
1

Abstract: This paper presents energy and area-efficient hardware architectures to map fully

parallel cortical columns on reconfigurable platform – Field Programmable Gate Arrays

(FPGAs). An area-efficient architecture is proposed at the system level and benchmarked with a

speech recognition application. Due to the spatio-temporal nature of spiking neurons it is more

suitable to map such architectures on FPGAs where signals can be represented in binary form

and communication can be performed through the use of spikes. The viability of implementing

multiple recurrent neural reservoirs is demonstrated with a novel multiplier-less reconfigurable

architectures and a design strategy is devised for its implementation.

Keywords: reservoir computing, recurrent neural networks, hardware/software (HW/SW) co-

design, reconfigurable computing, FPGAs, cortical columns, neural signal processing

I. INTRODUCTION

The idea of reservoir computing was initially introduced by Maass [1] and Jaeger [2]. In

their works in [1-2], the network activity is regarded as ‘reservoir’ where a memory-less readout

device was used and trained to classify information from an untrained recurrent neural reservoir.

Jaeger used analogue sigmoidal neurons as network units and called the model Echo State

Network (ESN) [1], while Maass called it Liquid State Machine (LSM) and focused on networks

A Step Forward to Map Fully Parallel Energy

Efficient Cortical Columns on Field

Programmable Gate Arrays (FPGAs)

Arfan Ghani, Chan H. See, Syed M. Usman Ali
Engineering, Sports and Science (ESS) Academic Group

University of Bolton, Bolton, BL3 5AB, UK
Email: {a.ghani, c.see}@bolton.ac.uk

2

of spiking neurons [2]. Both ESNs and LSMs are generally called reservoir computing (RC) [3].

These RC systems have been applied in a broad range of applications [2. 4-7], i.e. speech

recognition, human action recognition and object tracking. There have been several studies in the

past to investigate the paradigm of reservoir computing [3, 8-9] but none of them provide any

guidelines as how to implement and analyse a stable reservoir on hardware/software (HW/SW)

platforms. In order to address this deficiency, authors in [10-11] demonstrated the viability of

implementing neural reservoirs on software platforms. The main focus of this research was to

investigate and analyse the impact of input connectivity and to elaborate the parameters that

affect the stability of neural reservoirs. Software implementation of small scale reservoirs is not a

serious bottleneck, however to exploit the inherent parallelism of cortical columns, hardware

implementations are essential. Implementing neural based applications on programmable

hardware is challenging because the maximum size of a network that can be implemented on a

target FPGA is restricted by the logic and arithmetic operators available on a single device.

Therefore, a HW/SW co-design strategy has to be devised for implementation of neuro inspired

systems on reconfigurable platforms. A specific bottleneck in implementing large scale artificial

neurons on reconfigurable platform is the limited number of embedded multipliers available on a

single device. The number of multi pliers grows as the square of the number of neurons. A fully

connected two layer network of size 10 neurons will require 100 multipliers and if the network

size is increased to 100 neurons, it will require 10,000 embedded multipliers [12-14].

This paper is a continuation of the work published in [12] where authors’ outlined a

framework for possible implementation on reconfigurable platforms. It exploits previously

published techniques, namely area efficient multiplier-less architecture, which overcomes the

burden of multipliers required for synaptic multiplications [13-14]. In order to investigate the

viability of implementing reservoir computing paradigm on HW/SW platform, this work

presents area efficient spiking neurons architectures. These architectures are targeted for large

3

scale implementation of neuro inspired cortical columns for computational related tasks such as

sensory fusion. The presented architectures are used as the basic building blocks for fully parallel

implementation of multiple cortical columns on FPGAs. The hardware architectures

implemented are inspired by ‘microcircuits’ which plays a fundamental role in cortical

computation [1]. The main purpose of these so called microcircuits is to read out information and

communicate with the neighboring microcircuits connected in a columnar fashion. One of the

limitations in implementing large scale spiking neural networks on HW/SW platforms is the

limited size of the network, its scalability and weight storage for online training. Reservoir

computing alleviates the burden of training at the network level where only the readout neurons

are used for classification. The proposed architecture fully exploits the scalability and

reconfigurability of FPGAs at the network level, where the focus is on three main areas: pre-

processing, post-processing and reconfigurable neural reservoir. Pre and post processing is

performed in software and fully parallel recurrent neural reservoir or microcircuit is

implemented on FPGA hardware. To evaluate the reservoir dynamics, it is tested and

benchmarked with an example of isolated spoken digit recognition – Texas Instruments 46-Word

(TI46) [15].

