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Abstract

People with sequence-space synaesthesia perceive sequences (e.g., numbers, months, letters)

as  spatially  extended  forms.  Here  we  ask  whether  sequence-space  synaesthetes  have

advantages in visuo-spatial skills such as mental rotation. Previous studies addressing this

question  have  produced  mixed  results  with  some  showing  mental  rotation  advantages

(Simner, Mayo & Spiller, 2009; Brang, Miller, McQuire, Ramachandran & Coulson, 2013)

but one that did not (Rizza & Price, 2012). We tested this hypothesis again with a new group

of sequence-space synaesthetes,  and we also tested a  range of individual differences that

might  have  caused  this  conflict  across  previous  studies.  Specifically  we tested:  years  of

education, visual imagery ability, nature of forms (2D or 3D representation of sequences),

number of forms (e.g., for months, days, numbers), and tendency to project sequences into

external space versus the mind’s eye. We found yet again that synaesthetes had enhanced

abilities  in  mental  rotation  compared  to  controls,  but  that  one  individual  difference  in

synaesthetes (the ability to project forms into space) was especially linked to performance.

We also found that  synaesthetes  self-reported  higher  visual  imagery than controls  (Price,

2009; Mann, Korzenko, Carriere, & Dixon, 2009; Rizza & Price, 2012). Overall, our data

support previous studies showing superior imagery reports (Price, 2009) and mental rotation

(Simner et al., 2009; Brang et al., 2013) in sequence-space synaesthetes, and we suggest that

one previous failure to  replicate  (Rizza & Price,  2012) might  be explained by individual

differences among synaesthetes recruited for testing.  
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Introduction

Synaesthesia is a condition with a neurological basis (e.g., Hubbard & Ramachandran,

2005) and likely genetic roots (e.g., Asher et al., 2009) which gives rise to usual secondary

sensations. For example, synaesthetes might experience colours when hearing music, or they

might taste flavours when reading words (see Simner & Hubbard,  2013 for review). The

current  study  examines  one  variant  in  particular:  sequence-space  synaesthesia in  which

sequences such as months of the year, days of the week, numbers, letters, etc. are experienced

as specific forms in space (e.g., Simner, 2009). For example, Figure 1 shows the spatial form

of synaesthete JC, for the sequence of days within a month. Estimates of the prevalence of

sequence-space synaesthesia  have varied in the contemporary literature from 2.2% of the

population  (Brang,  Teuscher,  Ramachandran & Coulson,  2010)  to  12% (Tang,  Ward and

Butterworth,  2008),  to  17% (Rizza  & Price,  2012),  to  as  much  as  29% (Sagiv,  Simner,

Collins,  Butterworth  &  Ward.  2006).  Our  aim  is  to  examine  whether  individuals  with

sequence-space  synaesthesia  show  cognitive  advantages  when  compared  to  the  general

population, and whether there are individual differences among sequence-space synaesthetes

that might moderate these advantages. 

Figure 1: Example of a synaesthetic sequence-space form (for days within a month), experienced by synaesthete

participant JC; from Simner, Mayo and Spiller (2009).
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Sequence-space synaesthetes often claim to be able to manipulate the viewing-angle

and/or  size  of  their  synaesthetic  forms  by  taking  multiple  perspectives,  or  mentally  re-

orienting the array, or by ‘zooming in’ on certain portions (e.g., Simner et al., 2009; Jarick et

al., 2009, Eagleman, 2009). Consequently, these individuals might be considered relatively

well practised in manipulating mental objects and could therefore perhaps perform well in

similar  visuo-spatial  tasks  conducted  in  the  lab.  Indeed,  Simner  et  al.  (2009)  found that

sequence-space  synaesthetes  outperformed controls  on a  variety of  tasks  linked to  visual

and/or spatial imagery/memory, including the California Test of Mental Rotation (Cherry et

al.,  2007).  Their  small  group of n=5 synaesthetes scored significantly more accurately in

mental rotation than controls. A subsequent study however (Rizza and Price, 2012) failed to

replicate this effect with n=9 synaesthetes using rotation stimuli from Shepard and Metzler

(1971),  and  concluded  that  “demand  characteristics  may  have  contaminated  group

comparisons based on small samples of synaesthetes [in Simner et al., 2009].” (Rizza and

