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Abstract 23 

Soil microbial ecology needs robust tools to elucidate ecological questions, such as the impact 24 

of fertilisation on soil microbial communities. However, the methods and data analysis used 25 

can directly affect the biological conclusions. In this study, the sensitivity of terminal-26 

restriction fragment length polyphorism (T-RFLP) to four restriction enzymes (RE), six peak 27 

area thresholds (PAT) from 0 to 10 % and two matrices (presence/absence and relative 28 

abundance) was assessed on soils subjected to eight different long-term amendments. The T-29 

RFLP profiles were analysed using a three-step multivariate analysis approach: (i) cluster 30 

analysis and non-metric multi-dimensional scaling, (ii) ANOSIM and PERMANOVA and 31 

(iii) correlations. The application of organic and mineral fertilisers over 53 years changed the 32 

bacterial community composition regardless if the RE, PAT and matrix were used. However, 33 

the clustering of the community, the strength of these differences, the correlations with 34 

environmental variables and, subsequently, the biological conclusions varied with the use of 35 

RE, PATand matrix. Hence, the bacterial community composition was found to be either 36 

highly sensitive to any changes in soil organic matter strongly correlated to C and N 37 

concentration, or only affected by large inputs of C or soil management. Different REs can 38 

reveal different bacterial populations affected by different drivers, but PATs 0.5 and 1 % 39 

should be used especially when using presence/absence matrix. This study also shows the 40 

complexity of the effect of organic and mineral amendment on bacterial community 41 

composition and stresses the importance to inform on methodological and data analysis 42 

parameters. 43 

 44 

Keywords: Bacterial community structure, soil organic matter, T-RFLP, ANOSIM, 45 
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Introduction 48 

Soil microbial ecology needs robust tools to elucidate ecological questions, which 49 

often require the analysis of large sample numbers, such as the link between soil fertility and 50 

microorganisms. Soil fertility is essential to maintain or increase soil productivity to feed the 51 

growing world population and is sustained by applying fertilisers to fields. Mineral and 52 

organic fertilisers are known not only to affect the bacterial community composition and 53 

abundance (Wessén et al. 2010; Hassan et al. 2013; Cederlund et al. 2014;Wu et al. 2014), but 54 

can also affect the functions that microorganisms can deliver to the ecosystems (Enwall et al. 55 

2007; Lerch et al. 2013). Hence, it is essential to use robust tools not only to analyse the 56 

composition and the activity of microbial communities, but also to use accurate methods to 57 

analyse the results to understand the effects of agricultural management on these microbial 58 

properties. 59 

Among DNA fingerprinting methods, terminal-restriction fragment length 60 

polymorphism (T-RFLP) has become a popular method to rapidly assess the composition of 61 

soil microbial communities (Thies 2007; Singh et al. 2009; Rousidou et al. 2013; Reardon et 62 

al. 2014). Although next-generation sequencing (NGS) now provides much more information 63 

on the composition of microbial communities, T-RFLP is able to capture the same major 64 

trends of bacterial community composition. For example, Elsayed et al. (2014) reported 65 

similar Shannon diversity index (Spearman’s ρ=0.83, P=0.003) when using T-RFLP and 66 

pyrosequencing approaches on the same samples. Furthermore, van Dorst et al. (2014) 67 

showed that T-RFLP has a similar ability compared with 454 sequencing to separate bacterial 68 

community composition between sample locations and to identify correlations with 69 

environmental variables. As a cheaper method compared to NGS (van Dorst et al. 2014), T-70 

RFLP allows us to analyse many true field replicates, and therefore, assesses the potential 71 
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variation arising from environmental heterogeneity or other sources of variability, which is a 72 

fundamental need in microbial ecology (Prosser 2010). 73 

The interpretation of genetic profiles can be affected by several methodological issues 74 

such as the choice of restriction enzymes (RE; i.e. different REs will not have the same 75 

resolution to characterise microbial community composition), peak area threshold and matrix 76 

choices for data interpretation. The peak area threshold (PAT) involves the removal of peaks 77 

under a certain percentage in relation to their contribution to the entire data matrix, after 78 

alignment of samples, in order to remove false fragments and background noise. The PAT can 79 

be applied to data based on the area under the peaks (or peak height). Furthermore, data can 80 

be analysed using a variety of ordination methods and statistical tests based on relative 81 

abundances or presence/absence matrices.  82 

 We reviewed 159 articles using T-RFLP and published between 2002 and 2014 in the 83 

top five of soil biology journals to examine variation in the processing of T-RFLP data in the 84 

field of soil microbial ecology. We found that T-RFLP is still largely used in soil microbial 85 

ecology (Fig. S1), but the choice of RE, PAT, matrix and ordination/statistical analysis varied 86 

greatly between studies (Table S1). Most of the articles reported the use of only one RE, 87 

where the most frequently used were HhaI, MspI, HaeIII, TaqI and AluI. Less than half of all 88 

the publications indicated the size of the T-RFs used for analysis. A third of these studies used 89 

the baseline threshold (i.e. threshold based on peak fluorescence before alignment) and 90 

approximately the same proportion used the peak area/height threshold; many peak thresholds 91 

were reported from 0.1 to 5 %. When indicated, the relative abundance matrix was used 92 

twice more often than the presence/absence matrix. Although non-exhaustive, this review of 93 

the literature in soil biology revealed that T-RFLP methods are far from being harmonised, 94 

yet the effects of such parameters on the determination of soil microbial community 95 

composition and have been scarcely studied (Bennett et al. 2008). 96 
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 The aim of this study was to test the robustness of T-RFLP method for assessing the 97 

effect of soil organic matter on the composition of bacterial communities. We used soil 98 

samples taken from the Ultuna long-term field experiment where previous studies showed that 99 

fertilisation strongly affected the composition of soil bacterial communities due to change in 100 

soil chemical parameters such as pH or C to N ratio (Enwall et al. 2007; Wessén et al. 2010). 101 