The organization of this paper is as following. In Section II, the methodology and

experimental details will be elucidated. Section III discusses area-efficient architectures for

reservoir implementation on reconfigurable hardware and section IV demonstrates a HW/SW co-

design strategy benchmarked with a speech recognition application. Section V concludes the

paper.

II. METHODOLOGY

A. Pre-processing

 Pre-processing of speech signals is an important step to develop an efficient and robust digit

recognition system. It is very important that the silence portion of the speech signal is segregated

4

from the voiced region. This so called silence removal stage is very important to reduce the

computational complexity and improve the processing time. A significant amount of data

processing could be minimized by accurately detecting three different parts of speech signals

(voices, un-voiced and silence) as depicted in Fig. 1.

In Fig. 1, an end-point detection technique is used where signal energy is calculated and a

threshold value is determined. The threshold is compared to the standard deviation of the signal

power. A sampling rate of 12 KHz is used for a spoken digit ‘5’ for duration of 0.69 seconds

(8260 samples) where the total silence time is 0.37 seconds (4440 samples). The actual signal

time can be calculated by subtracting the silence time from the total signal time. The actual

signal time is 0.32 seconds or 3840 samples. The signal preprocessing time can be improved to

53 % (0.37/0.69 * 100 = 53%).

B. Feature extraction

 Feature extraction is an important step to collect data that can be considered as information

after applying an appropriate speech coding technique. There are several techniques that could

be used for feature selection and a detailed comparison is provided in [3]. In the proposed

method, an approach is adopted where a temporal based LPC (Linear Predictive Coding)

technique is used for encoding speech signals [16]. LPC is the most powerful speech analysis

technique that uses Levinson-Durbin recursive algorithm to accomplish the task [17]. Most

speech processing algorithms analyses speech signals frame by frame with a fixed frame rate. It

is computationally expensive and not feasible to process all frames in the signal. It also leads to

some problems because due to the various signal lengths the total numbers of frames could be

different. For this experiment, a total of four frames were selected for each spoken digit in linear

distance from the start and end point of the signal, 7 coefficients per time frame over four frames

and hence total 28 features per sample were processed. The LPC coefficients from each spoken

digit were used as input vectors for testing the baseline feed forward and the reservoir based

5

networks. In reservoir based network, LPC co-efficient from each spoken digit were used to

perturb the neural reservoir and membrane states were recorded and used as input vectors for

training and testing the backend classifier for isolated spoken digit recognition.

An LPC method can mathematically be written as:

1 2() (1) (2) ... ()ix n a x n a x n a x n i       (1)

In equation 1, ()x n is the predicted signal value, x(n-i) the previous observed value, ai the

predictor coefficient where 1i p . An error function (MSE) can be calculated as under:

2
()

1

1
()

n

i ij j

j

E x x
n



  (2)

Where x(ij) is the predicted value by the individual sample i for target value j (out of n

samples); and jx is the target value for sample j.

() () ()E i x i x i  (3)

In equation 3, E(i) is the calculated error, x(i) is the true signal value and (i) is the target value. A

sampling frequency of 12 KHz was used and an end point detection technique applied for noise

removal. A hamming window was used where frames were overlapped and sampled at 50 Hz

with each frame size was fixed at 30 ms. The rationale behind reservoir computing is to

overcome the computational burden of recurrent neural network training. In the paradigm of

reservoir computing, the partial response of a recurrent reservoir is observed from outside by any

suitable classification algorithm such as back propagation. It is much easier and more

computationally efficient to train the output layer only or so called ‘readout’ neurons, instead of

training the complete network of recurrent neurons.

C. Reservoir Dynamics

 There are two important characteristics of a stable reservoir namely separation and

6

approximation [1]. These two properties are important for a readout network to classify input

data. If a reservoir is not capable to differentiate two separate inputs then the readout will not be

able to classify the input information. In this experiment, a reservoir was generated in stochastic

fashion as stated in a previously published work of the authors [10].