Price, 2012; pg. S302). Nonetheless, a more recent study (Brang et al., 2013) subsequently

did  replicate  this  effect,  by  showing  that  n=15  sequence-space  synaesthetes  scored

significantly more accurately than controls on their own rotation task (for the mental rotation

of  letters).  In  the  current  paper  we  provide  yet  another  behavioural  replication  of  the

advantage  of  sequence-space  synaesthetes  in  mental  rotation,  as  well  as  an  attempt  to

understand why Rizza and Price failed to find the effect in their own paper. In particular, we

look here at  the question of individual  differences  among synaesthetes,  and whether  this

might explain why one test of mental rotation in four did not show the effect in question. The

individual differences we test in the current study relate to: number of synaesthetic forms

(e.g., for days, numbers, months etc.), whether forms occupy two dimensional (2D) space or

three dimensional (3D) space, whether they are projected outside the body (vs. within the
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mind’s eye), the synaesthete’s number of years of education, and their visual imagery ability

in  self-report.  We consider  these  differences  in  turn  below,  and discuss  how each might

influence synaesthetes’ performances in mental rotation tasks. 

Individual Differences in Synaesthetes

Although some traits are shared across sequence-space synaesthetes (e.g., the fact that forms

tends to  remain consistent  over  time;  e.g.,  Sagiv et  al.,  2006),  there are other  aspects  of

sequence-space  synaesthesia  that  vary  from  synaesthete  to  synaesthete.  One  obvious

difference is that some synaesthetes experience only very few forms, while others experience

many. For example, synaesthete L. experiences three forms, for numbers, months of the year

and hours in the day (Jarick, Dixon, Stewart, Maxwell & Smilek, 2009) while synaesthete

DG has at least 58 different forms, including forms for height, TV stations, body temperature,

and even pure-bred dog naming sequences (Hubbard, Ranzini, Piazza and Dehaene, 2009).

Hence synaesthetes differ in terms of the number of forms they experience. It is interesting to

note  that  the  synaesthetes  tested  in  Rizza  and  Price  (2012)  –  where  no  mental  rotation

advantage was found -- were only required to have spatial  forms for “at least 2 types of

sequence” (Rizza and Price, 2012; pg. S300) while those in Simner et al. (2009) – where

mental  rotation was superior  --  had an minimum of  four.  This  raises  the  possibility that

synaesthetes who perform well in mental rotation might be those with a greater number of

forms. 

Synaesthetes can also differ in the way their forms are experienced: firstly, forms can

occupy either 2D space or 3D space (Brang et al., 2013). A 3D form might extend away from

the body horizontally, vertically and laterally, while 2D forms might extend, for example, just

in a planar circle. Price (2013) suggests that 3D synaesthetes may reside on the upper end of a

visual imagery spectrum compared to those with 2D forms although very little is  known
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about how or why forms vary in their dimensionality, and what impact this might have on

related  abilities.  Synaesthetes’ forms  can  also  be  diverse  in  other  ways  too.  ‘Projector’

sequence-space  synaesthetes  see  their  form  occupying  physical  space  outside  the  body

(Dixon, Smilek & Merikle, 2004). In contrast ‘associator’ synaesthetes simply visualise their

forms in some kind of internal mental space, often described as being ‘within the mind’s eye’.

Associators also include synaesthetes whose spatial forms are ‘known but not seen’ (Ward,

Salih, & Sagiv, 2007); i.e., they are experienced in some abstract sense but not seen in any

type of (internal or external) imagery at all. Here we ask whether these two types of features

(2D/3D; projector/associator) might also influence mental rotation skills. For example, it is

possible  that  projected forms  in  particular  –  i.e.,  those with object-like  qualities  that  are

imaged outside the body -- could perhaps be somehow more tangible and so more easily

manipulated; if so, projector synaesthetes might be more practiced in mental rotation type

tasks. Equally, performance on a mental rotation task might be enhanced if the rotation task is

congruent  to the synaesthetic  spatial  representation: 3D spatial  forms might  benefit  a 3D

mental rotation task (see Brang et al., 2013 for a similar argument1). For both these reasons,

we also include these two individual differences in our study and ask how they might predict

performance on tests of mental rotation. 

