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Abstract 

The limited range of commercial timber species in Great Britain has led the 

forestry sector to consider wider planting of other species. This research 

addresses wood properties, particularly relevant to structural timber, of noble 

fir, Norway spruce, western red cedar and western hemlock in Great 

Britain. Sampling covered three regions to get a representative sample for the 

country. Bending stiffness, bending strength, density and twist distortion from 

drying were assessed. The results showed high yields of C16 for all these 

species, with Norway spruce and western hemlock performing comparatively 

well to typical British-grown Sitka spruce. Within this dataset, variation of 

mechanical properties within trees was more important than differences 

between species. Strength and stiffness increased with age, whereas density 

followed different trends in the inner and outerwood. The three properties 

were modelled based on ring number. The use of acoustic techniques to assess 

the mechanical properties of wood (in particular stiffness), was investigated in 

clears, sawn timber, logs and trees. The best results were found combining 

density with acoustic velocity in sawn timber. The use of acoustic techniques 

in standing trees was more reliable measuring distances of two or three metres, 

rather than the commonly used one metre; most likely due to a change in the 

wave propagation. Tree architecture was studied for timber production and 

quality. Noble fir described the highest merchantable taper profile. Branchiness 

varied importantly with height in the stem, and models were built for number, 

diameter and angle of branches. Western red cedar and western hemlock had 

fewer but thicker branches compared to noble fir and Norway spruce. Future 

work should produce grading machine settings and address the variation of 

timber quality and merchantability under different silvicultural regimes. This 

thesis concludes that the four species investigated can contribute to diversity 

the timber industry in Great Britain. 
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Abbreviations and acronyms 

A list of abbreviations used along this thesis is given below. Specific ones are 

given in each chapter. 

 

ANOVA: Analysis of variance 

CoV: Coefficient of Variation 

dbh: diameter at breast height, measured at 1.3 m above ground level 

Density384: determined on small defect-free prisms according to EN 408 

Densitytimber: density of a structural-size piece 

G.B.: Great Britain (meaning here England, Wales and Scotland) 

GLM: General Linear Model 

LOESS: locally weighted smoothing regression method 

m.c.: moisture content.  

mknot: marginal knot index. 

MOE: Bending stiffness 

MOEC: Bending stiffness in small clears 

MOEdyn: dynamic modulus of elasticity, measured acoustically. 

MOEsta: static modulus of elasticity, measured destructively in bending 

MOR: Bending strength  

MORC: Bending strength in small clears 

NF: noble fir (Abies procera Rehd.) 

NS: Norway spruce (Picea abies (L.) H. Karst.) 

RC: western red cedar (Thuja plicata Don ex D.Don) 

tknot: total knot ratio index.  

TOF: “time-of-flight”. Time delay for a stress wave to travel a certain distance. 

WH: western hemlock (Tsuga heterophylla (Raf.) Sarg. 

y/o: years old 
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Glossary  

Basic grade: highest strength class achieved by 100% of the population.  

Corewood: inner part of the tree near the pith, typically of low mechanical 

properties (sometimes called juvenile wood). 

Crown ratio (CR): crown length to tree length ratio. 

Noble fir (Abies procera Rehd.) 

Norway spruce (Picea abies (L.) H. Karst.) 

Optimum grading: hypothetical grading with a perfect grading machine (i.e. 

using the results from the destructive tests). In this thesis, only the case of a 

single strength class, with reject, is considered. 

Perfect grading machine: hypothetical machine with full, perfect, knowledge 

of the wood properties of timber to grade.  

Radial position: Referred to the position of a structural piece or clear within 

the radial transect. 

Radial transect: Referred to the cutting pattern used to process the logs, 

centring in the pith. 

Western hemlock (Tsuga heterophylla (Raf.) Sarg.)  

Western red cedar (Thuja plicata Don ex D.Don)  
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Chapter 1. Introduction and literature review 

1.1 Introduction  

Trees change during their lives. They do so in response to, and as a consequence 

of, growth. This response varies from species to species, depending on factors 

like genetics, the environment in which they grow, and forest management. 

Wood quality from planted trees differs from those growing in its natural 

environment. Therefore, wood properties, growth and tree architecture (taper, 

straightness, branches, etc.) are interrelated, and growers need to know how 

they change under different scenarios Those changes can be observed 

externally (height, diameter, taper, branches distribution, etc.), but they are 

accompanied by necessary internal changes in wood cells that allow adaptation 

to both the external influences (biotic and abiotic) and internal needs. As a 

result, trees produce wood with different characteristics, varying in strength, 

density, colour, durability, calorific value, etc., that will make it more suitable 

for certain end uses than others. 

Softwoods trees growing in even aged planted forest present important 

differences between the inner (corewood) and the outerwood, with wood near 

the pith characterised by large microfibril angle and spiral grain, thin cell walls 

and short tracheids (Zobel and Sprague, 2012) in comparison to the outerwood. 

These characteristics influence the suitability of wood for structural purposes. 

The three main properties for structural wood quality are: bending stiffness, 

bending strength and density. The two first are mechanical properties whereas 

density is a physical property. The three properties change within trees as they 

adapt to their growing requirements. For example, in hard pines the wood near 

the pith is of low density and increases outwards, whereas in other species like 

spruce or hemlock density is high near the pith, decreasing for few years before 

increasing outwards.  

Understanding how they vary it is important as it will help to determine planting 

densities, rotation ages, treatments and wood quality. Larger volumes will 

supply a greater amount of wood resources, but not necessarily larger amounts 

of structural timber. Fast growth is associated with a higher presence of 
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corewood (Kliger et al., 1998; Moya et al., 2013). Longer rotations improve 

mechanical properties and lessen overall distortion, but shorter rotations 

produce more regular incomes.  

In addition to quantity, the forest wood industry is interested in anticipating 

the quality of stands. For example, identifying stands that meet the appropriate 

characteristics in order to produce wood for timber construction, reduces the 

cost of grading rejects after processing logs and drying sawn timber. Acoustic 

tools allow estimation of wood quality, principally stiffness. They provide 

reliable results on sawn timber, but less so when applied to logs and standing 

trees. Nevertheless the application on trees is of particular interest as it helps 

in making decisions about the most appropriate end products of trees. However, 

measurements on trees are not fully understood, which can lead to the wrong 

allocation of material. 

As well as wood properties, stem straightness is another important factor in 

defining the suitability of timber for structural applications. It determines the 

length of the sawnwood available per log, and affects mechanical properties as 

it increases deviations in the grain angle (Macdonald and Hubert, 2002), which 

may led to either rejecting the logs for sawing or changing the cutting pattern 

with lower conversion. In Great Britain (G.B.) it was identified for the industry 

as the most important stem feature for grading the quality of spruce logs 

(Methley, 1998). More typically for research purposes, straightness is visually 

assessed on the bottom six meters of the tree.  

The full length of trees determines the volume available, and also influences 

the end use. In G.B., an upper diameter above 14 cm over bark is the minimum 

size used for sawlogs (Forestry Commission, 2017b), between 12 and 14 cm is 

for pallet wood, and up to 7 cm for chip/pulpwood and biomass. Changes in 

sawmill technology, in merchantability standards, and in the requirements from 

the industry as they adapt to new end-use products, suggests the need of 

models for prediction of merchantability capable of adapting to varying 

merchantable limits. In order to estimate the sawlog volume of trees in the four 

species studied, the construction of taper functions or tree profile models 

describing the stem architecture of the four species was aimed.  
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The British forest industry has been mostly built around a few species, 

particularly Sitka spruce (Picea sitchensis (Bong.) Carr) for structural 

applications. Recent pests and diseases, and climate change have raised 

concerns of the reliance on those few species to provide timber in G.B. This 

research undertook, firstly and most importantly, the study of timber growth 

and wood properties of noble fir (Abies procera Rehd.), Norway spruce (Picea 

abies (L.) H. Karst.), western red cedar (Thuja plicata Don ex D.Don) and 

western hemlock (Tsuga heterophylla (Raf.) Sarg.) grown in G.B. These are 

species with high productions of timber for construction applications in their 

native lands. While it is possible to grow these species in G.B. there is little 

information about the wood quality, merchantability and therefore their 

commercial viability for structural purposes, or how they would compare to 

other species more widely planted. It is therefore beneficial to the forest wood 

industry within G.B. to build up knowledge of the growth and potential 

characteristics of additional home grown species, so that future interventions 

can be planned based on reliable information. 

1.2 Objectives / Aims of the study 

This research performed an assessment of noble fir, Norway spruce, western 

red cedar and western hemlock grown in G.B. The present study can be 

considered as the first of its kind on structural-size timber in G.B. for any of 

these four species. Experimental work was carried out in the forest, log yard 

and laboratory, and focused on the important timber properties of: bending 

and dynamic stiffness, bending strength, density, twist distortion, knots, 

branches and volume.  

The study of these four species was a requirement of the funded research 

project, which specifically included: 

▪ Performance and distortion of structural-size timber and clearwood from 

the four species. 

This is addressed investigating the wood properties (bending stiffness, 

bending strength and density) that determine the grading of timber. 

They are described both in structural-size timber and clearwood. The 

variation due to the hierarchical data structure is analysed. The study 
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also aims to describe knots and twist distortion in timber, and investigate 

empirical models in clearwood that describe the variation of wood 

properties with age. 

▪ Stem form and branching characteristics of the four species. 

On the one hand, the research investigates those variables defining the 

volume available for sawlogs, the straightness and taper models. On the 

other hand, tree architecture variables related to timber quality such as 

branchiness, or potentially correlated like crown and slenderness are 

also described. 

▪ Investigation of improved acoustic methods for measuring standing tree 

stiffness. 

The research compares the performance of different acoustic techniques 

to measure wood properties, and investigates the propagation of a sound 

wave in a standing tree as a potential cause of the discrepancy in the 

most common measurements. The effect of knots in the mechanical 

properties is also studied. 

These aims are addressed within this thesis as follows: 

• The wood properties 

o In structural-size timber, Chapter 3 

▪ Bending stiffness, bending strength and density.  

▪ Twist as drying distortion. 

o In clearwood samples, Chapter 4 

▪ Variation of bending stiffness, bending strength and density 

with age. 

• The use of non-destructive techniques, Chapter 5 

o acoustic techniques,  

▪ on small clears, structural sized timber, logs and trees. 

▪ at tree, plot, site and species level. 
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▪ the wave behaviour in standing trees and the implications. 

o measurement of knots 

• Tree architecture and merchantability, Chapter 6 

o Taper 

o Branch characteristics 

The present chapter contains an introductory literature review, and Chapters 3 

to 6 contain additional reviews of the relevant literature.  

Together, these chapters will allow this thesis to make recommendations about 

the use of these four species. In addition, the research into non-destructive 

techniques will improve our understanding of the shortcomings of acoustic 

techniques, and will help to examine the timber quality of other species. 

1.3 Background to this study 

The United Kingdom was the second largest net importer of forest wood in 2015, 

behind China (Forestry Commission, 2017c). Construction has been consuming 

more than 60% of the sawn softwood used in the UK, and more than 80% of the 

imported softwood (Moore, 2015). In terms of British grown timber, Sitka spruce 

(Picea sitchensis (Bong.) Carr) is the main commercial tree species, occupying 

51% of the conifer area and standing conifer volume (Forestry Commission, 

2017a). In terms of harvesting, the total volume of softwood harvested in 2009 

was 8.1 million cubic metres, 60% of which was Sitka spruce (Moore, 2011). 

These figures are even more important in Scotland, where Sitka spruce accounts 

for 62% of the standing conifer volume, followed by Scots pine (Pinus sylvestris 

L.) with just 15%.  

Recent outbreaks of pest and diseases in G.B. have raised concerns about the 

reliance on a Sitka spruce monoculture as well as the limited range of species 

providing a reserve of timber for a higher variety of end uses. Suitability of the 

species is also a main concern for timber growers in the scenario of climate 

change. Species typically have different wood properties in their native lands 

to those produced in planted forests. Thus, it is necessary to study timber grown 
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under British representative conditions in order to know the real capabilities of 

the species in G.B.  

The Forestry Commission established forests of a wide range of species in the 

first half of the past century, and already in 1967 stated: “it was decided to 

undertake a comprehensive evaluation of the status and potential of the four 

most important “minor species” in British forestry, Western hemlock, Western 

red cedar, Grand fir and Noble fir” (Aldous et al., 1974). Table 1-1 reports the 

surface planted for the three pertinent species before 1950. At that time, 

Norway spruce was considered a major species, together with Sitka spruce, 

Corsican pine (Pinus nigra ssp. laricio (Poir.) Maire), Douglas fir (Pseudotsuga 

menziesii (Mirb.) Franco) and Japanese larch (Larix kaempferi (Lamb.) 

Carriére).  

Table 1-1. Area (ha) of minor species in G.B. planted before 1950 (Aldous et al., 1974) 

Country 
Noble fir W. red cedar W. hemlock 

Forestry Commission Plantations  

England 12 61 323 

Wales 14 44 140 

Scotland 88 42 220 

 Privately owned Plantations  

England 40 129 50 

Wales 2 - - 

Scotland 68 29 38 

 

The information derived from these was mainly concerned with growth, and 

produced very limited evidence about the commercially important wood 

properties of the timber. A report reprinted in 2002 (Lavers, 2002), of which 

the first edition dates from 1967, included a small amount of data from the 

testing of small clear pieces grown in the UK, and very few data from structural-

size pieces. The values were typically based on a very low number of trees and 

there was no information on the age or the growing region. In an attempt to 

clarify the source of the data, it was possible to access the content of 52 folders 

of the Forest Products Research Laboratory (FPRL), which merged into the 

Building Research Establishment in 1972, dating back to the 1950s. The files 

contained the results from timber testing of a wide range of species throughout 

the UK. Some of them matched with the results published in Lavers (2002), but 

some others did not find a correspondence. Many publications (Desch and 
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Dinwoodie, 1996; Dinwoodie, 2000; Gardiner et al., 2011; Moore, 2011) cite this 

report to indicate the wood properties of different species grown in the UK, but 

the values should only be used as a rough guide. Nevertheless, based on those 

data from small clears, there are estimations for structural-size timber (Ramsay 

and Macdonald, 2013). These are founded on a number of assumptions (about 

sampling representativeness and differences between small clear and structural 

size), which were the best guesses based on literature review and previous 

experience with other British timber. The assumptions were not tested, which 

is not sufficient for a useful determination of physical and mechanical 

properties for structural-size timber. 

With this purpose, the Forestry Commission aimed to provide a preview into the 

growth and properties of some conifer species that currently form a minor 

component of the British forest resource. Presently, Norway spruce is processed 

in combination with Sitka spruce. The species mix is recognised in the European 

standard EN 14081, where it is referred to as “British spruce”. In the UK and 

Ireland this species combination is comprised of approximately 90% of Sitka 

spruce, with the remaining 10% consisting of Norway spruce. They both have 

similar wood properties, and although Norway spruce may perform better than 

Sitka, there was no evidence based on structural-size pieces supporting that. 

One of the first aims of this thesis is to study whether Norway spruce grown in 

G.B. has the potential to produce timber outperforming the structural 

properties of  British-grown Sitka spruce.  

The main value use of the British spruce resource is sawn timber for use in 

construction, with packaging and fencing as market with lower quality 

requirements (Moore, 2011). Norway spruce occupies 61,000 ha in G.B. 

(Forestry Commission, 2014). Reports from the Forestry Commission include the 

other three species within the “other species” group, with a total of 40 

thousand ha. Inventory data back to 1995 (Wilson, 2011) recorded for Scotland 

1,422 ha for noble fir, 32,968 ha for Norway spruce, 37 ha for western red cedar 

and 1,467 ha for western hemlock. Table 1-2 reports the public surface by 

countries. 
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Table 1-2. Public surfaces (ha) by countries in G.B. of the studied conifers (Forestry 
Commission, 2017d). 

Species 
Primary 

species (%)1 

Surface (ha) 

Noble 

fir 

Norway 

spruce 

Western 

red cedar 

Western 

hemlock 

England 100% 18 3126 117 347 

 100% - ≥80% 7 1649 188 460 

 <80% 31 2434 466 879 

Wales 100% 248 2231 74 165 

 100% - ≥80% 78 1823 56 245 

 <80% 153 1743 149 395 

Scotland 100% 172 4463 24 125 

 100% - ≥80% 105 2608 18 92 

 <80% 243 3558 20 242 

Total  1054 23634 1111 2950 
1 Primary species refers to the percentage of the species within a subcompartment. 

 

Noble fir, western red cedar and western hemlock are native to west coast of 

north USA and Canada. Noble fir is typically used in its native land for 

construction, paper (pulpwood) and plywood. In G.B. it is used as Christmas 

tree because it has a poor reputation due to the perceived risk of drought crack. 

Western red cedar is not a true cedar (from genus Cedrus), and in North America 

it can be referred to as western redcedar. This thesis referred to it as western 

red cedar for consistency with previous British literature. It stands out for its 

excellent durability and dimensional stability, which makes it a formidable 

material for outdoor uses, facades and even houseboats. This feature is given 

by the chemical characteristics of the heartwood, that gives an attractive 

colour, scent and decay resistance to the wood. In G.B. it is mostly used for 

decking, cladding, glasshouse framing and beehive manufacture. Western 

hemlock timber is also used in its native land in construction, roof decking and 

plywood. It is seen as one of the most useful tree species to be planted for 

commercial purposes in G.B. (Cameron and Mason, 2013). Norway spruce is 

native to Scandinavia, and central Europe. The main use in G.B., as part of the 

British spruce mix, is sawn into timber for use in construction, with packaging 

and fencing as market for lower quality requirements. 
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1.4 Wood properties variation and use in construction. 

The concept of wood quality depends on the intended end-use. Structural wood 

quality is based on three key wood properties, namely: bending stiffness, 

bending strength and density. 

▪ Bending Stiffness, commonly referred to as modulus of elasticity and 

abbreviated as MOE: It is a measure of the capacity of a material, in this 

case timber, to resist deflection under certain load. 

▪ Bending Strength, commonly referred to as modulus of rupture and 

abbreviated as MOR: It is a measure of the maximum load a material can 

resist before breaking.  

▪ Density: It is the ratio mass (kg) to volume (m3) at a specified moisture 

content, and it is used as a proxy for strength in, for example, calculation 

of connections made with screws and nails. It is low density that is the 

concern. 

In order for engineers to design buildings safely, the three properties are 

characterised by performance declaration (usually by reference to a strength 

class), which the actual properties of the timber must equal or exceed. 

Although mechanical properties can be studied in different directions and 

planes, typically only bending stiffness (MOE) and bending strength (MOR) are 

measured, and the rest of mechanical properties (compression, shear, tensile, 

etc.) are estimated from those (by the equations in EN 384). Density is the most 

common physical property investigated for structural applications. 

The MOE is measured within a range in which the load-deflect relationship is 

linear (proportional). With increasing load, the material eventually fails at the 

maximum load (Figure 1-1), which correspond with the MOR load.  
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Figure 1-1. Theoretical mechanical behaviour of wood under a load test. 

 

The three properties differ among species, and within them from site to site, 

within sites, with age, between trees and within trees in response to growth 

requirements (Burdon et al., 2004; Jyske et al., 2008; Lachenbruch et al., 

2011). Regarding the influence of the different sources of variation, Lavers 

(2002) stated that “trees are generally of greater significance than the 

differences in material from different parts of the same tree”. But more 

recently, a study on Sitka spruce (Moore et al., 2013) found a larger variation 

in the mechanical properties within trees, but with tree-to-tree variation in 

density still being greater.  

Besides those sources of variation, mechanical properties and density vary with 

moisture content (m.c.), with stiffness increasing once wood dries below the 

fibre saturation point, and density decreasing. In order to make wood 

properties values comparable they must be accompanied by the m.c. at which 

they were measured. Commonly, the reference m.c. for the wood properties is 

12%.  

On the contrary, below the fibre saturation point drying distortion may occur. 

There are several types, but this research only studied twist, because it is the 

most problematic type of drying distortion for timber construction. It leaves a 

piece that cannot easily be straightened through nailing or screwing. It also 
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causes problems with glue-laminated timber as the majority of pieces twist in 

the same direction, and so it is not possible to flip them around to balance one 

another.  

The mentioned variability of wood properties can make certain wood unsuitable 

for a particular end use. Grading allows the allocation of timber to groups based 

on bending stiffness, bending strength and density. In Europe, structural timber 

is typically assigned to groups called strength classes. These classes allow safe 

design with timber by specifying minimum characteristic values of MOE, MOR 

and density at 12% moisture content. The three properties need to achieve the 

requirements of the strength class to which timber is graded. For any particular 

population of timber and growth area, one of the properties will be restraining 

the overall grading. Overall, British Spruce typically attains strength class C16 

(Moore et al., 2013). 

It is possible to grade populations of timber comprising of different species from 

an identifiable geographical origin, as long as their wood properties are similar 

and the species grade similarly well. In addition to the mentioned British 

spruce, the main species combinations in G.B. for home-grown timber are 

“British pine” (Pinus sylvestris and P. nigra) and “Larch” (Larix decidua, L. 

kaempferi and L. x eurolepsis). In the U.S.A. the species combinations are 

known as Marketing Categories. The three American native species investigated 

in this thesis are often graded together in their native lands. The combination 

“Hem-fir” is used for structural grades. It groups western hemlock and noble 

fir as well as four other firs: California red fir (Abies magnifica), grand fir (Abies 

grandis), Pacific silver fir (Abies amabilis), and white fir (Abies concolor). 

Western red cedar is generally graded as an individual species, and less often 

with other western cedars: incense cedar (Libocedrus decurrens), Port Orford 

cedar (Chamaecyparis lawsoniana) and Alaskan cedar (Chamaecyparis 

nootkatensis).  

Depending on the intended use, the knowledge on the evolution of wood 

properties with age (i.e. radial variation), allow to examine possible scenarios 

regarding timber quality for different rotation lengths in production forests. 

Wood properties change radially as the trees grow wood outwards. In softwoods 

MOE and MOR typically increase from the pith outwards. Studies in western 
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hemlock (Kennedy, 1995) and Scots pine (Auty et al., 2016) showed that the 

MOE values from the pith can be doubled in forty years, with MOR increasing at 

a more moderate rate in western hemlock (38%), and up to 66% in Scots pine. 

Density for conifers in the Pacific Northwest of North America typically 

decreases for the first 5–20 growth rings outward from the pith, followed by a 

rapid increase until a maximum value is reached asymptotically (Kennedy 

1995). This is also the case for Norway spruce (Mäkinen et al., 2007; Saranpää, 

2003), Sitka spruce (Gardiner et al., 2011) and black spruce (Alteyrac et al., 

2007b) among others. Other species like Scots pine (Auty, 2011) and radiata 

pine (Tian et al., 1995) describe a rapid increase in density with ring number, 

followed by a levelling off. These changes relate to the different needs of tree 

at different stages, which have led to a distinguishing between the corewood 

and the outerwood. This thesis will use “corewood“ to refer to the inner 10-15 

growth rings near the pith, most commonly named “juvenile wood”, and 

“outerwood“ for the rest as alternative to “mature wood”. This recognises 

discrepancies existing in the actual meaning of “juvenile wood” and “mature 

wood” due to the mentioned axial and radial differences, but also the onset of 

reproduction (Burdon et al., 2004). 

Chapters 3 and 4 examine the key wood properties both in structural-size 

timber and clearwood. Chapter 3 also examines the potential yields for grading 

at different strength classes, the drying distortion in structural samples and 

assessed the distribution of knots. Chapter 4 contains the modelling of the 

variation of the three properties with age.  

1.5 Non-destructive wood quality assessment 

MOR can only be measured by destructive testing. MOE is referred to as static 

when it is determined in bending under mechanical loading as opposed to 

dynamic stiffness, or dynamic MOE (MOEdyn), calculated using acoustic tools. 

Both types of MOE can be obtained without damage to the timber.  

The use of such non-destructive techniques (NDT) are nowadays widely used for 

wood quality assessment. In fact, there are numerous machines based on speed 

sound propagation which are approved for strength grading of sawn timber.  
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As with other materials, wood stiffness is closely related to the acoustic 

behaviour of a wave travelling through it. MOEdyn is derived from measurements 

from a stress wave. This is a relatively inexpensive and easy method to measure 

stiffness and predict bending strength. In strength grading, British timber 

typically performs less well for stiffness than for strength or density. For that 

reason, the correct determination of stiffness acquires a bigger importance in 

the allocation and optimisation of the timber resource. All the devices on the 

market are based on one of two principles: 

▪ Resonance, which measures the resonant frequency (usually 

fundamental longitudinal) obtained by impact excitation of the 

specimen, and from which the speed of sound in the wood is calculated. 

▪  “Time-of-flight” (TOF), which calculates the speed of propagation of a 

sound wave via measuring the time delay between two points. 

Whereas the resonance method can be applied to sawn timber and logs, the 

TOF technique can also be applied to standing trees. Estimations of wood 

quality have been more successfully achieved by applying the resonance 

method (Carter et al., 2007; Wang, 2013). A study in the topic (Searles, 2012) 

found limitations of the currently available techniques applied to standing trees 

and made suggestions for improvement that this research had the chance to 

evaluate. A reliable method for the early prediction of wood properties and 

subsequent segregation would allow informed decisions to be made regarding 

forest operations, favouring the labours (e.g., pruning on species of high wood 

value) and selection of trees showing higher performance. This would have the 

twin benefits of reducing the percentage of material that is rejected for a 

certain target of quality after the cutting and drying process, and therefore 

increasing the yield of material that passes the quality required.  

Chapter 5 examines the performance of different acoustic techniques to 

measure the stiffness of trees, logs, structural pieces and clears. The reliability 

of several methods were examined at a tree, plot, site and species level. The 

use of acoustic methods to estimate wood strength was also investigated.  



30 

 

1.6 Tree architecture 

When timber is the main resource to obtain from the forest, it is essential to 

know the standing volume of wood, what dimensions trees have and the stem 

form or taper. The potential productivity of an even-aged forest plantation in 

British forestry is based upon the estimation of the Yield Class (YC). It is 

expressed in units of cubic metres per hectare and year (m3/ha year), and it is 

based on the maximum mean annual increment of cumulative timber volume 

achieved by a given tree species (Forestry Commission, 2016).  

Besides the volume, it is important to know the stem diameters along the trunk, 

particularly when structural timber is the aim. For timber production, logs must 

achieve a minimum diameter over bark of 14 cm. Taper functions describe the 

tree profile. They are used to obtain the merchantable volume for different 

end products relating to diameters and heights. Taper models typically contain 

the diameter at breast height (dbh) and relative heights as independent 

variables. These models vary from species to species and from site to site. For 

the four species in this study there are no established taper functions built in 

G.B. In addition to the dimensions, for the wood-processing industry is 

important to know the length of straight logs that can be obtained, as it 

determines the sawnwood available per log (see §1.1) and the possible end-

products.  

Slenderness and crown ratio are two other characteristics defining the tree 

architecture. The crown ratio of trees (length of the live crown relative to tree 

height, CR) has been used as indicators of stiffness (Moore et al., 2013; Searles, 

2012), reporting a negative relationship, that is, the higher CR the lower the 

stiffness. Other studies found that stem slenderness (relationship between the 

tree height and dbh) and stiffness relates positive (Lasserre et al., 2009; 

Searles, 2012; Watt et al., 2006).  

Branches are another important part of the tree architecture. They produce 

knots in the trunk that affect negatively the performance of timber, 

particularly in bending strength. The interest in branching characteristics in this 

thesis was to understand their influence on the timber quality of the four 

species studied, particularly knot size. 
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Chapter 6 investigates the architecture of the four species studied. Taper 

functions describing the stem profile were investigated. Straightness, crown, 

slenderness and branching characteristics were also described. Results helped 

to understand better merchantability potential for sawn timber for the four 

species investigated, and will help forest management decisions for timber 

production.  
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Chapter 2. Material and Methods 

2.1 Introduction 

This chapter describes the common approach followed to collect the data and 

specimens that formed the base of upcoming analyses. The study was 

undertaken in three different locations per species, which are here named 

south, middle and north regions in G.B. The species investigated were noble 

fir, Norway spruce, western red cedar and western hemlock. Field work in the 

south and middle latitudes occurred in October 2013, whereas in the north ran 

between July and October 2014 due to a larger load of fieldwork involving 

additional measurements within the scope of the project. 

The following flow chart describes the sequence of data collection. 
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2.2 Selection of species and sites 

The selection of the species and sites did not form part of the thesis, and it was 

done beforehand in order to obtain permissions and organise the logistics 

involved.  

The four species studied were chosen from a shortlist of species targeted for 

planting in G.B. Within the limitations of existing planted forests, the sampling 

aimed to gather information of different growing regions representative of 

productive conifer forests in G.B., and managed as pure stands. The sites were 

located in the growing regions of: South West England, Wales and either South 

or West Scotland (Figure 2-1). The stands were chosen considering aspects like 

the condition of the stands, a minimum surface of one ha, age (planted in or 

before 1980) and the extraction routes. These criteria were revised for western 

red cedar in Wales (surface of 0.64 ha) and Scotland (0.96 ha), and for noble 

fir in England (planted in 1983) due to lack of sites fulfilling the initial criteria. 

It was aimed to find all four species in as close a geographic location as possible, 

but that was not always possible. Finally, the stands needed to contain trees 

that could produce 3 m long sawlogs.  
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Figure 2-1. Map of the location of sites. 

 

All of the stands were even-aged single species plantations, and most of them 

had been thinned, although the silviculture applied was unknown. The 

characteristics of the sites selected are shown in Table 2-1.   

North site 

Middle site 

South site 
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Table 2-1. Location of sites selected. 

Species Site Age Area (ha) OS grid Elevation (m) 

Noble fir 

South 30 1.0 SO632199 140 

Middle 58 4.70 SH954532 390 

North 38 1.79 NX279666 115 

Norway 
spruce 

South 44 13.65 SO616101 100 

Middle 76 7.30 SJ055527 365 

North 44 3.12 NN554007 60 

Western 
red cedar 

South 35 2.70 SO646098 205 

Middle 61 0.63 SJ064549 355 

North 78 0.96 NS489982 95 

Western 
hemlock 

South 44 5.671 SO643094 205 

Middle 49 4.11 SJ040021 280 

North 78 2.17 NX450644 40 
1 Two different adjacent compartments. 

 

Stocking density for the plantations studied could not be found. For a better 

understanding of this chapter and future comparisons, the initial planting 

density was estimated based on current practices at the time of planting (Table 

2-2). 

Table 2-2. Estimation of initial planting spacing. 

  
Noble 

fir 

Norway 

spruce 

Western 

red cedar 

Western 

hemlock 

South Planted 1983 1969 1977 1967 

 Spacing 2.0m1 1.8m 1.8-2.0m 1.8m 

 Density (trees/ha) 25001 3086 3086-2500 3086 

Middle Planted 1955 1937 1952 1964 

 Spacing 1.5m 1.5-2.0m 1.5m 1.5-1.8m 

 Density (trees/ha) 4444 4444-2500 4444 4444-3086 

North Planted 1976 1970 1936 1936 

 Spacing 1.8m 1.8m 1.5m 1.5m 

 Density (trees/ha) 3086 3086 4444 4444 
1 Spacing between trees and/or stumps was measured in the blocks. 

 

A summary of the characteristics of the stands investigated is shown in Table 

2-3. A more detailed summary is given in Table 6-5.   
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Table 2-3. Summary of stand and tree characteristics for study sites. 

Stand and Tree level characteristics 

Species Site Age  

Density Trees 

measured 

in plots 

dbh Ht (m) 

(Stems

/ha1) 
Mean (Sd) Mean (Sd) 

Noble fir 

S 30 2040 49 28.0 (6.4) 18.2 (2.0) 

M 58 442 53 35.1 (6.5) 22.8 (2.2) 

N 38 1011 61 30.7 (9.4) 19.1 (3.1) 

Norway 

spruce 

S 44 428 64 33.4 (7.6) 23.9 (3.8) 

M 76 414 62 39.4 (5.6) 25.4 (2.1) 

N 44 247 37 44.5 (6.2) 27.3 (2.6) 

Western 

red 

cedar 

S 35 644 58 34.7 (5.9) 19.2 (1.2) 

M 61 796 48 32.6 (10.9) 24.9 (3.3) 

N 78 314 47 64.0 (13.9) 29.0 (3.9) 

Western 

hemlock 

S 44 241 48 45.1 (5.1) 26.2 (1.8) 

M 49 995 62 28.8 (7.3) 24.6 (3.0) 

N 78 466 42 48.8 (10.2) 33.1 (2.0) 

Site: S, south; M, middle; N, north; 1Stand density at the time of the data collection based on 
the plots measured; Ht: Tree height. 

 

Three replicate circular plots were chosen per species and site. Plots avoided 

the edges of the plantation, and were well spaced from each other in order to 

be representative of the stand. The initial radius of these plots was set at 8 m 

(0.02 ha), and increased to 12.6 m or 17.8 m if less than 12 living trees of 

merchantable size were present. This aimed to obtain a distribution of trees by 

quartiles with a representative number of individuals in each. The distance 

from the centre of the plot was measured using a hypsometer and 60° 

transponder (Haglöf Vertex IV, Sweden) placed at the approximate centre of 

the stem at breast height. Trees within the distance were marked at the base 

with a sequential number. The noble fir in the south site was planted in square 

blocks of approximately 0.012 ha as part of a Forestry Commission provenance 

trial. All trees in all four plots were measured. The most promising source, and 

therefore the chosen one for this investigation, was the NF 13011, from Larch 

Mountain in Oregon (Lines, 1987).  

2.3 Forest and sawmill measurements 

2.3.1 Standing tree measurements 

The dbh was measured with a research diameter tape, to the nearest 0.1 cm, 

on the trees within the plots with a diameter over 7 cm (Figure 2-2). Trees of 

less than 7 cm are considered to have no measurable volume. In Europe, dbh is 
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located at 1.3 m height, and measurements are standardised as established in 

Forest mensuration: a handbook for practitioners (Matthews and Mackie, 

2006). The total height of those trees was measured using a Vertex IV 

Hypsometer and a 60° transponder (Haglöf Vertex IV, Sweden). The dbh and 

height allows estimation of volume and yield class, as well as other quantities.  

Stem straightness of the lower six metres was visually assessed by an 

experienced assessor using the protocol described in Macdonald et al. (2000) so 

that the viability of the stems to produce sawlogs could be assessed.  

In order to estimate the timber quality, as indicated by stiffness, a stress wave 

timer (TreeSonic, Fakopp, Hungary) measured the time delay in microseconds 

of a stress wave travelling between two probes inserted into the tree a known 

distance (Figure 2-3), and velocity calculated afterwards. The probes were 

separated approximately one metre apart centring on breast height. The north 

and south side of each standing tree were measured. The acoustic 

measurements were all taken during the autumn, so no significant variations on 

the moisture content of trees that could affect the sound wave propagation 

were expected. Chapter 5 will describe the additional measurements covering 

longer distances and planes taken on the samples trees selected in Scotland. 

 

Figure 2-2. Dbh measurements. 

 

Figure 2-3. Acoustic measurement on 
standing trees. 
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In each plot, the trees were ranked by diameter and grouped in quartiles for 

sample selection. The three biggest quartiles (named dominant, co-dominant 

and sub-dominant) contained an equal number with as many samples as 

possible. The remaining trees made up the smallest category (supressed). The 

purpose of this selection was to cover the range of diameters in the plot. One 

individual was chosen at random from each of the top three diameter classes. 

Three trees per plot were selected, nine per site. If the tree selected was not 

straight enough to produce a three metre sawlog, or if the felling would 

introduce a too large localised gap in the remaining canopy, another random 

choice was done. The selection of four trees was modified because it was not 

possible to get straight logs from the trees within a quartile. In those cases, a 

tree of similar characteristics was chosen in the vicinities outside of the plot 

boundary, and measured normally (dbh, height and time delay), or two trees 

were selected within the same quartile provided that their diameters were 

different (in the upper and lower limit of the quartile).  

Four blocks of noble fir in the south were measured, but one of them was 

discarded for tree selection because it did not contain suitable trees to provide 

sawlogs. An additional tree of western hemlock in Scotland was cut down as 

part of the felling operations. The tree formed part of one of the plots, and the 

usual measurements and material collection on felled trees were carried out. 

2.3.2 Selected sample tree measurements 

Prior felling, breast height, north-facing and south-facing orientations were 

marked on trees. A total of 109 trees (27 per species and one additional western 

hemlock) were felled for further assessment of wood properties and stem 

profile. The trees were felled within ten days after completing the standing 

measurements. Branches were trimmed off before taking any measurement on 

the stem.  

2.3.2.1 Taper  

The stem diameter was measured every metre. This will be described in detail 

in Chapter 6. 
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2.3.2.2 Crown  

Crown depth was identified on the trees measured for taper (109 trees). 

Chapter 6 will describe the methodology applied.  

2.3.2.3 Wood sample collection 

A log of around five metres length with the bottom end at breast height was 

cross-cut per tree. The lower part, approximately 3.1 m, was designated for 

structural sampling and the remaining upper part for small clears preparation 

(Figure 2-4). With three exceptions, the whole five metres logs were 

acoustically assessed for stiffness measurement as Chapter 5 will describe in 

more detail.  

2.3.2.4 Branch measurements 

Characteristics of branches (diameter, height on the tree and angle of insertion) 

were measured on trees felled in Scotland. A detailed description will be given 

Chapter 6. 

 

Figure 2-4. Sample material collection. Illustration by Darío Pérez-Moreno. 

 

Small clears 

Structural-size 

1.6 m 

3.1 m 
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2.4 Sample preparation 

2.4.1 Processing of bending test pieces 

The logs from England and Wales were transported to the Northern Research 

Station (NRS) of Forest Research, where they were cross cut. Two discs of 15 

cm thickness were obtained from the bottom and the top for a different study. 

The bottom 3.1 m was retained for structural-size pieces, and the rest for small 

clears. A portable sawmill processed the logs. In Scotland, the logs were 

processed on site in the two northernmost stands, whereas a local sawmill was 

used in the southern site. The annual rings were identified in the radial transect 

to track the cambial age of the structural pieces for further comparison. Logs 

were processed into structural-size pieces with nominal cross sectional 

dimensions of 100x50 mm following a bark-to-bark pattern with orientation 

north-south, and with the pith in the centre (Figure 2-5). This cutting pattern 

was designed to allow rotation length to be accounted for in the analysis. 

-

 

Figure 2-5. Radial cutting pattern of logs, centring the pith. Position 3 added for illustration 
of the cutting pattern but would not be cut in the log shown. 

 

Specimens were labelled so the tree of origin and the position of the piece 

could be tracked. A total of 558 structural pieces were obtained, and 90 

1 2 3 3 2 
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additional pieces were cut from the offcuts of Norway spruce from the south 

and middle site. 

The structural pieces were kiln dried to 12% m.c. in a GANN HYDROMAT TK-MP 

4032 (Gann Mess-u. Regeltechnik GmbH, Germany) located at the NRS. 

Exceptionally, western red cedar in the north site was dried to 20% m.c. using 

a milder drying programme that avoided the collapse that the pieces of western 

red cedar from the south and middle latitudes had previously suffered (Figure 

2-6). Collapse is defined in the Wood Handbook (USDA, 2010) as the flattening 

of single cells or rows of cells in heartwood during the drying or pressure 

treatment of wood. This occurs when water is removed from the saturated cells 

faster than air replaces the empty space, causing the surface of wood to sink, 

and more liable to occur using high temperatures (Kape, 2013). Collapse 

hindered the normal measurements of some variables like the dimensions of 

pieces among others.  

 

Figure 2-6. Collapse in a tested (broken) piece of western red cedar.  

 

A log of approximately 1.6 m (Figure 2-4) was used for production of clears of 

300 x 20 x 20 mm in the longitudinal, tangential and radial directions 

respectively. They are defect-free pieces, and lack knots, resin pockets, fibre 

deviation or any other weakness that could appear in the test span and reduce 

the mechanical performance. A central section was cut per log. For samples 

collected in England and Wales, this slab followed an orientation previously 
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determined from the disc obtained above the 1.6 m log. In Scotland, the slab 

followed an orientation north-south because the sawmilling happened in the 

forest. The annual growth rings were recorded in the slabs prior cutting. The 

clears were cut from pith-to-bark using a table saw to roughly 22 mm to allow 

for shrinkage both in the tangential and radial directions. A thicknesser was 

used after to achieve the final dimensions in the cross section (20 x 20 mm). 

The presence of knots prevented to obtain pieces containing the pith for some 

of the trees. A total of 200 specimens of noble fir, 244 of Norway spruce, 214 

of western red cedar and 220 of western hemlock were produced. More than 

one piece per radial position was obtained from some trees. All the samples 

were used in the analysis unless otherwise stated.  

2.5 Laboratory measurements 

2.5.1 Structural-size timber 

In the laboratory, the timber was conditioned in a controlled environment at 

20°C and 65% relative humidity content. These conditions bring a moisture 

content of the order of 12%, which is the commonly used reference moisture. 

Prior the destructive testing other characteristics were measured. 

2.5.1.1 Drying distortion. Twist. 

Twist drying distortion was assessed as stated in BS EN 1310 and Figure 2-7 

illustrates. As this question is exclusive to Chapter 3 it will be duly detailed in 

that chapter.  