The sensitivity of T-RFLP fingerprints was evaluated by comparing (i) four different REs 102 

(AluI, HaeIII, MspI and RsaI) separately or combined together, (ii) six different thresholds 103 

(from 0%to 10 %) and (iii) two different types of matrices (relative abundance vs. presence/ 104 

absence). This study not only simultaneously evaluated the effects of these parameters on T-105 

RFLP profiling, but also assessed the impact of these factors on the biological interpretation 106 

related to organic and mineral amendment using multivariate data analysis. 107 

 108 

Material and methods 109 

Soil sampling 110 

Soil sampling was conducted in June 2009 (Lerch et al. 2013) at the Ultuna Long-Term Soil 111 

Organic Matter Experiment (Uppsala, Sweden; 60°N, 17°E). The experiment was started 112 

in 1956 on a post-glacial clay loam soil classified as an Eutric Cambisol (Witter et al. 1993). 113 

Since then, the soils have been treated with different N fertilisers or organic amendments. The 114 

soil texture was 36.5%clay, 41%silt and 22.5%sand. In this experiment, soils (2×2 m blocks) 115 

were treated with mineral N fertilizers (annual addition of 80 kg N ha−1) or organic 116 

amendments (biennial addition of 8 Mg ash-free organic matter per hectare). The different 117 

amendments resulted in a wide range of soil organic C contents ranging from 1 to 4 % (Table 118 

1). The treatments were replicated in four blocks, but one of the four blocks did not have 119 

randomly distributed treatments and was therefore omitted from the current study. Eight sub-120 
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samples from 0 to 7 cm depth were taken from each plot, sieved< 4 mm, bulked, mixed and 121 

stored at −20 °C before DNA extraction and T-RFLP analyses. 122 

 123 

DNA extraction and purification 124 

DNA extraction followed the ISO-11063 (Petric et al. 2010) procedure which is a modified 125 

version of the method described by Martin-Laurent et al. (2001). The procedure involved 126 

three main steps: (i) microbial cell lysis by chemical (SDS) and physical (bead beating) 127 

action, (ii) deproteination and (iii) alcohol precipitation and washing of the extracted nucleic 128 

acids. Two hundred and fifty milligrams (dry weight) of each soil sample were mixed with a 129 

solution of 100 mM Tris (pH 8.0), 100 mM EDTA (pH 8.0), 100 mM NaCl and 2 % (w/v) 130 

sodium dodecyl sulphate. Glass beads of different diameters were added in a bead-beater tube 131 

and the soil solution was shaken for 40 s at 6 m.s−1 in a mini bead-beater cell disruptor (Fast 132 

Prep, MP Bio) before centrifugation at 14, 000×g for 1 min. For protein precipitation, 133 

supernatants were incubated on ice for 10 min with 1/10 volume of 3 M sodium acetate and 134 

centrifuged (14,000×g, 5 min, 4 °C). In the last step, nucleic acids were precipitated from the 135 

collected supernatants by adding 1 volume of ice-cold isopropanol. The DNA pellets obtained 136 

after centrifugation (14,000×g, 5 min, 4 °C) were washed with 70 % ethanol. Soil DNA was 137 

purified as described by Petric et al. (2011). Finally, DNA was eluted in 100 μl of milli-Q 138 

water. 139 

 140 

PCR and T-RFLP analysis 141 

PCR was performed with 2 μl of diluted (1:10) DNA template (i.e. 1 ng of DNA per 142 

microliter) in a total volume of 20 μl (Master Mix Kit, Qiagen) and 0.05 mM of primer 63F 143 

(5′-CAGGCCTAACACATGCAAGTC-3′) and 1389R (5′-ACGGGCGGTGTGTACAAG-3′; 144 

Marchesi et al. 1998; Osborn et al. 2000). The forward primers were fluorescently labelled at 145 
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the 5′ end with FAM dye. PCR amplifications were carried out in a T100 thermocycler 146 

(BioRad) with an initial enaturation at 94 °C for 2 min, followed by 30 cycles of 94 °C for 30 147 

s, 57 °C for 45 s and 72 °C for 90 s followed by a final extension time at 72 °C for 10 min. 148 

PCR products were purified using the QIAquick PCR purification kit (Qiagen) following the 149 

manufacturer’s instructions. 150 

 The purified PCR product of each sample was split into four aliquots (10 μl), which 151 

were digested with 10 U of a single RE (either AluI, HaeIII, MspI or RsaI and 1× specific 152 

RE buffer (Fermentas) in a total volume of 15 μl at 37 °C for 3 h. Five microliters of the 153 

digests were desalted using a precipitation step with 0.25 μl of glycogen (20 mg ml−1) and 154 

75 μl of 0.3 mM MgSO4.7H2O in 70 % ethanol. The solution was briefly vortexed and 155 

incubated at room temperature for 15 min, then centrifuged at 3,991×g for 30 min. The 156 

solution was removed by inverting, centrifuged for 1 min at 900×g and the pellet was 157 

resuspended in 5 μl of nuclease-free water (Qiagen). Desalted products (0.5 or 1 μl) were 158 

mixed with formamide containing 0.5 % LIZ500 internal size standard (Applied Biosystems) 159 

in a total volume of 10 μl. Desalted products were denatured at 94 °C for 3 min and 160 

electrophoresed for 20 min on an ABI 310 capillary DNA sequencer (Applied Biosystems) 161 

filled with the POP-7 polymer. The TRFLP profiles obtained with the sequencer were 162 

analysed using GeneMarker® V1.97 software (SoftGenetics). The terminal restriction 163 

fragments (T-RFs) were binned with a 0.5 bp interval. T-RFs between 50 and 500 bp and with 164 

a peak height>0 fluorescent units were included in the analysis. 165 

 166 

Statistical analysis 167 

The richness of the T-RFLP profiles was expressed as the total number of T-RFs, and the 168 

evenness of profiles was estimated using the Shannon index (H’; Shannon 1948). T-RF 169 

richness and Shannon index were first used to describe the overall TRFLP profiles, but were 170 
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not used as true indicators of the overall soil bacterial community richness or diversity 171 