A  fourth  individual  difference  across  sequence-space  synaesthetes  is  naturally

occurring fluctuations in education or IQ. One study showing an advantage for synaesthetes

(Simner et al., 2009) just happened to have tested particularly highly educated synaesthetes:

60% had  postgraduate  degrees.  It  is  already known that  levels  of  intelligence  positively

1 There is no evidence of systemaic diference across previous studies in the presence of 2D/3D 

forms, and the use of 2D/3D rotaion tasks: Simner et al. (2009) and Rizza and Price (2012) both used

a 3D object rotaion task whereas Brang et al. (2013) used a 2D grapheme rotaion. No informaion 

regarding spaial dimensionality of forms was reported in either Simner et al. (2009) or Rizza and 

Price (2012), although Brang and colleagues concluded that within their sample of synaesthetes 

(N=117), there was nearly a 50:50 split between those that experienced their forms as 2D or 3D.
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correlate with performance on tests of spatial ability (Hegarty & Kozhevnikov, 1999) and for

this reason, the synaesthetes tested by Simner et al. (2009) were carefully matched to controls

in  IQ.  Despite  this  matching however,  it  is  possible  that  synaesthesia  may  interact with

intelligence to allow synaesthetes with higher IQ to somehow profit more from their forms

(e.g., they may inspect and/or manipulate them more often, or may better profit from them

strategically in tasks). In other words, it is still possible that synaesthetes with higher IQs may

perform  better  than  those  with  lower  IQ,  compared  to  their  relative  matched  controls.

Considering this, we will also assess here the impact of IQ on synaesthetes’ mental rotation,

and we will test IQ by proxy in terms of year of education. 

One  final  individual  difference  that  may  influence  synaesthetes’ performance  in

mental rotation is  a priori mental  imagery ability.  Mental  rotation is  enhanced by strong

visual  imagery:  Weatherly (1997) for  example  reported  that  high visual  imagers  perform

particularly well  in tasks of mental rotation.  Additionally,  Logie,  Pernet,  Buonocorea and

Della  Sala  (2011)  showed  that  individuals  self-reporting  high  visual  imagery  (using  the

Vividness of Visual Imagery Questionnaire; VVIQ; Marks, 1973) were more accurate at a

mental rotation task than those self-reported as low imagers. Logie, Weatherly and colleagues

argue that high imagers may use more successful task-completion strategies whereas low

imagers may rely on techniques more predisposed to errors. 

Here we have reviewed five types of individual differences among sequence-space

synaesthetes. Collectively, these five types of individual differences among sequence-space

synaesthetes could, in theory, impact their performance in mental rotation tasks. The issue for

the current paper then is whether these individual differences might influence performance in

mental rotation, and indeed whether synaesthetes overall perform mental rotation better than

controls. To this end we present the empirical study below. Following our previous work

(Simner  et  al.,  2009;  also  Brang  et  al.,  2013)  we  hypothesise  that  sequence-space
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synaesthetes  will  out-perform  controls  in  mental  rotation.  We  also  hypothesise  that

performance may be better in those with a greater number of forms, and/or those who are

projectors (vs. associators), and/or those with 3D forms (vs. 2D, since we are using a 3D

task), and/or those with high visual imagery ability and/or a higher IQ. These differences,

individually or in combination with each other, could represent differences in the “strength”

of the synaesthetic experience. In line with previous research (see Price, 2009; Mann et al.,

2009), it is also expected that synaesthetes will self-report a higher level of visual imagery

compared to controls.  

To add weight to our earlier findings (Simner et al., 2009) the current study uses a

larger sample of synaesthetes to overcome the possibility of type II errors. We also took care

to  have  subjects  interact  with  a  new experimenter  in  case  our  earlier  findings  had been

influenced  in  any  way  by  unconscious  experimenter  bias  (Author  AMH  interacted  with

participants here, while JS interacted with participants in Simner et al., 2009). Finally, we

chose precisely the mental rotation task employed by Rizza and Price (2012; see below) to

ensure that our methods were closely comparable with the one study that failed to show our

effect previously.  

Experiment

Methods

Participants

We  tested  30  participants:  15  sequence-space  synaesthetes  and  15  control  non-

synaesthetes.  Synaesthetes  were  matched  group-wise  to  controls  for  sex  (12  females  per

group) and years of education (synaesthetes:  M = 16.7, SD = 2.7; controls:  M = 16.0, SD =
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2.5). The mean age of synaesthetes was 35.4 years (SD = 13.4) and the mean age of controls

was 33.8 years (SD = 11.9).  Synaesthetes were recruited from a database of self-referred

synaesthete participants and from an online discussion forum for synaesthetes (Day, 2013).