 

Figure 2-7. Twist as in the standard BS EN 1310 . 

2.5.1.2 Acoustic assessment 

In the laboratory, the longitudinal resonance frequency was measured in the 

structural pieces, and the velocity of sound wave propagation calculated. From 

the dimensions and mass, the density was determined. The relationship of both 
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with MOE allowed an estimation of wood properties. Chapter 5 will describe in 

detail this and other acoustics measurements practised.  

2.5.1.3 Knot assessment 

Prior to testing, the critical section was marked in each structural-size piece. 

The critical section is that which is judged to be the weakest portion of the 

specimen according to assessment of strength reducing defects including knots, 

slope of grain, fissures and resin pockets. This section was 500 mm long, and 

corresponded with the gauge length for the determination of mechanical 

properties. The section was also used for knottiness assessment of structural 

pieces (Figure 2-8). The online software Web Knot Calculator v2.2 (Microtec, 

Italy) reproduced the distribution, size and shape of knots as shown in Figure 

2-9 and Figure 2-10. The inputs used were the location of the knot in the board 

(X); the span covered (Z1-Z2 or Y1-Y2) on the side (S1 to S4) and the minimum 

diameter (Dmin). Knots of 5 mm diameter or less were ignored. The side 1 was 

always the one closer to the pith. 

 

Figure 2-8. Section selected for destructive testing and knot assessment.  

 

The index ratios were based on the size and location of knots on the cross-

section of the piece. Indexes used as defined in the software were: 

▪ tknot: It is the ratio of the projected cross-section area of the knot to 

the cross–section area of the piece. 
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▪ mknot: It is the ratio of the major projected cross-section area of the 

knot or portions of the knot in a margin to the cross-section area of the 

margin. 

 

 

 

Figure 2-9. Interface of Web Knot Calculator v2.2 for a section with a knot going face to 
face and one knot going face to side. In black the current section studied and in grey a 
knot within 150 mm distance. 
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Figure 2-10. Interface of Web Knot Calculator v2.2 for a section containing the pith 

 

The collapse in 30 pieces of western red cedar prevented measurement of the 

knots on them. 

2.5.1.4 Destructive testing of structural-size timber 

The specimens were subjected to destructive four point bending tests in 

accordance with the standard EN 408 using a Zwick Z050 universal testing 

machine (Zwick Roell, Germany, Figure 2-11). This test measured the static 

MOE as well as the bending strength (MOR). They both derived from the size of 

the test section and the load applied, while MOE also involved the measurement 

of deflection. The test ran at a constant velocity so that the maximum load was 

reached within a time of 300 ± 120 seconds. The structural pieces, which had 

been labelled at the top but the side randomly, were loaded with the label 

facing the operator. This fulfilled the requirements of random orientation of 

the defects in the cross section under load. The force was applied parallel to 

the larger cross-section dimension. 
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Figure 2-11. Zwick machine running a test at Edinburgh Napier University. 

 

The standard EN 408 offers two options to measure MOE in bending: local (MOEL) 

and global (MOEG):  

▪ MOEL, it is based on the middle third of the beam. The deflection is 

measured at the neutral axis as the average displacement of two 

transducers placed on the side faces (Figure 2-12). The spans are set 

according to the depth. 

 

Figure 2-12. Test arrangement for measuring MOEL in bending (after EN 408). In red, neutral 
axis added.  
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In a four point bending test, the bending moment is uniform over the 

middle third section, and so it is under “pure bending”, where the shear 

deformation does not theoretically exist (Figure 2-13 left).  

    

Figure 2-13. Four point bending test for MOEL (left) and three point bending test for clears 
(right). 

 

On a four-point bending test, MOEL is calculated from the equation: 

𝑀𝑂𝐸𝐿 = 3𝑎𝑙1
2Δ/4𝑏ℎ3 [2-1] 

where a the distance between a loading position and the nearest support 

(600 mm), l1 is the gauge length (500 mm), Δ is the slope of the load-

deflection curve, and b and h the thickness and width respectively of the 

cross section. 

▪ MOEG, it is based on the mid-span deflection in relation to the supports. 

The deflection is measured at the centre of the span, typically from the 

centre of the bottom side (tension edge). In this case there is shear 

deformation of the specimen between the supports and the load points. 

MOEG (N/mm2) is calculated from the equation: 

𝑀𝑂𝐸𝐺 =
𝑙3Δ

𝑏ℎ3
[
3𝑎

4𝑙
− (

𝑎

𝑙
)

3

] [2-2] 

where l is the span in bending (600 mm), and the rest as in MOEL. 

Shear forces 
 
 
 
 

Bending 
moments 
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Both local MOEL and MOEG were measured simultaneously (Figure 2-14) until the 

force applied was 3 kN. Then, the transducer measuring the MOEG was removed 

to avoid damage by excessive deflection, and only the MOEL transducers 

measuring the displacement of the test section remained until the failure load 

was achieved. A linear model was afterwards fitted in order to examine the 

relationship between MOEL and MOEG, and predict a pure bending modulus of 

elasticity (MOEPB), that is without shear deformation, from MOEG.  

The test continued until achieving the maximum load, and the bending strength 

calculated as follows: 

𝑀𝑂𝑅 = 3𝑃𝑎/𝑏ℎ2 [2-3] 

where MOR is the bending strength (N/mm2), P is the is the maximum load 

achieved, and the rest as for MOEL and MOEG.  

Finally, a 50-mm long density sample spanning the full cross-section and free 

of defects was cut from each structural piece near the failure point. This 

sample was used to calculate density from mass (weighed in a digital balance 

to the nearest 0.01 g) and volume (recording length, width and thickness to the 

nearest 0.01 mm with a digital calliper), and to measure the moisture content 

using the oven drying method as indicated in the standard EN 13183.  

2.5.1.5 Characteristics values and adjustment factors 

The values describing the mechanical properties and density in a grade are 

called “characteristic values”. They represent statistical values of a timber 

population, determining the capability of a sample to be used as construction 

material and consequently to be assigned to a strength class. In order to 

calculate those, the measurements need to be adjusted to the reference 

conditions given by the standards. Density and bending stiffness were adjusted 

to a standard 12% moisture content. For density, according to the standard 

EN 384, a change of 0.5% occurs for every 1% difference in m.c. Actual m.c. 

values above 12% m.c. decrease density in adjustment, and values below 12% 

m.c. increase density. For bending stiffness, a change of 1% occurs for every 1% 

difference in m.c., with values above 12% m.c. increasing stiffness and values 

below 12% m.c. decreasing it. 
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Likewise, bending strength measured on the 100 mm nominal depth was 

adjusted to a standard reference timber size 150 mm depth as indicated in 

EN 384. 

 

Figure 2-14. Detail of the transducers measuring the local and global displacement. 

 

In addition to the moisture content and depth adjustment, the process of 

assigning grades to a population involves adjustments for statistical confidence 

and other considerations. This will be addressed in Chapter 3.  

2.5.2 Small clear specimens 

As with the structural pieces, the small clears were brought to constant weight 

by storing in a conditioning unit at 20°C and 65% relative humidity (12% 

equilibrium moisture content). The samples were weighed in a digital balance 

(nearest 0.01 g) and dimensions recorded. Length was measured (nearest 1 mm) 

with a ruler and width and thickness (nearest 0.01 mm) with a digital calliper 

at three points along the length. Density was calculated after from mass and 

volume.  

2.5.2.1 Acoustic assessment 

Prior to destructive testing, an acoustic assessment of wood quality was carried 

out. In this case, the velocity was measured with ultrasonic time-of-flight, as 

Transducers 

for MOEL 

Transducer 

for MOEG 
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opposed to the resonant method used in the structural pieces. This aimed to 

predict the wood properties without testing to failure (see §5.4.1). 

2.5.2.2 Destructive testing of small clears 

The bending MOE and MOR was determined destructively in accordance with 

procedures described in BS 373 on three-point bending. Under this test the 

bending moment is maximum at mid-span (Figure 2-13, right). A universal 

testing machine (H5KT, Tinius Olsen Ldt, Redhill, UK) was used (Figure 2-15 ). 

Distance between supports was 280 mm and the test speed set up at 6.604 

mm/min. The orientation of the annual rings was parallel to the direction of 

loading (Figure 2-16), but the face subjected to compression placed at random.  

 

Figure 2-15. Small clear 
specimen under a test load. 

 

Figure 2-16. Detail of the ring orientation. 

 

Those specimens for which was not possible to produce a perfect clear, and 

contained some small knots, were orientated with the knot in the top face, the 

one subjected to compression and less likely to fail. In such a way the influence 

of the knot was minimised and the specimen treated as a defect-free piece, 

unless it was observed an influence of the defect in the failure. Determination 

of MOEC (N/mm2) in a three point bending test was calculated as follows: 

𝑀𝑂𝐸𝐶 = ∆𝑙3/4𝑏ℎ2 [2-4] 

where Δ is the slope of the load-deflection curve, l is the test span (280 mm), 

and b and h the thickness and width respectively of the cross section. Tests 

Compression 
(top face) 

Tension 
(bottom face) 
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continued over the limit of proportionality to failure, achieving the maximum 

load (P, in newtons) which determines the MOR (N/mm2) in a three-point 

bending test as given by 

𝑀𝑂𝑅𝐶 = 3𝑃𝑙/2𝑏ℎ2 [2-5] 

where l, b and h are the span and dimensions as before. The mass was weighted 

again after the testing to account for possible material lost while testing, and 

dried in an oven at a temperature of 103°C. The difference in weight, due to 

the loss of water content, was taken as the moisture content of the piece, 

although it was not used for the adjustment of MOE and density to 12% m.c. 

because the pieces had an average moisture content of 13.7% in noble fir and 

Norway spruce, and 13.2% and 13.7% in western red cedar and western hemlock.  

2.6 Statistical analysis 

The statistical analysis for this thesis was carried out with the R open-source 

statistical programming environment (R Development Core Team, 2016), 

including the selection and evaluation of models. Each chapter of the thesis 

had a specific description of the statistical analysis applied, but there were 

common analysis that this section advances: 

▪ Descriptive statistics gave some basic features of the data such as mean, 

standard deviation and median. Percentiles were calculated to show the 

dispersion of values using the non-parametric or ranking method with a 

linear interpolation. 

▪ Quantify the variation of wood properties attributable to each stratum 

in the experiment. A random effects model was used to estimate the 

variance components of the hierarchical data structure of different 

properties. The model was tested with the lme library in R (Pinheiro et 

al., 2016), and accounted for the nested effects between species and 

sites, plots and trees and had the form: 

𝑦𝑖𝑗𝑘𝑙𝑚 = 𝜇 +  𝑆𝑝𝑖 + 𝑆𝑗(𝑖) + 𝑃𝑘(𝑖𝑗) + 𝑇𝑙(𝑖𝑗𝑘) + 𝜀𝑚(𝑖𝑗𝑘𝑙) [2-6] 

where yijklm was the individual observation (measurement) of the variable 

investigated (MOE, MOR, density, both in structural pieces and clears, 
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twist and branch characteristics), μ is the overall mean, Spi is the random 

effect of the ith species S j(i) is the random effect of the jth site within 

the ith species, Pk(ij) is the random effect of the kth plot within the jth 

site, Tl(ijk) is the random effect of the lth tree within the kth plot and 

εm(ijkl) is the residual error. The random effects were assumed to be 

independent and followed a normal distribution such that (∼N(0, σ2)), 

where σ2 was the variance of the correspondent random effect. 

▪ The strength of the correlation between variables was measured with 

Pearson’s or Spearman’s correlation depending whether the interest was 

the linearity or the rank association. The correlation between variables 

used the following criteria: very weak (0 -0.19), weak (0.2 - 0.39), 

moderate (0.4 - 0.59), strong (0.6 - .79) and very strong (0.8- 1). 

▪ One-way ANOVA evaluated whether there were any statistically 

significant differences between the means of the variables. The effect 

of species in the relationships between properties was determined with 

an ANOVA on a GLM. This is described in the appropriate chapters.  

▪ Akaike’s information criterion was used to compare models fitted on the 

same data set. The model with the lower AIC was preferred. The 

significance of terms was evaluated with likelihood ratio tests.  

▪ The model efficiency was measured as the linear relationship between 

observed and predicted values. Model performance was also assessed 

using the following error statistics: 

mean error, 𝐸 =
Σ(𝑦𝑖−𝑦̂𝑖)

𝑛
 

root mean squared error, 𝑅𝑀𝑆𝐸 = √
Σ(𝑦𝑖−𝑦̂𝑖)2

𝑛
 

mean absolute error, |𝐸| =
Σ|𝑦𝑖−𝑦̂𝑖|

𝑛
 

mean percentage error, 𝐸(%) =
100

𝑛
Σ

|𝑦𝑖−𝑦̂𝑖|

𝑦̂𝑖
 

where 𝑦𝑖 is the observed value, 𝑦̂𝑖 is the predicted value, and n is the 

number of observations. 
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Chapter 3. Properties of structural-size timber 

3.1 Introduction  

It is widely known that wood properties vary from species to species, but they 

also vary considerably within species due to differences in genetics (McLean et 

al., 2016; Moore et al., 2009d), environment (Moore et al., 2009c), 

management (Walker, 1993) and also the age of trees (Kliger et al., 1998; Moore 

et al., 2012). The four species studied are used in North America and Europe 

for construction applications. However, because properties vary within a 

species, assessment of wood properties must be made on a representative 

sample of timber from the growth area, they cannot be assumed to be the same 

as they are elsewhere.  

In particular, bending stiffness (MOE), bending strength (MOR) and wood density 

are the key properties of commercial importance. To the author’s knowledge, 

there is little or no evidence on the wood properties of structural-size timber 

of the four species grown in G.B. This chapter examined and compared those 

wood properties with the performance in G.B. of established commercial 

species, particularly Sitka spruce, for a similar rotation length.  

For species that are suitably similar it is possible to grade them together. This 

is potentially a way to combine lesser conifers with an established species, or 

grade lesser conifers together. In G.B. there is a long-standing commercial use 

of Norway spruce being processed together with Sitka spruce in a species 

combination known as “British Spruce”. The proportion of Norway spruce in the 

mix is approximately 10% overall. In this study Norway spruce was examined in 

its own right. Other example combining the species studied is the well-

established in North America species combination “Hem-fir”, mix of western 

hemlock and different species of firs, among others noble fir, and graded for 

structural timber. 

As well as MOE, MOR and density, drying distortion is an important quality 

measure for structural timber. This chapter includes a preliminary assessment 

of twist, that is the most problematic type of drying distortion for timber 
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construction. Knots were also assessed, as they are another factor in customer 

acceptance, separately from the mechanical properties.  

Results add knowledge about the aptitudes of the four species investigated 

grown in G.B. to be used as structural material.  

3.1.1 Objectives 

The aims of this chapter for noble fir, Norway spruce, western red cedar and 

western hemlock grown in G.B. are: 

1. The performance of wood properties of sawn timber. 

Determine the key grade properties: bending stiffness, bending strength 

and density. Assessment of knots is also undertaken.  

2. The variation and relationships of wood properties.  

Quantify the variation in these three wood properties due to species, 

sites, plots and trees and the relationships between them as well as knot 

indexes. 

3. Characteristic values and grading.  

Determine the values characterising the wood properties of the 

populations studied, as well as the potential yields and the grading with 

common machine indicating properties. Results are compared with other 

species grown in G.B.  

4. Drying distortion. Twist.  

Assess the nature of drying distortion twist for the four species within 

this study, and compare with other species grown in G.B. 

3.2 Literature review 

There are three key wood properties that characterise material for timber 

engineering: bending stiffness (or modulus of elasticity, MOE), bending strength 

(or modulus of rupture, MOR) and density (see §1.4 for definitions).  
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Table 3-1 shows some values of the three properties of structural-size timber 

published in literature from material of the four species studied grown in their 

native lands. The values must be taken only as a rough guide as they gather 

material from different ages and/or sizes or with testing and adjustments 

different to those in the current European standards. 

Table 3-1: Mean values of wood properties of structural timber published in literature.  

 Noble fir 
Norway 

spruce 

Western 

red cedar 

Western 

hemlock 

Pieces n/a 1551 n/a 529 

MOE (kN/mm2) 11.2 13.4 6.2-7.71 12.0 

MOR (N/mm2) 74.4 49.1 51.72 51.2 

Density (kg/m3) 433-492 460 370-3853 492 

 (0.37-0.42)  310-3404 (0.42) 

Sources: noble fir: http://www.wood-database.com/noble-fir/; Norway spruce: (Fischer et 
al., 2016); western red cedar: 1 http://www.realcedar.com/architects/engineering-data; 2 
http://www.wood-database.com/western-red-cedar; 3 (Gonzalez, 2004); 4 (Cown and 
Bigwood, 1978); western hemlock: (Middleton and Munro, 2001).  
Moisture content at 12% except in 1 (unknown); density in noble fir and western hemlock 
converted from specific gravity (in brackets). 

 

Wood properties for structural timber are measured on individual pieces in 

symmetrical four point bending in accordance with  EN 408. Chapter 2 

explained that in MOEL the shear deflection does not theoretically exist, 

whereas MOEG includes a shear effect, and it is less sensitive to localised low 

stiffness defects, and so likely more representative of the wood stiffness 

(Ridley-Ellis et al., 2009). MOEL and MOEG are related, but there are differences 

associated to the physics of the deformations and experimental errors. 

Laboratories rarely measured both simultaneously. MOEL was the standard 

method until 2003 when MOEG was added in the new version of EN 408. A 

conversion equation in EN 384 (MOE384) allows to adjust MOEG to an equivalent 

shear-free MOE. 

𝑀𝑂𝐸384 = 𝑀𝑂𝐸𝐺 × 1.3 − 2690 (𝑁/𝑚𝑚2)  [3-1] 

The equation [3-1] presents physical inconsistencies, like obtaining negative 

results for low MOEG, and more importantly it has been shown to underestimate 

the real capabilities of British timber (Gil-Moreno et al., 2016). In order to 

overcome this, the 2016 revision of EN 384 included the possibility of using 

another relevant equation derived from test data which this chapter will refer 

to as MOEPB. Hence, there are three types of MOE: local, global and shear-free 

http://www.wood-database.com/noble-fir/
http://www.realcedar.com/architects/engineering-data
http://www.wood-database.com/western-red-cedar
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or “pure bending”, which will be referred to later in the thesis as MOEL, MOEG 

and MOEPB or MOE384 depending on the conversion equation applied.  

MOR is calculated from the equation [2-3]. For density, there are two densities 

of interest. When the piece of timber is destructively tested, the density is 

determined from a small defect-free prism obtained near the failure point 

(Density384). Density can also be determined from the mass and volume of the 

structural-size piece (Densitytimber), although EN 384 applies a conservative 

adjustment by dividing by 1.05 in case of softwoods.  

Chapter 1 introduced that trees adapt to their individual circumstances as they 

age, which in part, is cause and consequence of the radial variation of wood 

properties. Therefore, comparison of wood properties is ideally done on 

plantations of similar age and similar management. Comparing the MOE, MOR 

and density of Scots pine of three sites, Moore et al. (2008) found that the 

majority of the variation (47-58%) was due to differences between the 

individual pieces within a log (one piece cut from the inner part and one from 

the outer part). The vast experience on Sitka spruce in G.B. has allowed 

quantifying the variation of wood properties within the species using all the 

pieces obtained from a standard cutting pattern in a sawmill. A study on 12 

sites of Sitka spruce (Moore et al., 2013), concluded that most of the variation 

in mechanical properties occurred within a tree (37-56%), followed by 

differences between individual trees (25-36%), and between sites (18-26%). For 

density there is not a clear predominant variation, with studies where most of 

the variation (50.8%) occurred within trees (Moore et al., 2009d), and others 

where most of the variation (51.1%) was between trees (Moore et al., 2013).  

The three properties relate well enough to make the relationship useful for 

prediction of wood properties, particularly MOE and MOR. For Norway spruce 

for example (Høibø et al., 2013) it has been reported values of r = 0.82 for the 

relationship of MOE and MOR, r = 0.79 for MOE and density and r = 0.71 for MOR 

and density.  

Even though measurements are taken on individual pieces, for timber grading 

what matters is the collective properties in a grade, and not the properties of 

the individual pieces. The values describing the three properties in a grade are 
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called “characteristic values”, which for MOE is the mean (E0,mean) and for MOR 

and density the lower 5th percentiles (fm,k and ρk respectively). In Europe there 

are grades, called strength classes, with defined minimum characteristic 

values. The process of assigning strength classes to a sorted population involves 

adjustments for statistical confidence and other considerations. Table 3-2 

shows some of the strength classes defined in the standard EN 338, from which 

the most commonly used in softwoods are C16, C24 and to a lesser extent C18. 

Table 3-2: Characteristics values for the strength classes C14 to C24 (EN 338). MOR and 
density refer to the 5th percentile of the population. MOE refers to mean. 

Wood property Characteristic property values for each strength class  

 C14 C16 C18 C20 C22 C24 

Strength (N/mm2)  14 16 18 20 22 24 

Stiffness (kN/mm2) 7 8 9 9.5 10 11 

Density (kg/m3)  290 310 320 330 340 350 

 

The percentage of a population achieving a strength class is referred to as yield. 

In order for a population to be graded to a certain strength class, the three 

properties must achieve the required characteristic values.  

Typically one of the three propeties limits the grading to a certain strength 

class. Density has traditionally been seen as the limiting property for grading 

timber in G.B., but actually it is the least limiting property on Sitka spruce 

(Moore, 2011), Douglas fir (Drewett, 2015) and Scots pine (Moore et al., 2008). 

Overall, British spruce typically attains strength class C16 limited by stiffness 

(Moore et al., 2013).  

In order for timber to be machine graded, an indicating property (IP) closely 

related to one or more grade determining properties (MOE, MOR or density) is 

measured by the grading machine. When populations of different species have 

similar values and variances of the wood properties, and correlations with the 

grading parameters, the species can be graded together as species combination 

(e.g. “British spruce” and “Hem-fir”). 

In addition to the measurement of wood properties, grading requires a visual 

override inspection to cover strength reducing factors that are not 

automatically assessed by the grading machine, or the visual grading rules, and 
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other important aspects of customer acceptance such as knot appearance and 

twist distortion.  

Knots reduce the bending strength of wood due to the deviation of the fibre 

direction around them, and in grading some machines use them in combination 

with MOEdyn and/or density for prediction of timber quality.  

Twist is a type of drying distortion that has been seen as of utmost importance 

for end-user satisfaction for structural applications (Perstorper et al., 1995a). 

It is caused by several factors, for example the difference in longitudinal 

shrinkage within one board (Ormarsson and Cown, 2007). Johansson et al. 

(2001) studied the influence on twist of ring curvature and spiral grain, and 

reported that about 50% of the variation in twist could be explained by the 

average growth ring curvature, and 70% together with spiral grain angle. It also 

found a very low correlation between density and twist (R2 = 0.12). As a result, 

pieces from the centre of the log, with higher longitudinal shrinkage, spiral 

grain angle and ring curvature, tend to twist more than outerwood (Holland and 

Reynolds, 2005; Moore et al., 2012).  

Depending on the grade of twist, it will not be possible to correct the distortion 

through nailing or screwing, causing many times a piece of timber to be 

rejected for construction (Johansson et al., 2001; Kilger, 2001) even though it 

may have achieved the requirements of a certain strength class. The current 

version of the standard EN 14081 sets a single limit of 2 mm/25 mm width 

measured over a 2 m length. These values refer to dry graded structural timber 

with average moisture content (m.c.) of 20% or less, but sawmills or customers 

may apply more restrictive limits with the in-service m.c. of 12% in mind. 

In summary, this chapter examines the capabilities to produce structural timber 

of the four species studied, with data representative of the British conditions. 

  



59 

3.3 Material and methods 

3.3.1 Material 

Collection, processing and testing of structural pieces is fully described in 

Chapter 2 Material and methods. A summary is provided below. 

• Three even-aged single species planted stands from different regions. 

• Nine trees per species and site, except ten western hemlock in the north. 

• One log per tree, with the bottom part at breast height. 

• Pieces of 50x100 mm nominal size following radial transects (Figure 2-5). 

A total of 558 pieces of structural timber were obtained, split as indicated in 

Table 3-3.  

Table 3-3. Pieces of structural-size timber obtained by species and site. 

Species South Middle North Total 

Noble fir 34 46 47 127 
Norway spruce 42 50 51 143 

Western red cedar 32 39 67 138 
Western hemlock 49 33 68 150 

 

In addition, 90 pieces were cut from the offcut of Norway spruce from the south 

and middles site. These pieces were also tested to destruction and used to 

investigate the correlation between wood properties, but were not used for the 

comparison of wood properties between stands because the annual rings were 

not recorded.  

3.3.2 Methods 

The logs were processed into structural-size timber following a bark-to-bark 

pattern, and kiln dried to 12% m.c., except western red cedar from the north 

site which was dried to 20% (see §2.4). Afterwards, the pieces were conditioned 

in a controlled environment (20 °C and 65 % relative humidity) at Edinburgh 

Napier University to reach constant mass.  
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3.3.2.1 Mechanical and physical properties determination 

Prior to testing, the density of the whole piece of timber (Densitytimber) was 

calculated from the mass and average dimensions, and the critical section to 

test (600 mm between the two loads) was marked in each piece (see §2.5.1 for 

details). Following, the pieces were subjected to destructive four point bending 

tests according to EN 408. The MOEL, MOEG, and bending strength were 

measured simultaneously. Afterwards, a 50 mm length sample was cut near the 

failure point of each specimen to determine Density384, and the m.c. calculated 

by the oven dry method as specified in EN 13183-1. In accordance with EN 384, 

the MOEL, MOEG and Density384 were adjusted to 12% m.c., and bending strength 

adjusted to 150 mm depth (see §2.5.1 for details on the adjustments).  

3.3.2.2 Knot assessment  

The knots within the critical section were measured (see §2.5.1.3 for details). 

Collapse prevented measurement of knots in 30 samples of western red cedar. 

The software Web Knot Calculator v2.2 (Microtec, 2009) provided among other 

indexes: 

• tknot: ratio of the projected cross-section area of the knot to the cross–

section area of the piece. 

•  mknot: ratio of the major projected cross-section area of the knot or 

portions of the knot in a margin to the cross-section area of the margin. 

The output of the software also allowed to obtain the number of knots per 

piece.  

3.3.2.3 Twist 

Twist was measured in the laboratory on the radial structural pieces over a 2 m 

distance as stated in EN 1310, and as Figure 3-1 shows.  
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Figure 3-1. Measurement of twist in the lab. 

 

The angle of twist over width was calculated by trigonometry, and the results 

standardised to 100 mm width so that a comparison with the limits given for 25 

mm width in visual grading can be made. Twist could not be assessed on 21 of 

the specimens of western red cedar because the collapse prevented accurate 

measurement.  

3.3.3 Statistical analysis 

The statistical analysis was carried out with the R open-source statistical 

programming environment (R Development Core Team, 2016).  

1. Performance of wood properties of sawn timber. 

Descriptive statistics for the 12 sites samples (four species in three sites) and 

the distribution of wood properties by radial position was investigated. 

Percentiles were calculated with the non-parametric (ranking) method using a 

linear interpolation and assuming that the lowest number is the lower bound 

and the upper bound is undefined. 

The number and size of knots was compared between species with a mixed 

effect model, and the distribution by radial position studied.  

2. Variation and relationships of wood properties.  

For each property, a random effects model was used to estimate the variance 

components of the hierarchical data structure as explained in equation [2-6]: 

Y 
X
Y 

Twist (%) = 100 Y/X 
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𝑦𝑖𝑗𝑘𝑙𝑚 = 𝜇 +  𝑆𝑝𝑖 + 𝑆𝑗(𝑖) + 𝑃𝑘(𝑖𝑗) + 𝑇𝑙(𝑖𝑗𝑘) + 𝜀𝑚(𝑖𝑗𝑘𝑙) [2-6] 

where yijklm is the observation of the variable investigated (MOE, MOR, density 

and twist) on an individual piece, μ is the overall mean and the random effects 

(Sp, S, P and T) are assumed to be independent and to follow a normal 

distribution (see §2.6 for more details).  

Pearson’s correlation measured the strength of relationships between 

variables. Whether the relationship between MOEG and MOEL was affected by 

species was examined with a linear model of the form: 

𝑀𝑂𝐸L = 𝛼0 + 𝛼1𝑀𝑂𝐸G + 𝛼2𝑆𝑝𝑒𝑐𝑖𝑒𝑠 + 𝛼3𝑀𝑂𝐸G: 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 + 𝜀  [3-2] 

 

where α0 is the regression coefficient of intercept, α1 is the regression 

coefficient of slope, α2 represents the additive effect of the species studied, 

α3 is the interaction term between MOEG and species and ε is residual error not 

explained by the model. ANOVA was conducted on this model in order to test if 

species was significant, and if a different relationship exists per species.  

3. Characteristic values and grading.  

Characteristics values, basic grade (i.e. the highest strength class that was 

obtained with 100% grading yield) and yields for different strength classes were 

calculated. Only the pieces obtained from the radial transect (558 pieces) in 

each log were used in order to compare material with the same cutting pattern. 

The pieces affected by collapse were included because it was considered that 

the mechanical properties had not been affected. 

The results reported here did not include the adjustment to the fifth percentile 

values given in the standard EN 384 (kv) for in-line grading machines because 

the study aimed to keep to the actual properties measured. The standard 

EN 14358 states that strength parameters should be assumed as logarithmically 

normally distributed and density as normally distributed. The data did not 

always show the same distribution in the four species studied so the non-

parametric calculation was used instead for both strength and density. This is, 

anyway, the method to be used when calculating properties for machine 
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strength grading. The characteristic values for the four species were 

determined for a one-tailed test at a confidence level of α = 0.75. This aimed 

for a 75% probability that the characteristic value (either the 5th percentile or 

the mean) will be greater than the estimate of the characteristic value.  

Finally, a comparison with Sitka spruce grown in G.B. for a rotation length of 

45 years was made restricting the material here studied to the same age.  

4. To assess the twist on structural timbers. 

Differences in twist between mean values were investigated with a single one 

way ANOVA analysis. An honestly significant difference test (HSD) with α = 0.05 

investigated afterwards differences between the species. Distribution of twist 

between species and radial positions were compared and twist examined for 

the requirements established in the standards. 

3.4 Results 

3.4.1 Performance of wood properties of sawn timber 

The following histograms show the distribution of the data for MOEG and MOEL 

(Figure 3-2), and for MOR and Density384 (Figure 3-3).  

 

Figure 3-2. Histogram of MOEG and MOEL by species. 
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Figure 3-3. Histogram of MOR and Density384 by species. 

 

While for noble fir and western red cedar most of the values of MOEG were 

between 6 and 8 kN/mm2, for Norway spruce and western hemlock were 

between 7 and 9 kN/mm2. The four species had MOEL mostly represented 

between 7 and 9 kN/mm2 with western red cedar showing fewer pieces above 

9 kN/mm2. The range of values of MOR in noble fir was wider than in the rest, 

with hardly any noticeable difference in the other three species. Density 

spanned higher values in western hemlock, followed by Norway spruce and with 

western red cedar in a lower range.  

Figure 3-4 illustrates how MOEG changed with radial position. Radial position 2, 

obtained on either side of the pith, was the most represented with 216 pieces.  

The histograms for Norway spruce overlaid the graphs with and without the 

extra pieces cut out of the radial transect to illustrate the influence of the 

outermost wood. The extra pieces fell within the high range of values. 
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Figure 3-4. Histograms of MOEG and quartiles by radial position.  
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Western red cedar  
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Western hemlock  

In red the distribution 
of pieces cut in the 

radial transect. 
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For the data here investigated MOEG increased with the radial position, that is, 

with age. A similar pattern was shown by MOEL, MOR and Density384 

(appendixes), although the latter showed a decline towards the radial position 

2 and a rise thereafter. Chapter 4 will address in detail the evolution of wood 

properties with age through the use of clearwood.  

A summary of the wood properties measured for structural grading is offered in 

Table 3-4. Only the pieces from the radial transect were included so that results 

were comparable. The 5th percentile and the median showed the dispersion of 

values. The mean MOE of noble fir and western red cedar was in general lower 

well than Norway spruce and western hemlock.  

In general, older stands achieved higher values in the wood properties. This 

happened between and within species. An exception was the forest of western 

red cedar in the north site, which performed less well than the younger ones in 

the south and middle sites. Likewise, there was important differences in the 

mechanical properties of western red cedar between sites, but whether this 

was only due to the influence of the site could not be concluded. The stand of 

noble fir in the middle site achieved values that compete with the performance 

of the stands of Norway spruce and western hemlock. The following section 

(§3.4.2) will quantify these differences.  
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Table 3-4. Summary of wood properties by species and sites (S; south; M: middle; N: north). 

 Noble fir Norway spruce Western red cedar Western hemlock 

 Overall S M N Overall S M N Overall S M N Overall S M N 

Age of stands  30 58 38  44 76 44  35 61 78  44 49 78 

Number of pieces 127 34 46 47 143 42 50 50 138 32 39 66 150 49 33 68 

MOE local (kN/mm2)                 

Mean 7.7 6.5 9.3 7.1 8.8 9.0 9.4 8.0 7.5 8.0 8.2 6.8 8.6 7.7 8.2 9.5 

Sd 2.4 1.4 2.5 2.1 2.0 1.6 2.3 1.8 1.7 1.2 1.7 1.7 2.4 1.8 1.7 2.7 

CV (%) 31 21 27 29 23 18 24 23 23 13 21 25 28 23 21 28 

5th per 4.3 4.4 6.3 3.9 5.9 6.7 6.9 5.3 4.6 6.3 5.6 4.4 5.3 5.2 6.3 5.5 

MOE global (kN/mm2)                 

Mean 7.6 6.5 9.0 7.0 8.5 8.7 9.0 7.8 7.0 7.2 7.5 6.5 8.5 7.8 8.2 9.1 

Sd 2.0 1.3 1.9 1.6 1.5 1.2 1.7 1.4 1.4 1.0 1.4 1.4 1.9 1.5 1.4 2.1 

CV (%) 26 20 21 23 18 14 19 17 20 14 18 22 22 20 17 23 

5th per 4.7 4.8 6.6 4.4 6.3 6.9 6.7 5.3 4.7 6.0 5.6 4.3 5.8 5.4 6.3 6.1 

MOR (N/mm2)                 

Mean 31 27 39 27 32 33 33 31 31 31 34 28 36 35 32 37 

Sd 13 9 15 10 9 9 10 10 8 6 8 8 11 10 10 12 

CV (%) 42 35 38 37 29 26 30 31 26 11 22 29 31 29 30 31 

5th per 15 15 19 14 19 22 20 17 17 21 21 16 19 18 19 20 

Density384 (kg/m3)                 

Mean 379 346 406 376 406 403 428 386 363 366 365 361 447 440 438 457 

Sd 37 21 31 31 40 31 42 34 33 31 34 34 41 39 25 46 

CV (%) 10 6 8 8 10 8 10 9 9 5 9 9 9 9 6 10 

5th per 324 313 367 333 346 358 373 332 320 331 324 315 386 378 407 391 
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Regarding knots, Figure 3-5 (left) shows the distribution of knots per species. 

ANOVA of a mixed effect model with species as fixed effect, and site and tree 

within site as random effects investigated the differences between species, and 

showed that the mean number of knots across the four species was different 

(P<0.001). 

 

Figure 3-5. Number of knots per piece by species (left) and Tukey's HSD for the difference 
in the mean number of knots at the 95% family-wise confidence level (right).  

 

The posthoc Tukey (HSD) test in Figure 3-5 (right) showed that the pairs 

containing Norway spruce were different to the other three species (P<0.05). 

In practical terms this means that Norway spruce had more knots per piece. On 

intervals containing the zero there was no statistical evidence that the pair had 

a different mean.  

A significant difference in the number of knots was observed between radial 

positions (P<0.001), where the average number of knots per specimen 

decreased with increasing radial position, especially between positions 1 and 2 

(Figure 3-6). The statistical difference in the number of knots observed 

previously in Norway spruce was mostly due to the higher number of knots 

around the pith. Considering all the pieces together, a significant difference in 

the number of knots was observed between all pairs of radial positions 

(P<0.001), except between 3-4, 3-5 and 4-5. 

NS - NF 

RC - NF 

WH - NF 

RC - NS 

WH - NS 

WH - RC 

95% family-wise confidence level 



69 

 

Figure 3-6. Number of knots by radial position and species (n: number of pieces). 

 

When examining the size of knots using the total knot area (tknot index), a 

significant difference was observed between radial positions (P<0.001), where 

the trend was to decrease outwards (Figure 3-7, left). 

 

Figure 3-7. tknot index by radial position and Tukey's HSD confidence interval for tknot at 
the 95% family-wise confidence level. 

 

A significant difference in the tknot was observed between species (P<0.001) 

at the 95% family-wise confidence level, where western red cedar was lower 

compared to the other three species (P<0.001), with no statistically significant 

differences between the other pairs (Figure 3-7, right). 

NS - NF 

RC - NF 

WH - NF 

RC - NS 

WH - NS 

WH - RC 

95% family-wise confidence level 
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3.4.2 Variation and relationship of wood properties.  

This section quantifies the influence of the different stratum of the experiment 

in the results examining the variance components (Table 3-5). Even though 

there are observed differences between species, most of the variation in the 

mechanical properties was due to differences within trees, particularly in the 

case of MOR, and actually species had a very small influence. Conversely, 

species was the most important source of variation in Density384.  

Table 3-5. Percentage of variance components for the different stratum in the data 
collection. Only radial pieces investigated. 

 Species Site Plot Tree Within tree 

MOEL      

Overall <0.01% 14.3% 11.3% 11.2% 63.2% 

  Noble fir  29.5% 6.0% 2.4% 62.0% 

  Norway spruce  2.3% 20.2% 17.5% 60.0% 

  Western red cedar  14.3% 12.0% 11.3% 62.4% 

  Western hemlock   7.6% 11.5% 13.5% 67.5% 

MOEG      

Overall 7.4% 15.1% 10.4% 11.5% 55.7% 

  Noble fir  37.9% 5.0% 3.7% 53.4% 

  Norway spruce  4.0% 24.5% 16.2% 55.3% 

  Western red cedar  7.7% 14.8% 12.9% 64.6% 

  Western hemlock   3.7% 9.4% 16.7% 70.1% 

MOR      

Overall <0.01% 8.7% 4.9% 12.3% 74.1% 

  Noble fir  24.1% 0.0% 8.5% 67.4% 

  Norway spruce  <0.01% 6.0% 15.0% 79.0% 

  Western red cedar  11.4% 2.0% 20.9% 65.8% 

  Western hemlock    <0.01% 10.7% 9.5% 79.8% 

Density384      

Overall 43.9% 10.0% 2.5% 15.3% 28.3% 

  Noble fir  49.9% 6.2% 5.5% 38.3% 

  Norway spruce  21.4% <0.01% 36.5% 42.1% 

  Western red cedar  <0.01% <0.01% 22.1% 77.9% 

  Western hemlock   <0.01% 9.1% 37.4% 53.5% 

Twist      

Overall 1.7% 19.9% <0.01% 4.2% 74.1% 

  Noble fir  13.9% 2.5% <0.01% 83.6% 

  Norway spruce  5.3% <0.01% <0.01% 94.7% 

  Western red cedar2 n/a n/a n/a n/a n/a 

  Western hemlock    4.4% <0.01% 10.2% 85.3% 
1 Variance of twist in western red cedar was not analysed due to the different drying setting 
used. 
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Within species, in general the biggest variation occurred within trees both in 

mechanical properties and density. In noble fir, site was the largest source of 

variation in density, and had a higher effect on the mechanical properties than 

in the other species. Variation in twist was mostly attributed to differences 

within trees.  

The strength of the relationship between different wood properties was 

measured with Pearson’s correlation (Table 3-6). Only the pieces cut in the 

radial section were included because knots were only measured on those. 

Table 3-6. Pearson’s correlation (r) between variables for radial pieces.  

 
Noble 

fir 

Norway 

spruce 

W. red 

cedar 

W. 

hemlock 

MOEG – MOEL 0.95 0.93 0.95 0.94 

MOEL - MOR 0.81 0.78 0.77 0.77 

MOEG - MOR 0.79 0.77 0.75 0.79 

Density384 - MOEL 0.73 0.69 0.40 0.53 

Density384 – MOEG 0.78 0.76 0.44 0.56 

Density384 - MOR 0.62 0.60 0.39 0.43 

Densitytimber – Density384 0.90 0.88 0.88 0.90 

Densitytimber - MOEL 0.62 0.64 0.33 0.45 

Densitytimber - MOEG 0.70 0.71 0.38 0.48 

Densitytimber - MOR 0.54 0.52 0.32 0.36 

Twist – MOEL -0.42 -0.24 0.19 -0.10 

Twist - MOEG -0.44 -0.28 0.15 -0.16 

Twist - MOR -0.22 -0.21 0.13 -0.13 

Twist - Density384 -0.27 -0.25 0.09 0.01 

tknot - MOEL -0.53 -0.52 -0.39 -0.63 

tknot – MOEG -0.55 -0.52 -0.39 -0.61 

tknot - MOR -0.47 -0.52 -0.52 -0.63 

mknot - MOEL -0.44 -0.53 -0.45 -0.61 

mknot – MOEG -0.34 -0.43 -0.39 -0.59 

mknot - MOR -0.46 -0.56 -0.52 -0.62 

All P values<0.001 

 

Correlation between mechanical properties was in general strong. The 

strongest pair was between the two moduli of elasticity, MOEL and MOEG. 