(Blackwood et al. 2007). A three step statistical approach was then chosen to determine the 172 

influence of the different factors on T-RFLP results: (i) data ordination; (ii) tests of significant 173 

differences between treatments, REs or PATs; and (iii) correlation between bacterial 174 

community composition and environmental variables. 175 

 The influence of RE on T-RFLP results was investigated not only on the individual 4 176 

REs mentioned above but also on the combination of the 4 RE results. It is often stated that 177 

multiple REs increase the resolution of T-RFLP (see Thies 2007), but it still unclear if the 178 

results obtained from combining several REs are more robust towards different data analyses 179 

(Bennett et al. 2009). Several matrices were produced using six different PATs ranging from 180 

0 % to 10 %. Thresholds of 0 %, 0.1 %, 0.5 % and 1 % are commonly used with T-RFLP 181 

analyses; we also included thresholds of 5%and 10 % to assess when the use of threshold can 182 

negatively impact the T-RFLP results. To analyse the T-RFLP profile datasets (i.e. for each 183 

PAT and matrix types), the total peak area for each profile was normalised across peaks (i.e. 184 

the area under each peak was divided by the total peak area of each sample) to account for 185 

run-to-run variations. Data from the TRFLP matrices were then square root transformed and 186 

similarity matrices were constructed using the Bray-Curtis method (Clarke et al. 2006). Bray-187 

Curtis distance was chosen because it is not affected by the number of null values between 188 

samples as with the Euclidean distance method (Clarke and Warwick 2001).  189 

 Similarities between samples were displayed using non-metric multi-dimensional 190 

scaling (nMDS) plots and dendrograms (Ramette 2007; Culman et al. 2008). Each nMDS plot 191 

was presented with a 2D Stress value, which indicated the mismatch between the rank 192 

similarity matrices and the nMDS 2D representation. A 2D stress value close to 0 indicates an 193 

excellent representation in 2D. Values above 0.2 indicate a weak 2D representation (i.e. data 194 

is more spread in 3D). To indicate percentage of similarity between samples on the nMDS, 195 



 9 

the clusters from the dendrograms were overlaid onto the nMDS. Dendrograms were 196 

produced using the group average linking method based on the Bray-Curtis similarity 197 

matrices. Furthermore, the composition of dendrograms was tested using SIMPROF 198 

(PRIMER software v6), to determine if the composition of the dendrogram was random or 199 

not, i.e. if the different clusters were significantly different from each other or not (999 200 

permutations).  201 

 Differences in bacterial community composition among soils studied, REs used and 202 

PATs were tested using one-way and two-way ANOSIM analysis (100,000 permutations) on 203 

the similarity matrices obtained using the Bray-Curtis method. One-way ANOSIM was used 204 

to compare, for example, differences between soils for a specific RE and PAT, while two-way 205 

ANOSIM was used, for example, to compare differences between soils and RE 206 

simultaneously. The significance levels, i.e. P value, and R value, i.e. the strength of the 207 

factors on samples were determined. R values close to 1 indicated high separation between 208 

groups (e.g. between soil treatments), while R values close to 0 indicated no separation 209 

between groups. Permutational multivariate analysis of variance (PERMANOVA) was also 210 

used to test for difference in TRFLP profiles between soil treatments (999 permutations) 211 

giving a P and F values.  212 

 The relationship between the bacterial community composition and the environmental 213 

variables (C, N, C/N and pH) was tested by performing correlation analysis between the 214 

similarity matrices of T-RFLP profiles obtained using the Bray-Curtis method and the 215 

matrices of each environmental variables obtained using the Euclidean distance (Clarke and 216 

Ainsworth 1993). The RELATE test from the PRIMER software was used to perform the 217 

analysis, which is a permutation-based test (rank correlation method: Spearman, 999 218 

permutations) giving the significance levels of the correlation, i.e. P value, and the correlation 219 

strengths, i.e. Spearman coefficient ρ. The ρ value varies between 0 and 1; a ρ value close to 1 220 
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indicates a strong correlation between an environmental variable and the microbial 221 

community composition. Similarly, the relationship between the T-RFs richness or Shannon 222 

index and each environmental variable were performed using Spearman rank correlations. 223 

The Spearman rank correlation gives the significance level of the correlation (i.e. P value) and 224 

the strength of the correlation (i.e. Spearman rank coefficient ρ). The ρ value varies between -225 

1 and +1, ρ value close to zero indicates no correlation, and value close to -1 or +1 indicates a 226 

strong negative or positive correlation, respectively. To display the Spearman correlations, 227 

heatmaps were generated using the gplots R package.  228 

 All data analysis from the T-RFLP was performed using the PRIMER software (v6, 229 

PRIMER-E Ltd, Plymouth, UK) and R version 3.1.0 (R Development Core Team 2014). 230 