There are parameters which play an important role in stable reservoir dynamics such as type

of neurons used in the reservoir, size of the reservoir and their connectivity. An overall

classification accuracy depends on factors such as input feature vector used to perturb the neural

reservoir. In author’s previous work, several experiments were conducted to observe the internal

dynamics of the neural reservoir; details are reported in [10].

A reservoir was constructed with mathematical model of neurons as described in equation 4.

))(()(noisesynmrestingm
m

m ItIRVV
dt

dV
 (4)

In equation 4, τm is the time constant of membrane, Vm is the membrane voltage, Vresting is the

membrane resting potential (which is set to 0 V), Isyn(t) is the synaptic input current, Inoise is a

Gaussian random noise. The membrane potential is initialized with a value of (0.0135 V) and

membrane threshold, Vth is set to 0.015 V. An output spike is fired if the membrane voltage Vm

exceeds a threshold voltage, Vth. Once an output spike is fired, the membrane potential resets

itself to the values of Vreset. Our selection of parameters in these experiments is based on the data

obtained from Henry Markram’s Lab in Lausanne [18].

Information processing in artificial representation of cortical neurons primarily depends on

two issues: 1) what model describes spiking dynamics of each neuron and 2) how the neurons

are connected. There have been several studies to investigate the connectivity of cortical neurons

and further details are provided in [18-22].

D. Backend Processing

In order to investigate the classification accuracy, total dataset was divided into training and

7

testing. The dataset comprised of 200 samples in total for digits (0- 9). Each digit was spoken by

five different speakers with 4 utterances by each speaker. In total 28 features were used for each

sample with Linear Predictive Coding. To evaluate an overall performance of the readout

classifier different training sets and hidden layer neurons were investigated. The best

performance achieved was limited to 89% for test data sets. In order to compare with the

MATLAB based MLP benchmark, a gradient descent with adaptation training algorithm was

used where the goal was set to 0.01 (see table 1). The numbers of input to the MLP classifier

were equal to the total number of features, different numbers of hidden neurons are shown in

Table 1 and the numbers of output neurons were equal to the total number of classes, which are

10 for this experiment.

E. Simulation procedure

 The inputs can be fed into the reservoir in two different ways: analogue currents and spike

trains. In these experiments, spike trains were used and fed into the reservoir as synaptic

currents, as described in Fig.2. There is a substantial evidence that biologically plausible neurons

communicate through spike trains [23-24]. To investigate this, the input analogue values were

converted into Poisson spike trains and processed for reservoir based classification. A Poisson

process can be characterized as an interval process with exponential distribution and can be

expressed as:

)exp()(ttp  
 (5)

In equation 5, p(t) is the probability density function of an exponential distribution, the

parameter λ is the parameter of the distribution and t is the interspike interval. Spike trains were

generated where interspike intervals were randomly drawn from an exponential distribution. The

recurrent neural reservoir was perturbed by input spike trains and once the reservoir was

8

perturbed with each input digit (encoded into spike trains) and states were recorded. The inputs

were used one after another and reservoir states were recorded for each sample separately. The

reservoir states were sampled in a linear scale from 0 to 1 at the time step of 0.25 s and in total

five states were used for each sample. According to the theory of reservoir computing, a simple

readout will suffice to classify inputs with the partial information extracted through a stable

reservoir. All these sampled states were collected and used for an offline readout (MLP

classifier) training and testing. For a reservoir of size 8 neurons, in total five states were

extracted for each sample (each state had 8 membrane potentials) and in total 40 data points

(8x5) were used as one training sample for the readout. The readout network was trained with the

training samples and tested with the test data set. The MLP classifier consisted of a single hidden

layer and 10 output neurons. The same procedure is used for reservoir size of 15 and 27 neurons.

In order to quantify the classification accuracy, the standard supervised MATLAB algorithms

were investigated while different reservoir sizes were used to investigate the separation property.

The total number of input neurons for feed forward readout network depends on the size of the

reservoir. In total 40 inputs are required for a reservoir size of 8 neurons (8x5), 75 for a reservoir

size of 15 neurons (15x5) and 135 for a reservoir size of 27 neurons (27x5).

III. RECONFIGURABLE ARCHITECTURE FOR RESERVOIR IMPLEMENTATION

 In order to exploit the inherent parallelism of cortical neurons, optimised hardware

architectures were developed for FPGA implementation. In a network of spiking neurons, each

input neuron receives signals from other neurons with different synaptic strengths at different

times. A single neuron is further connected with other neurons in the network through synaptic

clusters. These clusters are shared amongst neurons in a network and the membrane dynamics

and their corresponding spike firing times are affected by the synaptic efficacy of these clusters,

as depicted in Fig.3.