Density correlated well with the mechanical properties, particularly stiffness in 

Norway spruce and noble fir, and less well for western red cedar and western 

hemlock. The strength of these correlations will be useful to calculate 

prediction models of structural wood properties (see §3.4.2.1).  
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An analysis of variance (ANOVA) comparing the wood properties by species 

showed that wood properties were different by species (P<0.001 for MOEL, 

MOEG, MOR, Density384 and distortion). In addition, ANOVA of a GLM showed that 

relationships between the studied wood properties were influenced by the 

effect of species in all cases (P< 0.001).  

 

Figure 3-8. Relationship between MOEG and MOEL with the linear regression line for the 
four species together. 

 

The effect of species on the relationship between MOEG and MOEL was 

investigated using ANOVA of equation [3-2]. The extra pieces obtained for 

Norway spruce were also incorporated in the model to account for a bigger 

variation. Species affected the intercept term (F3 643 =20.4, P< 0.001) but not 

the slope (F3 640 = 0.17, P= 0.92) as Figure 3-8 shows. Western red cedar, for 

which stiffness was lower (Table 3-4), had a slightly higher intercept term than 

the other three species by about 0.55 kN/mm2 (P<0.001). There was no 

significant difference between noble fir and Norway spruce. A small difference 

existed between noble fir and western hemlock where hemlock had a lower 

intercept by about 0.2 kN/mm2 (P<0.05). Therefore, the rate of change 

between MOEG and MOEL was the same for the four species, indicating the 

variation in stiffness within the test span length, and relative shear deflection, 

is similar within the pieces of all species. The reason for a higher intercept in 

western red cedar is difficult to say, but one option is the shear modulus having 

------ Overall regression line; R2 = 0.88 
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a bigger influence, or measurement errors due to a non-square cross critical 

section consequence of the collapse, or possibly greater elastic compression of 

the test specimen depth when under load. The results in Table 3-7 reports the 

different regression coefficients for the relationship MOEG - MOEL. 

Table 3-7: Regression coefficients (kN/mm2) for each species. SE = Standard Error 
 Species Estimate SE P-value 

Intercepts 

Noble fir  -1.262 0.147 <0.001 

Norway spruce -1.397 0.230 0.107 

Western red cedar -0.807 0.237 <0.001 

Western hemlock  -1.450 0.236 <0.036 

Slope 1.189 0.017 <0.001 

Equation: MOEPB = Slope x MOEG + Intercept + error  

 

A linear relationship between MOEL and MOEG across the four species was 

investigated, resulting in the following equation: 

𝑀𝑂𝐸𝑃𝐵 = 1.139 ×  𝑀𝑂𝐸𝐺 − 0.856 [3-3] 

The equation [3-3] provides an alternative to the equation 7 given in the 

standard EN 384:2016 for calculation of the pure bending modulus (MOEPB). It 

could be used for timber grading, although it may be specific to the testing 

arrangement used. The standard also allows the direct use of MOEL for timber 

grading. 

A general regression line between MOEG and MOR for all the pieces tested gave 

a relationship of R2 = 0.53 (RMSE = 7.2 N/mm2). ANOVA of a linear model 

between the two properties showed that the relationship was different 

between species, affecting the intercept (F3 643 = 24.6, P= <0.001), but not the 

slope (F3 640 = 2.2, P= 0.09), which is illustrated in Figure 3-9. This raised the 

possibility of grading MOR for the four species together using a stiffness based 

IP, which will be examined in section 3.4.3. 
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Figure 3-9. Relationship between MOE and MOR in structural timber with the linear 
regression line for the four species together 

 

ANOVA of a linear model indicated that the relationship of Density384 with MOE 

and MOR was different between species, affecting both the intercept and slope 

(F3 873 = 26.6, P= <0.001 and F3 640 = 10.4, P= <0.001 for MOE; and F3 643 = 7.3, P= 

<0.001 and F3 640 = 7.9, P= <0.001 for MOR). Therefore, species may not be 

graded together using density as IP. 

 

Figure 3-10. Relationship between Density384 with MOE (left) and MOR (right) with linear 
regression per species and overall. 

 

------ Overall regression line; R2 = 0.53 

R2 = 0.22 R2 = 0.45 
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The overall relationship of Density384 with MOEG was moderate (R2 = 0.45, 

RMSE=1.4 kN/mm2), and poor with MOR (R2 = 0.22, RMSE=9.2 N/mm2, Figure 

3-10). The grade of association of other wood properties will be examined in 

Chapter 5, as part of the non-destructive assessment of wood properties. 

3.4.2.1 Models for wood properties prediction.  

Below is included a list of equations for prediction of wood properties in 

structural pieces according to the data studied. 

Table 3-8. Models for prediction timber properties at piece level 

Equation 

number 
MODELS R2 RMSE 

For the four species  

[3-3] 𝑀𝑂𝐸𝑃𝐵 = 1.139 ×  𝑀𝑂𝐸𝐺 − 0.856 0.88  

Noble fir    

[3-4] 𝑀𝑂𝐸𝐺 = 41.5 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦384 − 8.1 0.61 1.23 

[3-5] 𝑀𝑂𝐸𝐺 = 38.4 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑡𝑖𝑚𝑏𝑒𝑟 − 7.8 0.49 1.41 

[3-6] 𝑀𝑂𝐸𝐺 = 32.4 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑡𝑖𝑚𝑏𝑒𝑟 − 4.2 × t𝑘𝑛𝑜𝑡 −  3.9 0.63 1.21 

Norway spruce   

[3-7] 𝑀𝑂𝐸𝐺 = 25.7 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦384 − 1.9 0.51 1.06 

[3-8] 𝑀𝑂𝐸𝐺 = 26.7 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑡𝑖𝑚𝑏𝑒𝑟 − 2.7 0.47 1.10 

[3-9] 𝑀𝑂𝐸𝐺 = 26.7 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑡𝑖𝑚𝑏𝑒𝑟 − 2.8 × t𝑘𝑛𝑜𝑡 − 1.7 0.65 0.90 

Western red cedar    

[3-10] 𝑀𝑂𝐸𝐺 = 18.2 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦384 − 0.4 0.19 1.23 

[3-11] 𝑀𝑂𝐸𝐺 = 17.7 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑡𝑖𝑚𝑏𝑒𝑟 − 0.3 0.14 1.27 

[3-12] 𝑀𝑂𝐸𝐺 = 24.7 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑡𝑖𝑚𝑏𝑒𝑟 − 3.3 × t𝑘𝑛𝑜𝑡 − 1.8 0.52 1.31 

Western hemlock    

[3-13] 𝑀𝑂𝐸𝐺 = 25.7 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦384 − 3.0 0.32 1.54 

[3-14] 𝑀𝑂𝐸𝐺 = 25.9 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑡𝑖𝑚𝑏𝑒𝑟 − 3.5 0.23 1.64 

[3-15] 𝑀𝑂𝐸𝐺 = 27.3 × 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑡𝑖𝑚𝑏𝑒𝑟 − 5.2 × t𝑘𝑛𝑜𝑡 − 1.7 0.62 1.25 

 

3.4.3 Characteristic values and grading 

3.4.3.1 Characteristic values and optimum grading 

Characteristic values of the key wood properties for construction were 

calculated for specimens simulating a rotation length of 45 years by using only 

pieces cut from the 45 rings closest to the pith. Table 3-9 shows the values by 

species and sites, but the small number of pieces for some of the groups must 
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be taken into account before extracting any conclusion. A two-tailed test for a 

confidence level of α = 0.95 was calculated for the mean. 

Table 3-9. Summary of wood properties by sites for a rotation length of 451 years. 

 Noble fir Norway spruce 
Western red 

cedar 
Western hemlock 

Prop\Site S M N S M N S M N S M N 

Pieces 34 45 47 42 35 51 32 37 46 49 33 56 

MOEL (kN/mm2) 

E0,mean 6.5 9.3 7.1 9.0 8.8 8.0 8.0 8.2 6.3 7.7 8.2 9.0 

CI (±) 0.5 0.9 0.6 0.5 0.7 0.5 0.4 0.6 0.4 0.5 0.6 0.7 

MOEG (kN/mm2) 

E0,mean 6.5 9.0 7.0 8.7 8.5 7.8 7.2 7.5 6.1 7.8 8.2 8.7 

CI (±) 0.4 0.4 0.4 0.4 0.5 0.4 0.3 0.5 0.4 0.4 0.5 0.5 

MOR (N/mm2) 

fm,k 14.7 18.8 14.1 21.5 19.7 17.3 20.8 20.5 15.6 18.2 19.3 18.9 

Mean 26.9 38.9 26.7 32.7 30.0 30.7 31.2 34.4 25.8 34.9 32.1 35.6 

CI (±) 3.1 4.4 2.8 2.6 2.6 2.6 1.9 2.5 2.2 2.8 3.3 3.0 

Density384 (kg/m3) 

ρk 313 367 333 358 372 332 331 324 312 378 407 389 

Mean 346 405 376 403 419 386 366 363 348 440 438 450 

CI (±) 7 9 9 9 13 9 11 11 7 11 9 12 

SC 
MOEL C142 C20 C14 C20 C18 C16 C16 C16 C143 C16 C16 C20 

MOEPB C144 C20 C14 C20 C18 C16 C16 C16 C145 C16 C16 C206 

Sites: S, south; M, middle; N, north; CI: confidence interval of α = 0.95 for the mean;  
E0,mean, fm,k and ρk are the characteristic values for stiffness, strength and density respectively; 
SC: Strength class for the basic grade (100% of the population in the strength class). 

1 Noble fir was 30 y/o and 38 y/o in south and north sites respectively, and western red cedar 
35 y/o in south site;  
C142 Yield = 97%; C143 Yield = 87%; C144 Yield = 91%; C145 Yield = 96%; C206 Yield = 95% 

 

The allocation of sites and species to strength classes was done on the basis of 

the results of the destructive tests, and is referred to as optimum grading. The 

properties were ranked in ascending order, and the mean (for stiffness) or the 

5th percentile (for bending strength and density) of the entire population 

calculated. 

Overall, Norway spruce and western hemlock achieved higher basic grades than 

noble fir and western red cedar. However, noble fir in the middle site competed 

with the best plantations of Norway spruce or western hemlock, and even 

achieved 96% yield for the strength class C22. The potential yields obtained for 

strength classes C14 to C27 each by species are reported in the appendixes.  
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Table 3-10 shows the wood properties for the four species studied restricting 

age to 45 years. The stated characteristic values determine the basic grade. In 

order to capture the variation of wood properties, the characteristic values 

were determined for a one-tailed test at a confidence level of α = 0.75 using a 

non-parametric calculation as described in the statistical analysis (see §3.3.3). 

As well as the mean and characteristics values, the Table 3-10 shows the 

confidence adjusted characteristic values. This biased the characteristic value 

towards the safe side.  

Table 3-10. Properties of timber for a rotation length of 45 years. The characteristic values 
for bending stiffness (kN/mm2), bending strength (N/mm2) and density (kg/m3) are given by 
MOEPB, fm,k and ρk, respectively. 

 
Noble 

fir 

Norway 

spruce  

Western red 

cedar  

Western 

hemlock  

Property\pieces 126 128 115 138 

Mean MOEPB 7.7 8.6 7.0 8.5 

CoV (%) 29 19 22 23 

E0,mean,75%, CI 7.6 8.5 6.9 8.4 

Mean MOR 31.1 31.1 30.1 34.5 

CoV (%) 42 29 27 31 

fm,k 14.8 19.1 16.3 18.2 

fm,k,75% CI 13.7 18.2 15.6 17.3 

Mean Density384 378 401 358 444 

CoV (%) 10 9 8 9 

ρk 324 345 318 385 

ρk,75% CI 318 340 313 380 

Strength class 

(Basic grade) 
C14 C18 C14 C18 

fm,k,75% CI is a one tailed 75% confidence interval. 

 

For allocation of timber to a certain strength class, all three properties must 

achieve the required values (Table 3-2). For example, Table 3-10 shows that 

MOR was the limiting property to grade to C16 for noble fir (for which fm,k should 

achieve 16 N/mm2). This was an exception, and for the data here investigated 

MOE was the main limiting property, with MOR and density values usually 

satisfying requirements of higher strength classes. Appendixes show in detail 

the variation of characteristic values for strength classes and species.  

Grading allows to preferentially remove the worst material so that the 

remaining population achieves a higher strength class, at the expense of 

reducing the yields. Table 3-11 shows the yields for optimum grading to a single 
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grade with a perfect grading machine (as described in EN 14081-2), and real 

grading yields may be considerably lower (because real machines have 

indicating properties with lower correlation to grade determining properties). 

Yields are shown without considering visual override rejection due to twist. 

Noble fir was capable of producing a high yield of C16 timber, with Norway 

spruce and western hemlock achieving the requirements of C18 strength class, 

and even producing high yields of C20. Western red cedar also produced high 

yield of C16 timber but less than the other three species. 

Table 3-11. Comparison of the optimum yields of timber for a rotation length of 45 years.  

  Pieces C14 C16 C18 C20 C22 C24 

Noble fir 

Overall 126 100% 96% 78% 64% 52% 33% 

S1 34 97% 53% 24% 12% 3% 3% 

M 45 100% 100% 100% 100% 96% 69% 

N1 47 100% 87% 57% 45% 30% 11% 

Norway 

spruce 

Overall 128 100% 100% 100% 84% 66% 37% 

S 42 100% 100% 100% 100% 79% 43% 

M 35 100% 100% 100% 94% 74% 46% 

N 51 100% 100% 84% 67% 51% 24% 

Western 

red cedar 

Overall 115 100% 96% 62% 45% 33% 17% 

S1 32 100% 100% 81% 59% 44% 19% 

M 37 100% 100% 92% 73% 57% 32% 

N 46 87% 48% 17% 11% 7% 2% 

Western 

hemlock 

Overall 138 100% 100% 94% 80% 67% 41% 

S 49 100% 100% 71% 55% 39% 14% 

M 33 100% 100% 85% 67% 52% 27% 

N 56 100% 100% 100% 100% 89% 68% 

Sites: S, south; M, middle; N, north. 1 Noble fir was 30 y/o and 38 y/o in south and north sites 
respectively, and western red cedar 35 y/o in south site. Yield calculated using MOEL. 

3.4.3.2 Indicating properties (IP) for grading 

Perfect grading machine as IP 

In order to grade timber it is important to find a strong relationship between 

indicating properties (IP) that can be measured, and grade determining 

properties.  

Grading machines can operate on many different IPs. Here, a selection of 

representative IP types were examined and compared to the optimum grading. 
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The possibility of grading the four species together was also explored, as this 

would have practical advantages for industry. The pieces were ranked in 

ascending order of IP measured, and the mean (for stiffness) or the 5th 

percentile (for bending strength and density) of the population above each IP 

value was calculated. This allowed to set up thresholds of the IP and the 

correlation with the characteristics values. This is the same approach used 

before for optimum grading (see §3.4.3.1). 

Figure 3-11 illustrates the optimum grading of MOEG using the results from the 

destructive tests. The graph shows the mean MOEG of the portion that passes 

the threshold given on the abscissa axis. The graph illustrates that the mean of 

the whole population of Norway spruce and western hemlock is above the C16 

requirement. It also shows that to grade C16 western red cedar a MOEG of 7 

kN/mm2 is at least required in a piece so that the rest of the population can 

average to 8 kN/mm2. The lines coinciding indicates that the species might be 

gradable together. 

 

Figure 3-11. Performance of the species using MOEG as IP.  

 

For machine grading most of the current machines operate based on one or 

several of the following properties: mechanical stiffness, dynamic stiffness 

(measured with acoustic techniques), density, size and position of knots. 
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Chapter 5 will address in more detail the relationship of dynamic stiffness in 

sawn timber. For now, it is only necessary to know that dynamic stiffness refers 

to that obtained using the equation 𝑀𝑂𝐸𝑑𝑦𝑛 =  𝜌 × 𝑣2, where ρ is the wood 

density (kg/m3) and v is the speed of sound (m/s) measured in the specimen. 

Two widely used IP are the resonance speed and Densitytimber. They were used 

individually, and in combination to obtain a third IP, dynamic stiffness (MOEdyn).  

Dynamic stiffness as IP 

Figure 3-12 shows the grading of bending stiffness using MOEdyn and the acoustic 

speed squared.  

  

Figure 3-12. Performance of the species using MOEdyn (left) and speed of sound in wood 
(right) as indicating property to grade timber based on stiffness.  

 

Comparing Figure 3-12 with the optimum grading (Figure 3-11), the use of 

MOEdyn offered more similar results than the use of speed alone. Using MOEdyn 

for grading C16 timber (mean of 8 kN/mm2), it would be possible to grade 

efficiently noble fir, Norway spruce and western hemlock together establishing 

for this dataset a minimum of 6 kN/mm2 in a piece so that the rest of the 

population can average to 8 kN/mm2. Western red cedar had a lower mean 

stiffness than the other three species, and the grading of the four species 

together would require of a higher threshold, and consequently very 

conservative grading that would penalise the yield of the other three species. 
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Figure 3-13. Performance of the species using MOEdyn (left) and speed of sound in wood 
(right) as indicating property to grade timber based on strength. 

 

Table 3-10 and appendixes showed that stiffness was limiting in most cases, but 

MOR might limiting in some circumstances, in which case the difference in MOR 

between species becomes more important. The use of MOEdyn and resonance 

speed as IPs indicated that the four species differed when grading MOR (Figure 

3-13). Grading of density showed a big variation between the species (Figure 

3-14). 

 

Figure 3-14. Performance of the species using MOEdyn (left) and speed of sound in wood 
(right) as indicating property to grade timber based on density. 

 

The comparatively higher density of western hemlock, and lower of western 

red cedar might may make difficult the grading of the two species together, 
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especially if density was the limiting property for grading. Noble fir and Norway 

spruce on the other hand were more comparable.  

Density timber as IP 

The use of Densitytimber as IP was also investigated. Table 3-6 showed that 

density had a good correlation with MOE in noble fir and Norway spruce, and it 

was very strong between Density384 and Densitytimber in the four species. Before 

examining the use of density as IP for grading, the relationship between 

Densitytimber and Density384 was examined.  

ANOVA of a linear model concluded that species affected the intercept term 

(F3 642 =13.6, P< 0.001) of the relationship, but not the slope (F3 639 =1.4, P= 

0.24). Figure 3-15 showed that Densitytimber was slightly higher than Density384, 

and the relationship between them very strong (R2 = 0.88). Including the 

categorical variable species did not improve the relationship importantly. The 

95% confidence range on slope was between 0.95 and 1.01, and therefore 

included the relationship 1:1. Figure 3-15 also showed that the Density384 can 

vary in more than 50 kg/m3 for a certain Densitytimber.  

 

Figure 3-15. Relationship between Density384 and Densitytimber.  

 

Density384 = 0.98 x Densitytimber – 7.7 
R2 = 0.88; RMSE =17.0 
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The higher values of Densitytimber compared to Density384 could be caused by the 

knots. In order to improve the prediction of Density384, additional variables 

were investigated: mknot, tknot, nknot and age. Only tknot (P<0.001) and age 

(P<0.05) were significant, but they barely improved the prediction of the 

model. The interaction of species with the variables fit in the model was not 

significant. The linear model [3-16] was finally chosen, and the resulting values 

reported in Table 3-12: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦384 = 𝛼0 + 𝛼1𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑡𝑖𝑚𝑏𝑒𝑟 + 𝛼2𝑆𝑝𝑒𝑐𝑖𝑒𝑠 + 𝜀 [3-16] 

Table 3-12. Summary of the chosen model for Density384 prediction (kg/m3). 

 Species Estimate Std. Error P-value 

Intercepts 

Noble fir  -26.5 7.7 <0.001 

Norway spruce -21.3 2.0 0.011 

Western red cedar -13.0 2.2 <0.001 

Western hemlock  -20.7 2.5 0.019 

Slope 1.01 0.02 <0.001 

Equation: Density384 = Slope x Densitytimber + Intercept + error 

 

If density was the limiting property for grading, the use of Densitytimber would 

be a good indicator.  

Figure 3-16 shows how the use of Densitytimber as sole IP for grading performed 

in the dataset. The same methodology than grading based on acoustic IPs was 

applied. Western hemlock showed a higher density than the other three species 

which did not directly translate in higher MOE, in line with results in the 

chapter. As a result, this species may not fit well with the other three species 

for grading using density as sole IP. 

The four species differed when grading MOR, although western red cedar and 

Norway spruce showed some similarity, as did noble fir with western hemlock.  
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Figure 3-16. Performance of the species using Densitytimber as IP for grading. 
 

Noble fir and western red cedar showed similar trends for grading density based 

on Densitytimber. For the same IP Norway spruce graded higher Density384. The 

initial flat trend of western hemlock was due to the few number of pieces in 

that range of values.  

3.4.4 Distortion. Twist. 

The standard EN 14081-1:2016 specifies the requirements for strength graded 

structural timber with rectangular cross-sections. The standard refers to a 

maximum mean m.c. of 20% at the time structural timber is graded for 

distortion. The pieces in the current study were dried to 12%, and the pieces of 

western red cedar in the north site to 20% m.c. As a result of the different 

drying m.c. results of distortion for western red cedar must be considered with 

care. In terms of twist the 2016 version of the standard establishes a maximum 
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twist of 2 mm per 25 mm width, but sawmills may choose to apply more 

stringent limits. The previous version of EN 14081 had two limits for twist (2 

mm and 1 mm for 25 mm width), and those are used here for comparison with 

literature, equating to eight and four millimetres for a standard 100 mm width. 

British sawmills usually apply these distortion limits at about 18% m.c., and so 

the results here presented reflect the distortion by the time the customer gets 

it, and do not directly compare to rejection in the mills. The study aimed to 

compare across the species for a relative judgement, and sawmills may have 

difference experience and practice.  

Only the pieces up to a cambial age of 45 were considered in order that the 

four species could be compared to current commercial production. A total of 

126 pieces of structural timber of noble fir, 128 of Norway spruce, 94 of western 

red cedar (46 from the north site) and 138 of western hemlock were analysed 

for distortion. On 21 pieces of western red cedar the collapse suffered during 

drying caused grooves or corrugations that made impossible to measure twist. 

Noble fir showed a wider range and higher twist values than the other three 

species (Figure 3-17, left). ANOVA test showed that the mean twist was not 

equal (P<0.001) on the four species. The following posthoc Tukey test indicated 

that there were differences between all pairs except western red cedar–

western hemlock (Figure 3-17, right). 

 

Figure 3-17. Left: Distribution of twist by species with limits 1 and 2 mm/25 mm width. 
Right: Tukey's HSD confidence interval at the 95% family-wise confidence level. 
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Twist was not present in 38 pieces of western red cedar from the north site 

(kiln dried to 20% m.c.), and the other eight pieces had less than four mm of 

twist. Between the other three species, western hemlock was the one less 

prone to twist and noble fir the most. Outliers of Norway spruce (ten pieces) 

corresponded to pieces from near the pith (nine specimens containing the pith 

and another one in radial position 2). A significant difference in twist was 

observed between radial positions (P<0.001). Figure 3-18 shows the influence 

of the radial position in the appearance of twist (position 5 is not shown due to 

the low number of pieces). 

 

Figure 3-18. Presence of twist on structural pieces by radial position; “n” is the number of 
pieces. 

 

Table 3-13 shows the passing rates of structural-size timber for twist according 

to EN 14081 for the data studied. By removing the samples containing the pith 

the passing rate increased, particularly in noble fir.  

Table 3-13. Pass rates of timber pieces up to 45 y/o for twist. 

 2 mm / 25 mm width 1 mm / 25 mm width 

 All No Pith All No Pith 

Noble fir, 12% m.c. 67 % 83 % 43 % 54 % 

Norway spruce, 12% m.c. 83 % 95 % 49 % 61 % 

Western red cedar, overall 86 % 93 % 69 % 80 % 

   12% m.c. 73 % 80 % 40 % 47% 

   20% m.c. 100 % 100 % 100 % 100 % 

Western hemlock,12% m.c. 87 % 92 % 61 % 66 % 
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Once again, it must be stressed that the presence of collapse in some pieces of 

western red cedar affects these results. This lead to discard thirteen and eight 

pieces from radial positions 2 and 3 respectively, although it must also be 

noticed that none of the pieces from radial position three dried to 12% m.c. 

had more than eight mm of twist.  

3.5 Discussion 

This chapter showed that wood properties and twist varied for the four species 

investigated, but also that there exist an important influence of radial variation 

within a tree. For the data collected, the study determined that, overall, noble 

fir, Norway spruce, western red cedar and western hemlock grown in G.B. can 

produce timber capable of meeting the quality required for structural 

construction.  

In general, older stands achieved higher values in the wood properties studied, 

and they tended to increase outwards in the radial direction. Therefore, trees 

produced in general material with properties more suitable for timber 

construction as they grew. This was consistent with other studies (Kliger et al., 

1998; Moore et al., 2012; Moya et al., 2013) that investigated the influence of 

rotation length in timber quality.  

Although age was important there were other factors having an influence. 

Overall, Norway spruce and western hemlock had higher values of the wood 

properties studied. In the middle region, and comparing only pieces for a 

rotation length of 45 years, noble fir performance was comparable to Norway 

spruce, although the sites were different. The other two sites of noble fir were 

very young, and properties would probably be better had it been possible to 

sample trees of a comparable age to the other species investigated. On the 

other hand, western red cedar performed less well for structural purposes, and 

in particular the northern site achieved considerably lower values than the 

other two sites despite being an older stand. The reasons for this are unknown, 

and can be due to a latitude effect, genetics, or some other factors. 

Nevertheless, in its native land western red cedar has also low bending strength 

and very low stiffness, and it is not widely used as structural components 

(Minore, 1983; USDA, 2010). 
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Another feature than changed with radial position, and that may have 

particularly an influence in the increase of MOR was the decrease of knots 

content, both in number and total knot area. A study on Sitka spruce with a 

similar cutting pattern (Moore et al., 2012) observed this difference comparing 

a piece containing the pith, and a piece from the outerwood. The current study 

found significant differences between most of the radial positions. Norway 

spruce had more knots than the other three species, mostly due to the knots 

near the pith, and there was no significant difference in the total area 

compared to noble fir and western hemlock. This must be understood as Norway 

spruce having a smaller size of knots.  

The analysis of the variation of the mechanical properties due to the different 

stratum in the experiment found that within tree variation was the most 

important attribute governing the differences in mechanical properties. Other 

studies studying one species also attributed most of the differences in 

mechanical properties to within tree variation (Table 3-14). A study on 12 sites 

of Sitka spruce (Moore et al., 2013) found a higher variation of the site attribute 

compared to a study on Scots pine (Moore et al., 2008) or in general in the 

present study, both on three sites. However, the influence of site in noble fir 

was very high, particularly for density. One reason explaining the higher effect 

of site in noble fir may be the age of the stands, as the two youngest crops (30 

and 38 years old) were stands of noble fir, and the average of only three sites 

were heavily influenced by each site. This could have resulted in a bigger 

proportion of corewood compared to the older noble fir forest (58 years old), 

and therefore provoking the difference between sites. It could also be 

hypothesised it was due to the use of different provenances, but this thesis 

could not collect information on the origin of the seed lots. A study on the 

effects of genetics on the wood properties of Sitka spruce (Moore et al., 2009d) 

observed differences in density between two seed lots growing in the same 

region, but did not find differences in the mechanical properties. 
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Table 3-14. Variation in wood properties attributable to different stratum in Sitka spruce 
(Moore et al., 2013) and Scots pine (Moore et al., 2008). 

  MOEPB MOR Density1 

Site Sitka spruce  26.3% 18.3% 22.7% 

Scots pine 6.0% 3.4% <0.01% 

Plot Sitka spruce  n/a n/a n/a 

Scots pine 1.0% <0.01% 0.5% 

Tree Sitka spruce  36.2% 25.2% 51.1% 

Scots pine 24.9% 8.0% 9.8% 

Log Sitka spruce  2.2 1.4 4.5 

Scots pine 14.7 30.2 43.2 

Piece Sitka spruce2  35.3 24.9 51.9 

Scots pine2 53.9 58.5 46.5 
1 Specific gravity in Scots pine; n/a: effect of plot was not measured. 
 

The properties studied for grading (MOE, MOR and density) kept in general a 

good correlation. MOEG and MOEL had a very strong correlation, and an 

empirical conversion equation was derived [3-3] to convert MOEG to MOEPB. The 

equation fits better to British timber, typically of low stiffness, than the general 

one [3-1], and provided a shear-free or true pure bending modulus (MOEPB). 

MOEG is more likely to be measured than MOEL in relation to grading because 

MOEL is more susceptible to errors in measurement and more time consuming, 

but it needs to be stressed that the equation presented here may not be 

translatable to the whole country, and the relationship may depend on the test 

machine and set-up. Density also had a good correlation with mechanical 

properties, stronger with MOE than MOR, and better in noble fir and Norway 

spruce.  

The performance of the wood properties determined that timber produced from 

noble fir, Norway spruce, western red cedar and western hemlock were capable 

of producing high yields of the most commonly used strength class in G.B. C16, 

comparable to the performance of Sitka spruce and Douglas fir (Table 3-15).  

Table 3-15. Wood properties for Sitka spruce (Moore et al., 2013) and Douglas fir (Drewett, 
2015) in G.B. 

 
MOEPB 

(kN/mm2) 

MOR 

(N/mm2) 

fm,k 

(N/mm2) 

Density 

(kg/m3) 

ρk 

(kg/m3) 

S.C. 

Sitka spruce  8.3 32.7 19.6 387 330 16 

Douglas fir 9.2 34.1 17.2 455 370 16 

Age range was 35-45 for Sitka spruce and 42-58 for Douglas fir; S.C.: Strength class 
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These yields are based on destructive tests, but the lack of a perfect correlation 

between wood properties measured by a grading machine implies that actual 

yields achieved in practice could be lower than those reported in Table 3-11, 

as those are optimum yields calculated from measurements in a laboratory.  

The use of some of the most common IPs was investigated, and despite the 

differences observed in the performance of the species, it was raised the 

possibility of grading the four species together. This would be a good way to 

get the four species into industrial use as a minor component added to an 

already well-established species mix. Special attention was put on MOE because 

it was the main limiting property for grading. MOEdyn resulted a very good IP for 

grading MOE, offering very close results to the measurements of MOE in 

bending. The results indicated that grading the four species together may be 

possible under conservative settings, which would limit the potential of some 

of the species. 

Densitytimber was also investigated as IP because it was found to have a strong 

relationship with Density384, that could almost be described as 1 to 1. The 

measurement of knots did not add any useful information for prediction of 

Density384, and so density measured in small clears may give a good indication 

of density in structural-size timber, which will be examined in Chapter 4. 

Despite the strong relationship between both densities, grading the four species 

together for MOE using density as sole predictor variable may not offer good 

results because MOE in western hemlock was not comparatively as high as it 

could have been expected from the high density values.  

Regardless of the wood properties, timber can be rejected due to an excessive 

drying twist. Twist correlated weakly with wood properties, except noble fir 

that showed a moderate correlation with MOE. A study on Norway spruce 

(Johansson et al., 2001) also found a weak relationship between density and 

twist (R2=0.12). A recent PhD thesis (Canavan, 2017) found strong correlations 

(r=0.73 to 0.83) between twist and acoustic velocity (used as indicator of 

dynamic MOE) in pieces of Sitka spruce using a relatively small number of pieces 

(36 specimens from six trees). Whether results would be representative of a 

larger population, and due to a difference behaviour of species would require 

a further investigation. Western red cedar showed a positive correlation of twist 
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with the wood properties, but this could be influenced by the higher m.c. of 

drying.  

Despite the lack of correlation, in line with the wood properties twist was also 

influenced by the radial position. The higher the quality of the piece of timber 

the less prone to twist it was, that is, material containing the pith was more 

prone to distortion, and outer pieces met higher wood quality and twist was 

lower. This was consistent with findings in Sitka spruce, both comparing radial 

positions (Moore et al., 2012), and inner and outer wood (Moore et al., 2009a) 

for which mean values of twist were one third lower in the outerwood (5.6 mm) 

than in the corewood (8.5 mm). A study on Norway spruce (Perstorper et al., 

1995b) found for a similar cutting pattern a passing rate of 49% for a 5 mm limit 

when drying samples to 12% m.c., similar to results in this chapter (49.2%) for 

the 4 mm limit.  

Comparing British grown species dried to 12% m.c., a study on Douglas fir 

(Drewett, 2015) found 90% of pieces passing the 8 mm threshold given in 

EN 14081, whereas other on British spruce (Searles, 2012) found 57% of pieces 

passing the 8 mm threshold. The four species investigated in the current thesis 

showed higher passing rates than Sitka spruce, with Norway spruce and western 

hemlock similar to Douglas fir. Results for western red cedar must be treated 

with care because pieces from the northern site (46) were kiln dried to 20% 

whereas the rest of specimens from the four species (491) were dried to 12%, 

lower than what the sawmills would normally dry to. It must be noted that a 

full study of twist would need to also include the effects of cutting patterns 

and kilning conditions. 

This chapter has shown evidence that the wood properties of the four species 

studied perform comparatively well to British spruce for a similar rotation 

length, and they could be a good option to diversify and broaden the timber 

resource in G.B. Efforts now must address the replication of planted forest in 

the same sites so that different silviculture regimes can be assessed, 

particularly for Norway spruce to identify possible differences with Sitka 

spruce, as well as noble fir and western hemlock. Western red cedar may be 

consigned to non-structural uses. 
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3.6  Conclusions  

This chapter has demonstrated for the first time that in addition to the already 

used Norway spruce, it is possible to grow British timber capable of meeting 

the most common quality required for structural construction from noble fir, 

western red cedar and western hemlock. In particular Norway spruce and 

western hemlock arose as a good complement to diversify and increase the 

timber resource in G.B. 

The variation of wood properties with radial position ruled the difference 

between pieces. The key structural wood properties of stiffness, strength and 

density were examined, as well as the distribution of knots and the potential 

influence of twist in grading. The four species were potentially capable of 

producing high yields of C16 (the basic customary strength class used in the 

United Kingdom) for a rotation length of 45 years. In particular, Norway spruce 

and western hemlock produced high yields of C18 showing in addition lower 

twist than Sitka spruce. On the other hand, noble fir and western red cedar 

achieved a lower performance, but still capable of achieving C16 strength class 

in favourable sites. The outerwood timber of the species studied showed high 

performance of the wood properties associated with a lower twist, making this 

timber more suitable for structural applications.  

Overall, timber stiffness resulted the limiting property for strength grading. 

Grading machines based on measurement of MOEdyn appeared as potentially 

capable of grading the four species together for C16 or higher under 

conservative settings. With a shift towards continuous cover forestry in G.B., 

this opens the possibility to grade timber of different species like Norway spruce 

and western hemlock together. The material collected for this thesis was 

limited, compared to what would be required for grading machine settings.  

Further research is required in order to investigate the performance in different 

growing regions and produce grading machine settings and possible species 

combinations. 
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Chapter 4. Wood properties. Clears.  

4.1 Introduction 

Clears are pieces typically sawn to dimensions of 300 x 20 x 20 mm in the 

longitudinal, tangential and radial directions. They lack of defects, and their 

mechanical properties represent the best potential performance of wood for a 

tree, stand or species in a growth area.  

Compared to structural pieces, clears enable the study of the variability of 

wood by assessing the change in properties as trees age, without the 

complicating influence of defects, mainly knots, and with a higher resolution 

with respect to annual growth rings. This allows to produce guidance on the 

rotation length of forest plantations. Clears can also help to determine the 

effect of silvicultural treatments and genetic assessments on natural and 

planted forests even from early years (Ivković et al., 2009; McLean et al., 2016). 

In addition, clears are easier to produce, condition and test.  

There is little data on the mechanical and physical capabilities of noble fir, 

Norway spruce, western red cedar and western hemlock grown in G.B. This 

chapter examined the bending stiffness, bending strength and density on clears. 

The variation of wood properties between species, the performance and the 

variation with age was investigated. Previous studies (Auty et al., 2014, 2016; 

Gardiner et al., 2011) have modelled the radial variation of properties of one 

species, but this chapter aimed to build models that can be used simultaneously 

for different species. Finally, results of clears and structural-size pieces were 

compared to investigate the relationship between both. 

Results help examining at which stratum of the experiment the variation 

between wood properties occurs, and then explore it with a higher resolution 

with respect to annual growth rings than structural pieces. Ultimately, results 

help understanding the effects of rotation length on the species.  
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4.1.1 Objectives 

The aims of this chapter for the four species investigated are: 

1. The variation in wood properties between and within trees. 

Quantify the variation of bending stiffness, bending strength and density 

due to species, sites, plots and trees. 

2.  The performance of wood properties. 

Examine and compare the performance the three wood properties and 

the relationships between them. 

3.  To model the radial variation of wood properties. 

Model the variation of wood properties with age. 

4. Prediction of structural quality timber from clears. 

Examine the relationship between the wood properties of clears and 

structural timber at piece, tree and population level. 

4.2 Literature review 

Table 4-1 presents some data on the performance of the species in their native 

lands, where like with structural pieces there is a more extensive experience 

on clears than in G.B.  

Table 4-1.Values published in literature for small clears from trees in their native lands. 

 
MOE 

(kN/mm2) 

MOR 

(N/mm2) 

Specific 

gravity 

Noble fir1  11.9 74.0 0.39 

Norway spruce2  10.4 71.8 3953 

Western red cedar1  7.7 51.7 0.32 

Western hemlock1  11.3 78.0 0.45 
1 published in (USDA, 2010); 2 published in (Haartveit and Flæte, 2006); 3 Density (kg/m3) at 
12% m.c. 

 

There is only one major publication (Lavers, 2002) reporting values for British 

grown material (Table 4-2), of which first edition dates back to 1967. This 
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publication provides values based on small clears, but the amount of data is 

limited, and the site, age and silviculture methods are unknown. 

Table 4-2.Values published in literature (Lavers, 2002) for small clears. 

 n 
MOE 

(kN/mm2) 

MOR 

(N/mm2) 

Density 

(kg/m3) 

Lavers   Mean CoV Mean CoV Mean1 

Noble fir  42 8.1 0.18 63 0.13 368 

Norway spruce  13822 8.5 0.20 66 0.16 400 

Western red cedar  107 7.0 0.26 65 0.16 368 

Western hemlock  125 8.0 0.22 76 0.19 433 

n: number of pieces; Density at 12% m.c.; 1Standard deviation no published for density; 2MOR 
was obtained from 1383 pieces. 

 

Chapter 3 examined the variation of wood properties with radial position, but 

the use of clears allows to compare wood free of defects, exclusively assessing 

the change in properties with age, and in more detail with respect to annual 

growth rings due to the smaller sample size.  

It is widely accepted that slow-growth softwood plantations, associated with a 

longer rotation length tend to produce timber of higher quality for structural 

purposes compared to fast-growth and younger crops (Butterfield, 2003; Kliger 

et al., 1998; Moore et al., 2012; Moya et al., 2013; Zhang, 1995). This is largely 

a consequence of a higher volume of outerwood in comparison to corewood, of 

poorer mechanical performance. Efforts to increase the understanding on the 

correlation and variation of wood properties are necessary to improve the 

management for timber production.  

Different indicators and the correlation with wood properties have been 

examined in order to model this variation, for example ring width due to the 

confounding effect with age and wood properties. Microfibril angle has been 

also widely used. Density has been stated is most likely the best single 

predictor of mechanical properties of clear, straight-grained defect-free wood 

(Zink-Sharp, 2003). It relates to changes in the wood structure and it is easy to 

be measured, making density a common indicator of wood quality (Desch and 

Dinwoodie, 1996; Savidge, 2003). In addition, some authors found that density 

is well correlated with many other properties (Saranpää, 2003), in particular 

MOR (Alteyrac et al., 2007a; Dinwoodie, 2000).  
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Mechanical properties commonly relate well with age, and they tend to 

increase as trees ages, but the increment can happen at different rates. The 

change in wood properties from corewood to non-corewood occurs over several 

years, and the transition may be more abrupt or smooth depending on the 

particular wood property and species. The rate of change can be more 

pronounced in the first years of growth from the pith, and subsequently slow 

down, levelling out to a constant maximum value at a certain point.  

Density on the other hand may show different trends. In some species like 

loblolly pine (Mora et al., 2007), radiata pine (Kimberley et al., 2015) and Scots 

pine (Auty et al., 2014) density consistently increase from the pith outwards. 

Other species like Douglas fir (Bawcombe, 2012), and the most important 

conifers for structural purposes in the Pacific Northwest of North America show 

a low inflection point in the first years. The same pattern was observed in Sitka 

spruce in G.B. (Gardiner et al., 2011)  

At the time of writing there is not much literature published on the radial 

variation of MOE and MOR for the four species studied. Only one study was 

found, and described the MOEC and MORC of western hemlock (Kennedy, 1995)1. 