Synaesthetes  were  verified  by  their  responses  to  a  written  questionnaire  in  which  they

reported a spatial layout to sequences such as days, months, letters etc. In the course of our

study (see below) they also gave detailed information about the number and nature of their

forms (e.g.,  2D/3D layout;  projected/associated etc.  see below). Control participants were

recruited from the University of Edinburgh community and via social media and word of

mouth. Participants were unpaid and were informed of their ethical rights before taking part,

and the study was approved by the local ethics board at Edinburgh University.

Materials and Procedure 

All  subjects  took  part  in  the  test  in  the  same  way,  regardless  of  their  status  as

synaesthete or non-synaesthete. After agreeing to take part, participants were emailed a link

containing the web addresses for the experiment and were asked to complete the tasks in their

own time. The experiment was presented via Limesurvey (Limesurvey, 2013), a web-based,

open source software program. In addition to the main task of mental rotation, participants

also completed a series of questionnaires to assess for five types of individual differences:

mental imagery, level of education, projector/associator status, number of forms, and whether

those forms were 2D or 3D. These tasks are described in turn below, and this represents the

order in which tests were completed by our participants. 

 The mental rotation task was taken from Shepard and Metzler (1971; see also Rizza

and Price, 2012). The stimuli were illustrated figures representing 3D objects. Each object

comprised ten connected cubes which were configured to represent a 3D shape. Each trial

presented two of these objects simultaneously (see Figure 2 below): the pair were either the
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same object  rotated  in  3D space  (‘standard’ rotated),  or  mirror  images  rotated  (‘mirror’

rotated). The angle of rotation was one of the following: 0°, 20°, 40°, 60°, 80°, 100°, 120°,

140°, 160°, and 180°. Participants were asked to respond by clicking either ‘Yes’ for standard

rotated or ‘No’ for mirror rotated. Participants were given 10 practice trials followed by 120

target trials. All responses and reaction times were recorded. 

Figure 2: Example of mirror image trial from Limesurvey 3D Rotation Experiment.

The Spontaneous Use of Imagery Scale (SUIS) from Kosslyn, Chabris, Shephard and

Thompson (1998) comprises 12 statements to subjectively assess the vividness of one’s visual

imagery ability. An example is ‘When I think about visiting a relative, I almost always have a

clear mental picture of him or her’. Participants were asked to respond on a 1 to 5 scale with

1 being ‘not appropriate’ and 5 being ‘completely appropriate’, and they selected their answer

with a button click from one of five boxes. 

The  English  Projector/Associator  Questionnaire  for  Sequence-Space  Synaesthesia

(Henceforth:  PAQ-SSS/English;  see Appendix)  was  created  for  the  current  study  as an

adaptation  of  similar  questionnaires  developed  by  Rouw  and  Scholte  (2007)  and  Rouw

(unpublished).  The  original  12-question  questionnaire  (Rouw & Scholte,  2007)  has  been

widely used, and was designed to assess the extent to which the coloured graphemes of any
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given synaesthete are ‘projector’-like or ‘associator’-like. We rewrote this questionnaire to

adapt it for sequence-space synaesthetes (rather than grapheme-colour synaesthetes) and we

additionally  translated  from  Dutch-to-English  a  similar  adaptation  by  Rouw  herself

(unpublished). From this batch of questions, we selected five clear associator and five clear

projector questions as the items for our final PAQ-SSS2. Hence this questionnaire contained

10 statements overall about the spatial perception of sequences, each with a 5 point Likert

scale  (scored  0-4)  to  indicate:  Strongly  Disagree,  Disagree,  Neither  Agee  nor  Disagree,

Agree,  or Strongly Agree.  An example of  an item that  would be positively answered by

projector-like  synaesthetes  was:  ‘When  I  think  about  a  certain  sequence  (e.g.,  numbers,

months)  the  accompanying  synaesthetic  location  is  not  only  in  my  thoughts  but  also

somewhere outside my head’. An example of an item that would be positively answered by

associator-like  synaesthetes  was:  ‘I  see  the  synaesthetic  location  only  in  my head’.  The

questionnaire is scored by first averaging the five projector-like items, and then subtracting

the  mean of  the  five  associator-like  items  (Rouw, unpublished;  Rouw & Scholte,  2007).

Hence a positive score indicates a higher projecting ability. 