9

LIF (Leaky Integrate-and-Fire) neuron model was chosen for the implementation of the neural

reservoir and the mechanism of synaptic integration was modelled by the following equation:


sN

iis
txwtv

1

)()((6)

Where Vs is the sum of incoming synaptic potentials to the membrane, Ns is the number of

synapses, wi is the synaptic efficacy and xi are the incoming binary spikes 0 or 1 at time t. These

synaptic potentials were accumulated in a membrane and when the total synaptic potential

exceeded a certain threshold, an output spike was generated.

The neuron firing dynamics were modelled with the following equation:












otherwisetVtVtV

vtVV
tV

leakagesm

thmreset
m)()()1(

)(
)((7)

In equation 7, Vm is the membrane potential, Vreset is the reset potential, Vm (t-1) is the

membrane potential at the previous time step, Vs is the sum of synaptic potential and Vleakage is

the exponentially decreasing leakage voltage with time constant τ. The membrane voltage Vm (t)

will be at Vreset if Vs (t) > Vth, otherwise the membrane potential will be equivalent to the second

term in equation 7.

The time required to simulate a reservoir depends on its size and the node type used to

construct the reservoir. Simulating small networks on sequential machines may not be critical

but for large scale networks it becomes a significant overhead. The simulation time increases

many folds if larger reservoirs are to be simulated. In order to evaluate the simulation time

requirement on sequential machines, different reservoirs were simulated on Intel Pentium P4

(3.20 GHz speed and I GB RAM). As shown in Fig. 4 that the simulation time increases almost

at the order of 2.5 which makes it impractical to simulate large scale reservoirs on software

platforms.

Hardware implementation of spike based neurons is advantageous because these neurons

10

communicate through short pulses (spikes) and the information is conveyed through exact timing

of these pulses where the shape of the spike has no relevance to the information [21]. For an

area-efficient implementation of a neural reservoir on reconfigurable hardware, it is necessary

that the use of area hungry operators such as multipliers are minimised or completely avoided

[13- 14]. In traditional modelling of synapses, inputs are multiplied with fixed weights and due

to this multiplication the number of multipliers increases with an increased number of synapses.

This is a serious bottleneck for an efficient implementation of medium to large scale networks on

a single FPGA device. In the proposed design, special emphasis is given to the minimisation of

the number of embedded multipliers required for the implementation of synapses.

The architecture was split into two sub structures: synapse and membrane. For synapse

modelling, a stochastic strategy is proposed where inputs were encoded in spike trains and spike

counters were used to model synaptic strengths. The incoming spikes were counted and weighted

through a fixed weight value. An output value of ‘1’ is generated through a simple logic AND

function when both inputs were high (see Fig. 5).

As shown in Fig. 5, each neuron has multiple synapses where input pulses were counted

and weighted through a fixed weight value. The synapse function implemented in the proposed

architecture is a simple logic function of two inputs (incoming spike trains and fixed weight

values). The fixed weight values were stored in the registers and random values were generated

through a linear feedback shift register (LFSR). The fixed weight values were compared with the

randomly generated values and if the generated value equals the fixed weight value and the

number of incoming pulses were equal to the value of pulse counter then an output spike is

generated, if not, no pulse is generated. The pulses generated accumulate and hence contribute to

the overall membrane potential. This procedure is repeated during the course of the full

presentation of the input spike trains. The random weight generation on FPGA was performed

with the Xilinx System Generator’s (XSG) [25]“LFSR” block. This block supports both the

Fibonacci and Galois structures. A Fibonacci structure was chosen by using XOR gate at the

beginning of the register chain that XORs the outputs from some of the registers going into the

first register. The LFSR output was set up to start at a specified initial seed value and step

through a repeatable sequence of states determined by the LFSR Fibonacci structure, XOR gate

11

and initial seed. The random weight generator block (LFSR) generates new weights at each time

step in the range of ± 0.5. A total of 6 bits were used for their implementation and due to this

simplified yet area efficient technique, the multipliers were completely avoided and synapse

multiplication was modelled with a logic function of two variables W (fixed weights) and I

(incoming spikes). The weights were represented with a fixed point representation of 4 bits in a

Fix_4_3 format.