Most of the examined literature available studying the radial variation of wood 

properties focused in density, particularly for Norway spruce (Jyske et al., 

2008; Mäkinen et al., 2007; Saranpää, 1994, 2003), and less for western red 

cedar (Cown and Bigwood, 1978) and western hemlock (Jozsa et al., 1998; 

Middleton and Munro, 2001). The three species described a profile with high 

density near the pith, decreasing for the first years, and increasing thereafter. 

The location of this inflection point varies between species, and it has been 

speculated that a more shade tolerance behaviour delays the time at which the 

minimum value is reached (Kennedy, 1995). No literature was found concerning 

the variation of wood properties with age in noble fir.  

Some authors have modelled the wood properties of different species using 

density and age together, or as sole predictor variables. Leban and Haines 

(1999) modelled dynamic stiffness in larch as a non-linear function of age, and 

using a linear regression with age and density as sole independent variables. In 

                                         
1 Work by Ellis, S., Faculty of Forestry, University of B.C. 
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the same line, studies on Scots pine (Auty and Achim, 2008; Auty et al., 2016) 

and Douglas fir (Drewett, 2015) described the mechanical properties with 

density, and as a non-linear function of age.  

Whether the mechanical properties are better modelled with density or age, 

may depend on the species, and the profile described in the radial direction, 

particularly for density. This chapter aimed to know how wood properties 

develop over time, adding knowledge about the rotation lengths required to 

achieve certain wood quality. 

Due to the advantages that producing and testing clears offer this is frequently 

a previous step to testing structural pieces. However, the estimation of the 

possible performance of structural pieces from small clears values is 

complicated. In order to convert values from small clear pieces to working 

stresses of timber heuristic reduction factors are typically used (Dinwoodie, 

2000), due to the presence of defects. Values of MOEC are not typically reduced 

to estimate structural timber values (Desch and Dinwoodie, 1996) because knots 

are believed to have only a slight effect on MOE (Kretschmann, 2010), and so it 

is expected to be very similar in both structural timber and clears. Butler (2016) 

compared the wood properties of individual clears and structural pieces of 

loblolly pine. The clears were 25 x 25 x 410 mm and had been obtained from 

near the failure point of structural pieces previously tested to destruction. The 

clears were separated and tested into categories depending on the orientation 

of the growth rings. The direct comparison of results between the mechanical 

properties of both sample size was poor, and comparing the densities was 

moderate. The relationship between mechanical properties improved when 

both specific gravity and radial location were considered.  

Prior to this thesis, a study in G.B. (Ramsay and Macdonald, 2013) used a small 

amount of published data for small clears (Table 4-2), and based on assumptions 

and experience with Sitka spruce in G.B. estimated the possible performance 

of structural prices (Table 4-3). The estimates gave values close to those 

measured for structural timber in Chapter 3 (Table 3-4), although 

underestimated the mean MOEG of western hemlock by 12%, and used smaller 

coefficients of variation to calculate the 5th percentiles than those obtained in 

the current dataset.  
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Table 4-3. Estimates for structural size timber in Ramsay and Macdonald, 2013.  

 
MOE 

(KN/mm2) 
MOR (N/mm2) Density (kg/m3) 

 Mean Mean 
5th 

percentile 
Mean 

5th 

percentile 

Noble fir * 7.7 31.5 21.1 388 324 

Norway spruce  8.08 33 22.1 412 344 

Western red cedar 6.65 32.5 21.8 388 324 

Western hemlock 7.6 38 25.5 447 373 

* Estimates not published. Values calculated from the same model and assumptions.  

 

In summary, the aim of this chapter is to investigate the bending stiffness, 

bending strength and density of clearwood in the four species studied grown in 

G.B. Particular focus is put in the change of properties with tree age, in more 

detail with respect to annual growth rings compared to structural pieces. The 

results help showing some evidence of the variation of the properties with age 

between species, and in particular the models suggested can help stand growth 

simulations, and in the decision-making of the forest management. 

4.3 Material and methods 

4.3.1 Material and methods  

The methods of sampling, processing and testing of small clears were fully 

described in Chapter 2 Material and methods. A summary is provided below. 

• Three even-aged single species planted stands from different latitudes. 

• Nine trees per species and site, except ten western hemlock in the north. 

• One log of roughly 1.6 m per tree, with the bottom part above the log 

processed for structural pieces, at approximately 4.5 metres height. 

• A central slab containing the pith was sawn along the length of each log, 

for each of which a series of clears was processed from the pith to the 

bark.  

A total of 878 small clears were tested: 200 noble fir, 244 Norway spruce, 214 

western red cedar and 220 western hemlock. In some trees more than one clear 

per radial position was obtained, which accounted for 133 additional samples 

out of the 878 pieces. All the clears were considered in the analysis unless 

otherwise stated. 
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Table 4-4. Specimens obtained by species. In brackets extra samples obtained. 

Species South Middle North Total 

Noble fir 49 (+4) 63 (+13) 61 (+10) 173 (+27) 
Norway spruce 57 (+29) 65 (+25) 67 (+1) 189 (+55) 
Western red cedar 48 (+13) 53 (+18) 81 (+1) 182 (+32) 
Western hemlock 64 (+6) 49 (+13) 88 (+0) 201 (+19) 

 

Some clears (17), generally those containing the pith, contained some type of 

defect, primarily small knots of generally less than 5-mm. These defects did 

not coincide with points of failure of the clears and so their data were 

maintained within the analysis. Three samples contained abnormally low 

values, however there was no objective reason to discard them. In one sample 

the age was not recorded. The structural pieces used for comparison of wood 

properties were the same samples described in chapter 3.  

4.3.2 Methods 

The sampling method was designed so that the variation of wood properties 

with age could be studied. The rings number from the pith were identified, and 

recorded for every clear. After bringing the clears to a constant mass (20 °C 

and 65 % relative humidity) the density was measured, and destructively tested 

in three-point bending tests to calculate bending stiffness and bending 

strength. The three-point bending tests followed the methodology established 

in the standard BS 373. 

4.3.3 Statistical Analysis 

The statistical analysis was carried out with the R open-source statistical 

programming environment (R Development Core Team, 2016). 

1. To quantify the variation of wood properties between and within trees. 

For each property, a random effects model was used to estimate the variance 

components of the hierarchical data structure as explained in equation [2-6]: 

𝑦𝑖𝑗𝑘𝑙𝑚 = 𝜇 +  𝑆𝑝𝑖 + 𝑆𝑗(𝑖) + 𝑃𝑘(𝑖𝑗) + 𝑇𝑙(𝑖𝑗𝑘) + 𝜀𝑚(𝑖𝑗𝑘𝑙) [2-6] 

where yijklm is the individual observation (measurement) of the variable 

investigated (MOEC, MORC or density) on an individual sample, μ is the overall 
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mean and the random effects (Sp, S, P and T) are assumed to be independent 

and to follow a normal distribution.  

2. To examine the bending stiffness, bending strength and wood density. 

The distribution of clears and wood properties by age group were investigated. 

This gave a preliminary insight into of the evolution of wood properties with 

age. Sub-samples of similar ages were established to compare the properties 

between species, minimising the influence of older stands. A single one-way 

ANOVA analysis examined the differences between species in the mean values 

of the wood properties. Pearson’s correlation measured the strength of 

relationships between variables. In order to test if the relationship between 

properties was affected by species, a GLM was examined: 

𝑊𝑃1 = 𝛼0 + 𝛼1𝑊𝑃2 + 𝛼2𝑆𝑝𝑒𝑐𝑖𝑒𝑠 + 𝛼3𝑊𝑃2: 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 + 𝜀  [4-1] 

 

where WP1 is the dependent variable, α0 is the regression coefficient of 

intercept, α1 is the regression coefficient of slope, α2 represents the additive 

effect of the species studied and α3 is the interaction term between WP2 and 

species, and ε is residual error not explained by the model. ANOVA was 

conducted on this model in order to test if species was significant, and 

therefore a different relationship between properties (WP1 and WP2) exists per 

species.  

3. To model the radial variation of wood properties.  

Different functions, both linear and non-linear, were investigated to model the 

variation of wood properties with age. The models were compared using the 

Akaike’s information criterion (AIC) and likelihood ratio tests. The best model 

was fitted again using the maximum likelihood method for parameter 

estimation using a mixed-effects modelling approach. The random effects 

always consisted of site, plot and tree. The models took into account the nested 

structure of the data collection in the experiment. The inclusion of random 

slopes was tested with the lme4 package in R (Bates et al., 2014). Parameters 

were considered significant when P<0.05. 
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4. To predict structural quality timber from clearwood. 

MOEC in clears was compared to MOEG in structural-size timber because both 

cover the whole length of the piece and both are subjected to shear stresses. 

Due to the differences in dimensions and to cover a similar age-range of wood, 

it was considered that two clears should be fit per structural piece. The mean 

of the two clears was compared with the corresponding structural piece. To 

account for the practical limitations of this method, such as the kerf created 

by the cut saw, the following scheme was estimated (Figure 4-1): 

 

Figure 4-1. Scheme of clears contained per structural piece. 

 

The clears were obtained at a higher position in the standing height of the tree 

than the structural pieces, and so the radial section covered was smaller. For 

this reason the outermost structural pieces were not represented by clears. 

Some structural pieces which contained the pith did not have an equivalent 

clear and were removed for the analysis. Similarly, structural pieces were 

removed from the analysis where the number of clears obtained per tree was 

uneven. A total of 327 structural pieces were compared with associated pairs 

of clears. The mean values of clears and structural pieces per tree were also 

studied.  



102 

4.4 Results 

4.4.1 Variation in wood properties  

The variation attributable to the different strata in the data indicated that most 

of the overall variation occurred within trees (Table 4-5). Variation attributed 

to differences between species was more important for density. There was not 

much variation between plots within the same site.  

When considering species individually, between 67% and 93% of variation was 

attributed to differences within trees, depending on the species and property 

investigated. The second-largest source of variation was generally between 

trees within a plot. Noble fir was an exception showing a larger variation due 

to site than the other three species. Interestingly, western hemlock showed 

minute variation in density due to site. Plot was, in general, the stratum causing 

the lowest variation, particularly western red cedar showed barely any 

difference due to plot for any of the wood properties investigated.  

Table 4-5. Percentage of total variation in MOE, MOR and density values attributable to 
each stratum in the experiment.  

 Species Site Plot Tree 
Within 

tree 

MOE      

Overall 17.0% 6.8% 0.3% 3.0% 72.8% 

  Noble fir  14.1% <0.01% <0.01% 85.9% 

  Norway spruce  4.0% 3.9% 11.4% 80.7% 

  Western red cedar  7.3% <0.01% 8.3% 84.4% 

  Western hemlock    4.9% <0.01% 1.7% 93.4% 

MOR      

Overall 27.6% 6.3% 1.2% 12.3% 52.6% 

  Noble fir  20.9% 3.3% 3.9% 71.9% 

  Norway spruce  5.6% 3.1% 15.9% 75.5% 

  Western red cedar  10.6% <0.01% 22.6% 66.7% 

  Western hemlock    3.4% 2.8% 21.1% 72.6% 

Density      

Overall 39.9% 4.1% 2.5% 9.5% 44.2% 

  Noble fir  21.3% 2.7% 0.0% 76.0% 

  Norway spruce  5.6% 3.1% 15.9% 75.5% 

  Western red cedar  3.5% <0.01% 10.4% 86.1% 

  Western hemlock    <0.01% 10.4% 14.8% 74.7% 
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These results highlighted the importance of the radial variation in the modelling 

of wood properties. The next section moved on to discuss the relationship 

between wood properties and the variation with age.  

4.4.2 Performance of wood properties.  

4.4.2.1 Comparison of wood properties.  

Firstly, the distribution of data across age classes was explored using the annual 

ring of the clear from the pith (Figure 4-2). The interval of four years was 

chosen based on the common rule of dividing the range of the variable studied, 

in this case 60 years, by the square root of 200 pieces, which was the smallest 

number of pieces obtained for one species.  

  

Figure 4-2. Distribution of cambial age by species. Numbers indicate the upper limit of the 
class. 

 

Most of the data corresponded with clears younger than 24 years, with few of 

them over 40 years. The variation and range of wood properties with ring 

number can be seen in the following boxplots, which indicate the number of 

samples per group (n). 
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Figure 4-3. Range of MOE, MOR and Density in clears for categorical age and species. 
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Both MOEC and MORC showed a general trend of increasing with age. Density 

also generally increased with age although there was a drop at the 11-20 years 

group. Only Norway spruce in the middle site, and western red cedar and 

western hemlock in the north produced clears older than 40.  

To make fair comparisons of wood properties between species, data were 

discerned into two groups (younger and older than 40). The mean age of the 

group should be understood as the mean ring number of the clears. Additional 

clears were not included in Table 4-6 to avoid giving a major influence to those 

radial positions. 

Table 4-6. Summary of wood properties by species up to and from (shaded) 40 years old. 

Species n 

Clears 

mean 

age 

MOE 

mean 
MOE sd 

MOE 

median 

MOE 

min 

MOE 

max 

Noble fir  173 13 5.9 1.9 5.9 2.2 10.6 

Norway spruce  180 16 7.3 1.6 7.2 3.4 11.5 

Western red cedar 161 16 6.1 1.4 6.1 3.4 10.4 

Western hemlock  187 17 7.4 1.7 7.4 3.7 11.2 

Norway spruce  9 44 10.1 1.8 10.6 7.0 12.2 

Western red cedar 21 51 6.4 1.1 6.5 4.5 8.4 

Western hemlock  14 48 9.3 1.9 9.9 4.9 11.9 

Species n 

Clears 

mean 

age 

MOR 

mean 
MOR sd 

MOR 

median 

MOR 

min 

MOR 

max 

Noble fir  173 13 53 10 52 30 85 

Norway spruce  180 16 62 13 60 32 102 

Western red cedar 161 16 56 10 55 25 89 

Western hemlock  187 17 69 12 68 32 116 

Norway spruce  9 44 85 13 84 66 101 

Western red cedar 21 51 56 7 58 43 69 

Western hemlock  14 48 83 12 83 62 109 

Species n 

Clears  

mean 

age 

Density 

mean 

Density 

sd 

Density 

median 

Density 

min 

Density 

max 

Noble fir  173 13 382 44 379 285 495 

Norway spruce  180 16 405 42 399 321 540 

Western red cedar 161 16 363 44 353 297 494 

Western hemlock  187 17 450 47 442 361 656 

Norway spruce  9 44 479 60 495 388 550 

Western red cedar 21 51 349 24 342 305 417 

Western hemlock  14 48 481 43 486 396 551 

n: number of samples; noble fir did not contain samples older than 40 years 
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Norway spruce and western hemlock gathered higher mean values of the 

mechanical and physical properties in the material older than 40 in comparison 

to younger pieces. Western red cedar showed a slight improvement of the 

mechanical properties in clears older than 40, but density decreased.  

4.4.2.2 Correlation between wood properties 

The strength of the relationship between two variables was measured with 

Pearson’s correlation. The clears were restricted to a maximum of 40 years old 

so that the four species had the same age-span (the oldest sample of noble fir 

was 39). Table 4-7 reports the correlations between the wood properties 

investigated (all the pieces were used). 

Table 4-7. Pearson’s correlation (r) between variables. 

 Overall 
Noble 

fir 

Norway 

spruce 

Western 

red cedar 

Western 

hemlock 

Age - MOEC 0.64*** 0.87*** 0.75*** 0.49*** 0.72*** 

Age - MORC 0.50*** 0.74*** 0.68*** 0.29*** 0.52*** 

Age - Den 0.11** 0.27*** 0.44*** -0.22** 0.08 (ns) 

Den - MOEC 0.40*** 0.20** 0.71*** -0.07 (ns) 0.17* 

Den - MORC 0.71*** 0.57*** 0.81*** 0.52*** 0.53*** 

MOEC- MORC 0.82*** 0.84*** 0.92*** 0.67*** 0.76*** 

P value:  ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ns’ not significant. 

 

Correlation of age with mechanical properties was very strong or strong, except 

in the case of western red cedar. The correlation of age with density was only 

moderate in the best case, negative for western red cedar and not significant 

for western hemlock. Density related better with MORC than with MOEC, which 

was not significant for western red cedar, and indicated a low significance for 

western hemlock. The strongest correlation of density was with MORC in Norway 

spruce. ANOVA of a linear model (equation [4-1]) showed that both the 

intercept and slope of the relationship between MORC and MOEC varied with 

species (F3 873 = 27.7, P<0.001 and F3 870 = 14.5, P<0.001) as Figure 4-3 illustrates. 

A general regression line for all the pieces resulted in R2 = 0.68. 
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Figure 4-4. Relationship between MOEC and MORC with the linear regression line for the 
four species together. 

 

Figure 4-3 showed the radial group between 10 and 19 years old was an 

inflection point in the trend of density. In order to gain a better indication of 

how density relates to MOEC and MORC, Figure 4-5 plotted the data in two 

groups. The graphs showed that samples younger than ten (corewood) were 

much more widely spread than samples older than ten (outerwood), especially 

for the MOEC -Density relationship. 

 

Figure 4-5. Relationship between Density with MOEc (left) and MORc (right) with the linear 
regression line for the four species together. Corewood <=10 years old. 

MOEC = 0.013*Density + 1.57 
R2 = 0.16 

MORC = 0.166*Density -5.91 
R2 = 0.50 

------ Overall regression line; R2 = 0.68 
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ANOVA of a linear model (equation [4-1]) indicated that the relationship of 

density with MOEC and MORC was different between species, affecting both the 

intercept and slope (F3 873 = 21.3, P <0.001 and F3 870 = 30.2, P=<0.001 for MOEC, 

and F3 873 = 18.2, P <0.001 and F3 870 = 25.1, P <0.001 for MORC).  

4.4.3 Radial variation of wood properties. Models 

4.4.3.1 MOE model 

As indicated in Table 4-5, most of the total variation in MOEC was attributed to 

variation within trees, that is, influenced by age. The strong correlation of the 

mechanical properties with age (Table 4-7) made this an adequate predictor 

variable for building models. Figure 4-6 plots the values of MOEC with age.  

 

Figure 4-6. LOESS trendlines for the relationship of MOE with age by species, with 
indication of site (left), and splitting data up to and from 40 years old (right). 

 

The MOEC increased with age, more accentuated during the first 10-15 years. 

Western red cedar levelled out between 25 and 35 years old, with material 

apparently losing stiffness afterwards. Noble fir did not have specimens older 

than 40. For the other three species, there were only a few pieces older than 

40, and came from only one site, so the material studied was restricted in 

further models to a range of age representative of the three sites and for the 

four species. In terms of descriptive statistics Table 4-8 presents a summary for 

MOEC by site (extra pieces are not included).  
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Table 4-8. Summary of MOEC by species and sites.  

MOEC 

(kN/mm2) 
Noble fir Norway spruce 

Western red 

cedar 
Western hemlock 

Site S M N S M N S M N S M N 

Stand age 30 58 38 44 76 44 35 61 78 44 49 78 

Pieces 49 63 61 57 65 67 48 53 81 64 49 88 

Mean 5.2 6.7 5.7 7.2 8.0 7.1 6.0 6.7 5.9 7.1 7.3 8.0 

Sd 1.5 2.1 1.6 1.4 2.0 1.5 1.3 1.5 1.2 1.5 1.6 1.9 

CV (%) 29 31 29 20 25 22 22 22 21 21 22 24 

Median 5.1 7 5.8 7.3 7.8 7.0 6.1 6.7 6.0 7.3 7.3 8.0 

Sites: S, south; M, middle; N, north. 
 

Results show that MOEC varied from species to species but also with stand age. 

Stands of similar age can have similar mean values for different species (Norway 

spruce in south and north sites, and western hemlock in south site were 44 y/o), 

but besides the general increment of MOEC with age younger stands can produce 

stiffer material than older ones (e.g. Norway spruce in the south and north 

compared to noble fir in the middle site). 

After observing the pattern of MOEC with age in Figure 4-6, various exponential 

functions were screened and analysed. The following function gave the best fit: 

𝑴𝑶𝑬𝒊𝒋𝒌𝒍𝒎 = 𝛼1,𝑖 × −𝑒(−𝛼2,𝑖 × 𝐴𝑔𝑒𝑖𝑗𝑘𝑙𝑚) + 𝛼3,𝑖 +  𝐴3,𝑖𝑗 +  𝐴3,𝑖𝑗𝑘 + 𝜀𝑖𝑗𝑘𝑙𝑚 [4-2]  

 

where MOEijklm and Ageijklm were the bending stiffness and mean ring age 

respectively of the mth clear in the lth tree in the kth plot at the jth site of the 

ith species. The fixed-effects parameters to be estimated were α2 for the rate 

of change; α3 for the maximum value; and α3- α1 for the starting value for each 

ith species. Parameter α3 had both fixed and random components; hence A3,ij, 

A3,ijk and A3,ijkl represented the random effects affecting α3 at site, plot and 

tree levels, respectively. The random effects were assumed to be independent 

and normally distributed with mean zero and variance σ2. The residual error 

was ε. 

The model without the inclusion of species explained 58% of the variation in 

MOEC. The model including species, site, and plot as random effects (model 1) 

explained 83% of the variation. A mixed model including species as fixed effects 

(model 2) and sites, plots and trees as random effects affecting the parameter 

α3 (maximum value), which was closely related to α1, explained 85% of the 

variation in MOEC, reducing the information-based criteria (Table 4-9).  
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Table 4-9. Degrees of freedom, AIC, Log-likelihood and error statistics 

 R2 df AIC logLik E |E| E% 

Model 1 0.83 8 2131 -1057 2.2E-10 0.6 9.0 

Model 2 0.85 17 2033 -997 6.6E-7 0.5 8.3 

 

Although α2 (rate of change) could also be thought to be influenced by the 

random effects, the model did not converge. The random effects affecting α3 

per species were also tested, but the model failed to converge due to increasing 

model complexity. Table 4-10 reported the parameters resulting from the 

selected model. 

Table 4-10. Values for MOE prediction using [4-2]. 

 Fixed parameters 

 α1 α2 α3 Var. Residual 

Noble fir  6.56 0.07 9.15 0.63 

Norway spruce  5.70 0.04 10.82 0.83 

Western red cedar  4.20 0.08 7.74 0.59 

Western hemlock  5.39 0.07 9.45 0.77 

 

For a 40 years rotation length Norway spruce reached the highest MOEC out of 

the four species studied (α3 =10.8 kN/mm2) with the highest starting value (α3 

– α1= 5.12 kN/mm2) but the lowest increase rate of MOEC (α2 = 0.04 kN/mm2). 

Western hemlock performed similarly well, with a lower starting value (4.06 

kN/mm2), but a higher rate of increase which however was not enough to 

achieve the maximum values of Norway spruce. Noble fir performed slightly 

worse than western hemlock, with the lowest starting value (2.6 kN/mm2) but 

still achieving more than 9 kN/mm2 at the maximum. Finally, MOEC in western 

red cedar only reached up a maximum of 7.7 kN/mm2 although it showed the 

highest rate of change. Figure 4-7 represents the prediction models of MOEC. 
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Figure 4-7. MOE predicted using the models fitted 

 

Visual inspection of the residual plots did not reveal any pattern evidencing 

heteroscedasticity or lack of independence (see appendices). 

4.4.3.2 MOR model 

Figure 4-8 plotted the evolution of MORC with age showing two age groups. 

 

Figure 4-8. Overall LOESS trendline for the relationship of MOR with age by species. 
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Overall, MORC increased with age, although western red cedar had a more 

subtle increase in comparison to the other three species. The material for the 

analysis was restricted to a maximum age of 40 years old.  

Table 4-11. Summary of MORC by species and sites (extra pieces not included) 

MOR 

(N/mm2) 
Noble fir Norway spruce 

Western red 

cedar 
Western hemlock 

Site S M N S M N S M N S M N 

Stand age 30 58 38 44 76 44 35 61 78 44 49 78 

Pieces 49 63 61 57 65 67 48 53 81 64 49 88 

Mean 48 58 52 59 68 61 53 60 54 68 67 74 

Sd 8 10 8 11 16 12 8 10 9 9 9 15 

CV (%) 17 17 15 19 24 20 16 16 16 13 14 20 

Median 47 58 52 60 65 60 52 59 54 68 68 72 

Sites: S, south; M, middle; N, north. 

 

Table 4-11 presents a summary of MORC. Stands of similar age performed 

similarly well within species (e.g. Norway spruce in south and north sites), but 

variation of approximately 15% was found between species (notice western 

hemlock in south site). Although exponential models were investigated in an 

attempt to model the slight curvature observed within the first years of growth, 

a linear model between MORC and cambial age gave the best fit.  

The effect of species was tested first. The inclusion of species and its 

interaction with age was significant (P<0.001), with R2 = 0.49 (model 1). When 

site, plot and tree were included as random effects (model 2) the model 

explained 71% of the total variance. Model 3 (equation [4-3]) was a random 

slope model that investigated the effect of ring number on sites, plots and trees 

using the lmer library (Bates et al., 2014). The effect of age varied with the 

random effects, and the model explained 76% of the total variance.  

𝑴𝑶𝑹𝒊𝒋𝒌𝒍𝒎 = 𝜇 + 𝛼0,𝑖 × 𝐴𝑔𝑒 + 𝑆𝑗(𝑖) + 𝑃𝑘(𝑖𝑗) + 𝑇𝑙(𝑖𝑗𝑘) + ( 𝐴𝐴𝑔𝑒,𝑖𝑗 +  𝐴𝐴𝑔𝑒,𝑖𝑗𝑘

+ 𝐴𝐴𝑔𝑒,𝑖𝑗𝑘𝑙) + 𝜀𝑖𝑗𝑘𝑙𝑚 

[4-3]  

where MORijklm was the prediction of MORC on the mth clear, μ was the 

intercept, α0,i was the slope for age of the ith species, and Sj(i), Pk(ij) and Tl(ijk) 

were the random effects of the jth site, kth plot and the lth tree respectively. 

Parameters AAge,ij, AAge,ijk and AAge,ijkl represented the random effects affecting 

Age at the site, tree and plot levels, in the ith species respectively. ε was the 
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residual error. The random effects and residual errors were assumed to be 

independent and normally distributed.  

Table 4-12. Degrees of freedom and measures of the fit of different models of MOR. 

 R2 df AIC logLik p value χ2 E |E| E% 

Model 2 0.71 12 5839 -2908  1.5E-15 5.2 9.0 

Model 3 0.76 18 5812 -2888 <0.001 -4.9E-14 12.2 8.5 

 

In summary, the best model to predict MORC used age and species with 

interaction terms as fixed effects. As random effects, there were random 

intercepts for sites, plots and trees, as well as random slopes for the effect of 

age. The results in Table 4-13 shows the different regression coefficients, and 

Figure 4-9 plots the prediction for the four species within the first 40 years. 

Table 4-13. Fixed parameters for MOR prediction using [4-3]. 

 

Noble 

fir 

Norway 

spruce 

Western 

red cedar 

Western 

hemlock 

Intercept 44.6 50.0 50.1 61.2 

Slope 0.67 0.76 0.34 0.48 

 

The model indicated that western hemlock had the highest intercept term. 

Norway spruce and western red cedar had an almost identical intercept, but 

the slope was double for Norway spruce. 

  

Figure 4-9. MOR predicted using the models fitted. 
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Visual inspection of residual plots did not reveal any obvious deviations from 

homoscedasticity or normality (see appendices). 

4.4.3.3 Density model 

As indicated in Table 4-7, the correlation of density with age was generally 

weak for the species investigated, slightly better for Norway spruce. Density 

followed two different trends depending on the range of annual rings 

considered (Figure 4-10).  

 

Figure 4-10. LOESS trendline for the relationship of density with age by species. 

 

Density decreased from the pith, reaching a minimum around the tenth ring, 

more marked in noble fir. After this point, density increased linearly. Likewise 

with MOEC and MORC, density in western red cedar did not notably increase 

after certain age. In this case, the LOESS line remained nearly flat after 

achieving the minimum value, although the pieces from the south, and the 

middle site showed a slight increment. The LOESS line of western hemlock was 

smoother than that of Norway spruce and noble fir, the latter having the 

sharpest change. Table 4-14 summarises the density data per site. 
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Table 4-14. Summary of density by species and sites (extra pieces not included). 

Density 

(kg/cm3) 
Noble fir Norway spruce 

Western red 

cedar 
Western hemlock 

Site S M N S M N S M N S M N 

Stand age 30 58 38 44 76 44 35 61 78 44 49 78 

Pieces 49 63 61 57 65 67 48 53 81 64 49 88 

Mean 366 407 370 403 427 395 351 373 361 445 448 459 

Sd 47 36 40 33 52 42 43 42 41 44 48 49 

CV (%) 13 9 11 8 12 11 12 11 11 10 11 11 

Median 363 404 363 398 415 395 337 363 351 436 444 455 

Sites: S, south; M, middle; N, north. 

 

Table 4-14 generally shows higher values for older forest plantations except for 

the already mentioned western red cedar. It can be seen that within species, 

stands of similar age performed similarly well (e.g. Norway spruce in south and 

north sites), but there was also variation between species for the same age 

(notice western hemlock in south site) of approximately 13%.  

The modelling of density restricted material to samples up to 40 years old, and 

addressed the two trends separately named as first and second section. The 

inflection point was located at eight years from the pith for noble fir, and at 

eleven years for the other three species. Pearson’s correlation of density with 

age improved when sections were considered separately (Table 4-15) compared 

to Table 4-7. 

Table 4-15. Pearson’s correlation (r) between age and density. 

 Noble fir 
Norway 

spruce 

Western red 

cedar 

Western 

hemlock 

First section -0.74 -0.33 -0.77 -0.63 

Second section 0.73 0.53 0.31 0.29 

 

Due to the differences between the cambial ages of the points of inflection, 

the four species were modelled separately. A linear mixed model with random 

intercept for sites, plots and trees, as well as a random slope for the effect of 

age was investigated per species and section. The inclusion of a random slope 

for age on density did not have the same effect for all the sections and species. 

The following linear model investigated the evolution of density with age.  

𝑫𝒆𝒏𝒔𝒊𝒕𝒚𝒊𝒋𝒌𝒍𝒎 = 𝜇 + 𝛼0,𝑖 × 𝐴𝑔𝑒 + 𝑆𝑗(𝑖) + 𝑃𝑘(𝑖𝑗) + 𝑇𝑙(𝑖𝑗𝑘) + ( 𝐴𝐴𝑔𝑒,𝑖𝑗 +  𝐴𝐴𝑔𝑒,𝑖𝑗𝑘

+ 𝐴𝐴𝑔𝑒,𝑖𝑗𝑘𝑙) + 𝜀𝑖𝑗𝑘𝑙𝑚 

[4-4]  
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where Densityijklm and Ageijklm were the density and ring age respectively of the 

mth clear, μ was the intercept, and the parameter α0 was the slope for age of 

the ith species in each section. The random effects of Age at site, plot and tree 

levels (AAge,ij, AAge,ijk and AAge,ijkl) were included when they were statistically 

significant. The random effects and residual errors were assumed to be 

independent and normally distributed. Table 4-16 shows the P-value for each 

case and the coefficient of determination (R2).  

Table 4-16. P values (χ2) of the effect of age on random effects and the correspondent 

coefficient of determination (R2) of the fixed and mixed models.  

 First section Second section 

 
Fixed 

effects 

Mixed effects 
Fixed 

effects 

Mixed effects 

 
Intercept 

model 

Slope 

model 

Intercept 

model 

Slope 

model 

Noble fir 
 P value = ns  P value <0.01 

63% 81%  51% 78% 90% 

Norway 

spruce  

 P value <0.02  P value = ns 

11% 53% 72% 28% 78% 11% 

Western 

red cedar  

 P value = ns  P value = <0.05 

60% 75%  9% 82% 89% 

Western 

hemlock  

 P value = ns  P value = <0.01 

40% 64%  8% 67% 81% 

ns: effect not significant of age on random effects. 

 

The use of age as the sole predictor of density did not always explain much of 

the variation. Overall, age explained a higher percentage of the variation in 

density in noble fir than in the rest of species, where data were more widely 

spread (Figure 4-10), with the exception of the first section of western red 

cedar. Particularly low resulted the relationship in Norway spruce, especially 

considering it showed the highest correlation (Table 4-7). It is also striking the 

weak value of R2 in the second section of western red cedar and western 

hemlock. The use of random effects of age increased the coefficient of 

determination importantly. Table 4-17 shows the fixed parameters of the best 

models (the random parameters and residual error are given in the appendices).   
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Table 4-17. Fixed parameters for density models (1Mixed model with random effects on 
the intercept; 2Mixed model with random effects on the slope). 

 Fixed parameters 

Noble fir  Intercept (Std error) Slope (Std error) 

Noble fir    

First section1 465 (8.6) -18 (1.3) 

Second section2 315 (16.9) 3.9 (0.8) 

Norway spruce    

First section2 418 (7.9) -3.9 (1.8) 

Second section1 349 (9.7) 2.9 (0.3) 

Western red cedar    

First section1 458 (9.1) -13.7 (1.1) 

Second section2 344 (15.6) 0.2 (0.9) 

Western hemlock    

First section1 525 (11.7) -11.5 (1.3) 

Second section2 427 (16.4) 0.8 (0.7) 

 

Figure 4-11 shows the prediction models of density.  

  

Figure 4-11. Density predicted using the models fitted. 

 

In the second section, noble fir and Norway spruce had a higher slope than 

western red cedar and western hemlock. As a result, clears older than 30 years 

old achieved lower density in western hemlock than in noble fir or Norway 

spruce, even though Table 4-6 showed that western hemlock had the highest 

mean values for density overall. 
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4.4.4 Prediction of structural quality timber from clearwood. 

This section focusses on the differences between the wood properties of clears 

and structural-size pieces. It must be pointed out that the properties in clears 

were not adjusted to the standard 12%, whereas the data used for structural 

timber were adjusted. Nevertheless, the difference between the mean MOEC 

with and without moisture content adjustment was 0.001 kN/mm2 since the 

small clear specimens were well conditioned. 

Density was almost identical in timber (Table 3-4) and clears (Table 4-14). This 

section particularly compares the MOE between both material size, because 

whilst there were obvious differences in MOR due to the presence of defects, 

differences in MOE were not as straightforward.  

Previous sections of this chapter examined the trend of wood properties with 

age. Interestingly, for bending stiffness a similar trend was observed in 

structural pieces, with values consistently around 1.25 KN/mm2 higher (Figure 

4-12). 

 

Figure 4-12. Variation of MOE with age and LOESS trendline. 

 

Considering the difference in dimensions, the mean values of every pair of 

clears was compared to the equivalent structural piece (Figure 4-1). A total of 

327 structural pieces were compared. ANOVA of a linear model showed that the 

relationship of MOE in clears and in structural pieces depends on species, 
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affecting both the intercept and slope (F3 322 = 11.4, P= <0.001 and F3 319 = 2.9, 

P= <0.05) as Figure 4-13 illustrates. 

 

Figure 4-13. Comparison of MOE measured in structural pieces and averaging clears within 
structural pieces.  

 

The overall relationship of MOE in structural pieces with the mean MOE of clears 

within the correspondent structural piece was good (R2=0.63). The MOE of 

structural pieces were on average 18% higher than the mean calculated for the 

clears. Differences were bigger in noble fir (30%), with similar values for Norway 

spruce, western red cedar and western hemlock (15%, 12% and 14%).  

 

Figure 4-14. Relationship of mechanical properties of clears and structural pieces per tree. 

------ Overall regression line; R2 = 0.63 

R2 = 0.35 R2 = 0.68 
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The relationship between MOE in structural pieces and in clears improved 

slightly at a tree level (R2=0.68, Figure 4-14 left), but still differences were 

bigger in noble fir similarly to the comparison in individual pieces. ANOVA of a 

linear model supported that the relationship of MOE in clears and in structural 

pieces depends on species, affecting both the intercept and slope (F3 104 = 7.4, 

P<0.001 and F3 101 = 2.2, P<0.1). Table 4-18 shows that except for noble fir, the 

slope of the relationship was around 1 to 1. 

Table 4-18. Regression coefficients between the mean MOE of clears and structural pieces 
per tree. 

 Noble fir 
Norway 

spruce 

Western red 

cedar 

Western 

hemlock 

Intercept -1.55 0.92 0.82 0.52 

Slope 1.49 1.02 0.99 1.03 

 

The comparison of MOR in clears and structural pieces at tree level (Figure 4-14, 

right) showed a poor relationship (R2=0.35), likely due to the difference in the 

presence/absence of knots in timber/clears. 

In order to make sets of clears more comparable to the cutting pattern of 

structural pieces, a bark-to-bark cutting pattern of clears was simulated. Clears 

not containing the pith were given double weight (i.e. they were counted twice 

in the average). Table 4-19 summarises the values of the simulation.  

Table 4-19. Clear values for a simulated radial variation bark-to-bark compared to 
structural timber. 

   MOE 

(kN/mm2) 

MOR 

(N/mm2) 

Density 

(kg/m3) 

Clears n Age Mean CoV Mean CoV Mean CoV 

Noble fir  319 13 6.1 0.29 54 0.18 378 0.11 

Norway spruce  351 17 7.6 0.22 64 0.21 408 0.11 

Western red cedar  182 20 6.3 0.21 56 0.17 356 0.10 

Western hemlock  201 19 7.7 0.22 71 0.17 449 0.10 

Structural timber 

Noble fir  127 11 7.6 0.26 31 0.42 379 0.10 

Norway spruce  143 17 8.5 0.18 32 0.29 406 0.10 

Western red cedar  138 19 7.0 0.20 31 0.26 363 0.09 

Western hemlock  150 16 8.5 0.22 35 0.31 447 0.09 

n: number of pieces estimating each clear on both sides of the pith; pith sample was not 
obtained in two western red cedar and two western hemlock; Age refers to the mean age of 
the clears; Density at 12% moisture content. MOE global in structural pieces. 
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MOEC was lower than MOEG, 24% for noble fir, 19% for Norway spruce and 10% 

for the other species. MOR was considerably lower in structural pieces than in 

clears, with an average reduction of 53%. Mean values of density estimated for 

both clears and structural pieces were very similar.  

4.5 Discussion 

This chapter used clears pieces to investigate the properties of bending 

stiffness, bending strength and density in the four species studied. The first 

section stressed the importance influence of radial variation within a tree. The 

chapter continued to describe the wood properties, and the relationships 

between them and with age. Both results highlighted the importance of age on 

wood properties, and so it was used to model the radial variation. Finally, the 

differences between the wood properties of clears and structural-size pieces 

were investigated.  

Chapter 3 highlighted that the largest source of variation in MOE and MOR of 

timber was attributed to within-stands differences. This chapter used clears for 

a higher resolution with respect to annual growth rings. Results concluded that 

even when dealing with different species the variation within trees was larger 

than that due to species. This is important as variation within trees will 

influence the proportion of the corewood compared to the outerwood, which 

will influence the determination of the rotation lengths for timber quality 

(Kliger et al., 1998; Moore et al., 2012; Moya et al., 2013). This chapter 

quantified the variation in MOEC and MORC within a tree as 59.3% and 51.1% 

respectively, higher than due to species (24.7% and 30.1% respectively). Species 

was a more important variance component for density (41.5%). Within species, 

the three properties showed a variation within trees between 67% and 93%. It 

is possible that more sites for each species, with different growing conditions 

would increase the variability due to site. These results were in line with 

variation quantified in structural-size timber in Chapter 3, although variation 

of MOE and density within trees was much higher for clears than timber. 

These variations led to the examination of the performance of wood properties 

with radial positions, grouped in age classes. Results showed a general 

improvement in wood quality from pith outwards.  
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For the dataset collected Norway spruce and western hemlock performed 

better than noble fir and western red cedar for the same age-span. A direct 

comparison with previous publications for British grown material was not 

possible, as the only data published for the four species studied (Lavers, 2002) 

did not provide the age of the pieces tested. The mechanical properties 

reported by Lavers were higher, and density was lower than that found in the 

current study, both at 12% m.c. This may be due to different methods of sample 

selection. Lavers selected samples at random, in such a manner that the 

probability of obtaining a stick at any distance from the centre of a cross-

section of a bolt was proportional to the area of timber at that distance. As a 

result, it was more likely that pieces from the outerwood (with higher 

mechanical properties) were selected. The method of sampling for this chapter 

focused on obtaining information about the radial variation of properties so 

samples nearer the pith had the same weight in the mean, even though they 

represent a smaller percentage of the cross-sectional area than samples nearer 

to the bark. 

In order to understand better the radial variation, the correlation between 

wood properties, and particularly with age was investigated. The correlation 

between MOEC and MORC was high (r=0.82), suggesting that these two properties 

are somewhat bound together. Density related better with MORC than MOEC, in 

line with other studies on clears (Auty et al., 2016; Cown et al., 1999). The 

correlations varied by species, and between density and MOEC it was non-

significant for western red cedar. On black spruce, Alteyrac et al (2007a) also 

found that MOE and density did not correlate significantly. A study of Sitka 

spruce (McLean et al., 2016) observed a strong relationship between density 

and MOEC in the outer clears (R2=0.77), but did not find a significant relationship 

for clears within sourced from corewood, resulting the overall relationship weak 

(R2=0.16).  

