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Abstract 

 

An elementary scheme is detailed for introducing certain basic concepts in the 

solution of (especially) the basic second-order ordinary differential equations of 

classical mathematical physics. The method proposed, an integration/iteration 

process, allows the development of (generally Frobenius) power series, as well as 

exposing the rudiments of the Green function approach to solving linear ordinary 

differential equations. The method assumes only a background knowledge 

compatible with most introductory calculus courses. 
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1. Introduction 
 

There is a group of second-order linear ordinary differential equations (ODE) that  

play a prominent role throughout the realm of Mathematical Physics [1], [4]. 
 

 Hermite’s equation 

 

                                                        02  yyxy                                            (1) 

  

 Chebyshev’s equation 
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                                                   0)21( 2  ynyxyx                                    (2) 
 

 Legendre’s equation 
 

                                                0)1(2)21(  ynnyxyx                            (3) 
 

 Gauss’ hypergeometric equation 
 

                                              0))1(()1(  abyyxbacyxx                (4) 
 

 Kummer's equation 
 

                                                        0)(  ayyxcyx                                  (5) 
 

 Laguerre’s equation 

 

                                                         0)1(  yyxyx                                   (6) 
 

Our aim in this note is to motivate the search for power series solutions to equations 

(1) to (6), by integrating equations (1) to (6) and then enforcing an iteration scheme  

of solution (which usually carries the name of Picard [7]) on the resultant integral 

equations. We will show that equations (1), (2) and (3) can be solved immediately 

by direct integration and iteration, to obtain, first, power series solutions and then, 

with the appropriate restrictions, polynomial solutions. Having regular singular 

points, equations (4), (5) and (6) (which are related [1]), require a slight adjustment 

to the integration method, however, before we again obtain series solutions via 

direct integration and iteration. As a bonus, we find that the concept of a Green 

function emerges naturally from the analysis also. Of course, this idea/method is 

not original and is developed, from the theoretical point of view in, for example, 

Dettman [2, 3], to whom the reader is referred to for further details (though our 

approach involves a slight twist on that of Dettman [2]) 

 

      As Dettman’s approach [2, 3] is mostly theoretical (dealing, as it does, with the 

existence and uniqueness problem of determining series solutions to second-order 

linear ODE) the present paper can be looked upon as being complimentary to 

Dettman’s work as well as providing worked examples of the iteration process. 

With the, now, universal availability of computer algebra systems the worked 

examples presented below are automatically tutorial examples for undergraduate 

courses on differential equations also.  Further, the importance of computer algebra 

systems in mathematics education is now well established, by custom and practice, 

and it is hoped that this expository paper will add to the possible uses of such 

systems, particularly in the teaching of series solutions to ODE. 
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2. The Basic Method 
 

First, we note that equations (1), (2) and (3) may all be re-written in the standard 

form 
 

                                                     ),,,( yyyxRy                                              (7) 
 

Integrating (7), repeatedly, from the origin, we obtain the implicit solution to 

equation (7) as 
 

                                           dt
x

du
t

yyyuRxaaxy 













 

0 0

),,,(
10

)(                    (8) 

 

Next, the result of integrating (8) by parts is the implicit solution to (7) in the form 
 

                                             
x

dtyyytRtxxaaxy

0

),,,()(
10

)(                   (9) 

 

Interestingly, the implicit solution (9) is in the general form of a Green function 

solution to the equation (7). With the appropriate choice of starting function (and 

choice of the arbitrary constants 
1

  and 
0

aa ), we may use (9) to generate iterative 

schemes to obtain series solutions to (7) of the form 
 

                              ,3,2,1   ,

0

),,,()(
10

)(
1


  m

x

dtmymymytRtxxaax
m

y                                 

                                                                                                                             (10) 
 

Consider Hermite’s equation (1), with   a constant parameter, which we rewrite as 
 

                                                            yyxy  2                                          (11) 
 

so that equation (11) is in the standard form of equation (7), with 
  

                                                     yyxyyyxR  2),,,(                                (12) 
 

From (10) an (12), we obtain an implicit iterative solution scheme for (1) of the 

form 
 

                                          dt
x

mymyttxxaa
m

y )

0

2)((
101  


               (13) 

 

We obtain two particular iteration schemes, giving rise to two independent 

particular solutions to (1), by choosing 
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1.   0
1

 and 1
0

 aa , so that for ,3,2,1m  

 

                                                dt
x

mymyttx
m

y )

0

2)((1
1  


                     (14) 

 

If we set 1
1
y , then we have an iteration scheme giving rise to the first of the 

particular solutions of (1), )(
1

xy  say.  