 231 

Results 232 

Bacterial community richness and evenness 233 

The restriction enzyme AluI showed a high T-RFs number 44 ±5 and Shannon index 2.9±0.3, 234 

while lower numbers were found for HaeIII (richness=36±14; H’=2.9±0.5), and MspI showed 235 

the lowest T-RFs number 30±10 (Fig. 1e) and H’=2.2±0.2 (Fig. 1). RsaI showed the highest 236 

T-RFs number (57±12) and Shannon index (3.2±0.4) at peak area threshold of 0 % across the 237 

different soil treatments. This hierarchy was consistent with PATs up to 1 %, but at 5 % and 238 

10 % RsaI showed lower or the lowest richness and evenness. The T-RFs number and H’ 239 

varied between soil treatments but none of the soil consistently showed the lowest/highest 240 

richness or H’ across the different REs. Increasing PAT reduced richness at different rates for 241 

each RE (Fig. 1). On average, between 9 and 23 % of T-RFs were lost at 0.1 %, 28-47 % at 242 

0.5 %, 42-61 % at 1 %, 82-90 % at 5 % and 91-99 % at 10 %. The 10 % PAT led to a 243 

reduction of richness down to 1-4, or even the complete loss of T-RFs for all replicates of 244 

green manure amended soils and 1 soil replicate for soils amended with farmyard manure 245 
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(Fig. 1g), and subsequently null Shannon index for several soil treatments (Fig. 1). The H’ 246 

was less sensitive to the different PATs than richness. Hence, H’ was only reduced between 247 

7-13 % at 1 % PAT in comparison to 0 %, and it was only at 5 % and 10 % PATs that H’ was 248 

reduced by 38-50 % and 60-85 %, respectively. When the results from all the Res were 249 

combined, the richness and H’ at PAT 0 % were 167.0±24.1 and 4.2±0.2 respectively (Fig. 1i, 250 

j). The effect of PAT on richness and H’ was similar for all RE, including the combination 251 

of RE. 252 

  253 

Bacterial community composition 254 

Different enzymatic digestions generated different bacterial community compositions, 255 

regardless of the PAT and the matrix used (Fig. 2, Fig. S2). For example, at PAT of 0.5 % 256 

from the relative abundance matrix, the bacterial community generated with AluI showed that 257 

soil amended with sewage sludge and peat had the lowest similarity percentage (∼60 %) in 258 

comparison to the other soil treatments (Fig. 2). In contrast, MspI showed that green manure 259 

amended soils had the lowest similarity percentage (∼60 %) in comparison with other soil 260 

treatments. The bare fallow soil treatment with ∼70 % of similarity and the other soil 261 

treatments clustered in 2 groups with ∼75 % of similarity between groups. Sewage sludge and 262 

peat showed more similarity (∼75 %) than that generated with AluI (Fig. 2). Bacterial 263 

community generated with HaeIII and RsaI showed more variation than AluI and MspI 264 

between field replicates of sewage sludge, peat and sawdust amended soils (Fig. 2). The 265 

bacterial community generated with HaeIII, for the peat and sewage sludge treatments 266 

showed the lowest similarity with other soil treatments, as found with that generated with 267 

AluI. The restriction enzyme RsaI showed that the green manure amended soil and bare 268 

fallow had the lowest similarity (50-60 %) with other soil treatments, such as found with 269 

MspI. Peat amended soil showed high difference with all soil treatments but also high 270 
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variability between fields replicates (Fig. 2). When the results from each RE were combined, 271 

the cluster analysis showed similar clustering that when using AluIalone (Fig. 2). The use of 272 

presence/absence matrix increased the similarity percentage between clusters for all soils by 273 

10 to 20 % regardless the RE, and could have led to non-significant differences between soil 274 

treatments as revealed by SIMPROF analysis (Fig. S2). When all the soil treatments were 275 

significantly different to each other with relative abundancematrix for each RE, with 276 

presence/absence matrix, many soil treatments grouped together and some soil treatments did 277 

not group together anymore (Fig. 2, S2). 278 

 The effect of PAT on bacterial community composition varied with the RE and matrix 279 

used. For example, increasing PAT did not have strong effect on nMDS for MspI based on 280 

relative abundance matrix between 0 % and 1 % (Fig. 3). The different soil treatments were 281 

separated from each other and the treatments replicates grouped together (Fig. 3). In contrast, 282 

at PATs of 5% and 10 %, the nMDS did not discriminate 6 out of 8 soil treatments, and the 283 

treatment replicates showed high variability and changes in similarity (Fig. 3). When the 284 

nMDS for MspI were generated based on presence/absence matrix, PAT had more effect on 285 

the nMDS (Fig. S3). At 0 % PAT, the soil treatments were not well separated by nMDS and 286 

treatment replicates showed high variability. Between 0.1 % and 1 %, the separation between 287 

soil treatments increased continuously and the treatment replicates grouped together. 288 

However, at 5 % and 10 %, the nMDS representation did not separate the soil treatments as 289 

found with relative abundance matrix. 290 

 291 

ANOSIM and PERMANOVA analysis 292 

Significant differences (P=10-6) between the bacterial community composition of the 293 

different soil treatments were observed for the 4 REs, regardless of PAT and type of matrix 294 
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(Fig. 4). However, the R (from ANOSIM) and F (from PERMANOVA) values differed 295 

greatly between REs and matrices. The restriction enzymes AluI and MspI showed the highest 296 

R (from 0.32 up to 0.97) and F (from 2.5 up to 54.0) values regardless of matrix used. In 297 

contrast, HaeIII and RsaI showed lower R (from 0.23 to 0.74) and F (from 2.2 to 13.3) values 298 

than AluI and MspI. HaeIII showed overall the lowest R values in comparison with other REs 299 

but similar F values than RsaI. When the REs results were combined, the R values were 300 

slightly lower than for AluI and MspI, but the F values were much lower than for AluI and 301 