This thesis observed that the correlation of density with MOE was more spread 

in the corewood than in the outerwood, but did not investigate the correlation 

further. Age correlated mostly well with the mechanical properties, but weakly 

with density. The three wood properties were modelled in function of age, 

because most of the variation of wood properties occurred within trees, and to 
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understand how the three wood properties are influenced by the rotation 

lengths. 

The radial variation of MOEC with age showed a non-linear increase in the four 

species, and it was described as an exponential function of age. The function is 

biologically meaningful, and includes approximations to the rate of change, 

maximum value and, indirectly, the starting value of the material near the pith 

as parameters. The exponential model was able to explain 58% of the variation 

using age as single predictor variable, increasing to 85% of the variation in MOEC 

by using a mixed effects model with site, plot and tree as random effects. The 

results indicated that noble fir had the lowest value for MOEC near the pith (2.6 

kN/mm2). Norway spruce the highest value for MOEC near the pith (5.1 

kN/mm2), the rate of change was roughly half (0.04 kN/mm2) than the other 

three species, and reached the highest value (10.8 kN/mm2) out of the four 

species at the age of 40. The starting value for western red cedar was about 1 

kN/mm2 higher than noble fir, but it attained the lowest asymptotic maximum 

value. Finally, western hemlock produced material which was only less stiff 

than Norway spruce.  

The same function had explained 56% of the variation on Douglas fir (Drewett, 

2015), and 45% and 70% on Scots pine for a fixed and mixed model respectively 

(Auty et al., 2016). Another study on Scots pine reported values of R2= 0.58 

using only age as predictor variable in a non-linear model (Auty and Achim, 

2008). In the same line, Leban and Haines (1999) found that modelling dynamic 

stiffness in larch as a non-linear function of age produced better predictions (R2 

= 0.53) than using a linear regression with age or density as sole independent 

variable (R2 = 0.39 and R2 = 0.47). The authors used an exponential model to 

overcome the uncertainties of a linear model when extrapolating beyond the 

data collected by fixing a maximum attainable limit which would otherwise 

extend up to unrealistic values.  

Timber in G.B. is typically graded to C16 strength class, for which MOE must 

achieve an average of 8 kN/mm2. According to the models of MOEC presented 

in Table 4-10 and Table 4-18 combined, noble fir would reach 8 kN/mm2 after 

12 years of growth, Norway spruce at 10, western red cedar at 28 and western 
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hemlock at 13. A few more years would be required to achieve mean values of 

8 kN/mm2. 

MORC showed a linear pattern with age for the range of years studied. A model 

using age and its interaction with species explained 49% of the variation in 

MORC. A random slope model where site, plot and tree had different intercepts, 

as well as different slopes for the effect of age explained 76% of the variation. 

On Douglas fir (Drewett, 2015), a linear regression with age as predictor 

variable explained 44% of the variation in MORC, and a non-linear function of 

age explained 47% of the variation in MORC. On Scots pine, a non-linear model 

explained 46% of the variation in MORC using fixed effects, and 83% including 

random effects (Auty et al., 2016), although another study explained 54 of the 

variation in MORC using fixed effects % (Auty and Achim, 2008). The results of 

the selected model indicated a higher MOR performance of western hemlock 

than in the rest of species for the first 40 years, but the higher slope of Norway 

spruce would exceed western hemlock afterwards.  

Density decreased from pith to minimum values at ring 11th, earlier in noble fir, 

followed by a gradual increase in the following rings. This contrasting trend 

explained the overall weak relationship of density with age, and it was 

appropriate to subsequently analyse the two sections of the radial profile 

separately. The random effects improved importantly the prediction of the 

models. The mixed effects models selected explained between 64% and 81% of 

the variation in the decreasing section, and between 67% and 90% in the 

increasing section. These models explained a higher proportion of the density 

variation than the exponential mixed models built for other species with similar 

radial trend, such as Sitka spruce (Gardiner et al., 2011) based on ring number 

and ring width (R2 = 0.55), or the model of Douglas fir (Drewett, 2015) using age 

and rings per sample in a fixed model (R2 = 0.55). The model suggested in this 

study has the limitation of lacking an upper limit, although in the case of 

western red cedar and western hemlock it may not be a problem because they 

showed a very flat trend after reaching the lower values. 

The trends of the wood properties can be compared to the behaviour of the 

species in their native lands, although very little literature was found on the 

radial variation of the wood properties of the four species, none on noble fir. 
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The pattern observed in density of Norway spruce was in line with research on 

the species in Finland (Saranpää, 2003) and Sitka spruce both in its native land 

(Kennedy, 1995) and in G.B. (Gardiner et al., 2011).  

The only study found on the radial variation of MOEC and MORC for western 

hemlock (Kennedy, 1995)2, described a similar trend in MOEC to the current 

thesis. The values at 8% m.c. were between 7.2 kN/mm2 near the pith and 14 

kN/mm2 at 40 years, higher than in the current study, tested at 12% m.c. The 

same study reported an increment of 38% in MORC over the first 40 years, 

slightly higher than the 32% resulting in the current study. Middleton and Munro 

(2001) reported for trees 90 years old from three sites using a similar cutting 

pattern than in the present study values of MOEC between 10.3 and 12.8 

kN/mm2, and MORC of 71 and 94 / mm2.  

A previous study on five sites (Jozsa et al., 1998), reported a mean relative 

density of 0.426 with a general declining occurring from the pith to minimum 

values at ring 12th, followed by a rapid increase in ring density between years 

15 to 35. The same author had reported in a different study (Jozsa and Kellogg, 

1986) a relatively high density for the first years of growth, with low density 

from age 10 to 20 and a rapid increase from 20 to about age 40. This was in line 

with work from (Kennedy, 1995) who indicated as general trend for western 

hemlock a near constant minimum values persisting for several years with a 

recovery thereafter. Even though the density model presented here did not 

show that trend, the presence of older clears from the north site suggested a 

pattern similar to Canada.  

More important resulted the overall drop in the performance of western red 

cedar in clears older than 40 years, mostly coming from the north site. The 

reasons for this are unknown. Whether the declining was due to a site effect, 

or inherent to the species could not be determined in the present study. A study 

on ten rapidly grown second-growth western red cedar in Canada (Jozsa and 

Kellogg, 1986) found a relative high density near the pith, and a decrease for 

the first 15-20 years, more sharply in the first ten years, followed by a flat 

trend thereafter. In non-native lands, a study on 15 western red cedar growing 

                                         
2 Work by Ellis, S., Faculty of Forestry , University of B.C. 
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in France (Polge, 1964) found the highest density occurring adjacent to the pith 

decreasing outwards for about 20 years, and thereafter remaining constant. In 

New Zealand Cown and Bigwood (1978) compared radial density trends in 

material from four sites, and found a different pattern in each site (Figure 

4-15). 

 

Figure 4-15. Comparison of radial density trends in western red cedar at four locations in 
New Zealand (Cown and Bigwood, 1978). 

 

The relationship between the wood properties of clears and structural-size 

timber was investigated. Both type of pieces described a similar trend of MOE 

with age, but the performance of structural pieces was systematically around 

1.25 kN/mm2 higher. This had not been anticipated. Traditionally, values of 

MOEC are not reduced to estimate structural timber values (Desch and 

Dinwoodie, 1996) or by very little to take into account the slight influence of 

knots (Kretschmann, 2010; Ramsay and Macdonald, 2013). However, a recent 

study on loblolly pine (Butler et al., 2016) compared MOE of structural pieces 

and clears obtained from near the failure point in the same pieces, and 

reported reduction factors from structural timber to clears, bigger as the 

quality grade decreased.  

Averaging clears within structural pieces showed a good linear relationship for 

MOE (R2=0.63), but the relationship changed by species, with bigger differences 

in noble fir, both likening the size of clears to the structural pieces, and a tree 
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level simulating the same cutting pattern bark-to-bark. The differences in MOE 

can be possibly explained by: 1) the dimension of the structural pieces that 

includes a wider span of growth rings; 2) possibly more embedment for the 

small clears; 3) different testing method, inducing the three point bending test 

a bigger shear effect than the four point bending test; 4) testing of structural 

pieces based in the location of the “critical section” to failure, which is not 

necessarily the less stiff. The low relationship in MOR is mostly expected due 

to the presence of knots that reduce MOR in structural pieces compared to 

clears. This could be influenced by the species, management and age of the 

crop. The biggest reduction in this study occurred in western hemlock (50%), 

which may indicate a bigger size of knots. The size of branch diameter is 

examined in Chapter 6. Density in clears was a good predictor of the density 

samples used in structural timber for grading, as they both are free of defects.  

Variation in the wood properties between clears and structural pieces can be 

also expected due to the different sampling height, but the variation may 

depend on species. On Scots pine, the mechanical properties decreased with 

height (Auty et al., 2016), but on Norway spruce MOE increased and MOR 

decreased (Vestøl et al., 2012). The influence of sampling height in this thesis 

was not observed for density, although it has been shown to vary with stem 

height for a given cambial age, decreasing in Scots pine (Auty et al., 2014) and 

increasing in Norway spruce (Jyske et al., 2008; Vestøl et al., 2012). It was not 

an aim of this chapter, and the relative short distance may not be enough to 

reach a conclusion. 

Understanding the variations of wood properties in noble fir, Norway spruce, 

western red cedar and western hemlock will favour the production of material 

with higher wood properties within the most appropriate rotation length. In 

particular stiffness, which is usually the property penalising the grading in G.B., 

described a similar trend with age for the fours species, mainly varying the 

values near the pith.  
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4.6 Conclusions  

This research found that variation in wood properties was larger within trees 

than between species. Even though, differences were observed between 

species, and it was found that Norway spruce and western hemlock performed 

similarly well to Sitka spruce in G.B. in terms of mechanical properties and 

density, with noble fir and western red cedar achieving lower values.  

Overall, the three properties investigated improved with age. Mixed-effects 

models were developed to predict the wood properties as functions of age. 

Stiffness and strength used species as fixed effect, which enabled to build only 

one model for each mechanical property. The mixed models explained 85% of 

the variation of MOEC and 76% of MORC.  

Density decreased in the four species from the pith outwards for roughly the 

first ten rings. Differences were observed between species afterwards, leading 

to model density separately for each species. The different models chosen for 

density were able to explain between 64% and 90% of the variation depending 

on the species and section.  

The performance of MOE in clears was lower than in structural pieces, but it 

described a similar exponential trend with age in both. A good overall 

relationship was found likening the width of structural pieces and clears (R2 = 

0.63), but the relationship varied with species. MOR was approximately double 

in clears than in structural pieces possible due to the presence of knots in the 

latter, and the relationship was worse. Density was very similar in clears and 

structural-size timber.  

The use of clears was useful as a first approach, but more samples per tree are 

required for making confident predictions of structural timber performance, 

preferably making the sampling more similar, and including the ring number. 

Adjusting for the differences between testing methods for small clears and full 

size pieces, including the different shear effects in three and four point 

bending, would make the results more comparable to the four point bending 

test.  
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Chapter 5. Acoustic assessment of timber quality 

5.1 Introduction 

Previous chapters have shown how bending stiffness, bending strength and 

density are measured. Yet the determination of mechanical properties by 

bending tests is time consuming and the equipment required may not be 

accessible to everybody. The use of non-destructive techniques (NDT) are now 

widely accepted for wood quality assessment. Of common use are those based 

on speed sound propagation to predict dynamic wood stiffness (MOEdyn), as they 

are relatively inexpensive and easy to use. Acoustic techniques can be applied 

in sawn timber, logs and standing trees, although the predictive performance 

of the techniques differs.  

Whereas acoustic measurements on clears and structural timber are most 

strongly correlated with mechanical properties in static bending (MOEsta), logs 

and trees have a lower correlation. This is partially due to the large variation 

in wood properties within logs and trees, which makes wood quality 

assessments more difficult. In particular, the current techniques applied to 

standing trees are somehow limited, and results present relatively large 

uncertainties regarding the actual properties measured. Yet, prediction the 

wood properties of logs and trees prior to processing and drying of sawn timber 

is important for informing decisions about the most appropriate forest 

management and end-product.  

This chapter focuses on the use of NDT to assess “acoustically” mechanical 

properties, in particular the stiffness of wood. This has been identified in the 

literature and in the previous chapters of the current thesis as the property 

that in G.B. typically limits timber to a strength class. This chapter covers the 

acoustic assessment of wood on small clears, structural-size timber, logs and 

trees, and compares the results with the bending mechanical properties 

measured in structural pieces and clears. Different measurements were 

compared at various levels: tree, plot, site and species. Finally, different time-

of-flight distances in standing trees investigated the wave behaviour and the 

implications for predicting mechanical properties in standing trees.  
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The results improve our understanding of the shortcomings of acoustic 

techniques for wood quality assessment, by comparing which techniques are 

more suitable to discern wood quality at different scales. 

5.1.1 Objectives 

Specifically, the aims of this chapter are: 

1. Prediction of mechanical properties with NDT. 

Evaluate the use of acoustic methods to assess MOEdyn and estimate bending 

strength of wood.  

2. Performance of NDT at tree, site and species level. 

Examine the capabilities of the most commonly used NDT to differentiate 

dynamic stiffness between trees, plots, sites and species.  

3. Additional acoustic measurements on standing trees. 

Investigate the sound wave propagation in standing trees and examine the 

shortcomings for the most commonly measured one metre distance. 

5.2 Literature review 

Construction timber is one of the most valuable forestry products. Traditionally 

forest industries sorted trees and logs based on measurable parameters such as 

the diameter and taper, and more qualitative visual assessments of branching 

characteristics or the stem straightness (Macdonald and Gardiner, 2007; 

MacDonald et al., 2009). Although these factors can be related to timber quality 

(Macdonald and Hubert, 2002) they do not, per se, provide information about 

the mechanical properties. 

Wood stiffness can be estimated acoustically because this property is closely 

related to the acoustic behaviour of a wave travelling through the material 

(Bucur, 2006). In addition, acoustic speeds relate well with the bending 

strength (Auty and Achim, 2008), and so MOEdyn can be used in sawmills as the 

basis for grading as Chapter 3 showed (see §3.4.3.2). 
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Acoustic tools are now commonly used in the forest industry, and different 

techniques are applied for timber sorting, both in the sawmill, the forest or the 

laboratory, and applied to trees, logs or sawn timber (Mochan et al., 2009). 

These tools can be installed in the processing line of a sawmill, the head of a 

harvester or simply hand held. Prediction of mechanical properties from 

acoustics is based on the relationship described by the fundamental Newton-

Laplace equation, which is also referred to as one-dimensional wave equation: 

𝑀𝑂𝐸𝑑𝑦𝑛 =  𝜌 × 𝑣2 [5-1] 

where MOEdyn is the modulus of elasticity obtained with acoustic methods, ρ is 

the wood density and v is the speed of sound. Although different devices and 

models are available all of them are based on one of two principles, resonance 

or time delay (time-of-flight): 

• The resonance method measures the frequency at which a log or piece 

vibrates when excited in a particular mode of vibration, commonly 

longitudinal. In this case, the stress wave is generated by the impact of 

a hammer on one end. The frequency (f, Hz) is related to the velocity 

(v, m/s) at which a stress wave travels along a particular specimen of 

using the following expression: 

𝑆𝑝𝑒𝑒𝑑 = 𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ × 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [5-2] 

• Time delay is measured between two points by stress wave timers and it 

is referred as “time-of-flight” (TOF) technique. The propagation speed 

is obtained from the time delay and the assumed distance travelled. The 

TOF applied on trees usually uses two transducers which for practical 

reasons are generally placed one meter apart, generally on the same side 

of the tree, with the midpoint between the transducers at breast height. 

A hammer or ultrasonic pulse generates a stress wave in a probe and the 

time it takes for the induced stress wave to travel to the second probe 

is measured. Because the distance at which the probes are placed is 

known the speed can be estimated dividing distance by time delay.  

Results can vary depending on the method used. Resonance is recognised to 

offer more accurate estimations of wood stiffness (Carter et al., 2007; Wang, 

2013), but it requires that the piece can vibrate freely, and therefore it can 
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only be applied to logs and sawn timber but not to standing trees. Assessments 

carried out using TOF instruments can be applied to sawn timber, logs and have 

the advantage of being also possible on standing trees.  

For the same trees, TOF speeds are generally higher than the resonance speed 

(Chauhan and Walker, 2006; Dickson et al., 2004; Grabianowski et al., 2006; 

Lindström et al., 2009; Mora et al., 2009; Searles and Moore, 2009; Wang et al., 

2007). Research has explored the effect of placement of probes for the TOF 

method. Some studies measured the TOF on one side of the tree (Auty and 

Achim, 2008; Mora et al., 2009). Some others averaged measurements on two 

opposite faces (Grabianowski et al., 2006; Lindström et al., 2009; Moore et al., 

2009c) to balance out the influence of temperature and moisture content (Gao 

et al., 2013; Searles, 2012) and taper (Wang et al., 2004) in the speed of sound. 

Finally, other studies placed the probes diagonally on opposite sides of the 

stem, theoretically forcing the wave to cover the whole cross section of the 

tree (Dickson et al., 2004). The use of different techniques aimed to obtain a 

value representative of the whole section like the resonance method does.  

Traditionally, it has been assumed that for probes placed on the same side of 

the tree, the stress wave moves through the sapwood in the outer part of the 

tree (Grabianowski et al., 2006; Lindström et al., 2009), which in softwoods is 

typically stiffer, and so causing higher values to be measured. However, recent 

studies postulated that there is a difference in the behaviour of an acoustic 

wave depending on whether the method applied is resonance or TOF. 

Logs and sawn timber can resemble a rod-like structure where a longitudinal 

wave (compressive or P-wave) generated by impact (resonance method) travels 

the fastest. This wave behaves as a “plane” (Andrews, 2002), that is, the wave 

front moves over the entire section of the piece and so it is representative of 

the whole log section and the average properties of the material. Planar wave 

velocity can be calculated from the one-dimensional wave equation [5-1].  

Propagation in trees is more complex. A wave in a tree is introduced from the 

side and spreads in three directions: longitudinal, radial and tangential. It is 

therefore a three-dimensional wave (Meyers, 1994; Wang et al., 2007) also 

called “dilatational”. Figure 5-1 illustrates the hypothesis in which a sound 
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wave propagates through the outer part of the tree or as a three-dimensional 

wave. 

 

 

Figure 5-1. Hypothetical propagations of a sound wave in a tree. Left, reproduced from 
Legg and Bradley (2016), path in the outer part of the tree for a “d” known distance; right 
covering the whole section (Searles, 2012; Zhang et al., 2011) of diameter “D” at the impact 
point. 

 

Regarding the wave behaviour, Andrews (2002) concluded that dilatational 

speed is dominant in standing trees, and its influence is more significant at 

short paths before it becomes in a plane front. Zhang et al (2011) quantified as 

0.1 the diameter-to-distance ratio at which a dilatational wave begins to 

propagate as quasi one-dimensional wave. In other words, in order to apply the 

one-dimensional equation [5-1] in trees the distance must be at least ten times 

the diameter. Searles (2012) explained the wave shape as an elliptical 

propagation where the ellipse varies its eccentricity with variation in MOE, and 

concluded that: If a quasi-plane wave behaves in a similar manner to a plane 

wave in that its speed is controlled by the entire area it covers, then the 

properties of a tree measured during a standing tree TOF test are not simply 

the area 20 – 30 mm wide, directly between the probes as is generally assumed.  

Therefore, there seem to be indications that due to a varying wave behaviour 

increasing the distance between the transducers could reduce the influence of 

the diameter size and the variation in properties across the section on the sound 
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wave propagation. This may lead to an improvement in the relationship 

between MOEdyn obtained from the TOF and MOEsta. Despite the research 

conducted thus far on acoustics in wood, there still exist uncertainties on how 

to interpret the information obtained from acoustic tools and the reliability to 

predict wood properties. The studies by Zhang et al (2011) and Searles (2012) 

were carried out on logs and billets, and testing their hypothesis in standing 

trees will help to understand the limits of the current acoustic techniques and 

will contribute to a better interpretation of the measured values.  

This chapter assesses the performance of different acoustic techniques to 

measure the stiffness of trees, logs, structural-size timber and clears, the last 

two tested both acoustically and mechanically, which very few studies have had 

the chance to evaluate. The use of acoustic methods to estimate wood strength 

is also examined. The capabilities of several methods are examined at a number 

of scales: tree, plot, site and species. Finally, the chapter aims to improve the 

performance of acoustic methods in standing trees by testing the effect of 

lengthening the measuring distance between probes. 

5.3  Material and methods 

5.3.1 Material and methods  

Acoustic measurements were conducted on all the trees growing within the 

studied plots, on the logs of the felled trees and the structural-size pieces and 

small clears obtained from those. A list of the abbreviations used throughout 

the chapter is given in Table 5-1. 
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Table 5-1. Nomenclature and abbreviations used in Chapter 5. 

Variable  Definition 

MOEdyn,MTG:  
MOEdyn calculated on structural pieces with the MTG 

tool. 

MOEdyn,log: MOEdyn calculated on logs with the Hitman tool. 

MOEdyn,TOFx: 
MOEdyn obtained using x, where x is a TOF 

measurement. 

MOEdyn,109: 
MOEdyn calculated with TOF1ave with Fakopp tool on 

the selected trees for felling. 

MOEdyn,627: 
MOEdyn calculated with TOF1ave Fakopp on all trees 

within the studied plots. 

MOEsta MOE obtained in bending test 

TOF1N, TOF2N, TOF3N 
Time-of-flight at 1, 2 and 3 metre distance, 

respectively on the north side. 

TOF1NS & TOF2NS 
Time-of-flight to travel a 1 & 2 m vertical distance 

from the north to south face in the stem 

TOF1ave 

Average TOF1 measured on the north and south 

faces of a tree. It can refer to all trees measured 

(TOF1ave,627) or to the felled ones (TOF1ave,109). 

mknot Marginal knot index. See Section 2.4.1.3. 

nknot Number of knots within the test section. 

tknot Total knots index See Section 2.4.1.3 

 

A summary of the acoustic measurements will be shown in Table 5-2. 

5.3.1.1 Standing trees 

A total of 627 standing trees were acoustically assessed using the device 

TreeSonic (Fakopp, Hungary). This is a hammer impact type of TOF device. The 

protocol was: 

• For practical reasons the start transducer was placed at the bottom. 

• The probes were inserted at an angle of around 45°, aligned at a vertical 

distance of approximately one meter measured with a tape measure, 

centring on breast height. 

• The measurements were repeated until three consecutive identical 

readings were obtained, or otherwise nearly identical and averaged. 

• Both the north and south side of each standing tree were measured.  
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Additional TOF measurements were taken in the 36 standing trees selected for 

felling at the northern site (Figure 5-2). This aimed to explore the stress wave 

behaviour travelling within a tree. The one meter distance on the north side 

was measured first, and with the start transducer fixed, the stop one was 

moved upwards to cover a distance of approximately two and three meters. 

Keeping the start at the same bottom position in the north side, the stop was 

attached to the south side one and two metres above. For analysis, the distance 

was calculated using the Pythagorean Theorem assuming the diameter does not 

change for the measured length, and using the dbh and the vertical distance 

between transducers as the catheti. 

  

Figure 5-2. TOF measurements in standing trees. 0-1 and A-B was the common practise. 
0-2; 0-3; 0-B and 0-C were additional measurements in the northern site: (illustration by 
Darío Pérez-Moreno). To the right, measurement in the field over 3 m distance. 

5.3.1.2 Logs 

A total of 109 logs, one per each of the felled trees, were acoustically assessed 

with the resonance method (Figure 5-3), including one extra log of western 

hemlock at the northern site. The logs were over five metres length with the 

bottom at breast height. Exceptionally, three logs of western red cedar felled 

in the northern site were 3.1 m in length. The tool used was a HM-200 “Hitman” 

(Fibre-gen, Auckland, New Zealand). It measures the frequency (f, Hz) of the 

vibration, which is converted to velocity (v, m/s) based on the length of the log 
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using the expression [5-2]. The measurements were repeated until three 

consecutive readings were identical or otherwise nearly identical, and 

averaged.  

 

Figure 5-3. Measurement of resonance in logs. 

 

5.3.1.3 Structural-size timber 

As described in Chapter 3, a total of 558 structural pieces were obtained in the 

radial transect, and 90 extra pieces of Norway spruce from the south and middle 

sites (see Table 3-3 for further details). The acoustic operating procedure 

consisted of: 

• Measurement of the longitudinal resonance acoustic frequency with a 

timber grading machine MTG960 (Brookhuis Microelectronics BV, 

Holland) connected via Bluetooth with a laptop (Figure 5-4).  

• Length was measured (nearest 1 mm) with a tape measure, and width 

and thickness (nearest 0.01 mm) with a digital calliper at three points 

along the length. 

• Weighing of the piece with a balance plugged to the same laptop, which 

in combination with the dimensions allowed to obtain the piece density. 

The speed was calculated for each piece using the frequency measured and 

applying the equation [5-2].  
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Figure 5-4. Acoustic measurement on sawn timber. 

 

For density calculation, the dimensions of the cross sections of the specimens 

altered due to drying collapse (Figure 2-6) were measured on the basis of an 

approximation to the original (uncollapsed) dimensions. 

5.3.1.4 Small clears 

The small clears were brought to a moisture content of the order of 12%, and 

acoustically assessed prior to destructive bending tests (see §2.5.2.2). An 

ultrasonic pulse velocity test (Pundit Lab+, Proceq SA , Switzerland) determined 

the time delay (TOF method) as shown in Figure 5-5. The following settings and 

protocol was applied: 

• Probe frequency 54 kHz. 

• Pulse Amplitude (excitation voltage) 500V. 

• Rx probe gain (amplifier) 200x. 

• 30 measurements per clear (3 events, 10 readings per event).  

• One transducer was held in a clamp stand to minimise the influence of 

the operator. If the arrival times varied noticeably within the 30 readings 

the test was repeated to get consistent readings, or manually adjusted 

if the arrival time was not automatically detected. 

Five clears were not measured and eleven more were discarded in the analysis 

due to the use of the wrong settings. As a result, a total of 862 small clears 
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acoustically assessed were analysed. The velocity of the acoustic stress wave 

was calculated from the travelled distance and the time delay measured. Wood 

density was obtained from mass and the average of three measurements of the 

cross section dimensions. Both sound velocity and density were used afterwards 

to obtain dynamic stiffness applying [5-1]. 

 

Figure 5-5. Acoustic measurement on a small clear. In the current project the transducers 
were wrapped with rubber textile to improve the contact between surfaces. 
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Table 5-2. Summary of acoustic measurements on standing trees with TOF1 and logs and sawn timber with resonance. 

 Noble fir Norway spruce Western red cedar Western hemlock 

 Overall S M N Overall S M N Overall S M N Overall S M N 

Age of stands  30 58 38  44 76 44  35 61 78  44 49 78 

Number of trees 170 48 64 58 163 48 53 62 168 47 60 61 126 37 47 42 

TOF 1 m (km/s)                 

Mean 4.0 3.7 4.3 4.0 4.0 4.0 3.9 3.9 3.0 3.0 3.0 2.9 3.9 3.7 3.9 4.1 

Sd 0.3 0.2 0.2 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.2 0.2 0.3 

CV (%) 7.9 5.3 4.5 7.7 6.5 5.4 6.8 7.3 10.7 9.0 12.2 10.4 6.8 4.9 5.3 6.5 

Resonance logs (km/s)                 

Number of trees 27 9 9 9 27 9 9 9 27 9 9 9 28 9 9 10 

Mean 3.1 3.1 3.3 3.0 3.3 3.3 3.3 3.4 2.9 2.9 3.1 2.8 3.3 3.1 3.3 3.4 

Sd 0.2 0.1 0.0 0.2 0.1 0.2 0.1 0.1 0.3 0.2 0.3 0.3 0.2 0.1 0.2 0.1 

CV (%) 5.9 3.0 1.5 6.0 4.4 4.7 4.3 4.0 8.8 5.4 9.7 9.4 6.1 4.7 5.9 3.5 

Resonance in structural 

timber (km/s) 

 
   

 
   

 
   

 
   

Number of pieces 127 34 46 47 143 42 50 50 138 32 39 66 150 49 33 68 

Mean 4.6 4.4 4.9 4.6 4.9 4.9 4.8 4.8 4.6 4.7 4.8 4.5 4.7 4.5 4.6 4.8 

Sd 0.6 0.5 0.5 0.6 0.3 0.3 0.3 0.3 0.5 0.3 0.4 0.5 0.5 0.5 0.4 0.5 

CV (%) 12.2 10.7 10.9 12.3 6.3 5.7 6.6 6.4 10.0 6.9 8.6 11.4 10.3 10.1 8.2 10.3 

TOF in clears (km/s)                 

Number of pieces 195 51 74 70 255 83 87 65 210 60 70 80 202 68 60 74 

Mean 5.2 4.9 5.3 5.2 5.6 5.4 5.7 5.5 5.1 5.2 5.2 5.0 5.1 5.0 5.1 5.3 

Sd 0.8 0.8 0.8 0.8 0.4 0.4 0.5 0.4 0.7 0.6 0.8 0.7 0.7 0.7 0.7 0.7 

CV (%) 15 16 15 15 8 8 8 7 13 12 15 13 13 14 13 12 

Sites: S, south; M, middle; N, north. 
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5.3.2 Statistical analysis 

The statistical analysis was carried out with the R open-source statistical 

programming environment (R Development Core Team, 2016). The MOEdyn was 

calculated using equation [5-1]. For the standing trees and logs the wood 

density was assumed to be 1000 kg/m3 due to the difficulties of measuring 

density in the forest and the unlikeliness of that normally to happen. For 

structural pieces and clears the density was calculated from mass and volume 

of the whole piece. MOEdyn in structural pieces was obtained using the speed 

calculated and the density measured of the full piece, and adjusted to a 12% 

m.c. for comparison with results in bending. Reversing the equation, it was 

possible to obtain the speed adjusted to a 12% m.c. In logs and trees, the 

resulting MOEdyn was compared to the mean MOEPB (see §3.2 for description of 

MOEPB) per tree. Following it is described the specifics of the analysis for each 

of the aims: 

1. Prediction of mechanical properties with NDT. 

Both in small clears and structural pieces a linear regression was used to 

investigate the relationship between MOEdyn and the mechanical properties. 

Clears were cut from pith to bark. In order to represent the radial section (bark-

to-bark) they were given double weight (i.e., they were counted twice in the 

average) except for those containing the pith. The mean of the radial section 

was used as value per tree. The MOR in structural timber was modelled using 

MOEdyn as main predictor variable in a multiple linear regression. In order to 

test if the relationship between mechanical properties and MOEdyn was affected 

by species, a GLM with the form specified in the equation [5-3] was examined: 

𝑊𝑃 = 𝛼0 + 𝛼1𝑀𝑂𝐸dyn + 𝛼2𝑆𝑝𝑒𝑐𝑖𝑒𝑠 + 𝛼3𝑀𝑂𝐸dyn: 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 + 𝜀  [5-3] 

 

Where WP is MOEPB or MOR, α0 is the regression coefficient of intercept, α1 is 

the regression coefficient of slope, α2 represents the additive effect of the 

species studied, α3 is the interaction term between MOEdyn and species and ε is 

the residual error not explained by the model. ANOVA was conducted on this 

model in order to test if species was significant, and therefore a different 

relationship exists per species. 
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2. Performance of NDT at tree, site and species level. 

A paired t-test investigated the differences between TOF1 in the north and 

south side measurements. A single one-way ANOVA analysis examined the 

differences in the mean values of TOF1 between species. A Tukey (HSD) test 

with α = 0.05 investigated afterwards differences in the relationships between 

the species. Relationships among speeds, and with the MOEPB were investigated 

using Pearson and Spearman’s rank-order tests at sawn timber, tree, plot, site 

and species level. Whereas Pearson examined the linear association between 

two variables, Spearman's test (rho) measured the strength of association 

between two ranked variables. 

3. Additional acoustic measurements on standing trees 

The relationship between the speeds measured in resonance, and the TOF 

measured over 1, 2 and 3 metres on the north side (TOF1N, TOF2N and TOF3N) 

were examined. Afterwards, the MOEdyn derived from the TOF measurements 

were compared to the MOEsta of the outermost piece obtained to the north, as 

well as with the mean MOEsta of the pieces in the tree. The relationships helped 

to understand which is the most likely spreading behaviour of a sound wave in 

a tree. Arrival times between transducers placed in opposite faces (north to 

south) were measured and compared to those between transducers placed in 

the same face (north to north). These measurements were replicated over a 

vertical distance of one and two meters and the speeds compared with 

resonance speed in logs.  

All the acoustic measurements taken in the north site were compared with the 

mean of MOEPB using a Spearman’s rank test and Pearson’s correlation. 

5.4 Results 

5.4.1 Prediction of mechanical properties with NDT. 

5.4.1.1 Dynamic and static mechanical properties in clears. 

In clears, the values of MOEdyn were higher than MOEsta, and the relationship 

between them very strong (R2 = 0.88, RMSE = 0.63, Figure 5-6). MOR related 



143 

moderately with MOEdyn (R2 = 0.57, RMSE = 8.62, Figure 5-6), which is only 

slightly worse than that reported in Chapter 4 with MOEsta (R2 = 0.68). Adding 

age and/or density in a multiple linear regression for prediction of mechanical 

properties was statistically significant (P<0.001), but did not usefully improve 

the coefficient of determination.  

  

Figure 5-6. Linear relationship of MOEdyn with MOEsta (left) and MOR (right) in clears. 

 

The next sections discuss the prediction of bending properties in structural 

pieces using acoustic methods and the influence of different factors in the 

prediction. 

5.4.1.2 Dynamic and static mechanical properties in structural-size timber. 

A total of 648 pieces were acoustically assessed by resonance. The distribution 

is shown in Figure 5-7, including the extra pieces of Norway spruce.  

 

Figure 5-7. Distribution of MOEdyn. Numbers indicate the upper limit of the class. 

 

The MOEdyn in the pieces of noble fir and western red cedar was lower than in 

Norway spruce and western hemlock. A summary of the MOEdyn measured in 

R2 = 0.88 R2 = 0.57 
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structural pieces is offered in Table 5-3. Only the pieces cut in the radial 

transect are shown.  

Table 5-3. Summary of MOEdyn in structural pieces by species and sites.  

 Noble fir Norway spruce 
Western red 

cedar 
Western hemlock 

 S M N S M N S M N S M N 

Age of the 

stand 
30 58 38 44 76 44 35 61 78 44 49 78 

Pieces 34 46 47 42 50 51 32 39 67 49 33 68 

MOEdyn,MTG (kN/mm2)          

Mean 7.2 10.5 8.5 10.4 10.5 9.6 8.4 8.7 7.6 9.3 9.8 11.0 

Sd 1.6 2.6 2.3 1.4 2.0 1.6 1.3 1.8 1.9 2.0 1.7 2.6 

CV (%) 22 25 27 14 19 17 15 21 24 21 17 24 

5th per 5.1 6.5 4.7 8.7 8.0 6.7 6.3 5.7 5.1 6.2 7.6 7.3 

Median 7.0 10.4 8.7 10.3 10.1 9.7 8.5 8.5 7.2 9.6 9.5 11.1 

95th per 9.9 15.1 11.9 13.2 14.3 11.7 10.3 11.5 10.6 11.9 12.6 14.7 

Sites: S, south; M, middle; N, north. 

 

These values are higher than those reported from destructive testing in Chapter 

3. At an individual piece level, 90 % of the variation (RMSE = 0.64) in MOEPB 

could be explained by MOEdyn,MTG (equation [5-4]).  

𝑀𝑂𝐸𝑃𝐵  = 0.183 +  0.854 × 𝑀𝑂𝐸𝑑𝑦𝑛,𝑀𝑇𝐺  [5-4] 

MOEdyn,MTG in structural pieces explained 43% of the variation in bending 

strength (RMSE = 7.9, equation [5-5]).  

𝑀𝑂𝑅 = 2.96 × 𝑀𝑂𝐸𝑑𝑦𝑛,𝑀𝑇𝐺 − 4.4 [5-5] 

The extra pieces obtained for Norway spruce were also incorporated in the 

models ([5-4] and [5-5]) to account for the maximum variability. An ANOVA of 

a linear model (equation [5-3]) showed that species did not influence 

importantly the relationship between MOEdyn,MTG and MOEPB (F3 643 =2.2, P= 

0.09), but they influenced the intercept of the relationship between MOEdyn,MTG 

and MOR (F3 643 =14.0, P<0.001), although not the slope (F3 640 = 0.28, P=0.84). 

The relationships between MOEdyn,MTG and the bending properties are shown in 

Figure 5-8. 
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Figure 5-8. Relationship between MOEdyn in structural-size timber and MOEPB (left) and 
MOR (right).  

 

In addition to MOEdyn,MTG, other variables were studied in order to model MOR. 

The correlation between those variables potentially having an influence on the 

performance are reported in Table 5-4. Only the pieces cut in the radial 

direction were used because age and knots were only measured on those.  

Table 5-4. Pearson’s correlation (r) between variables.  

 Overall Noble 

fir 

Norway 

spruce  

Western 

red cedar 

Western 

hemlock 

MOEdyn,MTG - MOR 0.69 0.68 0.73 0.70 0.70 

Density384 - MOR 0.50 0.62 0.60 0.39 0.43 

Densitytimber - MOR 0.44 0.54 0.52 0.32 0.36 

Age - MOR 0.41 0.64 0.52 0.29 0.49 

tknot - MOR -0.45 -0.47 -0.52 -0.52 -0.63 

nknot - MOR -0.32 -0.22 -0.41 -0.41 -0.43 

mknot - MOR -0.48 -0.46 -0.56 -0.52 -0.62 

All P <0.001 

 

The use of MOEdyn,MTG as sole variable was able to explain 47% of the variation 

in bending strength of the pieces cut in the radial direction. The additive effect 

of species was statistically significant (P< 0.001), but barely increased the 

prediction (R2 = 0.50). Different variables were tested in the model: mknot, 

tknot, nknot, age and density of the full board. Only mknot and tknot were 

statistically significant. Adding the variable tknot did not usefully improve the 

prediction of the model, and the AIC of the model increased. Therefore, the 

selected final model only included the mknot index resulting a relationship of 

R2 = 0.59 (RMSE = 7.0 N/mm2). The interaction of species with the variables fit 

R2 = 0.90 R2 = 0.43 
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in the model was not statistically significant, and the following linear model 

was chosen: 

𝑀𝑂𝑅 = 𝛼0,𝑆𝑝𝑒𝑐𝑖𝑒𝑠 + 𝛼1 × 𝑀𝑂𝐸𝑑𝑦𝑛,𝑀𝑇𝐺 +  𝑚𝑘𝑛𝑜𝑡 + 𝜀 [5-6] 

Table 5-5 reports the values resulting of the model [5-6] for each species. 

Table 5-5. Summary of the chosen model for MOR prediction (N/mm2). 

 Noble fir 
Norway 

spruce 

Western 

red cedar 

Western 

hemlock 

α0  Intercept 11.3 12.2 12.0 19.8 

α1  MOEdyn,MTG 3.0 2.7 2.8 2.0 

mknot -8.9 -8.6 -6.2 7.6 

RMSE 9.0 5.6 6.9 7.7 

P-values <0.001 <0.001 <0.001 <0.001 

 

5.4.1.3 Dynamic properties in logs and trees. 

The 109 trees from which clears and structural pieces were obtained were all 

acoustically assessed using the TOF1 method, and the subsequent logs using the 

resonance method. The resulting MOEdyn was compared to the mean MOEPB per 

tree (Figure 5-9). 

 

Figure 5-9. Relationship at tree level between mean MOEPB and MOEdyn on logs (left) and 
trees (right). 

 

The MOEdyn on logs ranged from 5.7 up to 13.1 kN/mm2, with a mean of 10.1 

kN/mm2. The MOEdyn on trees using TOF1 ranged from 5.1 up to 21.0 kN/mm2, 

with a mean of 14.0 kN/mm2. The mean value of MOEPB per tree was moderately 

R2 = 0.52 R2 = 0.33 
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related to MOEdyn on logs (R2=0.52; RMSE=1.1 kN/mm2), and weakly to MOEdyn 

measured with TOF1ave (R2=0.33; RMSE=1.27 kN/mm2). The mean value per tree 

of MOEsta in clears only obtained an overall relationship of R2 = 0.16 with 

MOEdyn,TOF1. 

In summary, the performance of the acoustic tools tested in standing trees was 

poor compared to logs, structural pieces and small clears.  

5.4.2 Performance of NDT at tree, site and species level. 

The use of acoustic NDT was evaluated at different stages in the forest wood 

chain (species, site or tree).  

A paired t-test found no significant difference (P=0.17) between the means of 

the speeds measured on the north and south side of the trees. A single one way 

ANOVA analysis determined that there were statistically significant differences 

(P<0.001) between species in the means TOF1 measurements. The posthoc 

Tukey (HSD) test found that western red cedar was different to everything else, 

with no statistically significant differences for the rest of possible 

combinations. Figure 5-10 shows the lower TOF1 speed measured in western 

red cedar compared to the other species. 