The synaptic values of ‘1’ were scaled down through shift right operations. This scaling is

important for practical reasons so that enough time is given to the membrane potential to

accumulate synaptic inputs and once the total membrane potential exceeded a threshold value, an

output spike was generated and connected with other neurons in the network. The threshold

voltage was set to 0.15 V and reset voltage to 1 mV. In the absence of spikes, the membrane

potential decays exponentially to the reset voltage based on the programmable value of the decay

constant. A decay constant value of -0.11 was used in these simulations. The parameters

selection is empirical and based on the spiking behaviour of LIF neuron model.

The second half of the architecture is implemented as a neural membrane as shown in Fig. 6,

where synaptic currents (synapse accumulation unit) are accumulated in the membrane

(accumulator) and an output spike is generated when the total membrane potential exceeded a

programmable threshold Vth. The threshold is modelled with a comparator block and after spike

generation, the membrane potential was set to a ‘reset’ value through a register. The membrane

of the neuron is implemented as an 18 bit accumulator with 12 bit binary points. It should be

noted that a fixed point precision “Fix_18_12” was used for synaptic accumulation in the neural

membrane by taking into account the minimum area utilization on FPGA.

A programmable threshold value of 0.15 V is used and after spike generation the

accumulator was reset to the value of 1 mV. In the absence of input spikes, the membrane

potential decays exponentially to the reset voltage and starts integrating after arrival of new

incoming spikes. The exponential decay depends on the value of the programmable decay

constant τ. Once an output spike is fired, the neuron immediately resets to the voltage level 0.

 The architecture was implemented with the XSG toolbox and a discrete time step of 0.125

ms was chosen for these simulations. The maximum clock speed is defined implicitly which

depends on the propagation delay of the components used in the design. In XSG, the

computational blocks receive inputs and produce outputs at every clock cycle. The Xilinx blocks

were assigned computation latencies in order to match paths which have to be simulated in

parallel. XSG blocks have default latencies associated with each block. Individual latencies from

each computational block were calculated to balance the paths that have to be simulated in

12

parallel. In order to assign the clock period for simulation, worst case delay of the circuit was

calculated. The fixed point simulations were used where total numbers of bits were defined along

with the binary points. The fixed point format provides flexibility in the number of bits used to

represent a number. It is not area efficient to use the same fixed point representation for all the

blocks in the design, therefore a format has to be chosen which is good enough to provide

required precision and accuracy. For this implementation, both synapses and neuron (membrane)

were represented with 18 bits in the Fix_18_12 bit format. Other blocks such as LFSR,

comparators, constant values and register delays were represented with different precision

formats in order to save area as shown in Table II.

A trade-off has to be made in precision and area where higher precision will cost more

area and less precision could cause errors. In order to test the spiking behaviour of implemented

architectures as explained by equation 6 and 7, the VHDL code was generated with Xilinx ISE

design suite and synthesised for FPGA implementation where different hardware resources and

maximum frequency was calculated. The design was targeted for Virtex-II Pro device (xc2vp50)

with a speed grade of 5. A single neuron with two synapses took 85 slices out of 23,616. The

design could run with a maximum clock speed of 74 MHz after default optimisation process

within XSG toolbox. FPGA runs slower than a maximum clock speed because of single cycle

implementation. Another reason for slower clock speed achieved on FPGA is due to automated

code generation from XSG blocks and in-efficient mapping of global and local routing lines for

internal connections and In/Out ports. The synapses were modelled without multipliers;

however, one embedded multiplier will be required to model exponential decay of a leaky

membrane. A total of 680 slices and 8 multipliers is required for a reservoir of size 8 neurons

with 16 synapses. It takes only 8 slices to implement two synapses and if the total number of

synapses were increased to 100, it will take 400 slices. If the synapses were modelled with

traditional multiplication technique, then a reservoir of size 8 neurons with 16 synapses requires

24 embedded multipliers (16 for synapses and one for leaky membrane for each neuron) and by

increasing the number of synapses the requirement for multipliers will increase linearly and the

maximum number of synapses will be limited by the maximum number of embedded multipliers.

13

The proposed design completely avoids the multipliers for synapses and regardless of the

number of synapses only one multiplier will be required per neuron. It is possible to optimise the

speed of a network by either increasing the frequency of the clock or increasing the step size.