           

2.   1
1

 and 0
0

 aa , so that for ,3,2,1m  

                                                  dt
x

mymyttxx
m

y )

0

2)((
1  


                   (15) 

 

If we set xy 
1

, then we have an iteration scheme giving rise to the first of the 

particular solutions of (1), )(
2

xy  say. After a few iterations we find that (with 

0
1

 and 1
0

 aa ) 

 

8

!8

)12)(8)(4(6

!6

)8)(4(4

!4

)4(2

!2
1)(

1
xxxxxy











      

                                                                                                                           (16a) 
 

and (with 1
1

 and 0
0

 aa ) 

 

9

!9

)14)(10)(6)(2(
                                                                         

7

!7

)10)(6)(2(5

!5

)6)(2(3

!3

)2(
)(

2

x

xxxxxy

















     

                                                                                                                           (16b) 
 

We see then, that if ,3,2,1,0   ,2  nn , then we get polynomial solutions to the 

Hermite equation – Hermite polynomials of course. 

      Chebyshev’s equation, equation (2) provides our second example. If we rewrite 

(2) as 
 

                                                          ynyxyxy 22                                 (17) 
 

so that equation (17) is in the standard form of equation (7), with 
 

                                                   ynyxyxyyyxR 22),,,(                       (18) 
 

From (10) and (18), we obtain an implicit iterative solution scheme for (2) of the 

form 
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                                      dt
x

mynmytmyttxxaa
m

y )

0

22)((
101  


     (19) 

 

As before, we may split this into two iteration schemes 
 

 1.   dt
x

mynmytmyttx
m

y )

0

22)((1
1  


                                                (20) 

 2.   dt
x

mynmytmyttxx
m

y )

0

22)((
1  


                                                (21) 

 

for ,3,2,1m . 

      After a few iterations we find that our first particular solution is )(
1

xy , where 

 

           







 6

!6

)4)(2)(4)(2(2
4

!4

)2)(2(2
2

!2

2
1)(

1
x

nnnnn
x

nnn
x

n
xy         

                                                                                                                           (22a) 
 

and our second particular solution is )(
2

xy , where 

 

7

!7

)5)(3)(1)(5)(3)(1(
                                                                

5

!5

)3)(1)(3)(1(3

!3

)1)(1(
)(

2

x
nnnnnn

x
nnnn

x
nn

xxy
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







      

                                                                                                                           (22b) 
 

We see then, that if ,3,2,1,0 n , then we get polynomial solutions to the 

Chebyshev equation – Chebyshev polynomials in this case. 

      In our third example we consider the Legendre equation. If we rewrite (3) as 
 

                                                ynnyxyxy )1(22                                 (23) 
 

so that equation (17) is in the standard form of equation (7), with 
 

                                         ynnyxyxyyyxR )1(22),,,(                       (24) 
 

From (10) and (24), we obtain an implicit iterative solution scheme for (3) of the 

form 

                            dt
x

m
ynn

m
yt

m
yttxbax

m
y )

0

)1(22)((
1  


      (25) 
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As is now usual, we split (25) into two iteration schemes, for ,3,2,1m . 
 

1.   dt
x

m
ynn

m
yt

m
yttx

m
y )

0

)1(22)((1
1  


                                      (26) 

2.   dt
x

m
ynn

m
yt

m
yttxx

m
y )

0

)1(22)((
1  


                                     (27) 

 

After a few iterations we find that our first particular solution is )(
1

xy , where 

 


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xy

 

                                                                                                                           (28a) 

and our second particular solution is )(
2

xy , where 

 

7

!7

)6)(4)(2)(5)(3)(1(
                                                                

5

!5

)4)(2)(3)(1(3

!3

)2)(1(
)(

2

x
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x
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                                                                                                                           (28b) 
 

We see then, that if ,3,2,1,0n , then we get polynomial solutions to the Legendre 

equation – Legendre polynomials this time. 