MspI (up to 3.6 times lower). 302 

 The R and F values increased for all REs and both matrices with increasing PATs 303 

from 0.5 % to 1 % and then decreased (except for the F values of HaeIII that increased 304 

continuously). The R and F values reached their highest values at different PATs, but were 305 

not different for both matrices, for the different REs: for AluI at 0.5 %, for MspI and RsaI at 1 306 

%, and for HaeII at 5 % (except for HaeIII F value: 10%). The Rand F values often decreased 307 

sharply after the highest value for the different REs and both matrices, leading sometimes to 308 

R values inferior than PAT 0%The R and F values showed more sensitivity to increase in 309 

PAT when the analyses were based on the presence/absence matrix rather than the relative 310 

abundance matrix (Fig. 4). 311 

 The bacterial community composition generated by HaeIII and RsaI showed 312 

variability between replicates of the sewage sludge amended soil for HaeIII and, peat and saw 313 

dust amended soil for RsaI (Fig. 2), which could affect the results of ANOSIM, 314 

PERMANOVA and RELATE test. However, when the ANOSIM and RELATE tests were 315 

performed for both REs without the soil treatments showing variability, and for the different 316 

PAT and matrices, HaeIII showed similar R and ρ values and RsaI showed similar ρ values 317 

but 0.2 to 0.3 times higher R values than when the variable replicates were included. 318 

    319 
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 320 

Relationship between composition of bacterial community and soil chemical properties 321 

The bacterial community composition showed different relationships with the C and N 322 

content, C/N and soil pH for the four REs and combined REs results (Fig. 5). Hence, bacterial 323 

community composition generated with AluI, HaeIII and combination of all REs results were 324 

significantly (P=0.05) correlated to each of the soil chemical properties. However, it was not 325 

always significantly correlated for some specific PATs. The communities generated with 326 

AluI, HaeIII and the combined RE results, showed strong correlations with C content (ρ 327 

values up to 0.65), while the strength of the correlations with N content, C/N and soil pH were 328 

more variable, influenced by PAT and matrix. In contrast, the bacterial community 329 

composition generated with MspI and RsaI were not significantly (P≤0.05) correlated with all 330 

of the soil chemical properties. The bacterial community generated with MspI showed only ρ 331 

values that were relatively high for C content (up to 0.4 for PAT 0.1 % and presence/absence 332 

matrix) for both matrices (Fig. 5). The bacterial community composition generated with RsaI 333 

was only significantly correlated to C and C/N, regardless of the matrix used, with ρ values up 334 

to 0.4 and 0.56 for C and C/N, respectively (presence/absence matrix). The use of either 335 

relative abundance or presence/absence matrix can affect the strength of the correlation and 336 

the significance between bacterial community composition and the soil chemical properties. 337 

 The effect of PAT on the correlations between bacterial community composition and 338 

the soil chemical properties mainly depend on the matrix used. The strength of thecorrelations 339 

from bacterial community composition generated with relative abundance matrix were weakly 340 

affected by the PATs commonly used (i.e. 0 – 1 %), but decreased with PATs ≥ 5 %, 341 

decreasing the ρ values from 0.1 to 0.3 (Fig. 5). In contrast, correlations based on 342 

presence/absence matrix were more strongly affected by PATs, either increasing or 343 
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decreasing the strength and significance of the correlations. Increasing PATs, increased the ρ 344 

values between bacterial community and some chemical properties, but often decreased 345 

at PATs 5 % and 10 %. In contrast, increasing PAT had a negative effect on the correlations 346 

between bacterial community composition and all soil chemical properties for MspI and 347 

RsaI REs (Fig. 5).  348 

 The relationship between the T-RFLP profiles richness or evenness (Shannon index) 349 

and environmental variables showed different patterns between REs and PATs (Fig. 6). MspI 350 

and the combined results of all REs showed the highest number of significant correlations 351 

(16), and both were negatively correlated with C and N content. In contrast, HaeIII and RsaI 352 

showed nearly no significant correlations with the environmental variables (5 for both REs). 353 

Then, AluI showed a high number of significant correlations (11) with most environmental 354 

variables, but the correlations were greatly affected by PAT, as some correlations were either 355 

positive, negative and non-significant for the same variables depending on PAT (Fig. 6). In 356 

contrast, the other REs were affected in the same way by PAT, i.e. correlations became 357 

significant or stopped being significant. For each RE, PATs ≥5 % decreased the number of 358 

significant correlations from 2 to 7 times, while PATs 0.1 %, 0.5%and 1%showed high 359 

number of significant correlations (15, 11 and 10, respectively). 360 

 361 

Discussion 362 

Influence of soil organic matter on bacterial community composition 363 

The application of organic materials and N fertilisers over 53 years significantly changed the 364 

amount and the quality the soil organic matter, and subsequently, the bacterial community 365 

composition. The cluster and nMDS analysis showed clear separation between all treatments, 366 

which was confirmed by the SIMPROF, ANOSIM and PERMANOVA analysis. Hence, the 367 

treatments likely affected the composition of bacterial community via direct effects, due to 368 
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changes in C and N concentration and C/N ratio, or indirect changes, for example, due to soil 369 

acidification from the treatment applications. This result agrees with previous studies 370 

investigating the bacterial community composition at the Ultuna experiment using TRFLP 371 

(Enwall et al. 2007; Hallin et al. 2009; Cederlund et al. 2014) or other fingerprinting methods 372 

such as ribosomal intergenic spacer analysis (Enwall et al. 2005) or phospholipid fatty acids 373 

