
9

6
e
+

0
9

8
e
+

0
9

1
e
+

1
0

Function f13 − 3e6 evals. − 30 exec.

O
b
je

c
ti
ve

 v
a
lu

e

DE MBO MMBO

4
.0

e
+

1
0

8
.0

e
+

1
0

1
.2

e
+

1
1

1
.6

e
+

1
1

Function f14 − 3e6 evals. − 30 exec.

O
b
je

c
ti
ve

 v
a
lu

e

DE MBO MMBO

2
.0

e
+

0
7

6
.0

e
+

0
7

1
.0

e
+

0
8

1
.4

e
+

0
8

Function f15 − 3e6 evals. − 30 exec.

O
b
je

c
ti
ve

 v
a
lu

e

DE MBO MMBO

Fig. 1: Box-plots showing the results obtained by different schemes for functions f1–f15

and/or mmbo were able to achieve similar solutions than those attained by the
best-behaved variant of de.

In order to give the conclusions exposed above with statistical confidence,
Table 2 shows, for each problem, the p-values obtained from the statistical com-
parison between the approach mbo and the rest of approaches, by following the
statistical procedure explained at the beginning of the current section. It also
shows cases for which mbo was able to statistically outperform other strategy
(↑), cases where other strategy outperformed mbo (↓), and cases where statis-
tically significant differences between mbo and the corresponding method did
not arise (↔). Scheme A statistically outperforms method B if there exist sta-
tistically significant differences between them, i.e. if the p-value is lower than
α = 0.05, and if at the same time, A provides a lower mean and median of the
objective value than B, since we are dealing with minimisation problems. In
addition, for those cases where statistically significant differences between mbo

and the corresponding scheme appeared, but one approach obtained the lowest
mean, while the other one provided the lowest median, an ’*’ is shown. Finally,
Table 3 shows the same information, but regarding mmbo.

With respect to mbo, it is worth mentioning that it was able to outperform
de in 4 out of 15 problems (f3, f5, f9, and f15). It was outperformed by de,
however, only in the case of function f11. For remaining problems, mbo and de

did not present statistically significant differences. Concerning mmbo, we should
note that it was able to beat de in problems f2 and f11, it was beaten by de

considering functions f1 and f12, and both approaches did not show statistically
significant differences when dealing with remaining test cases. Bearing the above



9

Table 2: Statistical comparison between mbo and remaining schemes considering problems f1–f15

f Alg. p-value Dif. f Alg. p-value Dif. f Alg. p-value Dif.

f1
de 6.152e-01 ↔

f2
de 1.172e-01 ↔

f3
de 2.868e-11 ↑

mmbo 3.093e-04 ↑ mmbo 8.525e-02 ↔ mmbo 2.872e-11 ↑

f4
de 5.946e-01 ↔

f5
de 2.872e-11 ↑

f6
de 8.366e-02 ↔

mmbo 8.592e-01 ↔ mmbo 2.872e-11 ↑ mmbo 1.287e-01 ↔

f7
de 2.612e-01 ↔

f8
de 7.852e-02 ↔

f9
de 5.225e-09 ↑

mmbo 3.671e-01 ↔ mmbo 2.254e-01 ↔ mmbo 1.348e-09 ↑

f10
de 5.434e-05 ↓

f11
de 5.444e-01 ↔

f12
de 7.852e-02 ↔

mmbo 5.715e-04 ↓ mmbo 1.515e-01 ↔ mmbo 3.450e-02 *

f13
de 9.764e-01 ↔

f14
de 2.871e-01 ↔

f15
de 1.355e-02 ↑

mmbo 9.307e-01 ↔ mmbo 2.049e-01 ↔ mmbo 1.039e-01 ↔

Table 3: Statistical comparison between mmbo and remaining schemes considering problems f1–f15

f Alg. p-value Dif. f Alg. p-value Dif. f Alg. p-value Dif.

f1
de 8.401e-05 ↓

f2
de 1.402e-03 ↑

f3
de 8.786e-01 ↔

mbo 3.093e-04 ↓ mbo 8.525e-02 ↔ mbo 2.872e-11 ↓

f4
de 4.965e-01 ↔

f5
de 6.671e-02 ↔

f6
de 8.130e-01 ↔

mbo 8.592e-01 ↔ mbo 2.872e-11 ↓ mbo 1.287e-01 ↔

f7
de 5.742e-01 ↔

f8
de 5.543e-01 ↔

f9
de 2.739e-01 ↔

mbo 3.671e-01 ↔ mbo 2.254e-01 ↔ mbo 1.348e-09 ↓

f10
de 9.176e-01 ↔

f11
de 2.713e-02 ↑

f12
de 2.962e-03 ↓

mbo 5.715e-04 ↑ mbo 1.515e-01 ↔ mbo 3.450e-02 *

f13
de 7.901e-01 ↔

f14
de 9.176e-01 ↔

f15
de 3.912e-01 ↔

mbo 9.307e-01 ↔ mbo 2.049e-01 ↔ mbo 1.039e-01 ↔

in mind, it is important to remark that mbo/mmbo were able to provide better
solutions than those achieved by de in 6 out of 15 problems, thus improving the
conclusions extracted by observing box-plots. However, de was able to outper-
form mbo/mmbo in 3 out of 15 functions. This means that mbo/mmbo were
able to attain similar or even better solutions than de in 12 out of 15 problems.