The maximum frequency allowed in a design is restricted by the maximum delay in a

combinational path which is also termed as the worst case delay. The overall speed can be

improved by breaking some of the longest combinatorial paths and introducing some registers.

The overall speed can also be improved by increasing the step size, however care must be taken

to analyse the details of the design so that spike activity is not missed during the intervals of time

steps. The proposed architecture offers an alternative solution for implementing one big cortical

column on a single device or several compact fully parallel columns.

IV. PROOF OF CONCEPT

 The proposed reconfigurable architecture described in section IV was tested with the TI46

dataset [15]. In order to validate the functionality of the neural reservoir, an integrated HW/SW

co-design was used where signal pre and post-processing was performed in software and the

reservoir (cortical columns) was implemented on hardware as depicted in Fig. 7. The input

speech signals were preprocessed to remove silence parts and features were extracted with the

technique of Linear Predictive Coding. These features were further converted into Poisson spike

trains to be processed as an input stimulus. The spike trains were used as inputs to the reservoir

and different states were recorded for post-processing. One state corresponds to the membrane

potentials of all the neurons in the reservoir. In this experiment where a reservoir of size 8

neurons is used, eight membrane potentials were recorded in one state. In total, 20 spike trains

were generated for one digit and 200 spike trains were processed through the reservoir for a total

of 10 digits. The ‘readout’ neurons (feed forward network) were implemented in software for the

classification of input digits.

14

The network is constructed in a way that each neuron was connected with a minimum of two

inputs where input spikes were weighted through fixed weights. In order to interface the input

spike trains with the neural reservoir, they have to be converted into Simulink Boolean type

through input gateways. These input spike trains were used to perturb the reservoir and the

responses were collected in terms of membrane potentials and stored in MATLAB workspace for

backend classification. The reservoir has to be simulated for the total time steps equivalent to the

time steps of spike trains in order to feed input data into the reservoir. Once the total states were

recorded, they were further sampled and only five states were recorded for post-processing, the

states were recorded in linear scale from start to the end of states. The readout neurons were

trained offline until the algorithm converged to the goal and tested with the test samples to

evaluate their classification accuracy.

As shown in Fig. 8 that a three-layered recurrent neural reservoir (3x2x3) was implemented

where input vectors were directly connected to the neuron cells and each cell had a minimum of

two synapses. A total of 8 neuron cells with 16 synapses were implemented. It is possible to

increase the number of neurons and synapses with a chain of adders for synaptic accumulation.

All the neurons in the reservoir work in parallel because all inputs and corresponding random

weights were accessed simultaneously. A total of 16 fixed weights were stored for 8 neurons in

the network where each neuron had minimum two inputs. The input stimulus to the

reconfigurable reservoir was the Poisson spike trains which were generated off-chip. The

reservoir states (membrane potentials) were also stored off-chip for backend classification.

An MLP classifying engine was implemented as a backend in software. Total data was

split into two sets: training and testing. One training sample consisted of 40 data points (5 states

of total number of eight neurons at five linear time steps from start to the end) and 10 output

neurons were used in the output layer which corresponds to the 10 isolated digits. The network

was trained with the training samples where each training sample was compared with the target

15

and the accuracy is calculated. The total number of 30 hidden neurons were used which was

found to be the best combination with input layer neurons. The overall accuracy drops if the

number of hidden layer neurons were increased or decreased to the maximum number of 30

neurons. After testing with the test data and different hidden layers an overall accuracy of 98%

was achieved on test data and 100% accuracy was achieved on training data set. Different

standard back propagation training algorithms were tested but best results were achieved when

the network was trained with the MATLAB Levenberg-Marquardt training algorithm. The

training took 124 seconds and converged to the goal after 25 iterations.

V. CONCLUSION

 This paper has presented a design of HW/SW paradigm for developing a reservoir based

approach on reconfigurable platform in order to simulate, analyse and implement the inherent

parallelism of cortical neural networks. This optimised reconfigurable hardware architecture was

carried out at the network level and resources were calculated. The results demonstrated that

area-efficient synapse processing is possible and the multipliers required for synapse

implementation can be avoided. It was also found that the proposed architecture is scalable and

can easily be scaled on multiple FPGAs to form distributed compact parallel columns. With

these attractive features, several advantages such as size reduction of the circuit and elimination

of control circuitry can be achieved. Moreover, each cell is implemented as standalone

computing unit and interconnected with neighbouring neurons. These advantages make it

possible to design and implement large self-contained neural reservoirs for sensory fusion tasks

on reconfigurable platforms.