 

Figure 5-10. Distribution of speeds on the north face by site and species. 
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Overall, the acoustic measurements in trees gave higher values than those 

obtained in the logs (Figure 5-11). Norway spruce and western hemlock had the 

highest values for resonance speed with western red cedar again the lowest. 

The trees of western red cedar with TOF lower than resonance were 

investigated, but no particular pattern was found. The correlation between the 

speed measured in trees with TOF1ave and the resonance speed in the 

correspondent log was moderate (R2 = 0.50).  

 

Figure 5-11. Relationship at tree level between resonance and TOF1ave speed. 

 

Table 5-6 summarises the mean values per site for MOEPB, MOEdyn,log and 

MOEdyn,tree, both for the 109 felled trees and for the 627 standing trees assessed 

acoustically.  
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Table 5-6. Summary of mean MOEPB, MOEdyn,log, MOEdyn,109, MOEdyn,627. Results in kN/mm2. 

 Site Age MOEPB MOEdyn,log MOEdyn,109 MOEdyn,627 

Noble fir 

South 30 6.57 9.5 14.3 13.9 

Middle 58 9.40 11.0 18.6 18.1 

North 38 7.16 8.8 16.4 16.1 

Overall 7.71 9.8 16.4 16.1 

Norway  

spruce 

South 44 9.44 10.7 15.8 16.1 

Middle 76 9.77 11.0 15.2 15.6 

North 44 8.06 11.4 14.0 15.1 

Overall 9.09 11.0 15.0 15.7 

Western  

red cedar 

South 35 7.39 8.2 9.4 9.0 

Middle 61 7.75 9.3 9.3 9.0 

North 78 6.54 8.0 8.5 8.1 

Overall 7.23 8.5 9.1 8.7 

Western  

hemlock 

South 44 8.13 9.7 13.5 13.9 

Middle 49 8.61 11.2 16.1 15.5 

North 78 9.47 11.8 15.8 17.1 

Overall 8.76 10.9 15.2 15.4 

 

According to Table 5-6, the stiffness would be correctly ranked by species using 

the acoustic measurements on logs, but not with those on standing trees, where 

noble fir ranked as the species with the highest stiffness. The lower quality of 

western red cedar compared to the other three species would be always 

correctly identified, whereas the ranking of Norway spruce and western 

hemlock would depend on the number of trees selected, ranking correctly when 

more trees are measured.  

Within species, noble fir values at the tree, log and structural piece level fir 

were always higher in the middle site. On the other hand, the higher MOEPB of 

the north site compared to the south found correspondence with the higher 

values of MOEdyn in trees, but not in logs. In Norway spruce, the lower MOEPB of 

the north site was not reflected by lower values of MOEdyn,log, although it was 

by the measurements in the standing trees. However, the MOEdyn,log reflected 

better the difference in MOEPB between the south and middle sites than the 

MOEdyn in the standing trees. The MOEPB values of western red cedar ranked like 

the MOEdyn,log, but only the lower quality sites were correctly identified by lower 

MOEdyn in the standing trees.  
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Table 5-7 shows the correlations at different levels. Both using the resonance 

and TOF methods, the linear association increased as the level of study (tree, 

plot, site and species) was more general. 

Table 5-7. Pearson (r) and Spearman's rank-order correlation (rho) of MOEPB with speed of 
sound at different levels of study. Speed in structural pieces was analysed with and 
without moisture content adjustment to 12%. 

 Resonance TOF1ave,627 TOF1ave,109 

Level r Rho r rho r rho 

Structural piece 0.79 0.79     

Structural piecem.c.  0.83 0.83     

Tree 0.72 0.74 0.57 0.59 0.57 0.59 

Plot 0.79 0.76 0.56 0.62 0.58 0.60 

Site 0.811 0.781 0.652 0.722 0.612 0.493 

Species 0.972 13 0.70ns 0.40ns 0.62ns 0.20 ns 

P-values <0.001; except 1 P<0.005; 2 P<0.05; 3 P<0.1; ns = no significant; m.c. = adjusted to 
12%.  

 

The speed measured with the resonance method in the structural pieces was 

strongly related to MOEPB, increasing the association when the speed was 

adjusted to a 12% m.c.  

At site level, the mean MOEPB ranged from 6.54 kN/mm2 up to 9.77 kN/mm2. It 

found a better relationship with MOEdyn,log (R2 = 0.66; RMSE = 0.70 kN/mm2) than 

with MOEdyn,109 (R2 = 0.38; RMSE = 0.95 kN/mm2 , Figure 5-12).  

 

Figure 5-12. Relationship of mean MOEPB per site with MOEdyn,log (left) and MOEdyn,109 (right). 

 

Overall, the resonance on logs was able to distinguish the higher quality sites 

from the lower ones. Yet, care must be taken. The south site of noble fir, 30 



151 

years old, had a relatively high MOEdyn,log compared to the low MOEPB measured. 

If the aim was to obtain C16 strength class timber, an IP of 9.3 kN/mm2 would 

segregate timber correctly. The TOF measurements in the standing trees 

discerned correctly the lower quality of western red cedar, but in the stands of 

noble fir in the south and north were high compared to the low bending stiffness 

measured, which would segregate timber for C16 erroneously.  

 

Figure 5-13. Relationship of mean MOEPB per species with MOEdyn,log (left) and MOEdyn,109 
(right). 

 
At a species level, bending stiffness correlated well with the acoustic 

measurements on logs, even though noble fir still offered a higher acoustic 

value than expected compared to the bending tests. The measurements on 

standing trees were not capable of discerning bending stiffness correctly with 

the exception of the lower quality in western red cedar.  

The following section investigated alternative measurements in standing trees 

that help to understand the sound wave behaviour in wood and the 

shortcomings of acoustic techniques for wood quality assessment.  
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5.4.3 Additional acoustic measurements on standing trees. 

The 36 trees selected for felling in the northern site were acoustically assessed 

with additional measurements before cutting.  

 

Figure 5-14. Relationship at tree between resonance speed and TOF1N, TOF2N and TOF3N 
speed. 

 

Figure 5-14 revealed that, in general, the measurements taken in standing trees 

recorded higher velocities than those using resonance on logs even when the 

distance covered is more than one metre. Yet, the correlation improved as the 

distance increased. The resonance speed measured in logs was moderate 

related to the TOF1N speed (r = 0.57), and very strong related to TOF2N (r = 

0.81) and TOF3N (r = 0.91). Noble fir presented differences of near 14% between 

TOF1N and TOF3N, larger than in the other three species. In western red cedar, 

particularly in the lower range, there were no important difference between 

TOF1N and TOF3N speed.  

In order to understand the acoustic wave propagation within standing trees, 

and by extension the properties measured, the MOEdyn calculated with different 

TOF measurements was compared to the MOEPB from the immediately adjacent 

(north side) structural piece, and to the mean MOEPB of all pieces per tree 

(Figure 5-15).  

         TOF1 
         TOF2 

         TOF3 
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Figure 5-15. Comparison of MOEdyn using TOF1N, TOF2N and TOF3N with the MOEPB of the 
outer piece to the north side and the mean MOEPB per tree.  

 

R2 = 0.26 R2 = 0.27 

R2 = 0.45 R2 = 0.51 

R2 = 0.46 R2 = 0.58 
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Figure 5-15 showed that the MOEdyn calculated with TOF measurements related 

better with the mean MOEPB per tree than with the outermost piece to the north 

side. The relationship was poor, and the differences small using TOF1N (R2 = 

0.27 and R2 = 0.26), but increased lengthening the distance of measurement, 

more importantly compared to the mean MOEPB per tree (R2 = 0.58 using TOF3N). 

On clears, it was shown before (see §5.4.1.3) that MOEdyn,TOF1 was weakly 

related to the MOEsta (R2 = 0.16 for the three sites). In the northern site the 

relationship was R2 = 0.17, but using TOF2N and TOF3N it improved to R2 = 0.44 

and R2 = 0.52. This is not surprising because clears were cut just above the top 

probe, and so TOF1N did not actually cover the properties at that height. The 

MOEdyn,TOFx related stronger with the MOEsta of the outermost clear (R2 = 0.34, 

0.55 and 0.61) than with the mean MOEsta of clears per tree (R2 = 0.17, 0.44 and 

0.52), but getting more similar as the distance increased. Similarly, the 

relationship of MOEdyn,TOFx with MORC also improved using TOF2N and TOF3N (R2 

= 0.31 and 0.38) in comparison to the R2 = 0.14 obtained with TOF1N. 

The sound wave propagation between two opposite sides of trees was also 

examined. Comparing two paths with the same starting point, and stopping at 

the same height on opposite sides of the trunk (Figure 5-2, 0B-01, and 0C-02), 

it was found that the difference in the arrival time lessened measuring longer 

distances (Figure 5-16 left). 

   

Figure 5-16. Delay differences (μs) between measurements on the north side and on 
opposite faces (left) and relationship between resonance and TOF speed measured over 
opposite faces (right). The solid line indicates a relationship one to one.  

Delay at 2 m vertical distance 

Delay at 1 m vertical distance 

TOF 1 m north-south 

TOF 2 m north-south 
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The resonance speed on logs was moderately related to the wave speed 

travelling between opposite sides over one metre vertical distance (r = 0.43), 

and strongly related travelling a two metre vertical distance (r = 0.76, Figure 

5-16, right). 

The correlation of the different acoustic measurements tested in the north site 

among themselves and with the mean MOEPB per tree was assessed with 

Pearson’s and Spearman’s rank test (Table 5-8). Pearson aimed to examine the 

linear relationship and Spearman the rank order.  

Table 5-8. Spearman and Pearson (italics and underlined) coefficients between MOEPB and 
MOEdyn per tree using different acoustic measurements in the northern site. 

 MOEPB 

MOE 

dyn 

MTG 

MOE

dyn 

log 

MOE 

dyn 

TOF3N 

MOE

dyn 

TOF2N 

MOE 

dyn 

TOF2,NS 

MOE 

dyn 

TOF1N 

MOE 

dyn 

TOF1,ave 

MOE 

dyn 

TOF1,NS 

MOEPB 1 0.98 0.82 0.79 0.75 0.56 0.50* 0.52* 0.31 

MOEdyn,MTG 0.98 1 0.85 0.83 0.79 0.60 0.54 0.55 0.36 

MOEdyn,log 0.80 0.85 1 0.88 0.77 0.66 0.43** 0.44** 0.39 

MOEdyn,TOF3N 0.76 0.81 0.90 1 0.88 0.73 0.65 0.64 0.58 

MOEdyn,TOF2N 0.72 0.77 0.80 0.94 1 0.76 0.80 0.82 0.67 

MOEdyn,TOF2,NS 0.58 0.62 0.75 0.87 0.86 1 0.79 0.75 0.83 

MOEdyn,TOF1N 0.52 0.58 0.54 0.77 0.89 0.73 1 0.95 0.72 

MOEdyn,TOF1,ave 0.56 0.61 0.55 0.77 0.89 0.66 0.97 1 0.62 

MOEdyn,TOF1,NS 0.32 0.35 0.40 0.63 0.70 0.85 0.76 0.69 1 

P-values <0.001, except **<0.01 and *<0.05 

 

The correlations of the mean MOEPB per tree with the MOEdyn calculated using 

the resonance speed were very strong (r = 0.98 in structural pieces, MOEdyn,MTG, 

and 0.80 in logs, MOEdyn,log). The correlation decreased slightly when using 

TOF3N (r = 0.76) and TOF2N (r = 0.72), and became only moderate using TOF1N 

(r = 0.52) and TOF2NS (r = 0.58).  

The strongest correlation of MOEdyn,log was with MOEdyn using TOF3N (r = 0.90). 

MOEdyn using TOF3N correlated strongly with MOEdyn using TOF2N or TOF2NS (r = 

0.94, and r = 0.87). Finally, the correlation of MOEdyn using TOF1NS was better 

correlated with MOEdyn using TOF2NS (r = 0.83) than with MOEdyn using TOF1N (r 

= 0.76). 
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Figure 5-17. Comparison of speeds calculated using different distances.  

 

Figure 5-17 (left) showed that an acoustic wave travelling side to side of a stem 

over a vertical distance of two metres was faster than travelling one vertical 

metre, and overall slower than travelling one metre vertical distance on the 

same side. Figure 5-17 (right) showed that measurements on two and three 

metres length on the same side were also in general faster than speed 

calculated side to side. These results were subject to limitations due to the 

assumed travel path and therefore the speeds calculated are not necessarily 

actual speeds of wave propagation.  

5.5 Discussion 

This chapter showed that timber quality assessment based on the use of 

portable acoustic tools offered different grades of reliability depending on the 

method used (resonance or TOF), and the level of segregation.  

The TOF measurements on clears and MOEC were strongly and linearly related 

(R2=0.88), similar to the resonance method applied in structural pieces 

(R2=0.90). Using resonance measurements, Raymond et al. (2007) found in 

clears of radiata pine a strong relationship between MOEdyn and MOEC (R2=0.98), 

and Moore et al. (2009b) in structural pieces of Sitka spruce (R2=0.88).  

The similar performance of the acoustics in clears and structural pieces, even 

though the presence of knots, suggest that acoustic velocity did not say much 

about the presence of knots, and their effect may not be important for 

TOF 2 m  

TOF 3 m  

TOF 1 m north-south 

TOF 1 m  
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calculating MOEsta. For MOR prediction, MOEdyn in clears explained 57% of 

variation of MOR, and MOEdyn,MTG 43% in structural pieces. A linear regression 

using MOEdyn,MTG as predictor variable determined that the additive effect of 

species and knots were significant, which increased the prediction of MOR up 

to 59%. 

TOF applied to clears can place transducers at both ends, so it is easier for the 

wave to travel in the longitudinal direction. This way, the small clear resembles 

a rod and the wave can be considered planar. Due to the relatively small size, 

and the lack of defects, it can be considered that the front wave covers the 

whole section of the clear. That is not the case in standing trees.  

A comparison between TOF1ave applied in trees and resonance in logs, where 

the wave propagation is also planar, gave a moderate relationship (R2 = 0.50). 

The same comparison on Sitka spruce found a relationship of R2 = 0.60 (Moore 

et al., 2009b), and Grabianowski et al. (2006) reported for 8-11 years old 

radiata pine trees correlations of R2 = 0.92. Using a distance of 1.3-1.4 m 

Chauhan and Walker (2006) found a strong relationships between TOFave and 

resonance in logs for radiata pine of 8, 16 and 25 years old (R2 = 0.89, 0.91 and 

0.75, respectively), with bigger differences between speeds in the older and 

larger trees.  

Overall, the MOEdyn,log offered better estimations of wood stiffness than MOEdyn 

using TOF1ave, which in general provided higher values of MOEdyn. At a log level, 

the relationship of MOEdyn,log with the mean MOEPB resulted moderate (R2 =0.52), 

slightly stronger than the R2 =0.47 observed for Sitka spruce in Moore et al. 

(2009b). At a tree level, there was a weak relationship between the MOEdyn 

using TOF1ave and the mean MOEPB cut from the tree (R2 = 0.33). Even though, 

TOF1ave discerned the lower MOEdyn of western red cedar compared to the other 

species.  

Ranking per site and species the MOE values calculated it was not possible to 

conclude a common pattern between approaches. Whereas in western hemlock 

and western red cedar MOEdyn,log ranked like MOEPB, in noble fir TOF1ave worked 

better. None of the methods however ranked Norway spruce correctly. At a plot 

and site level the linear relationships were stronger than a tree level. Results 
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in Table 5-7 offered a better correlation between MOEdyn,TOF1 and MOEPB 

including all the trees in the plots than analysing only the trees from which the 

timber was processed. By measuring more trees more variation between trees 

is captured, so the lower correlation of MOEdyn,109 and MOEPB it is likely a 

consequence of the sampling, and by destructively testing more trees the 

correlation had been better.  

For the 12 stands studied in the present chapter (three sites per species), 

results indicated a strong correlation per site of the mean MOEPB with the 

MOEdyn,log (R2 = 0.66), and weak-moderate with MOEdyn,109 (R2 = 0.38). Also over 

12 sites, a study by Moore et al. (2013) obtained slightly better relationship 

with MOEdyn,TOF1 (R2 = 0.83) than with MOEdyn,log (R2 = 0.80). Thereby, acoustic 

measurements at tree or log level may not identify correctly individuals on the 

basis of the wood quality, but they can be of help at a plot, and particularly 

site level, for comparison of timber quality between stands. Yet, the acoustic 

measurements may fail to catch the timber capabilities of a site. The south and 

north sites of noble fir registered high MOEdyn using TOF1ave compared to the 

low MOEPB measured in the laboratory, and similarly using MOEdyn,log in the south 

site. Noble fir presented some decolouration signs, although it was not possible 

to determine the reason or quantified as it was not an aim of the study. The 

southern stand of noble fir had the lowest density of the 12 sites studied, and 

it was the youngest stand. It can be hypothesized that the assumption of 1000 

kg/m3 resulted in a false impression of high stiffness.  

To explain the higher values of the TOF measurements, and the weaker 

relationship of the measurements on standing trees with sawn timber compared 

to those on logs some studies concluded that the TOF methods measure the 

time delay of a wave moving in the outer part of the tree. The mentioned study 

by Grabianowski (2006) compared TOF measurements on logs and green boards, 

and obtained a higher correlation with the outerwood timber (r = 0.94) than 

with the piece cut from the corewood (r = 0.86). This made to conclude that 

TOF tools measure the outerwood properties of stems. The trees were 8-11 

years old, and the unknown diameter may have had an influence in the results. 

The same idea of TOF relating better to the outerwood was supported by a 

study using scanned radial strips with SilviScan (Hong et al., 2015), but the 

bigger proportion of outerwood on the entire section could have had an 
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influence. In addition, SilviScan estimates MOE from microfibril angle and 

density. 

In most of the studies the distance measured using TOF was around 1 metre, 

and the trees assessed younger than in the current study. Placing the probes on 

opposite side of the trunk, Dickson et al. (2004) reported a correlation between 

the mean MOEsta of boards and the standing tree measurements of R2= 0.06, and 

with logs of R2= 0.16. This coefficients are too weak, and can be seen as no 

relationship exists. The relationship improved when dealing separately with 

sapwood (R2= 0.24 and R2= 0.53) and heartwood (R2= 0.13 and R2= 0.37). The 

study concluded that the stronger correlation of the acoustic measurements 

with sapwood was due to the wave being biased towards the stiffer outerwood, 

although the authors admitted that “The probes […] were only 1 m apart […]. 

In a short large log, it will take relatively longer for a sound wave to radiate 

in the radial dimension […] thus not allowing a true velocity to be measured”.  

This chapter examined alternative approaches to improve the segregation of 

trees based on the MOE. The starting hypothesis to explain the weaker 

relationship of acoustic measurements on standing trees with stiffness of sawn 

timber was the short distance travelled by the wave, not covering the variation 

of properties within the trunk (Searles, 2012), and influenced by the ratio 

diameter/length (Zhang et al., 2011). The results indicated a better 

relationship in a tree between the MOEdyn,TOFx and the mean MOEPB than with 

the outermost specimen on the side acoustically tested, stronger as the stress 

wave induced travelled longer. The best relationship was found for TOF3 (R2 = 

0.58), slightly stronger than using MOEdyn,log (R2 = 0.52). This would suggest that 

the wave does not move directly between the transducers in the outer part of 

the tree.  

It is possible that after the wave travelling 3 metres, it started to become in a 

plane wave, occupying the whole section in the tree and accounting better for 

the variability within the trunk. Even though, increasing the distance to at least 

2 metres allowed the stress wave induced to traverse a more representative 

proportion of the stem section, adding useful segregation potential. The results 

were thus consistent with recent studies which indicate that a stress wave it is 

not confined to travelling through the sapwood in the outer part alone, but as 
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Searles (2012) explains: “when the excitation is initiated, the stress wave 

starts propagating both up toward the top probe and outward across the tree’s 

cross section. The use of TOF1 offered less accurate predictions, and it was 

more useful to discern the lower quality timber at a site level, represented in 

this study by western red cedar.  

Increasing the distance also improved the relationship with the mechanical 

properties measured in clears (R2 = 0.52 using TOF3). The better relationship 

may be explained because the clears were obtained just above the top probe 

measuring TOF3, and in addition the wave after travelling 3 metres may become 

planar, covering the whole section of the stem. The relationship of MOR with 

MOEdyn also improved as the distance of TOF was longer (R2 = 0.38 using TOF3). 

The poor relationship of MOEdyn,TOF1 with MOEsta and MOR in clears (R2 = 0.16 

and R2 = 0.14) can be explained by the different height of the stem studied, 

roughly three meters apart. Mora et al. (2009) acoustically assessed young 

loblolly pine trees of relatively small dbh using TOF1N speed, and obtained 

clears from just above the section acoustically tested, obtaining a strong 

relationship with MOEC (R2 = 0.65). In addition, only a radial section was 

processed into clears weighting to replicate a bark-to-bark pattern, which is 

not representative of the entire section, particularly on trees with big dbh. A 

study on Scots pine (Auty and Achim, 2008) tested clears obtained from a log 

previously assessed using TOF1N speed. The study weighted the MOEsta of clears 

to replicate the whole section, and found a moderate relationship (R2 = 0.53) 

with acoustic velocity. Similarly, the study found a stronger relationship 

between TOF1N speed and weighted MOR (R2 = 0.59).  

According to the results, TOF tools do not only measure the outerwood 

properties of stems, and stiffness prediction would be importantly influenced 

by the distance measured. Measuring TOF over distances of two or three metres 

offered more reliable results of the stiffness in a tree than the commonly used 

one metre, most likely due to a change in the wave propagation. This becomes 

more important in larger trees. Further investigation could investigate Poisson’s 

ratio from TOF3 measurements using established equations and apply that to 

trees assessed with TOF1.  
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5.6 Conclusions 

This chapter has demonstrated the usefulness of portable acoustic tools for 

prediction of wood quality. In sawn timber they determined stiffness very 

reliably, and in combination with knot indexes gave a good prediction of 

strength. However acoustic measurements lack the capability of describing the 

variation of wood properties within a tree or log.  

Resonance measurements in logs provided good estimation of average stiffness. 

Current acoustic tools applied to standing trees over one metre distance must 

be used with care. If the aim is to segregate individual trees of commercial size 

for timber production a distance of at least two metres must be measured. This 

allows to improve the prediction of wood quality.  

This study also support the hypothesis that a stress wave travelling in a tree 

initially behaves as dilatational, changing with distance to a plane wave. This 

implies that the wave does not travel directly between the two probes, but 

likely up and across the tree’s trunk.  
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Chapter 6. Tree architecture and merchantability 

6.1 Introduction 

Estimation of standing tree volume has been always a major concern for 

growers. Measurements on standing and felled trees can describe the tree 

architecture and determine the timber volume. In G.B., wood volume is 

assessed to a top minimum diameter of 7 cm over bark. Depending on the top 

minimum diameter timber will be destined to different end products. An upper 

diameter of 14 cm over bark is the minimum size used for sawlogs, and 7 cm 

for pulpwood and biomass.  

Taper describes the tree shape as the decrease in stem diameter with 

increasing height up the stem. By calculating diameters at a certain height, 

taper functions allow estimations of the volume in a tree, and between any 

specified heights. It is common to obtain the merchantable volume equations 

for different end products relating diameters and heights. As well as volume, it 

is of primary importance to assess stem straightness because it determines the 

length of the sawnwood available, but it also has an effect on mechanical 

properties as the lack of straightness increases deviations in the grain angle 

(Macdonald and Hubert, 2002).  

Another two indicators of the tree architecture are slenderness, defined by the 

height and dbh of the stem, and crown ratio, defined by the relationship 

between crown depth and total tree height. These indicators could relate to 

timber quality. Growth responses are driven by the crown structure, which is 

defined by branchiness characteristics, which in turn cause the presence of 

knots in sawnwood, having ultimately an influence on the wood properties. 

The objective of this chapter is to investigate the architecture of noble fir, 

Norway spruce, western red cedar and western hemlock grown in G.B. Taper 

functions had not been yet developed for these four species in G.B. In addition, 

straightness, slenderness, crown and particularly branching characteristics are 

described. These results helped to understand better the potential 

merchantability for sawn timber of the four species investigated, and will help 

forest management decisions for timber production.  
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6.1.1 Objectives 

Specifically, the aims of this chapter for the four species studied are: 

1. To investigate the stem architecture and model taper functions for each 

species. 

To assess the straightness, and determine the tree diameter at any 

height, making possible calculation of the merchantable volume. 

2. To explore the relationship of crown ratio (CR) and slenderness with the 

mechanical properties.  

To evaluate the use of CR and slenderness as indicators of bending 

stiffness and bending strength. 

3. To examine the branching characteristics. 

To quantity the variation due to species, plots, trees and height within 

trees, and model the frequency, size and angle of insertion of branches. 

6.2 Literature review 

Previous chapters have been mostly concerned with wood quality for structural 

purposes. When timber production is pursued, knowledge on the quantity of 

timber available from a forest plays a key role for sustainable management.  

Knowledge on the relationship tree height-dbh is of primary importance for 

foresters, because ultimately these allow to predict wood volume. The 

relationship can also indicate the site index, and be used to compare stands 

because within a species it is expected that on a good site quality the height 

and dbh will be higher than in a lower quality site.  

The relationship varies over time, typically height and dbh increasing with age, 

and so does volume. For the mostly practised thinning from below, it is usually 

assumed that in an even-aged stand, the tallest trees are not affected by the 

thinning. The mean total height of the 100 trees of largest dbh per hectare is 

called top height (Matthews and Mackie, 2006). For a 0.01 ha sample plot the 

tree of largest dbh is referred to as top height sample tree (Forestry 
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Commission, 2016). The potential productivity of an even-aged forest 

plantation in British forestry is based upon the estimation of the Yield Class 

(YC), which is determined from the top or dominant height in relation to age 

(Matthews and Mackie, 2006).  

As well as productivity, it is essential to know the sawn wood recovery that can 

be diverted for structural timber. Stem straightness is an important attribute 

that determines the length of the sawnwood available per tree. In G.B. is 

assessed on the bottom six meters of the tree, and it was identified for the 

industry as the most important factor for quality of spruce logs (Methley, 1998).  

Sawlogs can be obtained over 14 cm diameter over bark. In order to estimate 

the sawlog volume it is recommended to construct taper functions or tree 

profile models. “Taper is the term used to describe the decrease in stem 

diameter with increasing height up the stem” (Clutter et al., 1983), and as 

Kozak (2004) states: taper equations provide estimates of: […] (ii) total stem 

volume; (iii) merchantable volume and merchantable height to any top 

diameter and from any stump height. Continuous technological changes in 

sawmills, in the merchantability standards and the requirements from the 

industry adapted to new end-uses products, suggest the need of models capable 

of adapting to varying merchantable limits. These models are flexible for the 

different shape in which trees develop, as opposed to the more traditional 

Smalian’s or Huber’s formulae. Taper functions have only been studied in G.B. 

for Sitka spruce and Scots pine (Fonweban et al., 2011) 

Another two characteristics of the tree architecture are slenderness and crown 

ratio (CR). Slenderness is the relationship between the tree height and dbh. 

Studies on radiata pine found a very good relationship between slenderness and 

stiffness (Lasserre et al., 2009), relating increases in slenderness with increases 

in stiffness to minimise the risk of stem buckling (Watt et al., 2006). Other 

study on Sitka spruce stated that slenderness is more accurate than standing 

tree velocity for stiffness estimation (Searles, 2012).  

Crowns play an essential role in the development of trees, they are an 

important link between stand dynamics and physiological processes (Weiskittel 

et al., 2010). The crown development can be a measure of inter-tree 
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competition, and therefore be an indicator of wood quality (Mäkinen and Hein, 

2006). Moore et al (2013) found a significant negative association of CR with 

mechanical properties, and suggested the use of the CR as a simple approach 

for wood quality segregation on Sitka spruce. A shorter crown is associated with 

a higher mechanical performance compared to a deep crown. The association 

is considered by some authors as a way of controlling the transition between 

juvenile and mature wood (Lachenbruch et al., 2011).  

The CR depends on the light availability, competition and shade-tolerance of 

species. A deep living crown implies a longer retention of branches, which 

among other factors is a consequence of a reduced competition (Macdonald and 

Hubert, 2002), due to either initial spacing or following silvicultural practices 

which derives in thicker branches and a bigger taper. Likewise, higher stand 

densities increase the height of the lowest living branch and lowest living whorl 

(Mäkinen and Hein, 2006). This chapter is interested in the branch 

characteristics because they are the cause of the presence of knots, having an 

influence on the wood properties but also on the log sorting and processing 

(Holland and Reynolds, 2005). Even though knots may not always be a primary 

cause of downgrade on some species like Sitka spruce (Methley, 1998), they 

may be on species with larger branches when grading structural timber in the 

intended use. A deeper study in the branchiness of these four species will help 

to understand their influence in timber quality, particularly knot size.  

Branchiness has been studied in G.B. for Sitka spruce (Achim et al., 2006), Scots 

pine (Auty, 2011) and Douglas fir (Drewett, 2015), but there is not any study in 

G.B. analysing the branching characteristics for the four species here studied, 

that in addition have different growth patterns. Whereas noble fir and Norway 

spruce form distinct growth units, identified with whorls and interwhorls, 

western red cedar and western hemlock lack of them. This different growth 

pattern was addressed before in a study of the crown of five conifer species 

(Weiskittel et al., 2010) dividing the crown length in 0.5 m sections.  

The aim of this chapter is to investigate the external stem characteristics of 

the four species studied. Relationships between heights and dbh are examined, 

and the stem profile characterised based in some known taper functions so that 

the sawlog volume can be estimated. Straightness, CR and slenderness are 
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examined in relation with wood quality. Finally, the branching characteristics 

are described. The number of trees investigated per species is low, and the 

analysis aimed to give an overview of the branchiness to help to understand the 

growth of the species in G.B. and the influence in wood quality. Outcomes of 

this chapter may help in the development of decision supporting systems where 

stem volume and wood quality are included to maximise the production 

considering wood quality.  

6.3 Material and methods 

6.3.1 Material and methods  

The general description regarding data collection used in this chapter were fully 

described in Chapter 2 Material and methods. A summary is provided below. 

• Three even-aged single species planted forests from different latitudes. 

• The age of the stands was different, as well as possibly the initial 

spacing, based on the common practise at the time of planting (Table 

2-2). 

• Trees felled in the northern site were used for branchiness assessment, 

with the exception of the extra tree of western hemlock. 

• There was no record of the silvicultural practices applied, but it was 

observed that the four stands had been thinned. 

Table 6-1 includes a list of those abbreviations used throughout this chapter.  

Table 6-1. Nomenclature and abbreviations used in Chapter 6. 

Variable  Definition 

CR Crown ratio (crown length/tree length) 

BD Diameter branch 

BDM Maximum branch diameter 

BRA Branch angle 

Dtop Distance from the stem apex to base of a metre section 

HT Tree height 

Section Section of the trunk of one metre length used for modelling 

branches 

NBR Number of branches in a metre 

YC Yield class 
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6.3.1.1 Standing tree measurements 

A total of 631 trees were measured within the studied plots for dbh, height and 

straightness as described in Chapter 2. Straightness assessment was based in a 

scoring system that evaluates the viability of the lower six metres stem to 

produce sawlogs (Table 6-2 and Figure 6-1).  

Table 6-2. Straightness scoring system 

Score Number and length of straight log lengths counted in butt 6 m 

1 No straight lengths ≥ 2 m 

2 One straight length ≥ 2 m but <3 m 

3 Two straight lengths ≥ 2 m but <3 m 

4 One straight length ≥ 3 m but <4 m 

5 One straight length ≥ 2 m but <3 m and 1 straight length ≥ 3 m but <4 m 

6 One straight length ≥ 4 m but <5 m 

7 One straight length ≥ 5 m 

 

Figure 6-1. Straightness scoring system (MacDonald et al., 2000; Methley, 1998) 

 

The straightness is a categorical variable so the median was calculated ranking 

the values as for ordinal variables.  

6.3.1.2 Taper measurements and merchantability 

Nine trees per species and site, except ten western hemlock in the north, were 

used for taper. After debranching the felled trees, diameters were measured 

over bark at 1-m intervals from 1 metre height up to tree top (Figure 6-2). Two 

diameters, the maximum and its perpendicular, were measured with callipers, 

and averaged to give an estimated mean diameter. The position of the 

measurement was slightly moved if a whorl, scar or similar was found, so 

avoiding alterations in the taper. Diameter tape was used if the calliper could 
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not encircle the section. If a fork was found, the longest stem was considered 

the main one. 

 

Figure 6-2. Taper measurements on noble fir.  

 

These measurements were used to calculate the taper function. The Smalian’s 

formula was used to calculate the volume of every 1 m section of the stem. The 

formula resembles the log as a cylinder of section the average of the large and 

small ends for the full log length (Figure 6-3). The tree top was treated as a 

cone.  

 

Figure 6-3. Smalian’s formula. Source: Ministry of Forests, Lands and Natural Resource 
Operations of British Columbia.  

 

The total volume was obtained by summing the individual sections. The 

merchantable volume for sawlogs was calculated up to 14 cm diameter over 

bark. 
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6.3.1.3 Crown depth 

Crown depth was identified on the trees selected for felling (108 trees). For 

noble fir and Norway spruce it was defined as the lowest living live whorl, 

considering at least 75 % of whorl was alive. Figure 6-5 shows the typical whorl 

growth. Western red cedar and western hemlock do not grow whorls (Figure 

6-6), and the crown was determined as the presence of at least four consecutive 

live branches. In addition, the height of the first living branch was measured. 

6.3.1.4 Branchiness 

Branchiness was assessed in the trees felled in Scotland (Figure 6-4) following 

the methodology shown in Colin and Houllier (1992), which was also adopted in 

G.B. for Sitka spruce (Achim et al., 2006). No signs of pruning were detected in 

any of the sites.  

 

Figure 6-4. Branchiness of a Norway spruce sampling tree. 

 

The following measurements were made on all of the branches over 5 mm 

diameter at the point of insertion, from the tip to the butt: 

• Distance from the bottom of the tree to the branch, that is, height of 

the branch in the standing tree. 

• Horizontal and vertical diameter of the branch at the point of insertion.  

•  Angle of insertion of the branch with the stem, placing a protractor at 

the centre of the base of the branch.  
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Figure 6-5. Branch distribution in a Norway spruce.  

 

 

Figure 6-6. Branches in a western hemlock. Blue dots represent a metre of distance. 

 

A total of 11042 branches were measured from 36 trees, nine per species. A 

summary of the main tree and branch attributes is given in Table 6-3. 

Table 6-3. Mean and standard deviation (in brackets) of the trees assessed for 
branchiness. See Table 6-1 for abbreviations. 

 Noble fir 
Norway 

spruce 

Western 

red cedar 

Western 

hemlock 

CR (%) 43.9 (5.7) 51.9 (8.1) 61.7 (7.4) 43.7 (12.0) 

BD (cm) 20.9 (11.0) 18.3 (11.1) 24.4 (12.4) 21.0 (13.0) 

BDM (cm) 32.5 (11.8) 31.8 (11.9) 35.7 (14.4) 36.1 (14.9) 

BRA (°) 84 (11) 78 (12) 80 (11) 84 (17) 

dbh (cm) 36.6 (5.6) 46.5 (3.8) 64.9 (8.4) 52.4 (6.2) 

HT (m) 20.8 (1.2) 28.0 (1.3) 30.5 (1.6) 33.0 (2.3) 

NBR 12.9 (3.9) 15.6 (6.2) 9.1 (3.4) 9.5 (4.3) 

 

Growth unit Growth unit 

Whorls 
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6.3.2 Statistical analysis 

The taper measurements aimed to model the stem profile of the species, not 

considering differences by sites. The material collected for branchiness 

represented only an overview of the branchiness of the species, which may 

change under different management. The statistical analysis was carried out 

with the R open-source statistical programming environment (R Development 

Core Team, 2016). The specifics of the analysis for each of the aims are: 

1. To investigate the stem architecture and model taper functions for each 

species. 

The relationship between the height and the dbh of the trees measured in the 

plots was examined. The software Forest Yield (Forestry Commission, 2016) was 

used to obtain the YC using the top height and age as inputs. The top height 

per site was calculated as the average height of the n thickest trees per plot, 

where n is the number of ares (one are is 0.01 ha) of the plot. 

The distribution of straightness scores was examined, and a Chi-Square test of 

independence conducted to examine differences between species. 

After investigating the relationship between variables, five taper functions 

were examined. They correspond with the five models retained for Scots pine 

and Sitka spruce in Northern Britain (Fonweban et al., 2011). The models were: 

Model 1   

 𝒅 = 𝑑𝑏ℎ × 𝒙(𝛼0+𝛼1 × (𝑧−1)) + 𝛼2 × (exp (𝛼3 × 𝑧))  [6-1] 

 
where x = (ht - h)/(ht-1.3); 

z = h/ht: relative height along the stem; 
ht = total tree height (m) 
h = height along tree bole (m) 
dbh = diameter ar breast height (cm) 

 
Model 2   

 𝒅 = 𝛽0 × 𝑑𝑏ℎ𝛽1 × 𝑥1
(𝛽2 × 𝑧2+𝛽3×ln(𝑧+0.001)+𝛽4√𝑧+𝛽5(𝑑𝑏ℎ/ℎ𝑡)) [6-2] 

 
where x1 = [(1-√z)/(1-√p)]; 
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P= point of inflection. It represents the point at which the tree shape 

changes from a neiloid form to a paraboloid form. It was fixed at 1.3/ht. 

Model 2b   

 𝒅 = 𝛽0 × 𝑑𝑏ℎ𝛽1 × 𝑥1
(𝛽2 × 𝑧2+𝛽3×ln(𝑧+0.001)+𝛽4(𝑑𝑏ℎ/ℎ𝑡)) [6-3] 

 
Model 3   

 𝒅 = φ4 × 𝑑𝑏ℎ × (1 − 𝑧)𝑘(ℎ,φ) × (1 + φ2 × 𝑒(φ3×𝑧)) [6-4] 

 
where ; 

k(h,φ) = φ0 + φ1(1-z); 
φ0 = φ00 + φ01(ht/dbh) 

 
Model 3b   

 𝒅 = φ4 × 𝑑𝑏ℎ × (1 − 𝑧)(φ0+ φ1×(1−z)) × (1 + φ2 × 𝑒(φ3×𝑧)) [6-5] 

 
The models were compared using the Akaike’s information criterion (AIC). The 

model efficiency (R2) was measured as the linear relationship between observed 

and predicted diameter, and error (RMSE). The chosen model was refitted 

afterwards using the nlme library in R (Pinheiro et al., 2016) for mixed-effects 

models. The random effects consisted of site and plot.  

2. To explore the use of crown ratio (CR) and slenderness as indicators of 

bending stiffness and bending strength.  

CR is the relationship between crown depth (m) and total tree height (m). 

Slenderness is the ratio between the tree height (m) and dbh (m). Pearson’s 

correlation examined the strength of the relationships between the variables 

defining the CR and slenderness as well as age and the height of the first live 

branch and first live whorl. A single one way ANOVA analysis tested differences 

in the mean values of CR between species. The correlation of the mechanical 

properties with CR and slenderness was tested at tree and site level.  

3. To examine and model the branching characteristics. 

Characteristics included number of branches, mean and maximum branch 

diameter, and angle of insertion. Since the species investigated had different 

growth patterns, the trunks were equally divided into 1 m sections, starting at 
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the ground level. A mixed model for hierarchical data structure was used to 

estimate the variance components (equation [2-6]) of the branch 

characteristics. The random effects consisted of plot, tree and section within 

the tree. 

A paired t-test investigated differences between the horizontal and vertical 

branch diameters. The branch size was investigated as average size and biggest 

branch per section. A single one way ANOVA analysis examined differences 

between species followed by a Tukey (HSD) test with α = 0.05. Different models 

used before for different species (Achim et al., 2006; Auty, 2011; Weiskittel et 

al., 2007) were tested, but this thesis adapted the models to the peculiarities 

of the growth pattern of the species studied. In order to minimise the influence 

of age, and more importantly avoid the influence of the larger stems, 

branchiness was investigated as relative height in the tree and per section of 

trunk. 

6.4 Results 

The most traditional stem variables, tree height and dbh, were strongly 

correlated (Table 6-4). Age showed a strong correlation with tree height, less 

well with dbh.  

Table 6-4. Pearson’s correlation (r) between variables for the 108 trees felled for taper  

 
Tree 

Height 

1st live 

branch 

1st live 

whorl 
dbh CR Age 

Tree Height  1          

1st live branch 0.23* 1     

1st live whorl 0.57*** 0.76*** 1    

Dbh 
0.72*** 

(0.661)*** 
-0.22* 0.14ns 1   

CR -0.01ns -0.76*** -0.80*** 0.32*** 1  

Age 0.74*** 0.22* 0.50*** 0.57*** -0.09ns 1 

Slenderness 0.01ns 0.55*** 0.39*** -0.65*** -0.46*** -0.02ns 
1 Correlation between variables for the 627 trees within plots. ***P-value< 0.001; **P-value< 
0.01; *P-value< 0.05; ns: no significant 
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6.4.1 Stem architecture 

6.4.1.1 Heights and diameters 

The overall relationship between the height of the measured trees in the plots 

and dbh was moderate (R2 = 0.44, RMSE = 3.6 m). A significant difference in the 

relationship was observed due to the effect of species and site (P<0.001). By 

species, the strongest relationship was in noble fir, and the lowest in western 

red cedar (Figure 6-7).  