If we compare mbo with respect to mmbo we can make the following ob-
servations. mbo provided statistically better results than mmbo in 4 problems
(f1, f3, f5, and f9), while the latter was statistically better than the former
only in the case of function f10. Taking into account the remaining problems,
statistically significant differences did not appear between both schemes.

4 Conclusions and future work

Algorithms inspired by the nature comprise an important type of solution ap-
proaches used for solving practical problems. Some of these approaches have been
successfully applied to combinatorial optimisation, such as mbo and mmbo. Nev-
ertheless, to our best knowledge, they have not been used for tackling large scale
continuous problems. Hence, in this work we propose novel adaptations of both
population-based meta-heuristics for solving relevant problems in this research
area. For doing that, we developed a novel neighbour generating operator based
on de that allows new individuals to be generated in the continuous decision
space, thus enabling mbo and mmbo for dealing with continuous problems.

The experimental evaluation carried out indicates that our proposals are suit-
able and competitive for performing the optimisation of large scale continuous



10

problems. In this regard, the obtained results demonstrate that mbo and mmbo

are able to obtain similar solutions, and even better for some cases, than those
provided by one of the best-performing variants of de considering the set of large
scale continuous problems at hand.

Bearing in mind the contributions of this work, our research agenda will be
focused on the assessment of the influence that the different parameters of mbo
and mmbo have over their performance when solving continuous problems. Ad-
ditionally, an analysis about the impact that different neighbourhood structures
have over the behaviour of mbo and mmbo might also be of great interest.

References

1. Alkaya, A.F., Algin, R., Sahin, Y., Agaoglu, M., Aksakalli, V.: Performance of
migrating birds optimization algorithm on continuous functions. In: Advances in
Swarm Intelligence, pp. 452–459. Springer (2014)

2. Duman, E., Uysal, M., Alkaya, A.: Migrating birds optimization: A new meta-
heuristic approach and its performance on quadratic assignment problem. Infor-
mation Sciences 217, 65–77 (2012)

3. Kazimipour, B., Li, X., Qin, A.: Effects of population initialization on differential
evolution for large scale optimization. In: 2014 IEEE Congress on Evolutionary
Computation (CEC). pp. 2404–2411 (July 2014)

4. Lalla-Ruiz, E., de Armas, J., Expósito-Izquierdo, C., Melián-Batista, B., Moreno-
Vega, J.M.: Multi-leader migrating birds optimization: A novel nature-inspired
metaheuristic for combinatorial problems. International Journal of Bio-Inspired
Computation In press (2015)

5. Lalla-Ruiz, E., Expósito-Izquierdo, C., de Armas, J., Melián-Batista, B., Moreno-
Vega, J.M., et al.: Migrating birds optimization for the seaside problems at mar-
itime container terminals. Journal of Applied Mathematics 2015 (2015)

6. León, C., Miranda, G., Segura, C.: METCO: A Parallel Plugin-Based Framework
for Multi-Objective Optimization. International Journal on Artificial Intelligence
Tools 18(4), 569–588 (2009)

7. Li, X., Tang, K., Omidvar, M., Yang, Z., Qin, K.: Benchmark Functions for the
CEC’2013 Special Session and Competition on Large Scale Global Optimization.
Tech. rep., Evolutionary Computation and Machine Learning Group, RMIT Uni-
versity, Australia (2013)

8. Pan, Q.K., Dong, Y.: An improved migrating birds optimisation for a hybrid flow-
shop scheduling with total flowtime minimisation. Information Sciences 277, 643–
655 (2014)

9. Segura, C., Coello, C.A.C., Segredo, E., Aguirre, A.H.: A Novel Diversity-Based
Replacement Strategy for Evolutionary Algorithms. IEEE Transactions on Cyber-
netics In press, 1–14 (2015)

10. Storn, R., Price, K.: Differential Evolution - A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces. J. of Global Optimization 11(4),
341–359 (Dec 1997)

11. Tan, Y., Li, J., Zheng, Z.: ICSI 2014 Competition on Single Objective Optimization
(ICSI-2014-BS). arXiv preprint arXiv:1501.02128 (2015)

12. Yang, X.S.: Nature-inspired metaheuristic algorithms. Luniver press (2010)