16

REFERENCES

[1] Maass, W, Natschläger, T and Markram, H (2002), Real-time computing without stable

 states: A new framework for neural computation based on perturbations, Neural

 Computation, 14(11):2531-2560.

[2] Jaeger, H & Haas, H (2004), Harnessing nonlinearity: Predicting chaotic systems and

 saving energy in wireless communication. Science, 304(5667), 78–80.

[3] Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D (2007), An experimental

 unification of reservoir computing methods, Neural Networks 20, pp. 391- 403.

[4] Joshi P and Maass, W (2004), Movement generation and control with generic neural

 microcircuits, BIO-ADIT, 2004.

[5] Yin. J, Meng. Y, and Jin. Y (2012), A developmental approach to structural self-

 organisation in reservoir computing, IEEE transactions on autonomous mental

 development, Vol. 4 (4), pp. 273 – 289.

[6] Kristof Vandoorne1 et al (2011), Advances in Photonic Reservoir Computing on an

 Integrated Platform, International Conference on Transparent Optical Networks, pp. 1-4

[7] Yin J and Meng Y (2012), Reservoir Computing Ensembles for Multi-Object Behavior

 Recognition, IEEE World Congress on Computational Intelligence, pp. 1-8.

[8] Skowronski, MD and Harris, JG (2007), Automatic speech recognition using a predictive

 echo state network classifier. Neural Networks 20(3): 414-423.

[9] Uysal, I., Sathyendra, H and Harris, JG (2007), Spike based feature extraction for noise

 robust speech recognition using phase synchrony coding, ISCAS, pp. 1529 – 1532.

[10] Ghani A, McGinnity, TM, Maguire, LP, Harkin, JG (2008), Neuro-inspired speech

 recognition with recurrent spiking neurons, LNCS 5163, Springer-Verlag, pp. 513-522.

[11] A Ghani, et al; (2010), Neuro-Inspired Speech Recognition Based on Reservoir

 Computing, Advances in Speech Recognition, ISBN 978-953-307-097-1, pp. 164,

 September 2010.

[12] A Ghani et al; (2009), Neuro-Inspired Reconfigurable Architecture for Hardware/Software

 Co-design, IEEE international conference on System on Chip, SOCC, pp: 287 - 290

[13] Maguire, LP, McGinnity, T. M, Glackin, B, Ghani, A, Belatreche, A, Harkin, J (2006),

 Challenges for large-scale implementations of spiking neural networks on FPGAs”

 Elsevier Journal of Neurocomputing, Vol. 71 (1-3), pp. 13-29.

[14] Ghani, A, McGinnity, T.M, Maguire, L.P, Harkin, JG (2006), Area efficient architecture

 for large scale implementation of biologically plausible spiking neural networks on

 reconfigurable hardware, FPL, pp. 1-2.

[15] Doddington, G R and Schalk, T B (1981), Speech recognition: Turning theory to practice,

 IEEE Spectrum, 18 (9), pp: 26-32.

[16] Alexander, O'Shaughnessy, D. (1998), Linear predictive coding. pp. 29–32.

[17] Rabiner, L.R and Schafer, R W (1980), Digital processing of speech signals, The Journal

 of the Acoustical Society of America, Vol 67 (4), pp. 1406-1407. (Levinson Durbin)

[18] Gupta A, Wang Y, Markram H (2000), Organizing principles for a diversity of

 GABAergic interneuron and synapses in the neocortex, Science 287: 273–278.

[19] Braitenberg, V and Schuz, A (1991), Anatomy of the Cortex: Statistics and Geometry"

 NY: Springer-Verlag.

[20] Holmgren C, Harkany T, Svennenfors B, Zilberter Y (2003), Pyramidal cell

 communication within local networks in layer 2/3 of rat neocortex. J. Physiol. 551: 139–

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1890&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1890

17

 153.

[21] Foldy C, Dyhrfjeld-Johnsen J, Soltesz I (2005), Structure of cortical microcircuit theory, J.

 Physiol. 562: 47–54.