 

Figure 6-7. Relationship between dbh and height per tree by species.  

 

The younger western red cedar trees in the south site reached a lower height 

compared to the middle site for a similar dbh. Otherwise, the relationship 

showed a general trend for which the larger the dbh the taller the tree, both 

increasing with age.  

The three variables determined the productivity of the site, calculated from 

the top or dominant height in relation to age (YC). Figure 6-8 shows an example 

of the output in Forest Yield (Forestry Commission, 2016) of the YC for the stand 

of western red cedar in the middle site.  
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Figure 6-8. Example of YC 20 for western red cedar in the middle site. 

 

Table 6-5 includes the age and top heights used to calculate the YC per site and 

species as well as other stand and tree characteristics.
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Table 6-5. Stand and tree characteristics for study sites. 

Stand level characteristics Tree level characteristics 

Species Site 
Age 

(years) 
YC 

Top Ht 

(m) 

Density dbh (cm) Ht (m) Volume (m3) CR (%) 
Slenderness 

(m/m) 

N/ha1 Mean Sd Mean Sd Mean Sd Mean Mean  Sd 

Noble fir 

S 30 22 18.5 2040 28.0 6.4 18.2 2.0 0.610 0.187 47.0 62 8 

M 58 18 24.9 442 35.1 6.5 22.8 2.2 0.120 0.303 46.5 65 5 

N 38 22 22.8 1011 30.7 9.4 19.1 3.1 0.108 0.405 43.9 58 7 

Norway 

spruce 

S 44 22 25.5 428 33.4 7.6 23.9 3.8 0.688 0.135 54.5 66 5 

M 76 14 27.1 414 39.4 5.6 25.4 2.1 0.103 0.460 42.9 62 5 

N 44 22 27.2 247 44.5 6.2 27.3 2.6 0.282 0.359 51.9 61 5 

Western 

red cedar 

S 35 22 20.4 644 34.7 5.9 19.2 1.2 0.106 0.158 65.3 55 8 

M 61 20 28.3 796 32.6 10.9 24.9 3.3 0.143 0.376 50.6 73 15 

N 78 16 27.8 314 64.0 13.9 29.0 3.9 0.170 0.732 61.7 48 5 

Western 

hemlock 

S 44 20 26.6 241 45.1 5.1 26.2 1.8 0.163 0.306 57.4 56 6 

M 49 20 27.5 995 28.8 7.3 24.6 3.0 0.969 0.352 34.0 80 12 

N 78 18 34.1 466 48.8 10.2 33.1 2.0 0.277 0.771 43.7 64 7 

Sites: S, south; M, middle; N, north; Ht: Tree height; YC: yield class (m3 ha-1 year-1);1Stand density at the time of the data collection based in the plots measured. 
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6.4.1.2 Straightness 

Norway spruce and western red cedar scored better than noble fir and western 

hemlock in terms of straightness (Figure 6-9). Data showed there are similarities 

in the distribution between noble fir and western hemlock, and from most of 

the trees, only a 2-m straight log (category 2) could be obtained. Norway spruce 

and western red cedar also keep some similarities, with most of the trees 

producing straight logs of at least 4-m length (categories 6 and 7) in the bottom 

six metres.  

 

Figure 6-9. Barplot of category straightness by species. 

 

As straightness is a categorical variable, a Chi-Square test of independence was 

conducted, and a significant difference between species was observed (P< 

0.001). The distribution of straightness in percentage is shown in Table 6-6.  

Table 6-6. Percentage of straightness by species 

Straightness 

score 
Noble fir (%) 

Norway 

spruce (%) 

Western red 

cedar (%) 

Western 

hemlock (%) 

7 13.6 26.4 27.2 4.7 

6 14.2 22.7 34.4 11.3 

5 4.9 12.9 6.6 12.7 

4 8 8 2.6 3.3 

3 13 11 1.3 11.3 

2 30.2 17.2 21.2 34 

1 16 1.8 6.6 22.7 

 

Norway spruce stood out as the species scoring the best, although more than 

60% western red cedar scored as category 6 or above. On the other hand, less 

than a third of western hemlock would achieve a minimum of three metres 

length required for structural-size timber. 
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A Chi-Squared test of independence found that there were differences between 

sites within species (P< 0.001) except for Norway spruce (P= 0.238). Particularly 

important were the differences in western hemlock with an important 

percentage of non-straight logs in the middle site and scoring mostly 2 in the 

south and 5 or above in the north (Figure 6-10). 

 

 

Figure 6-10. Barplot of category straightness by species and site. 

 

6.4.1.3 Taper measurements and merchantability. 

Table 6-5 reported the mean volume of the full tree length. The merchantable 

volume up to 14 cm diameter is given in Table 6-7. The height for sawlog 

production located between 65% and 79% of the total tree length. In terms of 

merchantable volume, this meant between 94% and 99% of the total volume. 

Values were similar between species.   
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Table 6-7. Merchantable volume for sawlogs by species and site. 

  
Age 

(years) 

Merchantable volume (m3) 

  
Mean sd 

Mean % Mean % 

  stem volume height stem 

Noble 

fir 

South 30 0.58 0.20 93 67 

Middle 58 1.18 0.31 97 78 

North 38 1.05 0.41 97 75 

Overall  935 0.40 96 73 

Norway 

spruce 

South 44 1.01 0.15 95 73 

Middle 76 1.40 0.46 97 74 

North 44 1.67 0.36 98 74 

Overall  1.36 0.43 97 73 

Western 

red 

cedar 

South 35 0.65 0.16 94 68 

Middle 61 0.99 0.38 94 69 

North 78 2.79 0.73 99 79 

Overall  1.48 1.07 95 72 

Western 

hemlock 

South 44 1.60 0.31 98 70 

Middle 49 0.92 0.36 94 65 

North 78 2.72 0.78 98 77 

Overall  1.78 0.92 97 71 

 

The decrease of the diameter size along the relative height of the tree is shown 

in Figure 6-11. The minimum diameter for sawlog varied between 62 and 84% 

of the tree length, with the mean around 75%. 

  

Figure 6-11. Relationship between the relative height of a point in the tree and its diameter. 
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Figure 6-12 shows how the diameter of trees decreased with height along the 

trunk. Although an overall linear relationship explained 63% of the variance, it 

could not be described as linear. 

 

Figure 6-12. Taper profiles of the four species studied. 

 

A further analysis, showed that the height of a point relative to the total height 

of the tree with the relative diameter (diameter at a certain height compared 

to the dbh) had a better relationship (R2 = 0.91).  

 

Figure 6-13. Relationship between the diameter relative to the dbh and the relative height 
of a point in the tree. 
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Figure 6-13 shows that Norway spruce and western hemlock described a similar 

trend, with western red cedar keeping similarities but a less pronounced 

curvature. Noble fir on the other hand described a wider curvature.  

Table 6-8. Fit statistics for taper functions tested (NA: the model did not converge).  

  Model (number of parameters) 

  1 (4) 2 (7) 2b (5) 3 (6) 3b (5) 

Overall 

R2 0.95 0.97 0.97 0.95 0.94 

RMSE (cm) 3.00 2.39 2.41 2.79 3.07 

AIC 13615 12171 12208 13092 13774 

Noble fir 

R2 NA 0.98 0.98 0.98 NA 

RMSE (cm) NA 1.32 1.34 1.38 NA 

AIC NA 1862 1879 1916 NA 

Norway 

spruce 

R2 0.98 0.99 0.99 0.99 0.98 

RMSE (cm) 1.51 1.38 1.39 1.40 1.53 

AIC 2537 2406 2417 2422 2556 

Western 

red cedar 

R2
 0.96 0.97 0.97 0.97 0.95 

RMSE (cm) 2.86 2.20 2.24 2.51 2.95 

AIC 3305 2876 2898 3074 3367 

Western 

hemlock 

R2
 0.98 0.98 0.98 0.98 0.98 

RMSE (cm) 1.8 1.72 1.72 1.73 1.82 

AIC 3115 3038 3036 3045 3136 

 

The five models tested performed well based on the “goodness-of-fit” (R2), 

fitting the functions both to the overall dataset and the individual datasets for 

each species (Table 6-8). Model 2 and Model 2b had the highest overall R2 and 

lowest RMSE for the four species, followed by Model 3. Model 1 performed 

slightly worse than the other models except Model 3b. Model 2b contained five 

parameters and required to fix the point of inflection p, which depends on the 

species and can be difficult to determine. Model 1 consisted of less parameters 

than the rest of models, and was chosen as preferred taper function.  

A first attempt aimed to fit the model for the four species, but the model was 

not significant for noble fir. The removal of α0 for noble fir offered a model 

with all the parameters significant, and with a lower AIC (1961) that the 

removal of α2 (1969). The fixed model (Figure 6-14) had an R2 = 0.98 and 

RMSE=1.45. 



182 

 

 

Figure 6-14. Model 1 for noble fir using the four parameters, without α0 and without α2.  

 

A second stage assessed for each species the chosen model as a mixed model 

including sites and plots as random effects. The selected model had the form:  

𝑑𝑖𝑗𝑘𝑙 = 𝑑𝑏ℎ𝑖𝑗𝑘𝑙 × 𝑥𝛼0,𝑖  +(𝛼1,𝑖+ 𝐴1,𝑖𝑗+𝐴1,𝑖𝑗𝑘) × (𝑧−1) + 𝛼2,𝑖 × (exp (𝛼3,𝑖 × 𝑧))) +  𝜀 
[6-6] 

where dijkl was the diameter (cm) at the lth height along the kth tree at the jth 

site of the ith species. The fixed effects coefficients were α0, α1, α2 and α3 for 

each ith species. Parameters A1,ij and A1,ijk represented the random effects 

affecting α1 at the site and plot levels, respectively. The model did not improve 

importantly when including random effects on α0, α2 and α3. The random effects 

were assumed to be independent and normally distributed with mean zero and 

variance σ2. The residual error was ε. Table 6-9 reports the values resulting of 

the selected Model 1 ([6-6]) with mixed-effects (see appendix for details). 

Visual inspection of residual plots did not reveal any pattern evidencing 

heteroscedasticity or lack of independence (see appendix Chapter 6).   
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Table 6-9. Parameters estimates for the selected mixed-effects model 

 α0 α1 α2 α3 R2 RMSE AIC 

Noble fir   1.67 2.16 -1.01 0.99 1.16 1759 

Norway spruce  0.88 0.48 3.22 -8.28 0.99 1.36 2421 

Western red cedar  0.88 0.11 6.21 -9.54 0.97 2.35 3007 

Western hemlock  0.95 0.80 1.99 -5.50 0.99 1.50 2873 

 

The Figure 6-15 shows the resulting model plot by species for a simulated tree 

of 35 cm dbh and 25 m height. 

 

Figure 6-15. Selected model plot by species. 

 

The figure shows that western red cedar reached the 14 cm diameter over bark 

at a lower height than the other species, whereas noble fir reached that higher 

in the stem. This means that noble fir had a longer paraboloid section on the 

stem and therefore more volume could be used for as sawlog. For a simulated 

tree of dbh 35 cm and height 25 m, the model concludes that 19.6 m of a noble 

fir stem could be used for sawlog conversion. A Norway spruce stem, could only 

be used 17.9 m, western red cedar 16.9 m and western hemlock 17.9 m.   

Minimum diameter for sawlogs 
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6.4.2 Crown and slenderness characteristics 

For the data here investigated, a single one way ANOVA analysis showed that 

the mean CR was different by species (F3,104 = 10.1, P<0.001).  

The relationship of CR with MOE is shown in Figure 6-16. At a tree level the 

correlation was very weak (r=-0.16), with P-value = 0.09. At a site level and per 

species, the correlation did not result statistically significant (P= 0.19).  

 

Figure 6-16. Relationship of MOE with CR per tree (left) and site (right). 

 

The relationship of CR with MOR is shown in Figure 6-17. The correlation was 

not significant, neither at tree or site level (P= 0.8 and P= 0.6). 

 

Figure 6-17. Relationship of MOR with CR per tree (left) and site (right). 
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The relationship of slenderness with MOE showed a more linear relationship 

(Figure 6-18) than CR, resulting the correlation significant at a tree level 

(r=0.44, P<0.001), but not significant at site level (r=0.45, P= 0.14). 

 

Figure 6-18. Relationship of MOE with slenderness per tree (left) and site (right). 

 

Similarly, the relationship between slenderness and MOR (Figure 6-19) was 

significant at tree level (r=0.41, P<0.001), but it was not significant at site level 

(r=0.38, P= 0.21). 

 

Figure 6-19. Relationship of MOR with slenderness per tree (left) and site (right). 

  



186 

 

6.4.3 Branch characteristics 

The number of branches, diameter and angle of insertion were investigated. 

For the branch diameter, the vertical and horizontal diameters measured were 

averaged. An analysis of the variance components showed that the highest 

variance occurred within trees (Table 6-10).  

Table 6-10. Percentage of total variation in branch characteristics attributable to each 
stratum in the experiment.  

 Species Plot Tree 
Section 

(Metre) 

Within 

metre1 

Number of branches      

Overall 29.2% 0.01% 8.7% 61.5% 0.5% 

Noble fir   3.7% 6.6% 78.2% 11.5% 

Norway spruce  0.01% 13.4% 86.4% 0.3% 

Western red cedar   0.01% 10.1% 89.6% 0.3% 

Western hemlock  0.01% 13.8% 85.8% 0.3% 

Max BD per metre           

Overall 0.7% 2.6% 6.9% 89.8%  

Noble fir   6.1% 13.6% 80.3%  

Norway spruce  0.5% 0.7% 98.8%  

Western red cedar  6.1% 9.8% 84.1%  

Western hemlock   0.01% 4.7% 95.3%   

Mean BD per metre      

Overall 7.2% 1.4% 5.8% 85.6%  

Noble fir   7.3% 15.6% 77.1%  

Norway spruce   0.01% 3.5% 96.5%  

Western red cedar   2.8% 1.5% 95.7%  

Western hemlock   0.01% 5.8% 94.2%   

Angle of insertion      

Overall 3.2% 0.01% 6.5% 28.9% 61.4% 

Noble fir   0.5% 4.3% 26.3% 68.9% 

Norway spruce   0.01% 7.0% 33.6% 59.3% 

Western red cedar   0.01% 1.8% 37.7% 60.5% 

Western hemlock   0.01% 9.2% 29.1% 61.7% 
1 Within metre could only be assessed for number of branches and angle of insertion. 
 

Overall, most of the variation occurred in trees. Whereas the number and 

diameter of branches varied mostly with height, the angle of insertion varied 

mostly within sections, which was the last hierarchical stratum assessed. These 

results highlighted the importance of the height variation in the modelling of 

branchiness.  
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The next sections moved on to discuss these differences, describing the within 

tree variation, with the due limitations due to the small number of trees per 

species. 

6.4.3.1 Number of branches 

A total of 11042 branches were measured. The trees of noble fir were 

considerably shorter than the rest of species and so results were investigated 

per individual metre (section) in the tree. Norway spruce had more branches 

(3756) than the other three species. Noble fir did not have as many branches 

(2363) although it was 6 years younger and shorter than Norway spruce. Western 

red cedar and western hemlock, both much older and higher than Norway 

spruce (branch counts of 2256 and 2667 respectively).  

The histograms in Figure 6-20 show that Norway spruce had a larger number of 

branches per metre, mostly between 11 and 20 branches, but up to 28 branches 

in a metre. Noble fir mostly had between 10 and 16 branches per metre and 

western red cedar and western hemlock between 7 and 10 branches. 

 

Figure 6-20. Histogram showing the number of branches per metre. The lower limit is 
included, and the upper limit is excluded. 
 

In general, the number of branches increased with height, although in noble fir 

the number of branches was very similar along the stem. Figure 6-21 shows the 

density of branches per metre along the stem. 
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Figure 6-21. Distribution of the number of branches with height. In red the mean values. 

 

In line with Figure 6-20, Norway spruce had more branches in each metre along 

the stem than the other three species, with a more pronounced increment with 

height than the other species. Western red cedar and western hemlock showed 

a steep rise in the lower part of the stem, becoming more steady afterwards. 

The increase in the lower part of the stem may be masked by the self-pruning 

dynamic in the trees due to the dynamics of the trees and the stands. 

A linear model with the one-metre Section as predictor variable, and the 

interaction of species as categorical variable explained 40% of the variance. 

Including the random effect tree on the intercept of the model explained 50% 

of the total variation, increasing to 55% when the model was also fitted with 

the random effect of the one-metre Section on the slope. For the number of 

branches (NBR), the equation [6-7] gave the best fit for a linear model: 

𝑁𝐵𝑅𝑖𝑗𝑘𝑙𝑚 = 𝛼0,𝑖 + 𝐴0,𝑖𝑗 +  (𝛼1,𝑖  +  𝐴1,𝑖𝑗𝑘) × 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 + ε [6-7] 
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where α0,i and α1,i were the parameters for intercept and slope depending on 

the ith species and the interaction with Section. The parameters A0,ij and A1,ij 

were the random effect of the jth tree on the intercept and the kth metre on 

the slope respectively. The residual error was indicated by ε. The random 

effects and residual errors were assumed to be independent and normally 

distributed.  

As non-linear functions, the following models were tested: 

▪ 𝑙𝑛(𝑁𝐵𝑅) = 𝛼0 + 𝛼1𝑙𝑛 (𝑆𝑒𝑐𝑡𝑖𝑜𝑛) + 𝛼2𝑑𝑏ℎ [6-8] 
 

based in Auty (2011). In addition, the NBR was also calculated without 

the natural logarithm (ln) transformation  

𝑁𝐵𝑅𝑖𝑗𝑘𝑙𝑚 = 𝛼0,𝑖 + 𝐴0,𝑖𝑗 +  (𝛼1,𝑖  +  𝐴1,𝑖𝑗𝑘) × 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 + ε [6-9] 

 

▪ 𝑁𝐵𝑅 = 𝛼0 × Section𝛼1 × e−𝛼2×Dtop [6-10] 
 

based in Achim et al. (2006), where Dtop is the distance from the bottom 

of the metre section to the top of the tree.  

The models used the one-metre Section on which the tree was divided as 

predictor variable as oppose to the growth unit used in the original models. Due 

to the different trends observed in Figure 6-21 the models were fitted 

individually by species. The linear model [6-7] explained more variation than 

the rest of functions tested (Table 6-11), followed by model [6-8] with the 

mentioned modifications  

Table 6-11. Comparison of the assessment model fit with different random effects. 

Model Noble fir 
Norway 

spruce 

Western red 

cedar 

Western 

hemlock 

[6-7] Linear 22% 53% 47% 34% 

[6-8]  11% 49% 41% 29% 

[6-9] 16% 46% 37% 31% 

[6-10]  14% 34% 27% 18% 

 

Thereby, the linear model came up as the selected model with the parameters 

given in Table 6-12 (see appendix 6 for details). 
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Table 6-12. Fixed parameters for prediction of number of branches [6-7]. 

 

Noble 

fir 

Norway 

spruce 

Western 

red cedar 

Western 

hemlock 

Intercept 11.71 9.44 6.58 6.75 

Slope 0.11 0.44 0.16 0.16 

 

The highest slope in Norway spruce reflected the higher number of branches 

compared to the other three species. Plots of the normalised residuals versus 

fitted values and the explanatory variables selected did not show any clear 

trend (see appendix). 

6.4.3.2 Branch diameter 

A paired t-test showed that the vertical diameter was bigger than the horizontal 

(P< 0.001) by a difference much smaller than the measurement, and the mean 

value of both branch diameters was used instead. 

The branch diameter (BD) was bigger in western red cedar (Table 6-3). Similar 

mean values were found on noble fir and western hemlock, even though there 

was a large difference in age. Norway spruce presented the lower mean BD, 

although the number of branches was particularly high between 5 and 10 mm.  

 

Figure 6-22. Mean (left) and maximum (right) size branch distribution by species. 

 

The mean BD did not follow a normal distribution (Figure 6-22, left), and a 

Kruskal-Wallis test showed that the mean BD was different between species 

(P<0.001). The posthoc Tukey and Kramer (Nemenyi) test indicated that there 
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were differences between all the pairs (P<0.001), less significant between 

noble fir and western hemlock (P<0.1) as Table 6-3 suggested.  

The biggest branch per metre section followed a normal distribution. (Figure 

6-22, right). A single one way ANOVA found differences between species in the 

means of the maximum BD. Figure 6-23 shows the posthoc Tukey (HSD) test, 

where the biggest branch in western red cedar and western hemlock were 

thicker than in noble fir and Norway spruce. No significant differences were 

observed between Norway spruce and noble fir or between western red cedar 

and western hemlock.  

 

Figure 6-23. Tukey Test for the maximum branch size per metre. 

 

The branches increased in diameter with height from the base, achieving a peak 

in the crown from which diameter decreased again towards the top of the tree. 

Figure 6-24 suggests that the biggest diameters located near the crown base 

although in western red cedar was higher. 

P = 0.96 

P = 0.06 

P = 0.02 

P = 0.008 

P = 0.002 

P = 0.99 

Norway spruce - noble fir 

Western red cedar - noble fir 

Western hemlock - noble fir 

Western red cedar – Norway spruce  

Western hemlock  - Norway spruce  

Western hemlock – western red cedar  
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Figure 6-24. Diameter of branches along the stem. The lines indicate the mean crown base. 

 

The location of the largest BD in the tree was calculated as relative position 

within the crown. The largest BD was mostly located within the crown, although 

there was an important variation between the four species, and in some of the 

trees the largest BD grew below the current crown. The largest branch per tree 

in noble fir occurred on average at 85% within the crown from the apex (15% 

above the crown base), in Norway spruce at 78%, in western red cedar at 73 % 

and in western hemlock at 79% (21% above the crown base). Noble fir, gathered 

a mean of 47% of the branches within the crown, Norway spruce 63%, western 

red cedar 75% and western hemlock 54%.  

Examining the height of branches relative to the crown base in the tree, noble 

fir and Norway spruce described a more homogeneous trend, compared to 

western red cedar and western hemlock that showed a wider dispersion. In 

Figure 6-25 left, values below one indicate branches below the crown. It can 

also be observed the longer crown of western red cedar compared to the other 

three species. In relative terms of height (Figure 6-25, right), western hemlock 

and western red cedar had the maximum diameter branch around 65% of the 

tree length, with noble fir and Norway spruce slightly lower. 
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Figure 6-25. Distribution of the maximum diameter branch relative to the crown base (left) 
and total tree height (right). 

 
The average branch diameter in a metre section was modelled following the 

function in Achim et al. (2006).  

 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑫𝑩 = 𝛼0,𝑖 +  𝛼1,𝑖 × (1 − ℎ𝑎) × 𝑒−(𝛼2,𝑖+𝐴2,𝑖,𝑘)×ℎ𝑎 + ε [6-11] 

 
where ha is the ratio between the distance from the apex of the tree to the 

bottom of the corresponding metre relative to the total tree height (Dtop/HT). 

Thereby, ha in the first metre is 1, as the distance from the apex to the bottom 

correspond with the whole tree length. The fixed model explained 55% of the 

total variance. Adding species as fixed effect the model only converged with 

metre as random effect, which explained 64% of the variance. Parameter A2,ik 

represented the random effect affecting α2 at the section level for the ith 

species. Table 6-13 reports the values of the parameters resulting of the 

selected model [6-11]. 

Table 6-13. Parameters estimates for the selected mixed-effects Model average BD. 

 Fixed effects  

 α0 α1 α2 Var. Residual 

Noble fir  6.3 7.64 -3.06 5.10 

Norway spruce  1.09 10.15 -2.8 3.47 

Western red cedar  -1.79 11.51 -3.26 4.34 

Western hemlock  -0.75 12.04 -2.93 4.98 

 

The mean absolute error of the model was 3.5 mm, and the mean percentage 

error 18.9%.  



194 

 

The four species achieved the diameter peak at approximately the same 

relative height, roughly at 65% of the relative height. The Figure 6-26 shows the 

resulting model plot by species. 

 

Figure 6-26. Predicted mean BD per metre for a relative height. 

 

Plots of the normalised residuals versus fitted values and the explanatory 

variable metre in the trunk showed no clear trends. 

6.4.3.3 Branch angle 

The construction of the model used 10995 branches, with insertion angles 

between 15° and 130° to discard ramicorn branches or unusual growth.  

  

Figure 6-27. Frequency histogram of the insertion angle in the stem. 
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Figure 6-27 indicated that angles were mostly between 70 and 100 degrees. 

There were more acute branches in noble fir and western hemlock, gathering 

the later more branches than the rest of species with branches of more than 

100 degrees. The mean values per species were 78° in Norway spruce, 80° in 

western red cedar and 84° in noble fir and western hemlock.  

The Figure 6-28 shows that in general the branches adopted a more acute angle 

towards the top of the tree, showing in general a trend from the bottom 

upwards. In the four species, a wide range of angles was found at roughly 75% 

of the relative height, with a higher presence of acute branches than in the rest 

of the stem. Western hemlock counted with more obtuse angles of insertion 

than the others species, slightly more towards the top of the tree. Obtuse 

angles appeared mostly near the apex in noble fir, whereas in Norway spruce 

avoided the lower part with no clear pattern along the stem. Western red cedar 

did not show a clear trend for angles higher than 100°. 

 

Figure 6-28. Angle of insertion of branches along the tree. 

 

Pearson correlation between variables were explored, but that test is a 

measure of the strength of the linear relationship and no single variable 

correlated strongly with the branch angle that could be used as main predictor 

for modelling. Distance from stem apex has been previously used in branch 
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angle models, but here the correlation was weak (r=0.28), nevertheless the 

highest.  

Different non-linear functions were tested to model the angle of insertion. They 

corresponded to previously functions fitted to Scots pine (Auty, 2011), Sitka 

spruce (Achim et al., 2006) and Douglas fir (Weiskittel et al., 2007). In order to 

adapt the models to the study, modifications were introduced. As before, 

variables related to the base of the growth unit were substituted for the one 

metre Section. Weiskittel et al. (2007) included site index as variable, which 

was not included in the model investigated, and a fixed parameter was used 

instead.  

The three models explained very little of the variance using only fixed effects 

(17%, 18% and 23% respectively). The inclusion of species as fixed effects 

explained 45%, 45% and 34%. The model used in Weiskittel et al. (2007) was 

discarded first for offering the lowest goodness-of-fit and for its complexity 

compared to the other two models. The model used in Auty (2011) had four 

parameters, and it was not significant for western red cedar and western 

hemlock. On the contrary, the model used in Achim et al. (2006) for Sitka spruce 

had three parameters, and all the parameters were significant. Table 6-14 

compares the efficiency of the three models.  

Table 6-14. Information criteria of the models investigated for branch angle of insertion. 

Models R2 AIC LogLik MAE ME(%) 

Achim et al (2006) 0.45 82908 -41435 7.1 9.8 

Auty (2011) 0.45 83050 -41503 7.1 9.8 

Weiskittel et al (2007) 0.33 83221 -41582 7.8 10.7 

 

The model had the form: 

 𝑨𝒏𝒈𝒍𝒆 = (𝛼0,𝑖 + 𝐴0,𝑖𝑗 + 𝐴0,𝑖𝑗𝑘) × 𝑒(−𝛼1,𝑖/(𝛼2,𝑖−ℎ𝑟)) [6-12] 

 
where A0,j and A0,jk are the random effect of tree and section affecting the 

parameter α0 and hr is the relative height of the branch on the tree. The 

parameters α0, α1, α2 and α3 were the fixed effects coefficients for each ith 

species. The model was weighted to allow different variances according to the 

levels of species. Table 6-15 reports the values resulting of the selected model. 
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Table 6-15. Parameters estimates for the selected mixed-effects Model branch angle. 

 Fixed effects   

 α0 α1 α2 Variance Residual 

Noble fir  85.81 0.004 1.00 9.09 

Norway spruce  83.72 0.02 1.04 9.41 

Western red cedar  86.08 0.02 1.03 8.70 

Western hemlock  90.12 0.02 1.03 13.07 

 

Plots of the normalised residuals versus fitted values and the explanatory 

variables selected showed no obvious trends (appendix Chapter 6). Figure 6-29 

shows a simulation on the insertion angles for the mean tree per species.  

 

Figure 6-29. Simulated insertion angle with relative height for the mean tree per species 
 

The model shows that the angle of insertion in noble fir barely changes along 

the stem, whereas in the other three species there is a progressive decrease in 

the insertion from about three quarters up the tree height. 

6.5 Discussion 

This chapter assessed the merchantability of the four species investigated 

considering different aspects of the tree architecture.  

The relationship between height and dbh, typically employed for estimation of 

stand timber volume, was moderate (R2 = 0.44), and differences with species 
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and sites were observed. The influence of site could be due to the different age 

of the stands and/or the quality of the site. Therefore, the relationship height-

dbh must be used on stands of similar characteristics. Attending to the YC 

calculated, that takes into account the age of the stand, noble fir would 

produce more volume than the other three species. 

In order to assess what degree of wood recovery could be diverted to structural 

timber, straightness in the lower six metres of the stem was examined as a first 

approach. Differences were found between species. Norway spruce and western 

red cedar produced straighter logs than noble fir and western hemlock, 

although differences were also found between sites, except for Norway spruce.  

Taper functions were built to predict the diameters at any height. For sawlogs, 

the British forestry industry uses an upper diameter of 14 cm over bark, which 

typically locates above the six metres assessed for straightness. The taper 

models built gathered data from three sites.  

Five functions were tested, all performing well based on the “goodness-of-fit”, 

between 0.97 and 0.99. In terms of accuracy, the root mean square error (RMSE) 

in the models ranged from 1.32 to 2.95, similar to those reported in other 

studies (Rodríguez et al., 2015; Rojo et al., 2005), with small differences 

compared to the RMSE around 1 found in Sitka spruce and Scots pine in G.B. 

(Fonweban et al., 2011). Western red cedar showed a bigger RMSE in all the 

models, probably due to the buttressed and fluted trunk of some stems. Model 

2 and Model 2b were found to be superior (based on AIC and residual mean 

squares), but they required to define the inflection point at which the tree 

shape changes from a neiloid form to a paraboloid form. This point varies with 

species (Kozak, 1988), and in this chapter was fixed at 1.3/ht as done in 

previous studies (Fonweban et al., 2011; Garber and Maguire, 2003).  

In terms of model simplicity, and due to the small difference in “goodness-of-

fit”, Model 1 was chosen as preferable. The function is a variable-form taper 

model, describing the stem shape with a changing exponent with relative 

height, and it was previously used for Norway spruce in France (Houllier et al., 

1995) as well as in Sitka spruce (Fonweban et al., 2011). The model aimed to 

fit the four species simultaneously using a nonlinear mixed-effects model, but 
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noble fir described a longer paraboloid profile compared to the other three 

species. This meant a higher proportion of the stem could be used for sawlog, 

in line with the higher YC suggested. As a result, a different model was built 

for noble fir using Model 1 without the parameter α0. The two selected models 

included site and plot as random effects to account for the nested variability, 

which reduced the AIC and RMSE. The suggested models only required to record 

dbh, distance along the stem and total tree height. As well as estimate the 

merchantable sawlog volume, taper functions can also be used for other 

products with different dimensions requirements.  

The taper function can be used in the absence of regional taper models, but 

may vary between sites, silviculture applied and genetics. These three factors 

have also an influence of crown development (Houllier et al., 1995), that have 

been used for some authors as indicators of wood quality. A wider spacing is 

known to influence the crown depth and wood quality (Macdonald and Hubert, 

2002), associating a shorter crown with a higher mechanical performance 

compared to a deeper crown. For Sitka spruce in G.B., Moore et al. (2013) found 

a significant negative association between the mean value of MOEPB and CR (ρ 

= -0.63, P<0.05) in a site. Even though there may be an effect of CR on 

mechanical properties as part of the stand dynamics, this was not significant in 

this thesis. In none of the four species, not a tree or site level, a significant 

trend was found. Kuprevicius et al (2013) specifically examined the relationship 

between crown dimensions and wood properties on white spruce with spacing 

and thinning trials, and highlighted the limitations of the relationship when the 

trees had a small range of crown ratios like in the present chapter. 

Another external characteristic, slenderness, was found to have a strong 

relationship (r=0.84) with dynamic stiffness in a 11 years old crop of radiata 

pine with two spacing treatments (Lasserre et al., 2009). Results in this thesis 

found a moderate correlation with the mean MOEPB per tree (r=0.44). In line 

with the CR, the different spacing in Lasserre’s study may have had a bigger 

impact in the slenderness compared to likely the more similar management in 

the stands here investigated.  

The influence of management regimes on growth (Hein et al., 2007; Hein et al., 

2008b) and timber quality (Houllier et al., 1995) have often been study through 
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branch characteristics. This thesis examined the number of branches, size and 

angle of insertion in the four species under study. The four species studied do 

not have the same growth pattern. Noble fir and Norway spruce grow distinct 

annual growth unit, whereas annual branch whorls are not distinct in western 

hemlock (Nigh, 1996). The case of western red cedar has been referred to as 

“guerrilla-like growth pattern” with new branches being formed one at a time, 

on alternating sides of each terminal bud (Edelstein and Ford, 2003). In order 

to compare the four species, it was decided to model the branches per metre 

of stem instead of using the growth unit as other studies typically address. This 

approach has limitations as it will not account for the vigour of the tree, which 

influence the number (Hein et al., 2008a) and size of branches. 

Studies typically assess branch attributes in one species. This study quantified 

the differences between and within the four species. Hierarchical mixed models 

found that the variation between species was only important for the number of 

branches. Most of the variation occurred along the stems. This can be due to 

the different physiological processes along the tree stem and the foreseeable 

difference between the living crown and the rest of the stem. Nevertheless, 

only nine trees per species were studied, and factors like site and silviculture 

may also have an important influence that this study could not evaluate.  

Norway spruce had a higher number of branches per metre. The pattern growing 

whorls may help explaining the larger number of branches. Another reason may 

be the shade tolerance of Norway spruce, comparable though to western red 

cedar or western hemlock, and more shade-tolerant than noble fir (Wilson, 

2011). On the other hand, western red cedar and western hemlock produced 

less branches per metre than the other two species. Weiskittel et al.(2010) 

compared the branchiness of five conifer species, and even though two shade 

tolerant species (Picea rubens (Sarg.) and Abies balsamea (L.) Mill) tended to 

have more branches, also observed that the most shade tolerant species (Tsuga 

canadensis (L.) Carr) had the second lowest number of branches of all the 

species examined. He suggested that it is more species and not shade tolerance 

per se that drive differences in branch density. 

In this study the number of branches generally increased with height, although 

the relationship varied from species to species. Previous studies found that the 
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distance between the stem apex, and the annual height increment, were 

related to the number of branches (Achim et al., 2006; Colin and Houllier, 1992; 

Weiskittel et al., 2007).  

The vigour of a tree is related with the branches development, and some studies 

included the tree height/dbh ratio and the annual height increment of the 

previous year to model the number of branches (Hein et al., 2007; Hein et al., 

2008a). Due to the difficulties to measure the annual growth in the forest, the 

present study divided the tree lengths in one metre sections, and each one was 

used as independent variable in a linear model instead of the year growth. The 

model included the interaction of species and the random effect of tree on the 

intercept and the slope, and explained 55% of the total variance, higher than 

the 45% of the non-linear models investigated by Auty (2011). The use of the 

one-metre section resulted a good predictor of the number of branches at a 

certain height in the tree, and it was a good substitute of the more commonly 

used annual height increment, which can only be practical in the forest applied 

to species growing whorls and so subjected to the correct identification in the 

field of the growth units. However, the accuracy of the model may be limited 

for very high trees as the model lacked of an upper limit. 

The number of branches was inversely related to the branch diameter, and 

Norway spruce and noble fir developed branches of smaller diameter. The 

vertical diameter was found to be bigger than the horizontal by 0.4 mm (± 0.05 

mm). The accuracy of the measurements was of 1 mm, and it would be difficult 

to aim in the forest for a higher precision of the measurements. Branch 

diameter size increased from the bottom of the tree up to the base of the 

crown, decreasing again after. It is logical to hypothesise that older trees will 

grow bigger branches, at least within the crown, and while self-shading has not 

caused self-pruning. This was the case to a certain extent in the present study, 

with western red cedar and western hemlock growing bigger diameter 

branches.  

The biggest diameter branches located near the crown base, at around 80 % of 

the crown length from the apex, although this varied between species. Like 

Weiskittel et al. (2010) explained, the maximum branch diameter profile is not 

only dependent on tree and crown size, but also species shade tolerance to 
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some degree. The same author stated that after the peak the maximum 

diameter generally rapidly decreases as self-shading increases and branch 

radial growth and longevity decreases. Western red cedar showed a different 

behaviour to some extent, as it still increased in maximum diameter within the 

crown. Most of branches in western red cedar located within the crown, which 

suggests either a longer crown, more shade tolerance or more self pruning. 

Without comparison with other sites and silvicultural practices, it is not possible 

to conclude a reason.  

Differences in the mean diameter branch were observed between species, less 

significant between noble fir and western hemlock. Interesting, both species 

were quite different in age (38 and 78 years old), but the influence of age could 

not be specifically assessed in this study due to the limited sampling. The 

average branch diameter in a metre section was modelled following the study 

in Sitka spruce in Achim et al. (2006). The model is an exponential function 

that described an increment in the diameter with height before achieving a 

peak near the crown base where the diameter drops in size until the stem apex. 

A mixed effect model was used, with species as fixed effect and metre as 

random effect, which explained 64% of the variance. The predicted branch 

diameters showed the thicker branches of western red cedar and western 

hemlock compared to noble fir and Norway spruce.  

Whereas a horizontal branch will produce a knot with the same size as the 

branch, as the angle of insertion becomes smaller (steeper branch) the knot 

area increases. For the four species the angle increased from the apex towards 

the bottom. This is a typical behaviour in many conifers, where branches near 

the apex are more acute searching for light and branches become more planar 

towards the bottom, occupying more surface to reach the light penetrating the 

foliage. This has also been observed in Sitka spruce (Achim et al., 2006), Scots 

pine (Auty, 2011), Norway spruce (Colin and Houllier, 1992) or Douglas fir 

(Drewett, 2015; Weiskittel et al., 2007).  

Noble fir and western hemlock showed more acute angles. There was no one 

variable strongly related to the branch angle that could be used as main 

predictor variable for modelling. For the data here investigated the variation 

of angles within sections gathered most of the total variance which may explain 
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the weak correlations found. The model used was based in the study by Achim 

et al. (2006) on Sitka spruce, and explained 45% of the variation. The four 

species were fitted simultaneously using a mixed model with the random effect 

of tree and section. The model showed that noble fir and western red cedar 

produced almost horizontal branches, particularly in the lower part of the 

trunk. On the contrary, Norway spruce produced more acute branches, 

particularly above two thirds of the tree length. 

6.6 Conclusions 

More than half of the logs of Norway spruce and western red cedar produced 

straight logs of at least four metres long in the bottom six metres. The stem 

profile of noble fir described a pattern that translated in more volume available 

per tree for sawlogs. Norway spruce and western hemlock described an almost 

identical taper profile, with a lower proportion of western red cedar stems of 

suitable dimensions for sawlogs. Slenderness was found to relate moderately 

with the mechanical properties, and so it could potentially be used for sorting 

timber quality. 

Number, size and angle of insertion of branches were also investigated. Few 

studies have undertaken the description of branchiness variation across a range 

of species with different growth pattern. Most of the variation occurred due to 

height in the stem, and only the number of branches was importantly influenced 

by species. Norway spruce presented more branches than the other three 

species, although the size were smaller. Western red cedar and western 

hemlock had a lower number of branches, but thicker mean diameter. The 

maximum branch diameter was typically located within the live crown. The 

angle of insertion showed a large variation within a metre length of the stem, 

and required of the relative height of the branch to be modelled.  

The branch models built can be used with variables measurable from standing 

trees as they do not require the growth unit length as it is normally the case 

for modelling branchiness. Care must be taken when applying the models to 

plantations where the management differs notably to the conditions 

investigated in this study.  
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Chapter 7. Summary 

7.1 Objectives and aims of the study 

This thesis assessed the potential of noble fir, Norway spruce, western red 

cedar and western hemlock grown in G.B. to produce timber with the required 

properties to be used for structural purposes. The two main topics were: 

1. Characterisation of wood properties: 

a. Performance and variation of bending stiffness, bending strength 

and density 

b. Change of the three wood properties with tree age 

c. Knots’ influence on wood properties; and drying distortion 

d. The use of acoustic techniques for stiffness prediction 

2. Tree architecture.  

a. Taper functions for merchantability and straightness 

b. Slenderness and crown ratio as wood quality indicators 

c. Models for branch characteristics 

7.2 Experimental review. Limitations 

1. The wood properties of structural-size timber reported in Chapter 3 must 

be taken as indicative. The number of sampled trees was relatively small, 

and only one log per tree was cut, but the number of structural pieces was 

enough to obtain a representative population within that sample. Variation 

by growing regions can be expected, and more research is recommended. 