(PLFA; Elfstrand et al. 2007; Börjesson et al. 2012).  374 

 Each soil treatment grouped separately, with high similarity between field replicates, 375 

highlighting sufficient resolution of T-RFLP to discriminate the communities. Hence, each 376 

treatment was affected to some extent by the organic or inorganic amendment, showing 377 

specific bacterial community composition. The sewage sludge treatment was previously 378 

found to harbour distinct bacterial community compositions in comparison to the other 379 

treatments (Enwall et al. 2005, 2007; Elfstrand et al. 2007; Hallin et al. 2009), which was 380 

attributed to the low soil pH (Enwall et al. 2007) and mainly to the high heavy metal 381 

concentration (such as Cd and Pb) in soil comingfrom the sewage sludge applied (Enwall et 382 

al. 2005; Börjesson et al. 2012). The bacterial community composition of the peat treatment 383 

was also previously found to be different from the one of straw (with or without addition of 384 

Ca(NO3)2) and unfertilised treatment. The different bacterial community composition of the 385 

peat treated soil could be related to C and N concentration and C/N ratio, which were higher 386 

for the peat treatment than any other treatments. 387 

 388 

Different restriction enzymes reveal different stories  389 

Despite the clear differences in bacterial community composition generated by T-RFLP 390 

between the treatments, the bacterial communities clustered differently in relation to the RE 391 

used, directly influencing the biological conclusions. When the T-RFLPs were generated 392 

using AluI, HaeIII or the combination of all the REs, the soil treated with sewage sludge and 393 
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peat showed clear differences in bacterial community composition compared to the other soil 394 

treatments. In this case, T-RFLP profiles were strongly correlated with C and N 395 

concentration, and to a lesser extent, to C/N and soil pH, confirming previous studies 396 

(Elfstrand et al. 2007; Hallin et al. 2009; Cederlund et al. 2014). In contrast, when the 397 

bacterial community composition was generated with MspI, the green manure and bare fallow 398 

treatments showed the most distinct bacterial community composition from the other 399 

treatments. Using RsaI, results showed that peat, green manure and bare fallow were the 400 

treatments with distinct bacterial communities. A previous study showed that the green 401 

manure treatment harbours a distinct bacterial community composition generated by PLFA, 402 

but peat and sewage sludge treatment were not included in the analysis (Elfstrand et al. 403 

2007).When the T-RFLP profiles were generated by MspI and RsaI, only weak correlations 404 

with a few variables were found, indicating that the differences in microbial community 405 

composition depended on other environmental variables (Elfstrand et al. 2007; Hallin et al. 406 

2009). The specific bacterial community of the bare fallow could be due to the fact that the 407 

bare fallow treatment is the only one treatment where no crops were grown and was weeded 408 

manually, leaving a bare soil. In contract, the specific bacterial community of the green 409 

manure treated soil is likely to be related to the nature of the amendment, which showed the 410 

lowest humification coefficient in comparison to other organic amendments (Kätterer et al. 411 

2011), highlighting high and rapid mineralisation that could favour fast growing bacteria. 412 

 Many studies have shown that the use of different Res gives different results, i.e. 413 

different profiles (Burke et al. 2005; Osborne et al. 2006; Bennett et al. 2008, 2009; Kasel et 414 

al. 2008; Barkovskii et al. 2009). The selection of RE is usually empirical or based on the 415 

enzyme that gives the highest number of T-RFs for the gene of interest, with the expectation 416 

that it will give the best representation of the community composition (Marsh 2005). This 417 

selection is often obtained by in silico digestion of sequences. However, the RE commonly 418 
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used to digest the bacterial 16S rRNA gene (i.e. HhaI, MspI, HaeIII, RsaI and AluI) can give 419 

similar numbers of T-RFs and/or peak areas for the same samples (Osborne et al. 2006; 420 

Bennett et al. 2008). Here we performed in silico digestion on 51 sequences previously 421 

published from the 422 

Ultuna experiment (Sessitch et al. 2001). We found that different REs can result in similar 423 

numbers of T-RFs with in silico digestion or in T-RFLP, and that the results between in silico 424 

digestion and T-RFLP can differ (Table S2). This study clearly shows that different REs 425 

target different bacterial populations which are affected by the treatments, but in different 426 

ways, due to their sensitivities to different chemical parameters such as pH, C and N contents 427 

in soil. Thus, selecting an appropriate enzyme is more complex than purely selecting the one 428 

that gives the highest number of T-RFs. This means that empirical selection is crucial 429 

(Schütte et al. 2008) and should be based on existing literature as it also vary with the primers 430 

pair used and the targeted gene.  431 

 Several studies have stressed the importance of using multiple REs (see Thies 2007), 432 

either by simultaneous digestion (Bastias et al. 2007; Kluber et al. 2011; Aislabie et al. 2012; 433 

Godin et al. 2012) or by combining the data (Klamer and Hedlund 2004; Kasel et al. 2008; 434 

Bennett et al. 2009; Trabelsi et al. 2012) to obtain an accurate representation of the microbial 435 

community composition (Marsh et al. 2000). In the present study, the effect of soil treatments 436 

on bacterial community composition and the relationship between community composition 437 

and environmental variables were lower when the four REs were combined, and when only 438 

AluI and MspI were combined, most of the soil treatment replicates did not group together and 439 

soil treatment effect was low (data not shown). The combination of all the RE results may 440 

represent a summary of the results showing only the strongest change in the composition of 441 

bacterial community due to the most important factors (here, soil C and N content). 442 

 443 
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Variability in the effects of peak area threshold 444 