A Short  Questionnaire  on  the  Nature/number  of  Forms was  completed  last.  This

questionnaire assessed the total number of forms, the triggers for forms, and whether forms

were in 2D or 3D space. Participants were simply asked to check a button to indicate their

responses (see Figure 3 below), and were also given a text box to list/describe any additional,

less common forms they might experience. 

Figure 3: Screen interface for the Short Questionnaire on the Nature/number of Forms.

2 Our paricipants saw seven addiional quesions which we henceforth classify as illers. These items

did not make it into our inal analysis because we wished to balance the number of associator vs. 

projector items, and we also required all inal quesions to be unambiguously within one category or 

the other. The seven iller items did not it these criteria.
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Results

Mental Rotation

We  first  assessed  the  accuracy  of  responses  in  mental  rotation,  comparing

synaesthetes to controls. Our data satisfied assumptions of normality in a Shapiro-Wilk’s test

(both  W values > .10) but lacked homogeneity of variances (Levene’s test,  p < .05); so we

therefore  applied  corrected  p-values  and  degrees  of  freedom.  The  mean  accuracy  of

synaesthetes (M = 92.8%; SD = 4.11) was approximately nine percentage points higher than

that  of  controls  (M =  83.9%;  SD =  11.27)  and  this  difference  was  significant  in  an

independent-samples t-test;  t(17.59) = 2.95,  p(2-tailed) = .009,  r = .56. We next looked at

reaction time (RT) data, considering RTs that fell within 2 standard deviations from the mean.

An independent-samples t-test confirmed there was no significant difference across groups,
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hence no speed-accuracy trade-off: synaesthetes M = 9.05 sec., SD = .87; controls M = 8.35

sec.,  SD =  .97;  t(17.78)  = 1.71,  p(2-tailed) =  .11,  r =  .38.  Finally,  we found a  positive

correlation between angle of rotation for both synaesthetes (r(8) = .88, p < .001) and controls

(r(8)  = .65,  p <  .05)  thus  replicating  the  typically-found increase  in  response  time  as  a

function of angle of rotation found by Shepard & Metzler (1971). 

In summary, our results show that while no differences in reaction time were observed

across  groups  in  the  mental  rotation  task,  synaesthetes  responded  significantly  more

accurately3. 

Visual Imagery

The SUIS results for each participant were scored by summing individual responses for the

12 items on the questionnaire;  higher scores reflect stronger self-reported visual imagery.

Scores were normally distributed according to a Shapiro-Wilk’s test for normality (both  p

values > .10) and the assumption of homogeneity of variances was satisfied (Levene’s test, p

> .05). Figure 5 shows that synaesthetes rated their visual imagery (M = 48.5,  SD = 5.94)

higher  than  controls  (M =  40.0,  SD =  9.57)  and  this  difference  was  significant  in  an

independent-samples t-test: t(28) = 2.89, p(2-tailed) = .007, r = .48. 

Figure 5: Mean scores and standard errors on SUIS Imagery Scale for synaesthetes versus controls; ** p<. 01

3 Our study also included a second task of mental rotaion, but this ime with simpler materials that 

were 2D rather than 3D (i.e., eight 2D polygons). These materials were not originally designed to 

disinguish between groups of paricipants (see Cooper 1975) and ulimately proved too simple to 

assess for superior performance in our synaesthete because controls were already at ceiling. The 

mean accuracy of controls (93.9%; SD = 11.1%) was around ten percentage points higher than in the 

3D rotaion task, and this made it efecively impossible for our 15 synaesthetes to score signiicantly 

higher. In the spirit of full disclosure we report here our paricipants’ mean accuracy (synaesthetes M

= 95.1%; SD = 3.6) and RTs (synaesthetes M = 4.37 sec., SD = 2.6; controls M = 4.17 sec., SD = 4.9).
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Individual Differences in Mental Rotation

In this section we will analyse whether any of the individual differences tested here

influenced performance on mental rotation. We generated five scores per synaesthete, for the

following five individual differences: Number of forms (max. range: zero upwards); 2D/3D

forms (coded as 0=2D; 1=3D); Projector/Associator status from the PAQ-SSS (max. range: -4

to +4), Years of Education (max. range: zero upwards), and SUIS imagery score (max. range

12-60). We then ran a multiple regression analysis on our synaesthetes’ accuracy scores in

mental rotation, to measure the amount of variance explained by these five predictors. 