The number of available forests was limited, and some of them were 

younger than typical rotation lengths in G.B. It was aimed to find all four 

species in as close a geographic location as possible, and reduce the 

influence of site, but that was not always possible. Additional trees from 

different sites, and especially under different managements may vary the 

values here reported. 

2. The grading yields presented (see §3.4.3) correspond to an optimum grading, 

and real grading yields may be considerably lower. This is due to the real 
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world imperfect correlation between the indicating property measured for 

grading and the results measured in the laboratory. The species are not yet 

close enough to market to justify the cost of measurement with grading 

machines such as the Microtec GoldeneEye 702, but this research is a step 

towards that. 

3. The genetics and origin of the seeds used in the plantation of the forests 

studied are unknown, except for the southern site of noble fir. This added 

a variation that could not be controlled.   

4. Western red cedar from the south and middle latitudes were kiln dried with 

a too aggressive programme for the species, resulting in pieces with 

different degree of collapse (see §2.4 for details). Pieces from the north site 

were dried with a milder programme to a higher moisture content to 

minimise the risk of collapse, and so twist as drying distortion was assessed 

at different moisture content (see §3.4.4).  

5. The comparison of the performance of structural pieces in Chapter 3 and 

clears in Chapter 4 was somehow limited because the structural pieces were 

cut bark-to-bark, as opposed to pith to bark of clears. A bark-to-bark cutting 

pattern was simulated instead. In addition, the clears were cut from a log 

above the one used for production of structural pieces. Processing of clears 

from each structural piece would have avoid this limitation.  

6. The dynamic stiffness in green logs and standing trees assumed a constant 

density of 1000 kg/m3 in all the stands studied regardless the species and 

the age of the stand (see §5.3). The measure of green density would 

potentially improve the prediction of bending stiffness.  

7. Straightness in the lower six metres of the stem was visually assessed by two 

trained operators, but due to the limitations of the human eye, and not 

being able to use portable scanners the results (see §6.4.1.2) should only be 

used for comparison within the dataset.  

8. The taper models built for the four species (see §6.4.1.3) gathered data 

from three sites. They can be used in the absence of regional taper models, 

but may vary between sites, silviculture applied and genetics.  
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9. The study of slenderness and crown ratio for wood quality indicator (see 

§6.4.2) was limited due to the small variation of both factors. 

10. The branch characteristics were studied and compared between species (see 

§6.4.5). Only nine trees per species were measured. The noble fir and 

Norway spruce trees were 40 and 34 years younger than the western red 

cedar and western hemlock. The models were produced irrespective of 

stand age, and in order to be more representative it would have been 

necessary to sample trees of a range of ages (Colin and Houllier, 1992; 

Mäkinen et al., 2003). A more in depth study comparing sites, age or 

management was not possible within the time allocated in this study.  

11. Comparison of results in branches and knots must be carefully considered 

because branches were only measured in one site, whereas knots were 

measured in sawn timber from three sites. In addition, the knots were only 

measured in the span mechanically tested (600 mm). 

12. Western red cedar and western hemlock do not grow whorls as Norway 

spruce and noble fir do, and therefore the identification of growth units on 

those was not possible in the forest. As a result, branches were modelled 

per one-metre section of the stem (see §6.4.5) instead of using the annual 

height increment, which may have influenced the results for number and 

diameter of branches as the vigour of the tree was not taken into account. 

7.3 Key findings 

After the general introduction (Chapter 1) and the material and methods 

(Chapter 2) common to the whole study, this thesis split in four chapters 

addressing different aspects of the timber as structural material (see §7.1). 

1. Characterisation of wood properties: 

a. Performance for bending stiffness, bending strength and density. 

Table 7-1 summarises the mean and characteristic values of the three 

properties in structural-size timber.  
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Table 7-1. Wood properties by species for structural timber in the current thesis. 

 
MOEPB 

kN/mm2 
MOR (N/mm2) Density (kg/m3) 

  Mean  fm,k Mean ρk 

Noble fir 7.7 31.1 14.8 378 324 

Norway spruce 8.6 31.1 19.1 401 345 

Western red cedar 7.0 30.1 16.3 358 318 

Western hemlock 8.5 34.5 18.2 444 385 

 

Norway spruce is currently graded in G.B. in combination with Sitka 

spruce. It was believed Norway spruce performed better, but there was 

no evidence supporting that. One of the first conclusions of this thesis is 

that, based in the dataset studied, Norway spruce grown in G.B. has the 

potential to grow timber in G.B. outperforming the average performance 

of UK-grown Sitka spruce. The other three species were also capable of 

producing high yields of C16 strength class, typically required for use in 

construction in G.B., and were broadly comparable to UK-grown Sitka 

spruce. In particular, Norway spruce and western hemlock arose as a good 

complement to diversify the timber resource in G.B., producing high yields 

of C18. Overall, the low stiffness measured prevented to grade timber of 

the four species to higher strength classes.  

Comparison between clears and structural pieces showed a lower 

performance of bending stiffness in clears, but a good relationship was 

found at a tree level likening the width of structural pieces and clears. 

MOR was approximately double in clears than in the pieces of timber, 

likely due to the presence of knots in the latter. Density was very similar 

in both specimen sizes. 

b. Variation and relationship of wood properties. 

The performance of the wood properties changed from the inner to the 

outerwood. Chapter 3 and Chapter 4 highlighted that within the different 

stratum of the experiment, most of the variation in mechanical properties 

occurred within a tree, in this case due to the radial variation on the 

mechanical properties. Previous studies (Fischer et al., 2016; Moore et al., 

2008; Moore et al., 2013; Moore et al., 2009d) had concluded the same for 

one species without considering the a priori likely differences between 
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species. This thesis observed that even dealing with different species, the 

variation of mechanical properties within trees was more important, both 

in pieces of structural timber (Table 3-5) and clears (Table 4-5). 

Interestingly, the effect of species on the mechanical properties was 

higher in the absence of knots and other defects. The effect of species 

was more important on density, roughly 40% in structural timber and 

clears.  

The relationship of MOE and MOR was similar in structural-size timber and 

clears. However, important differences were found in the relationship 

between density and MOE in structural timber and clears (Table 7-2).  

Table 7-2. Pearson’s correlation (r) between variables in structural-size timber and clears. 

 Density384 - MOE Density384 - MOR 

 NF NS RC WH NF NS RC WH 

Structural 0.73 0.69 0.40 0.53 0.62 0.60 0.39 0.43 

Clears 0.20 0.70 -0.07 0.17 0.57 0.81 0.52 0.53 

 

Although some authors state that: without doubt density is the most 

useful indicator or wood properties (Walker, 1993); or density is most 

likely the best single predictor of mechanical properties of clear, 

straight-grained defect-free wood (Zink-Sharp, 2009), the data here 

investigated did not support this, except in Norway spruce. This can 

partially be explained by the different trend that the density in these 

species showed in the core and outerwood that is not shown in structural 

size timber due to the lower resolution with respect to annual growth 

rings.  

c. Change of the three wood properties with ring number 

The radial variation of the three properties were investigated in function 

of ring number using small clears free of defects.  

Bending stiffness increased with age, and it was described as an 

exponential function of ring number. The model explained 85% of the 

variation in bending stiffness using a mixed effects model with site, plot 

and tree as random effects. The function was biologically meaningful, and 
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included, as parameters, approximations to the rate of change, maximum 

value and, indirectly, the stiffness of the material near the pith.  

Bending strength described a linear pattern for the range of years studied, 

and a mixed-effects model explained 76% of the variation.  

Density decreased linearly for roughly the first ten rings, which can be 

related to the corewood, and increased afterwards. As a result of this 

double trend, density had an overall weak relationship with age, and it 

was therefore appropriate to analyse the two sections of the radial profile 

separately. The mixed effects models selected explained between 64% and 

81% of the variation in the decreasing section, and between 67% and 90% 

in the increasing section. 

d. Drying distortion and knots’ influence on wood properties  

The pieces from near the pith tend to twist more than outerwood. Overall, 

the four species investigated showed higher passing rates than British 

spruce (Searles, 2012) with Norway spruce and western hemlock similar to 

Douglas fir (Drewett, 2015). 

The number of knots was found to decrease in number and area from pith 

to bark, as it was found in Sitka spruce(Moore et al., 2012). The size was 

found more important than the number of knots for MOR prediction. 

Timber of Norway spruce had more knots, but the mean diameter was 

smaller. Western red cedar had a smaller total knot area, with no 

significant difference between the other species. 

e. The use of non-destructive techniques for stiffness prediction 

This thesis showed that the prediction of bending stiffness in sawn timber 

using density as sole predictor variable may not offer good results, and 

the use in combination with acoustic measurements is recommended. 

Similarly, a study on Douglas fir (Lachenbruch et al., 2010) using 

specimens of 1x1x30 cm obtained from the outer part the trees found a 

better prediction of mechanical properties using density in combination 

with acoustic velocity (R2=0.55) than using either variable alone (R2=0.35). 

Chapter 5 assessed “acoustically” the mechanical properties of wood. 

Bending stiffness was strongly related to dynamic stiffness in clears and in 
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structural timber, and in combination with knot measurements gave a 

good prediction of bending strength. 

The propagation of an acoustic wave within a tree was also studied. 

Traditionally, studies hold that a wave travels in a straight line between 

the two probes in a tree. The most common approach is to line up the 

transducer on one side of the tree, assuming that the wave travels in the 

outer part of the tree. For convenience, the distance measured is typically 

one metre. This thesis explored alternative methods measuring longer 

distances, and concluded that a stress wave induced in a standing tree 

propagates both in an upward and outward direction, and it is not confined 

to travelling through the outer part of the tree alone. Thus, longer 

distances related better with the bending properties of the structural 

pieces by virtue of being more of an average, and less biased by the wood 

properties in the outer part of the tree. Thus, the relationship of the mean 

sawn timber in trees improved from R2=0.27 measuring a distance of one 

metre to R2=0.58 measuring three metres. 

2. Tree architecture.  

a. Taper functions for merchantability 

Chapter 6 described the tree architecture of the species. Different 

functions were tested to describe the taper profile, allowing an estimation 

of the diameter at any height in the trees. The four species were modelled 

using an exponent function and non-linear mixed-effects techniques. 

Noble fir described a different stem profile to the other three species that 

translated in more volume available per tree for the same dbh and height. 

The rest of species were modelled using the same function previously used 

on British Sitka spruce. Norway spruce and western hemlock followed an 

almost identical profile, whereas a lower proportion of western red cedar 

stems was of suitable dimensions for sawlogs. 

b. Slenderness and crown ratio as wood quality indicators 

The crown and slenderness characteristics were examined as a potential 

approach to segregate trees based on mechanical properties, but only 

slenderness was found significant in this dataset. 
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c. Models for branch characteristics 

The number of branches, size and angle of insertion were investigated. 

Only the number of branches was importantly influenced by species. Most 

of the variation occurred due to height in the stem, increasing the number 

of branches with height. Branch diameter size increased from the bottom 

of the tree up to the base of the crown (further up in western red cedar). 

The number of branches was inversely related to the branch diameter, 

and Norway spruce and noble fir developed in this order more branches, 

but with smaller diameter. Western red cedar and western hemlock 

presented less branches but with bigger diameters. The angle of insertion 

increased from the apex towards the bottom in the four species. 

7.4 Implications and recommendations for future work 
based on the research findings 

1. According to the results of this thesis, future interventions should probably 

prioritise the plantations of noble fir, Norway spruce and western hemlock 

where the conditions are suitable.  

1.1. Noble fir: it is a promising species for timber production. It may require 

longer rotation lengths than Sitka spruce to achieve the same timber 

quality, but it produces more wood in proportion to height, and 

potentially it will grow more sawlogs. 

1.2. Norway spruce: overall, the most promising species for timber 

production of the four species. It outperformed the average structural 

properties of UK-grown Sitka spruce, with lower twist distortion, small 

knots and straight in the lower six meters. 

1.3. Western red cedar: it produced timber with lower performance, and 

described a stem profile that translated in less volume available per 

tree for the same dbh and height compared to the other three species. 

Overall, it would be commercially less viable than the other three 

species for structural purposes.  

1.1. Western hemlock: it is a species that could be graded together with 

British spruce under new settings. The wood properties were 

comparable, and twist had a relatively low incidence. The stem 
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described a profile similar to Sitka and Norway spruce, but the lack of 

straightness in the lower six metres of the stem might be a handicap for 

the sawmills. 

2. Further research is required in order to investigate the performance of the 

four species in different growing regions within the UK, and to produce 

grading machine settings and/or visual grading assignments. These could be 

addressed at the same time. For machine grading, the current version EN 

140181-2 requires at least 450 pieces to be tested for each species / species 

combination, but with these lesser known species a larger programme is 

advisable. This need not be full destructive testing: a larger number of 

specimens could be graded, and the ≥450 pieces for destructive testing 

selected in such a way to resemble the larger sample. Variation in timber 

properties according to site could probably be done largely by non-

destructive measurements at board level as this thesis has established the 

essential relationships, which could be checked by selective destructive 

testing. It may be possible to combine these species, with each other, or 

with spruce for certain grading machines, but this cannot be assessed 

without the larger testing programme and in the specific context of a 

grading machine type. A shorter route could be obtained via visual grading, 

although for this to be properly representative it would still require more 

testing. Norway spruce can already be graded in combination with Sitka 

spruce and probably would not make sense to create grading settings, or 

visual grading assignments, for it on its own for Great Britain. 

3. Stiffness is likely to be the limiting property for timber grading of the four 

species. Therefore, this is the property that growers should focus on for 

timber production. Density, per se, was not as important, and it should not 

be the focus of wood quality improvement at the expense of stiffness.  

4. Grading machines based on measurement of MOEdyn appeared as potentially 

capable of grading the four species together for C16 or higher, but under 

conservative settings if western red cedar was also graded (Fig 3.12). Since 

Sitka spruce is already graded in combination with Norway spruce this 

suggests the possibility of noble fir, western hemlock and western red cedar 

being an additional minor component of the well established “British 

spruce” species combination. 
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5. Some grading machines use knots in combination with density. The use of 

these two variables must be used with care as this thesis found that the 

association may not be extrapolated to combine species. For example, an 

indicating property based on density would bring limitations to the grading 

of western hemlock with the other species because density was high in 

relation to stiffness in comparison to the other species.  

6. The empirical models built for bending stiffness, bending strength and 

density should be validated, and ensure that the models do not vary 

geographically.  

7. Acoustic measurements in standing trees related better with bending 

properties measuring longer distances than the typical one metre. Thus, 

when assessing standing trees in new sites it is recommended the “time-of-

flight” covers at least two meters. This is especially relevant in mature 

stands, with relatively big diameters, and if the aim is the segregation of 

high stiffness timber.  

8. The sometimes poor correlation between density and stiffness has a 

confounding influence when it comes to predicting stiffness from time-of-

flight acoustic measurements on standing trees and resonance 

measurements on logs. Research could investigate if the use of an increment 

borer or resistance drill could be used to estimate density and improve this 

measurement. This research would be applicable generally, and not just to 

the species in this study. 

9. The usually acoustic time-of-flight measurement used on standing trees is 

confounded by radial differences in both stiffness and density. Research into 

the taking of acoustic measurements on increment cores could be carried 

out to see how effective this can be for assessing radial trends, determining 

the boundary between corewood and outer wood, and predicting properties 

of sawn timber. Part of this study would be solving some practical problems 

in actually making the measurement. This research would be applicable 

generally, and not just to the species in this study. 

10. More research is necessary in order to know how wood properties, 

branchiness and taper may change depending on the silvicultural regimes 

applied and the environment. In order to describe the species under the 



214 

 

different scenarios, it will be important to obtain more than one sawlog per 

tree. This will also allow to assess the effect on the wood properties of the 

observed increment of the size of branches along the stem. It will be 

interesting to know how the “time-of-flight” measured in standing trees 

over a length of two and three metres relates to the wood properties of the 

upper sawlogs. 

11. Validation of the taper models developed for the dataset. 

12. There is an important potential for the use of these species under continuous 

cover forestry, but it will necessary to understand the impact of different 

scenarios on the timber properties.  

13. Future work could address the right choice of seeds and clones for the 

different growing regions in G.B., and depending on the aim of the 

management.  

14. The lack of straightness will limit the use of any tree for production of 

sawlogs. This thesis assessed the straightness visually, but it will be 

beneficial for the forest industry to use terrestrial laser scanning technology 

for a more accurate measurement.  

7.5 Concluding remarks 

This thesis has shown that there is the potential to use noble fir, Norway spruce, 

western red cedar and western hemlock grown in G.B. to produce high yields 

of structural timber. 

The thesis has also shown that the use of acoustic tools to assess stiffness of 

wood in standing trees offered more reliable results measuring distances of two 

and three metres rather than the commonly used one metre.  
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BS EN 408:2010+A1:2012. Timber structures - structural timber and glued 
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properties European Committee for Standardization, Brussels, p 38. 

BS EN 13183-1:2002. Moisture content of a piece of sawn timber - Part 
1:Determination by oven dry method. European Committee for 
Standardisation, Brussels, p 5. 

BS 373 (1957). Methods of testing small clear specimens of timber, 373:1957. 
British Standard Institution. BS, p. 31. 

BS EN 338:2016. Structural timber - Strength classes. European Committee for 
Standardisation, Brussels, p. 11. 

BS EN 384:2016. Structural timber-Determination characteristic values of 
mechanical properties and density. European Committee for 
Standardization, Brussels., p. 19. 

BS 4978 (2007). Visual strength grading of softwood – Specification, 
4978:2007+A1:2011. British Standard Institution, London, p 16. 

BS EN 1310:1997. Round and sawn timber-  Method of measurement of features. 
European Committee for Standardisation, Brussels, p 15. 

BS EN 14081-1:2016. Timber structures - Strength graded structural timber with 
rectangular cross section. Part 1: General Requirements. European 
Committee for Standardisation, Brussels, 44 p. 

BS EN 14358:2016. Timber structures - Calculation and verification of 
characteristic values. European Committee for Standardisation, p 15. 
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Appendix Chapter 3. 

Variation in wood properties with radial position 
(structural-size pieces) 

 

Figure A-1. Range of MOE local in structural-size timber for radial position and species. 
 
 

 

Figure A-2. Range of MOE global in structural-size timber for radial position and species. 
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Figure A-3. Range of MOR in structural-size timber for radial position and species. 
 
 

 

Figure A-4. Range of Density384 in structural-size timber for radial position and species. 
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Characteristic values and yields for each strength class.  

 

Figure A-5. Characteristic values by species for the most common strength classes. 
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Appendix Chapter 4. 

Models outputs and residuals plots 

MOE model. Equation [4-2] 

Nonlinear mixed-effects model fit by maximum likelihood 
  Model: MOE40 ~ a1/(-exp(a2 * Age40)) + a3  
 Data: clears40  
       AIC      BIC    logLik 
  2032.649 2122.402 -997.3247 
 
Random effects: 
 Formula: a3 ~ 1 | Site40 
        a3.(Intercept) 
StdDev:     0.06057278 
 
 Formula: a3 ~ 1 | Plot40 %in% Site40 
        a3.(Intercept) 
StdDev:      0.1102131 
 
 Formula: a3 ~ 1 | Tree40 %in% Plot40 %in% Site40 
        a3.(Intercept)  Residual 
StdDev:      0.6319274 0.6260485 
 
Variance function: 
 Structure: Different standard deviations per stratum 
 Formula: ~1 | Sp40  
 Parameter estimates: 
       NF        NS        RC        WH  
1.0000000 1.3294197 0.9438583 1.2331399  
Fixed effects: a1 + a2 + a3 ~ Sp40  
                   Value Std.Error  DF   t-value p-value 
a1.(Intercept)  6.552969 0.2530000 712 25.901063  0.0000 
a1.Sp40NS      -0.847411 0.8274872 712 -1.024078  0.3061 
a1.Sp40RC      -2.351122 0.3060960 712 -7.680995  0.0000 
a1.Sp40WH      -1.161485 0.3407279 712 -3.408834  0.0007 
a2.(Intercept)  0.068103 0.0075425 712  9.029221  0.0000 
a2.Sp40NS      -0.031978 0.0124696 712 -2.564501  0.0105 
a2.Sp40RC       0.015697 0.0129052 712  1.216345  0.2243 
a2.Sp40WH       0.005298 0.0130658 712  0.405502  0.6852 
a3.(Intercept)  9.146452 0.3343718 712 27.354133  0.0000 
a3.Sp40NS       1.681354 0.9499621 712  1.769917  0.0772 
a3.Sp40RC      -1.403747 0.3913186 712 -3.587224  0.0004 
a3.Sp40WH       0.333992 0.4400242 712  0.759030  0.4481 

 
Figure B-1. Residuals vs fitted for the selected MOE model. 

 
Figure B-2. Q-Q distribution for the selected MOE model. 
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MOR model. Equation [4-3] 

Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula:  
MOR40 ~ Age40 * Sp40 + (1 + Age40 | Site40/Plot40/Tree40) 
   Data: clears40 
 
     AIC      BIC   logLik deviance df.resid  
  5812.4   5897.4  -2888.2   5776.4      814  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-3.9423 -0.5543 -0.0340  0.5588  4.2670  
 
Random effects: 
 Groups                 Name        Variance  Std.Dev. Corr  
 Tree40:(Plot40:Site40) (Intercept) 20.700237 4.54975        
                        Age40        0.039970 0.19993  -0.03 
 Plot40:Site40          (Intercept)  0.805481 0.89749        
                        Age40        0.005526 0.07434  -1.00 
 Site40                 (Intercept)  0.016107 0.12691        
                        Age40        0.003783 0.06150  -1.00 
 Residual                           45.546206 6.74879        
Number of obs: 832, groups:   
Tree40:(Plot40:Site40), 109; Plot40:Site40, 9; Site40, 3 
 
Fixed effects: 
             Estimate Std. Error t value 
(Intercept)  44.59531    1.28183   34.79 
Age40         0.66817    0.08423    7.93 
Sp40NS        5.37174    1.73133    3.10 
Sp40RC        5.53270    1.77905    3.11 
Sp40WH       16.57740    1.76161    9.41 
Age40:Sp40NS  0.08941    0.09290    0.96 
Age40:Sp40RC -0.32638    0.09608   -3.40 
Age40:Sp40WH -0.18752    0.09443   -1.99 
 

 

Figure B-3. Residuals vs fitted for the selected random slope MOR model. 

 

Figure B-4. Normal Q-Q distribution for the selected MOR model. 
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Density model. Equation [4-4] 

• Noble fir, first section 

 
Linear mixed-effects model fit by maximum likelihood 
 Data: NFyoung  
       AIC      BIC    logLik 
  779.9966 794.2888 -383.9983 
 
Random effects: 
 Formula: ~1 | Site_NFy 
        (Intercept) 
StdDev:    7.909474 
 
 Formula: ~1 | Plot_NFy %in% Site_NFy 
        (Intercept) 
StdDev: 0.005427696 
 
 Formula: ~1 | Tree_NFy %in% Plot_NFy %in% Site_NFy 
        (Intercept) Residual 
StdDev:    16.33632 25.34716 
 
Fixed effects: Dens_NFy ~ Age_NFy  
               Value Std.Error DF   t-value p-value 
(Intercept) 464.6490  8.642782 52  53.76151       0 
Age_NFy     -17.9972  1.282838 52 -14.02920       0 
 

• Noble fir, second section 

 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: Dens_NFo ~ Age_NFo + (1 + Age_NFo | Site_NFo/Plot_NFo/Tree_NF
o) 
   Data: NFold 
 
     AIC      BIC   logLik deviance df.resid  
  1093.7   1127.0   -534.8   1069.7      107  
 
Scaled residuals:  
     Min       1Q   Median       3Q      Max  
-2.07142 -0.53664  0.03784  0.47716  2.16795  
 
Random effects: 
 Groups                       Name        Variance Std.Dev. Corr  
 Tree_NFo:(Plot_NFo:Site_NFo) (Intercept) 858.5155 29.3004        
                              Age_NFo       4.1646  2.0407  -0.92 
 Plot_NFo:Site_NFo            (Intercept) 434.7607 20.8509        
                              Age_NFo       0.3459  0.5881  -0.93 
 Site_NFo                     (Intercept) 519.1409 22.7847        
                              Age_NFo       0.8673  0.9313  -1.00 
 Residual                                 235.1396 15.3343        
Number of obs: 119, groups:   
Tree_NFo:(Plot_NFo:Site_NFo), 27; Plot_NFo:Site_NFo, 9; Site_NFo, 3 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept) 315.4553    16.8549  18.716 
Age_NFo       3.8802     0.7697   5.041 
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• Norway spruce, first section 

 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: Dens_NSy ~ Age_NSy + (1 + Age_NSy | Site_NSy/Plot_NSy/Tree_NS
y) 
   Data: NSyoung 
 
     AIC      BIC   logLik deviance df.resid  
   905.2    935.8   -440.6    881.2       82  
 
Scaled residuals:  
     Min       1Q   Median       3Q      Max  
-1.92069 -0.44807  0.06667  0.49873  2.39991  
 
Random effects: 
 Groups                       Name        Variance  Std.Dev. Corr  
 Tree_NSy:(Plot_NSy:Site_NSy) (Intercept) 3.850e-04  0.01962       
                              Age_NSy     9.281e+00  3.04655 0.99  
 Plot_NSy:Site_NSy            (Intercept) 1.960e+02 14.00024       
                              Age_NSy     8.190e-01  0.90498 -1.00 
 Site_NSy                     (Intercept) 6.276e+01  7.92186       
                              Age_NSy     6.595e+00  2.56798 -1.00 
 Residual                                 4.184e+02 20.45577       
Number of obs: 94, groups:   
Tree_NSy:(Plot_NSy:Site_NSy), 27; Plot_NSy:Site_NSy, 9; Site_NSy, 3 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept)  418.166      7.931   52.73 
Age_NSy       -3.916      1.791   -2.19 
 

• Norway spruce, second section 
 
Linear mixed-effects model fit by maximum likelihood 
 Data: NSold  
       AIC      BIC    logLik 
  1360.831 1378.481 -674.4155 
 
Random effects: 
 Formula: ~1 | Site_NSo 
        (Intercept) 
StdDev:     5.66578 
 
 Formula: ~1 | Plot_NSo %in% Site_NSo 
        (Intercept) 
StdDev:  0.00686598 
 
 Formula: ~1 | Tree_NSo %in% Plot_NSo %in% Site_NSo 
        (Intercept) Residual 
StdDev:    32.37642 23.89671 
 
Fixed effects: Dens_NSo ~ Age_NSo  
               Value Std.Error  DF  t-value p-value 
(Intercept) 349.3785  9.735618 112 35.88663       0 
Age_NSo       2.8775  0.278826 112 10.31989       0 
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• Western red cedar, first section 

 
Linear mixed-effects model fit by maximum likelihood 
 Data: RCyoung  
       AIC      BIC    logLik 
  791.7414 805.9581 -389.8707 
 
Random effects: 
 Formula: ~1 | Site_RCy 
        (Intercept) 
StdDev:    6.530491 
 
 Formula: ~1 | Plot_RCy %in% Site_RCy 
        (Intercept) 
StdDev:  0.00186569 
 
 Formula: ~1 | Tree_RCy %in% Plot_RCy %in% Site_RCy 
        (Intercept) Residual 
StdDev:    16.39824 29.99361 
 
Fixed effects: Dens_RCy ~ Age_RCy  
               Value Std.Error DF   t-value p-value 
(Intercept) 458.1398  9.100655 51  50.34141       0 
Age_RCy     -13.6624  1.132675 51 -12.06202       0 
 

• Western red cedar, second section 

 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: Dens_RCo ~ Age_RCo + (1 + Age_RCo | Site_RCo/Plot_RCo/Tree_RC
o) 
   Data: RCold 
 
     AIC      BIC   logLik deviance df.resid  
  1009.1   1041.9   -492.5    985.1      102  
 
Scaled residuals:  
     Min       1Q   Median       3Q      Max  
-2.46783 -0.56440  0.00037  0.50345  2.01242  
 
Random effects: 
 Groups                       Name        Variance  Std.Dev. Corr  
 Tree_RCo:(Plot_RCo:Site_RCo) (Intercept) 4.229e+02 20.56494       
                              Age_RCo     5.132e-01  0.71638 -0.28 
 Plot_RCo:Site_RCo            (Intercept) 5.268e+01  7.25830       
                              Age_RCo     6.346e-03  0.07966 -1.00 
 Site_RCo                     (Intercept) 5.881e+02 24.25008       
                              Age_RCo     2.364e+00  1.53746 -1.00 
 Residual                                 1.466e+02 12.10861       
Number of obs: 114, groups:   
Tree_RCo:(Plot_RCo:Site_RCo), 27; Plot_RCo:Site_RCo, 9; Site_RCo, 3 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept) 344.1138    15.6138   22.04 
Age_RCo       0.2152     0.9348    0.23 
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• Western hemlock, first section 

 
Linear mixed-effects model fit by maximum likelihood 
 Data: WHyoung  
       AIC      BIC   logLik 
  856.2659 870.7789 -422.133 
 
Random effects: 
 Formula: ~1 | Site_WHy 
        (Intercept) 
StdDev:    9.967727 
 
 Formula: ~1 | Plot_WHy %in% Site_WHy 
        (Intercept) 
StdDev:    7.124197 
 
 Formula: ~1 | Tree_WHy %in% Plot_WHy %in% Site_WHy 
        (Intercept) Residual 
StdDev:    17.21393 34.90577 
 
Fixed effects: Dens_WHy ~ Age_WHy  
               Value Std.Error DF  t-value p-value 
(Intercept) 525.3445 11.741598 54 44.74217       0 
Age_WHy     -11.5117  1.335691 54 -8.61855       0 
 

• Western hemlock, second section 

 
Linear mixed model fit by maximum likelihood  ['lmerMod'] 
Formula: Dens_WHo ~ Age_WHo + (1 + Age_WHo | Site_WHo/Plot_WHo/Tree_WH
o) 
   Data: WHold 
 
     AIC      BIC   logLik deviance df.resid  
  1214.2   1248.0   -595.1   1190.2      111  
 
Scaled residuals:  
     Min       1Q   Median       3Q      Max  
-1.79981 -0.53567 -0.06372  0.49596  2.13086  
 
Random effects: 
 Groups                       Name        Variance  Std.Dev. Corr  
 Tree_WHo:(Plot_WHo:Site_WHo) (Intercept) 2.160e+03 46.4796        
                              Age_WHo     1.885e+00  1.3728  -0.88 
 Plot_WHo:Site_WHo            (Intercept) 4.531e+02 21.2856        
                              Age_WHo     1.608e-02  0.1268  -1.00 
 Site_WHo                     (Intercept) 2.657e+02 16.2994        
                              Age_WHo     1.037e+00  1.0184  -1.00 
 Residual                                 4.984e+02 22.3245        
Number of obs: 123, groups:   
Tree_WHo:(Plot_WHo:Site_WHo), 28; Plot_WHo:Site_WHo, 9; Site_WHo, 3 
 
Fixed effects: 
            Estimate Std. Error t value 
(Intercept) 427.4362    16.4007  26.062 
Age_WHo       0.7977     0.7108   1.122 
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Figure B-5. Residuals vs fitted for the selected random slope MOR model. 

 

Figure B-6. Normal Q-Q distribution for the selected density models. 
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Appendix Chapter 6  

Taper model outputs and residuals plots 

6.4.1. Taper model 
 

• Noble fir 

 
Nonlinear mixed-effects model fit by maximum likelihood 
  Model: dh.NF ~ dbh.NF * x.NF^(a1 * (z.NF - 1) + a2 * (exp(a3 * z.NF)
))  
 Data: taper.NF  
       AIC      BIC    logLik 
  1758.575 1784.391 -873.2875 
 
Random effects: 
 Formula: a1 ~ 1 | Site.NF 
              a1 
StdDev: 0.122157 
 
 Formula: a1 ~ 1 | Plot.NF %in% Site.NF 
              a1 Residual 
StdDev: 0.106202 1.165649 
 
Fixed effects: a1 + a2 + a3 ~ 1  
       Value  Std.Error  DF   t-value p-value 
a1  1.667668 0.13919875 535  11.98048       0 
a2  2.163859 0.15372187 535  14.07645       0 
a3 -1.007565 0.05923857 535 -17.00859       0 

 

• Norway spruce  

 
Nonlinear mixed-effects model fit by maximum likelihood 
  Model: dh.NF ~ dbh.NF * x.NF^(a0 + a1 * (z.NF - 1) + a2 * (exp(a3 * 
     z.NF)))  
 Data: taper.NF  
      AIC      BIC    logLik 
  2397.53 2429.256 -1191.765 
 
Random effects: 
 Formula: a1 ~ 1 | Site.NF 
                a1 
StdDev: 0.01880871 
 
 Formula: a1 ~ 1 | Plot.NF %in% Site.NF 
               a1 Residual 
StdDev: 0.1157954   1.3443 
 
Fixed effects: a0 + a1 + a2 + a3 ~ 1  
       Value Std.Error  DF   t-value p-value 
a0  0.886162 0.0116703 675  75.93307       0 
a1  0.485286 0.0625046 675   7.76400       0 
a2  3.229337 0.2792124 675  11.56588       0 
a3 -8.369177 0.6079646 675 -13.76589       0 
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• Western red cedar  
Nonlinear mixed-effects model fit by maximum likelihood 
  Model: dh.NF ~ dbh.NF * x.NF^(a0 + a1 * (z.NF - 1) + a2 * (exp(a3 * 
     z.NF)))  
 Data: taper.NF  
       AIC      BIC    logLik 
  2956.755 2988.083 -1471.378 
 
Random effects: 
 Formula: a1 ~ 1 | Site.NF 
               a1 
StdDev: 0.2391087 
 
 Formula: a1 ~ 1 | Plot.NF %in% Site.NF 
               a1 Residual 
StdDev: 0.2216376 2.277807 
 
Fixed effects: a0 + a1 + a2 + a3 ~ 1  
        Value Std.Error  DF   t-value p-value 
a0   0.908527 0.0184854 637  49.14828  0.0000 
a1   0.181913 0.1697139 637   1.07188  0.2842 
a2   6.352463 0.5898410 637  10.76979  0.0000 
a3 -10.041695 0.6570376 637 -15.28329  0.0000 

 

• Western hemlock  
Nonlinear mixed-effects model fit by maximum likelihood 
  Model: dh.NF ~ dbh.NF * x.NF^(a0 + a1 * (z.NF - 1) + a2 * (exp(a3 * 
     z.NF)))  
 Data: taper.NF  
       AIC      BIC    logLik 
  2872.925 2905.468 -1429.462 
 
Random effects: 
 Formula: a0 ~ 1 | Site.NF 
                a0 
StdDev: 0.06422541 
 
 Formula: a0 ~ 1 | Plot.NF %in% Site.NF 
                a0 Residual 
StdDev: 0.04230947 1.511149 
 
Fixed effects: a0 + a1 + a2 + a3 ~ 1  
       Value Std.Error  DF   t-value p-value 
a0  0.947058 0.0415533 760 22.791404       0 
a1  0.800992 0.0925168 760  8.657801       0 
a2  1.990069 0.1251431 760 15.902350       0 
a3 -5.502733 0.6560653 760 -8.387476       0 

 

  

Figure C-1. Q-Q plot and Residuals vs fitted for the selected mixed-effects taper model. 



236 

 

Branch model outputs and residuals plots 

6.4.3. Branch number per metre 
 
> model1.mixed <- lme(number.br ~ number.metre * number.Sp, random = ~
 number.metre |number.Tree 
) 
> summary(model1.mixed) 
Linear mixed-effects model fit by REML 
 Data: NULL  
       AIC      BIC    logLik 
  5301.852 5360.002 -2638.926 
 
Random effects: 
 Formula: ~number.metre | number.Tree 
 Structure: General positive-definite, Log-Cholesky parametrization 
             StdDev   Corr   
(Intercept)  2.420766 (Intr) 
number.metre 0.145762 -0.736 
Residual     3.686730        
 
Fixed effects: number.br ~ number.metre * number.Sp  
                             Value Std.Error  DF   t-value p-value 
(Intercept)              11.705815 0.9889695 908 11.836377  0.0000 
number.metre              0.114314 0.0683748 908  1.671879  0.0949 
number.SpNS              -2.264527 1.3678772  32 -1.655505  0.1076 
number.SpRC              -5.126787 1.3856347  32 -3.699956  0.0008 
number.SpWH              -4.960719 1.3594966  32 -3.648938  0.0009 
number.metre:number.SpNS  0.322874 0.0893810 908  3.612334  0.0003 
number.metre:number.SpRC  0.048350 0.0890810 908  0.542765  0.5874 
number.metre:number.SpWH  0.047180 0.0874355 908  0.539603  0.5896 

 

 

Figure C-2. Q-Q and Residuals vs fitted plots for the selected mixed-effects model for 
number of branches. 
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6.4.3 Average diameter branch: model output 
 
Nonlinear mixed-effects model fit by maximum likelihood 
  Model: mean_diam.metre ~ a1 + a2 * (1 - x2) * exp(-a3 * x2)  
 Data: maxDB_metre  
       AIC      BIC    logLik 
  5593.997 5676.699 -2779.998 
 
Random effects: 
 Formula: a2 ~ 1 | Metre.metre 
        a2.(Intercept) Residual 
StdDev:   0.0002380572 5.101628 
 
Variance function: 
 Structure: Different standard deviations per stratum 
 Formula: ~1 | Sp.metre  
 Parameter estimates: 
       AP        NS        WH        RC  
1.0000000 0.6795166 0.9762598 0.8497699  
Fixed effects: a1 + a2 + a3 ~ Sp.metre  
                   Value Std.Error  DF    t-value p-value 
a1.(Intercept)  6.300999 1.5053072 911   4.185856  0.0000 
a1.Sp.metreNS  -5.215522 1.7674225 911  -2.950920  0.0032 
a1.Sp.metreRC  -8.086069 1.8886025 911  -4.281509  0.0000 
a1.Sp.metreWH  -7.052199 1.9081580 911  -3.695815  0.0002 
a2.(Intercept)  7.641078 1.1420411 911   6.690720  0.0000 
a2.Sp.metreNS   2.513920 1.3484697 911   1.864277  0.0626 
a2.Sp.metreRC   3.868092 1.3742544 911   2.814684  0.0050 
a2.Sp.metreWH   4.400819 1.4426796 911   3.050448  0.0024 
a3.(Intercept) -3.057725 0.1304515 911 -23.439560  0.0000 
a3.Sp.metreNS   0.259648 0.1441875 911   1.800764  0.0721 
a3.Sp.metreRC  -0.202418 0.1431268 911  -1.414255  0.1576 
a3.Sp.metreWH   0.130423 0.1463303 911   0.891293  0.3730 

 

 

Figure C-3. Q-Q and Residuals vs fitted plots for the selected mixed-effects model for the 
average diameter branch. 
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6.4.4 Branch angle: model output 
 
Nonlinear mixed-effects model fit by maximum likelihood 
  Model: angle.br.angle ~ a0 * exp(-a1/(a2 - x))  
 Data: angle.br  
       AIC      BIC    logLik 
  82909.87 83048.67 -41435.94 
 
Random effects: 
 Formula: a0 ~ 1 | angle.br.Sp 
        a0.(Intercept) 
StdDev:    0.002657537 
 
 Formula: a0 ~ 1 | angle.br.Tree %in% angle.br.Sp 
        a0.(Intercept) 
StdDev:       3.640239 
 
 Formula: a0 ~ 1 | angle.br.Metre %in% angle.br.Tree %in% angle.br.Sp 
        a0.(Intercept) Residual 
StdDev:        4.63656 9.094585 
 
Variance function: 
 Structure: Different standard deviations per stratum 
 Formula: ~1 | angle.br.Sp  
 Parameter estimates: 
       AP        NS        RC        WH  
1.0000000 1.0348964 0.9567158 1.4370734  
Fixed effects: a0 + a1 + a2 ~ angle.br.Sp  
                    Value Std.Error    DF  t-value p-value 
a0.(Intercept)   85.77393 1.2974558 10026  66.1093  0.0000 
a0.angle.br.SpNS -2.03573 1.9038940 10026  -1.0692  0.2850 
a0.angle.br.SpRC  0.24180 1.9378502 10026   0.1248  0.9007 
a0.angle.br.SpWH  4.57718 1.9389333 10026   2.3607  0.0183 
a1.(Intercept)    0.00398 0.0006307 10026   6.3041  0.0000 
a1.angle.br.SpNS  0.01547 0.0032544 10026   4.7542  0.0000 
a1.angle.br.SpRC  0.01829 0.0035978 10026   5.0824  0.0000 
a1.angle.br.SpWH  0.01970 0.0032747 10026   6.0146  0.0000 
a2.(Intercept)    0.99838 0.0010992 10026 908.2945  0.0000 
a2.angle.br.SpNS  0.03880 0.0092066 10026   4.2139  0.0000 
a2.angle.br.SpRC  0.03272 0.0090363 10026   3.6210  0.0003 
a2.angle.br.SpWH  0.03586 0.0073602 10026   4.8727  0.0000 

 

 

Figure C-4. Q-Q and Residuals vs fitted plots for the selected mixed-effects model for the 
insertion angle



 

 

 

 