Although the selection of RE was clearly the dominant factor affecting microbiological 445 

conclusions, the use of different peak area thresholds (PAT) and relative abundance or 446 

presence/absence matrices also affected the interpretation. The effect of PAT on bacterial 447 

community composition varied with RE, the matrix used and statistical analysis. Peak area 448 

threshold had a stronger effect on bacterial community composition when generated with 449 

presence/absence matrix rather than relative abundance. This was expected as presence/ 450 

absence give the same weight to all the T-RFs and is likely to be more sensitive to different 451 

noise thresholds than relative abundance due to the loss of T-RFs (Clarke 1993; Bennett 452 

et al. 2008).  453 

 Overall, the use of PAT improved the separation/significance between microbial 454 

groups and correlations with environmental variables. The positive effect of PAT is likely 455 

due to the reduction of the variability in T-RF richness, which could be related to background 456 

noise (Fig. 1). The peak area threshold between 0.5 % and 1 % gave the best results for the 457 

different REs. Peak area thresholds>1 % had overall a negative effect on ordination and 458 

statistical analyses and should therefore not be used for most REs. Peak area threshold of 0.1 459 

% did not result in high R and ρ values, indicating that it may not be a strong threshold to 460 

improve the results, which was confirmed by the absence of significant differences between 461 

bacterial community composition obtained with 0 % and 0.1 % PAT (data not shown). This 462 

study stresses the importance of using peak threshold especially for presence/absence matrix, 463 

as only 29 % of the studies surveyed (Table S1) used a threshold and about77% of the studies 464 

that used presence/absence matrix did not apply any peak threshold on the data. 465 

 466 

Relative abundance matrix: a robust method? 467 
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The choice of matrix between presence/absence and relative abundance depends on whether 468 

the specific aim of the study is qualitative (presence/absence) or quantitative (relative 469 

abundance). The presence/absence matrix gives the same weight to all the T-RFs, i.e. rare T-470 

RFs have the same impact on the data than abundant T-RFs and can be highlighted in the 471 

results, while abundant peaks dominate the relative abundance matrix. Thus, the type of used 472 

matrix can have a direct effect on the results and the biological conclusions. The 473 

presence/absence matrix showed that only high input of C≥23 % and N>2 % can affect 474 

bacterial community composition. This suggests that bacteria are resilient to small changes in 475 

soil C and N content even over long periods of time. Hence, presence/absence matrix showed 476 

only the strong differences between samples, reducing the complexity of the results. Rees et 477 

al. (2004) also showed that relative abundance matrix (peak area) over presence/absence 478 

matrix, generated better nMDS representation (i.e. better separation between groups) and 479 

higher R values . In the present study, the relative abundance matrix appeared to be more 480 

robust and reliable than presence/absence method. Thus, based on the results, the use of 481 

relative abundance matrix is recommended over presence/absence matrix to investigate 482 

complex bacterial community composition and to reveal the full extent of the changes in 483 

microbial community composition. 484 

 485 

Conclusions 486 

Fifty three years of organic amendments and the addition of N fertilisers strongly changed the 487 

composition of bacterial community of all the treatments, with the sewage sludge and peat 488 

treated soil being the most affected. The C and N concentration (and to a lesser extent C/N 489 

ratio and soil pH) were identified as the main drivers of these differences in the composition 490 

bacterial community. However, biological conclusions found in this study were clearly 491 

affected by the methods and data analysis. The selection of RE was found to be the main 492 
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factor influencing T-RFLP, highlighting the importance of empirical and literature based RE 493 

selection. Nevertheless, different REs can reveal different bacterial populations. PAT also 494 

affect the results using the presence/absence matrix, and to a lesser extent, using relative 495 

abundance matrix. Thus, PATs of 0.5 % or 1 % were found to be the most appropriate for 496 

determining meaningful biological conclusions. The relative abundance matrix was found to 497 

be a robust and reliable measure in comparison to presence/absence matrix, as relative 498 

abundance was less sensitive to PAT, generated less variable results and revealed the full 499 

complexity of the results, whilst the presence/absence matrix lost information. This study also 500 

demonstrates the importance of using a variety of multivariate analysis to fully assess the 501 

effect of different factors on T-RFLP and to obtain accurate biological conclusions. Here, we 502 

demonstrated that cluster or nMDS analysis alone is not sufficient. As suggested by Rees et 503 

al. (2004), the use of statistical test such as ANOSIM or PERMANOVA is essential for data 504 

interpretation.  505 

 506 
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Table 1. Chemical characteristics of the 8 different soil treatments of the Ultuna Long 644 

Term Field Experiment (Uppsala, Sweden). Means values ± standard errors (n = 3) are 645 

shown. 646 

Soils treatments 
Total C 

(mg g-1 soil) 

Total N 

(mg g-1 soil) 
C/N 

pH 

(water) 

Bare fallow 9.8 ± 0.08 1.06 ± 0.01 9.2 ± 0.01 6.1 ± 0.03 

Ca(CO3)2
  14.0 ± 0.12 1.45 ± 0.01 9.6 ± 0.03 6.7 ± 0.02 

Farmyard manure 23.0 ± 0.08 2.27 ± 0.003 10.1 ± 0.02 6.5 ± 0.03 

Green manure 16.9 ± 0.07 1.73 ± 0.01 9.8 ± 0.02 6.1 ± 0.02 

Peat 38.2 ± 0.46 2.07 ± 0.01 18.5 ± 0.14 6.1 ± 0.02 

Saw dust 20.9 ± 0.45 1.49 ± 0.02 14.0 ± 0.14 6.3 ± 0.04 

Sewage sludge 28.6 ± 0.19 3.08 ± 0.02 9.3 ± 0.01 4.9 ± 0.02 

Unfertilised 11.1 ± 0.04 1.18 ± 0.004 9.4 ± 0.03 6.2 ± 0.02 

 647 

648 
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 649 

Fig. 1. Variation in the number of T-RFs (a, c, e, g, i) and the Shannon index (b, d, f, h, j) 650 

from the bacterial community structures in the eight soil treatments studied, at six peak area 651 

thresholds and for each of the four enzymatic digestions (AluI, HaeIII, MspI and RsaI) and the 652 

combination of the four restriction enzymes results (All RE). Mean values ± standard errors (n 653 