An all-subsets regression method model initially suggested that mental rotation scores were

best predicted by a 2-variable model (PAQ-SSS/English and ‘number of forms’) [Adj.R² = .

39,  F(2,12) = 4.50,  p = 0.03]. Neither factor significantly accounted for the proportion of

variance  individually.  Based  on  no  significant  difference  between  a  two-variable  model

(PAQ-SSS and ‘number of forms’ as predictors), [F(1) = 0.78, p = .40], a more parsimonious

model using only PAQ-SSS scores alone [AdjR² = .35, F(1,13) = 8.40, p = 0.01] revealed that

being  a  more  projection-oriented  synaesthete  accounted  for  35%  of  the  variance  when
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predicting scores on the mental rotation task. In other words, if both PA score and ‘number of

forms’ are analysed together in the same model, a substantial amount of the same variance is

explained by both predictors. In summary, our best fit model shows that projector/associator

status  is  a  significant  predictor  of performance in  mental  rotation:  those who were more

projector-like were significantly more likely to perform better on mental rotation.

Finally, a series of uncorrected correlation analyses shown in Table 1 also demonstrate

that  several  of  our  predictors  were themselves  correlated,  and that  one of these survived

correction (a positive correlation between PAQ-SSS and SUIS).

Table 1  Correlations among Individual Differences within Synaesthetes

# forms SUIS PAQ-SSS 2D/3D Edu.

# forms r --                               

p                           

SUIS r -.09 --                           

p .76                     

PAQ-SSS r -.56* .70** --                       

p .03 .005           

2D/3D r .28 .51 .31 --       

p .32 .06 .26    

Edu. r .38 -.05 -.43 -.21 --

p .16 .88 .11 .46

Notes: # forms: Number of forms; SUIS: Imagery score; PAQ-SSS: Projector/Associator score; 2D/3D.: 2D or

3D spatial calendar; Edu.: Years of education. All ps are shown 2-tailed uncorrected. R values which reach

significance at uncorrected alpha levels are shown in bold. With 10 calculated correlations the corrected alpha

level for significance is .005. 

In  summary,  we  found  that  of  our  five  individual  differences,  PAQ-SSS  (i.e.,

projector/associator status) was a significant positive predictor for performance on the mental

rotation task: those with more projector-like spatial forms scored significantly better. We also

found that synaesthetes with more projector-like forms self-reported higher mental imagery.

Finally,  we point  out that  none our analyses indicated mental  imagery was itself  directly

correlated with performance on the mental rotation task. 
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Discussion

Our study shows that  a  group of 15 sequence-space synaesthetes are significantly

more accurate in a mental rotation task (and no slower) than a group of 15 matched controls.

A  similar  effect  has  previously  also  been  shown  in  a  group  of  five  sequence-space

synaesthetes by Simner et al.  (2009), and in group of 15 sequence-space synaesthetes by

Brang et al. (2013). Our current study therefore represents the third instantiation of this effect.

One study failed to replicate (Rizza and Price, 2012), with nine sequence-space synaesthetes.

This latter study may simply have suffered from low power (i.e., they may have had a type II

error,  perhaps  from small  participant  numbers,  or  because  they presented  only 40  trials)

although we have here investigated an alternative hypothesis: that their failure to replicate

could be explained by individual differences among synaesthetes sampled for testing. The

possibility that individual differences may be at the root of previous conflicts in the literature

has also been suggested by Simner (2013) and Price (2013). In the current study we tested

this empirically by examining five individual differences in particular:  number of forms,

whether forms are 2D or 3D, projector-associator status (measured by the PAQ-SSS/English),

years of education, and self-reported mental imagery ability (measured by the SUIS). Using

these  five  differences  as  predictors  in  a  multiple  regression  analysis,  our  best  fit  model

showed that projector/associator status is a significant predictor of performance in mental

rotation.  Thus,  better  performance in  mental  rotation  tends  to  come in  synaesthetes  who

projects  forms  into  space;  conversely,  worse  performance  tends  to  come  in  those  who

experience their forms only in the mind’s eye. We did not find evidence that mental rotation

was  affected  by  any  other  factor  (number  of  forms,  2D/3D  forns,  education,  or  SUIS

imagery) other than what might be expected from their own inter-factor correlations.