 

3. The Basic Method – A Slight Extension 
 

Equations (4), (5) and (6) are solved by a minor extension of the previous method, 

involving (still) direct integration and iteration. By ‘eyeballing’ (4), (5) and (6), we 

see that they may all be re-written in the standard form (see, also, [2]) 
 

                                                     ),,,( yyyxRy
x

y 


                                (29) 

 

with c  for the hypergeometric and the confluent hypergeometric equations, 

while 1  for Laguerre’s equation. Equation (29) can be considered, formally, to 

be a first-order linear ODE in y  with integrating factor 


x  and find that (29) 

becomes 

 

                                                       ),,,()( yyyxRxyx 


                            (30) 
 

Integrating (30) repeatedly, we obtain the implicit solution to equation (29) as 
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                                       dt
x

du
t

yyyuRutxaaxy 













 







0 0

),,,(
1

10
)(


   (31) 

 

Next, we may put the implicit solution (31) to equation (29) in a close relation to 

the previous case, by an integration by parts. The result of integrating (31) by parts 

is the implicit solution to (29) in the form 
 

                                   











x

dtyyytRtx
t

xaaxy

0

),,,()
11

(
1

1
10

)(







              

                                                                                                                             (32) 
 

Again, the implicit solution (32) is in the general form of a Green function solution 

to the equation (29). With the appropriate choice of starting function (and
1

  and 
0

aa

), we may use (32) to generate iterative schemes to obtain series solutions to (29) 

from  

 

                           

 













x

dtmymymytRtx
t

xaax
m

y

0

),,,()
11

(
1

1
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)(
1








                  (33) 

 

for ,3,2,1m . From (33), we see that there is a possibility of non-integral powers 

through our iteration scheme and, more generally, Frobenius power series [1]. 

      In our first example, we consider Gauss’ hypergeometric equation (4). If we 

rewrite (4) as 

                                               y
x

ab
ybayxy

x

c
y  )1(                     (34) 

 

with cba   and ,  constant parameters, then we see equation (34) is in the standard 

form of (29), with c  and  

                                             y
x

ab
ybayxyyyxR  )1(),,,(                (35) 

 

so that the implicit iterative solution scheme solution to (34) is of the form (33), or  

  

 





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m
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
   

                                                                                                                             (36)    

 

To obtain the hypergeometric series solution to (4), we let 0
1

  and 1
0

 aa  in (36) 

and generate the specific recurrence relation 
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                                                                                                                             (37) 
  

for ,3,2,1m . Using the starting function 1
1
y , the first few iterations lead to 
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


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!4

4

)3)(2)(1(

)3)(2)(1()3)(2)(1(
                                                  

!3

3

)2)(1(

)2)(1()2)(1(

!2

2

)1(

)1()1(
1)(

x

cccc

bbbbaaaa

x

ccc

bbbaaax

cc

bbaa
x

c

ab
xy

      

                                                                                                                             (38) 
 

and we recognise the leading terms of the hypergeometric series. 

      We may obtain, also, a second solution to the hypergeometric equation by the 

current method, if we only restrict the parameter c . If, in (36), we let 

0
1

  and 1
0

 aa  then, for ,3,2,1m , we can write down the recurrence relation      

 






x

dttmy
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1

1)(
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                                                                                                                             (39) 
 

Using the starting function
cxxy  1)(

1
, the recurrence relation (39) generates after 

a few iterations the first few terms of a series solution to (4) of the form 
 





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x
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x
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                                                                                                                             (40) 

and c  may not be a positive integer. 

      We note in passing, that the power series (40) is actually a Frobenius power 

series. The possibility of such power series arising from our more general iterative 

scheme (33) has been noted already. 

      Kummer's differential equation (5), known also as the confluent hypergeometric 

equation, can be rewritten in the standard form (29) as (see, also [6]) 
 

                                                           y
x

a
yy

x

c
y                                    (41) 
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with ca   and   constant parameters. We see equation (31) is in the standard form of 

(29), with c  and  

                                                         y
x

a
yyyyxR  ),,,(                               (42) 

 

and the implicit iterative solution scheme solution to (34) is of the form (33), that 

is 
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                                                                                                                             (43) 
 

If we let 0
1

  and 1
0

 aa  in (43) and, for ,3,2,1m , generate the recurrence 

relation 
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then, using the starting function 1
1
y , we get the first few terms of the well-known 

confluent hypergeometric series as 
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                                                                                                                             (45) 
 

provided c  is never zero or a negative integer. 