[22] Yoshimura Y, Dantzker JLM, Callaway EM (2005), Excitatory cortical neurons form fine

 scale functional networks. Nature 433: 868–873.

[23] Maass, W and Bishop, C (1999), Pulsed Neural Networks, The MIT Press, Massachusetts.

[24] Gerstner, W., Kistler, W (2002), Spiking Neuron Models - single neurons, populations,

 plasticity, Cambridge University Press, UK.

[25] Mathworks Inc.: ‘MATLAB\Xillinx System User Guide’.

 Available: http://www.mathworks.co.uk/fpga-design/simulink-with-xilinx-system

 generator-for-dsp.html

[25] Mathworks Inc.: ‘MATLAB\Xillinx System User Guide’. Available:

[26] Xilinx Virtex II Pro. Hardware, Xilinx Inc.: ‘Virtex-II Pro and Virtex-II Pro X FPGA User

 Guide’.

 Available: http://www.xilinx.com/support/documentation/user_guides/ug012.pdf

Authors’ affiliations:

All authors are with Engineering, Sports and Science (ESS) academic group, University

of Bolton, Bolton, Greater Manchester, BL3 5AB, UK.

List of Table and Figure captions:

Table I: Test accuracy with training samples = 150 and test samples =50.

Table II: Bit resolution for different hardware blocks

Fig. 1: Raw speech signal (top) and silence removal (bottom)

Fig. 2: Input digit ‘1’ and corresponding spike times and spike trains

http://www.xilinx.com/support/documentation/user_guides/ug012.pdf

18

Fig. 3: An overview of synaptic interaction amongst different neurons

Fig. 4: Simulation time vs size of the reservoir

Fig. 5: Synapse architecture through pulse counting, fixed weight and AND gate

Fig. 6: Membrane architecture

Fig.7: An overview of hardware/software (HW/SW) environment for reservoir based

recognition

Fig.8: Hardware implementation of a neural reservoir (3x2x3)

TABLE I

TEST ACCURACY WITH TRAINING SAMPLES=150 AND TEST SAMPLES =50

Hidden neurons Test accuracy (%)

10 56

20 62

25 72

30 89

35 72

19

TABLE II

BIT RESOLUTION FOR DIFFERENT HARDWARE BLOCKS

Blocks Bit resolution

Adder Fix_18_12

Accumulator Fix_18_12

LFSR Fix_6_6

3 bits shift right operation Fix_5_3

Threshold value (constant) Fix_12_8

Fig. 1 Raw speech signal (top) and silence removal (bottom)

20

Fig. 2. Input digit ‘1’ and corresponding spike times and spike trains

membrane

membrane

Synaptic cluster

Synapse sharing

Neuron 1

output

in
p

u
ts

Neuron n

Fig. 3. An overview of synaptic interaction amongst different neurons

21

Fig. 4. Simulation time vs size of the reservoir

Random

Numbers

Generator

(LFSR)

Input spikes

Synaptic

accumu-

lation

Comparator

Counter

comparator

Reduce

value

(shift right)
Fixed

weight

Counter

value

Comparator

Counter

comparator

Reduce

value

(shift right)Fixed

weight

Counter

value

1

1

1

1

1

1

Synapse 1

Synapse n

 Fig. 5. Synapse architecture through pulse counting, fixed weight and AND gate.

22

Synapse

Accumu-

lation
Adder Reg

Membrane

threshold

comparator
rst

Decay

Adder

I0

I1

In

Z
-1

Output spikes

Accumulator

Vth

Fig. 6. Membrane architecture

Speech samples

 Workspace Spike trains

Recorded states

Backend classifier

Neural reservoir

Hardware

Software

Software

Fig. 7. An overview of hardware/software (HW/SW) environment for reservoir

based recognition

23

Input

stimulus

No

(1,1)

N1

(1,2)

N2

(1,3)

N3

(2,1)

N4

(2,2)

N5

(3,1)

N6

(3,2)

N7

(3,3)

S y n a p s e

A c c u m u-

la t io n
A d d e r R e g

M e m b ra n e

th re s h o ld

c o m p a ra to r
rs t

D e c a y

A d d e r

I0

I1

In

Z - 1

O u tp u t s p ik e s

A c c u m u la to r

V th

Fig. 8. Hardware implementation of a neural reservoir (3x2x3)