The outcome of our study might shed light on previous controversies since one logical

possibility is that Rizza and Price (2012) failed to show an effect because they happen to have
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recruited more associator synaesthetes, compared to the three other studies in this area (Brang

et al.,  2013; Simner et  al.,  2009; and the current study).  In fact,  a consideration of their

recruitment  methods  does  indeed  point  in  this  direction.  Rizza  and  Price  recruited  their

subjects  by  first  screening  a  larger  sample  of  individuals  to  find  the  sequence-space

synaesthetes from among them. In contrast, the current study, and Simner et al. (2009) used a

sample  of  synaesthetes  who  had  self-referred  for  study,  for  example  via  online  portals

describing synaesthesia or other self-referral methods. Furthermore, it appears likely that self-

referral was also used by Brang et al. (2013) because there are no details of any wide-scale

screening in their methods. They key difference between wide-scale screening (Rizza and

Price,  2012) and self-referral  (as here,  also Simner et  al.,  2009;  Brang, 2013) is  that  the

former is likely to recruit more associators, and the latter, more projectors (Simner, 2013). In

other words, we suggest that those most likely to self-refer are arguably those who project

their  sequences,  since these especially ‘strong’ experiences might be more obvious to the

individual  compared  to  associated  forms.  In  contrast,  associators,  with  their  more  subtle

experiences, may not realise that they possess any extra ability at all, and these individuals

may therefore fail to self-refer for experimental testing. They would, however, be recruited if

they  were  specifically  approached  and  asked  about  their  experiences  in  a  detailed

questionnaire,  as in the wide-scale screening method of Rizza and Price (2012).  In other

words, we suggest that individual differences among synaesthetes may become exaggerated

by  different  experimental  sampling  methods,  and  that  self-referral  may  over-recruit

projectors, while wide-scale screening may recruit more associators. 

The recruitment differences described here could certainly explain why Rizza and

Price  (2012)  failed  to  replicate  an  advantage  for  sequence-space  synaesthetes  in  mental

rotation; their  method of sampling would likely have encouraged associator synaesthetes,

who are (our data suggest) the worse type of performers in mental rotation. However, we
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make  two  important  points  for  consideration:  we  believe  that  wide-scale  screening  is  a

superior  approach when aiming to draw conclusions about  what the average synaesthete

experiences, and for this reason, we suggest that future studies might rely on the methods of

Rizza and Price (2012) over self-referral where possible. Second, for the consideration of

future  studies  in  this  area,  we  also  point  out  that  own  cohort  here  of  15  synaesthetes

contained 46% who were projector-like (i.e.,  they scored > 1 on PAQ-SSS). Although no

equivalent empirical data is described in the other studies in this area (including Rizza and

Price, 2012), we hope this declaration allows future investigations to meaningfully compare

their results to our own.

We end our discussion with a consideration of how performance in mental rotation

might relate to abilities in visual imagery versus spatial imagery. The dissociation between

visual imagery (i.e.,  the mental representation of an object),  and spatial imagery (i.e.,  the

visualisation of space or object-movement within that space) has been well documented (e.g.,

Farah, Hammond, Levine & Calvanio, 1988; Thompson, Slotnick, Burrage & Kosslyn, 2009;

Luzzatti, Vecchi, Agazzi, Cesa-Bianchi & Vergani, 1998). We have found here that sequence-

space synaesthetes self-reported high visual imagery. Although Price (2009) had a similar

finding, they also found that their sequence-space synaesthetes (n=12) reported only average

spatial imagery (in the spatial sub-test of the Object-Spatial Imagery questionnaire; OSIQ-

spatial; Blajenkova, Kozhevnikov & Motes, 2006; see also Rizza & Price, 2012). On this

basis Price and colleagues speculated that sequence-space synaesthetes should not perform

well on mental rotation, theoretically speaking. It is interesting therefore that three studies to

date show otherwise (here, Simner et al., 2009; Brang et al., 2013). There are of course only

two possible conclusions: either spatial imagery and mental rotation are necessarily related,

or they are not. If the former, then we assume that synaesthetes showing superior mental

rotation (here, Simner et al., 2009; Brang et al., 2013) would likely have reported high spatial

17



imagery,  if  asked (we did not  question  them on spatial  imagery due to  lack  of  material

availability). If the latter, then superior performance in mental rotation can apparently arise

irrespective of self-reported spatial imagery skills, and we review evidence for this in the

paragraph below.