      On the other hand, If we let 1
1

  and 0
0

 aa  in (43) and, for ,3,2,1m , 

generate the recurrence relation 
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                                                                                                                             (46) 

 

then, using the starting function 
cxy  1

1
, we get the first few terms of the second 

confluent hypergeometric series as 
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                                                                                                                             (47) 
 

provided c  is never a positive integer greater than one. Again, (47) presents the 

first few terms of a Frobenius power series. Apparently, polynomial solutions to 

Kummer’s equation exist when ac  and 1 is a non-negative integer. 

      Finally, for Laguerre’s equation, (6), we write 
 

                                                            y
x

yy
x

y



1

                                 (48) 

 

with   constant. Equation (48) is in the standard form of (29), with 1  and  
 

                                                          y
x

yyyyxR


 ),,,(                             (49) 

 

In this case, it appears that the general formula (33) must break down. However, if 

we take the limit as 1  in (33), then the resulting formula reads 

 

                                                  

x

dtyyytR
t

x
taxy

0

),,,(ln)(                        (50) 

 

where 
10

aaa   and we see that, with (49) in mind, the method will yield a single 

particular solution to Laguerre’s equation, through the iteration routine ( 1a ) 
 

                                                











x

dtmy
x

my
t

x
tx

m
y

0

ln1)(
1


                  (51) 

 

for ,3,2,1m . Obviously, this result, (51), can be obtained by direct integration 

of (48). With the usual starting function 1
1
y , the iteration routine (51) gives us 

 

    















5
25242322

)4)(3)(2)(1(
                                                                        

4
242322

)3)(2)(1(3
2322

)2)(1(2
22

)1(
1)(

x

xxxxxy






      

                                                                                                                             (52) 
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Once more, we see that if the parameter   is a non-negative integer, then we may 

expect polynomial solutions to Laguerre’s equation – Laguerre’s polynomials. 

      If we consider the solutions of Kummer’s equation and Laguerre’s equation 

then, if we set 1c in (47), we find that (47) reduces to 
 

                                      





 3
2322

)2)(1(2
22

)1(
1)( x

aaa
x

aa
axxy         (53) 

  
and we get the first few terms of (52), with a , as we would expect from an 

examination of the two differential equations, (41) and (48). 

 

4. Conclusions 
 

Requiring only a knowledge of basic integration, differentiation and the idea of an 

iterative solution to an equation (all of which are standard to introductory calculus 

courses), we see that the elementary method proposed above leads naturally to the 

idea of searching for power series solutions to linear ODE. In addition, the idea of 

a Green function solution to a linear ODE emerges in an equally natural fashion 

from the general method. Finally, it is a simple matter to apply this 

integration/iteration process to first-order linear ODE, other types of second-order 

linear ODE (especially those with constant coefficients) and even to certain non-

linear ODE [7],the critical point being, as mentioned in the introduction, the 

universal availability of computer algebra systems to enable students to perform the 

calculations (swiftly and accurately). 

      The basic method presented here, again as mentioned in the introduction, is not 

new and other examples of its application can be found elsewhere, under varying 

circumstances for  

different types of second-order ODE [7]. It is possible to further generalize this 

methodology, in fact to higher-order linear ODE and the theory behind this is 

presented by Fabrey [5], who considers, also, the inhomogeneous ODE, although 

Fabrey limits his discussion to the uniqueness of such solutions of higher-order 

ODE. Finally, if a second solution is not obtained immediately by the iteration, then 

in certain circumstances it may be possible to apply the Wronskian method [8] to 

obtain a second solution. The main point is, that with two linearly independent 

solutions, y1(x) and y2(x) say, to the general second-order linear ODE (with 

coefficients 𝑎(𝑥), 𝑏(𝑥) and 𝑐(𝑥)) 
 

                                                 𝑎(𝑥)𝑦′′(𝑥) + 𝑏(𝑥)𝑦′(𝑥) + 𝑐(𝑥)𝑦(𝑥) = 0              (54) 
 

then the Wronskian, 𝑊(𝑥)  of equation (54) satisfies the relation 
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                                                       𝑊(𝑥) ≡ |
𝑦1 𝑦2

𝑦1
′ 𝑦2

′ | = 𝑊(0)𝑒
− ∫

𝑏(𝑥)

𝑎(𝑥)
𝑑𝑥

                  (55) 

 

with 𝑊(0) a constant, which, in turn leads to a first order equation for one solution, 

given the other solution to (54). For full details, the interested reader is referred to 

[8]. 
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