A brief review of the literature shows that superior performance in mental rotation

might  indeed  result  from  high  visual imagery,  even  if  scores  on  spatial imagery

questionnaires are low. First, Borst and Kosslyn (2010) found evidence to suggest that spatial

imagery questionnaires such as that used by Price and colleagues (OSIQ-spatial; Blajenkova,

Kozhevnikov & Motes, 2006) do not in fact correlate with performance on a series of spatial-

type tasks (Paper Folding test, Paper Form Board test, and the visuo-spatial items on Raven’s

Advanced Progressive  Matrices).  Although Blajenkova et  al.  2006 report  that  the  OSIQ-

spatial -- but not OSIQ-visual -- does positively correlate with mental rotation, other evidence

suggests that subjects can still  score highly on mental rotation from high  visual imagery.

Logie et al. (2011) and Weatherly (1997) reported that high visual imagers (e.g., tested with

the VVIQ; Marks, 1973) performed particularly well in mental rotation. We would conclude

therefore that scores on the OSIQ-spatial  may not reflect absolute performance in mental

rotation, either because the rotation task itself can be performed via strong visual imagery, or

because the OSIQ-spatial happens to be an inconsistent measure of certain visuo-spatial skills

in general. Indeed, only two of the twelve questions in the OSIQ-spatial relate to mentally

rotating, and Thompson et al. (2009) have recently suggested that spatial imagery might in

fact be two distinct systems, only one of which deals with the mental rotation of objects. We

therefore  conclude  that  although  the  self-reported  spatial  abilities  of  our  participants  are

unknown, these may or may not relate to performance in mental rotation, either because the

OSIQ may be an inconsistent measure of this type of spatial ability, or because synaesthetes

might be able to perform mental rotation reliant on their high visual imagery alone. We did
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not find a direct link here between visual imagery and mental rotation ability, but we did find

that those who perform best in mental rotation (projectors) are also those who self-report the

highest visual imagery. 

In conclusion, we have presented a second replication of a higher accuracy in mental

rotation for sequence-space synaesthetes. We linked these results to individual differences

within synaesthetes and concluded that those who project their forms into space might be

especially accurate in this task. Together with previous findings (Simner et al., 2009; Brang et

al., 2013) our data suggest that although synaesthetes who have been tested in mental rotation

do overall tend to out-perform controls, this may not always be the case (Rizza & Price,

2012)  and  that  the  effect  is  likely to  be  absent  if  the  sampling  method  recruits  a  large

proportion of associator synaesthetes.  
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Appendix.  Projector/Associator  Questionnaire  for  Sequence-Space  Synaesthesia  (PAQ-

SSS/English), adapted from Rouw and Scholte (2007) and Rouw (unpublished).  Projector

Items are 2,4,6,9,10 and Associator Items are 1,3,5,7,8. There were also seven filler questions

which  were  not  analysed  either  because  we  ultimately  chose  to  balance  the  number  of

associator vs. projector questions in our analysis, or because the content of the filler question

was ambiguous between associator/projector.

For each question, please rate whether you Strongly Disagree, Disagree, Neither Agee no

Disagree, Agree, or Strongly Agree

1. When I think about a certain sequence (e.g., numbers, months), the accompanying

location appears only in my thoughts and not in my head.

2. It’s as if some sequences (e.g., numbers, months) are actually at an external location.

3. When  I  look  at  a  certain  sequence  (e.g.,  numbers,  months)  written  down,  the

accompanying synesthetic location comes in my thoughts, but on the paper itself, I only see

the sequence as it’s been printed (e.g., a line of black text).

4. When I think about a certain sequence (e.g.,  numbers, months) the accompanying

synaesthetic location is not only in my thoughts but also somewhere outside my head.

5. The sequence itself has no actual location I can perceive anywhere, but I am just

aware that it is associated with a specific location.

6. If I see a sequence (e.g., numbers, months), then the synaesthetic location really is

projected into space.

7. I do not see sequences literally in a particular location but I have a strong feeling that

I know where the sequence would belong (i.e., what location it would have).

8. I see the synaesthetic location only in my head.

9. If a sequence (e.g., numbers, months) is written on paper, I see the form of my own

synaesthetic sequence (e.g., numbers, months) very clearly in the proximity of what’s written

down (e.g., on top of it or behind it or above it).

10. When I think about a specific sequence (e.g., numbers, months), it also appears at an

accompanying location somewhere outside my head.
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