= 3) are shown. NB: the y-scale for the number of T-RFs from All RE is different than the 654 

other plots. 655 

 656 
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 657 

Fig. 2. Cluster analysis of the bacterial community structure of eight soil treatments studied at 658 

0.5% peak area threshold generated from relative abundance matrix, from four different 659 

enzymatic digestions (AluI, HaeIII, MspI and RsaI) and the combination of the four restriction 660 

enzymes results (All RE). Different soil treatments are indicated in the key (3 experimental 661 

replicates). Red lines indicate clusters that are not significantly different (P < 0.05). 662 
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Fig. 3. nMDS plots of the bacterial community structure generated from the relative 666 

abundance matrix, obtained by T-RFLP and digested with the restriction enzyme MspI, from 667 

eight different soil treatments studied, at 0%, 0.1% 0.5%, 1%, 5% and 10% peak area 668 

thresholds. Different soil treatments are indicated in the key (3 experimental replicates). The 669 

2D stress is given for each nMDS plot. Circles indicate percentage of similarity between 670 

samples based on cluster analysis. 671 

 672 
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 673 

Fig. 4. Variation in the effect of soil organic and mineral amendments on bacterial community 674 

structure generated from four different enzymatic digestions (AluI, HaeIII, MspI and RsaI) 675 

and the combination of the four restriction enzymes results (All RE), 6 different peak area 676 

thresholds (0 to 10%) and from relative abundance or presence/absence matrices. The effect 677 

of soil organic and mineral amendments on bacterial community structure was expressed as R 678 

(top plots) and F (bottom plots) values obtained from one-way ANOSIM and PERMANOVA, 679 

respectively. All the analysis were significant at P = 0.00001.  680 

 681 
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 682 

Fig. 5. Heatmaps of Spearman rank correlations between each environmental variable (i.e. C 683 

and N content, C/N and pH) and T-RFLP profiles from 8 different samples, generated with 4 684 

different enzymatic digestions (AluI, HaeIII, MspI and RsaI), 6 different peak area thresholds 685 

(0, 0.1, 0.5, 1, 5 and 10%) and from relative abundance or presence/absence matrices. Colours 686 

represent the ρ values of Spearman rank correlations, i.e. the strength of the correlations 687 

varying between 0 and +1. All RE corresponds to the combination of the 4 restriction 688 

enzymes. Variations in correlation between bacterial community structure and environmental 689 

variables were expressed as ρ values generated from the RELATE test from the software 690 

PRIMER. Significant (P < 0.05) correlations were found for Spearman’s rank correlation 691 

superior ~0.2. 692 
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 693 

Fig. 6. Heatmaps of Spearman rank correlations between each environmental variable (i.e. C 694 

and N content, C/N and pH) and richness or evenness of the T-RFLP profiles (See Fig. 1) 695 

from 8 different samples and generated with 4 different enzymatic digestions (AluI, HaeIII, 696 

MspI and RsaI) and 6 different peak area thresholds (0, 0.1, 0.5, 1, 5 and 10%). Colours 697 

represent the ρ values of Spearman rank correlations, i.e. the strength of the correlations 698 

varying between -1 and +1. Significant (P < 0.05) correlations were found for Spearman’s 699 

rank correlation > 0.4 and < -0.4. 700 

 701 
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Supplementary Information 702 

 703 

Fig. S1. Number of articles using T-RFLP and published in Biology and Fertility of Soils 704 

(17), European Journal of Soil Sciences (4), Geoderma (2), Plant and Soil (24) and Soil 705 

Biology & Biochemistry (112), between 2002 (first article published) and 2014 (See also 706 

Table S1). 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 
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 716 

 717 

Fig. S2. Cluster analysis of the bacterial community structure of eight soil treatments studied 718 

at 0.5% peak area threshold generated from presence/absence matrix, from four different 719 

enzymatic digestions (AluI, HaeIII, MspI and RsaI) and the combination of the four 720 

restriction enzymes results (All RE). Different soils treatments are indicated in the key (3 721 
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experimental replicates). Red lines indicate clusters that are not significantly different (P < 722 

0.05). 723 

 724 

Fig. S3. nMDS plots of the bacterial community structure generated from presence/absence 725 

matrix, obtained by T-RFLP and digested with the restriction enzyme MspI, from eight soils 726 

treatments studied, at 0%, 0.1% 0.5%, 1%, 5% and 10% peak area thresholds. Different soils 727 

treatments are indicated in the key (3 experimental replicates). The 2D stress is given for each 728 



 38 

nMDS plot. Circles indicate percentage of similarity between samples based on cluster 729 

analysis. 730 

 731 

Table S1. Analysis of 159 studies published in Biology and Fertility of Soils (17), European 732 

Journal of Soil Sciences (4), Geoderma (2), Plant and Soil (24) and Soil Biology & 733 

Biochemistry (112), between 2002 (first article published) and 2014, in which T-RFLP was 734 

used. The data present the percentage of articles that indicate: 1 or >1 restriction enzymes 735 

used, mentioned the size interval of T-RFs analysed, used noise threshold (baseline or peak), 736 

normalised data, the type of matrix used for data analysis and the main ordination/statistical 737 

analysis performed. 738 

Criteria for T-RFLP analysis Proportion (n = 159) 

Only one enzymea,b 62% 

More than one enzymeb 43% 

T-RFs size knownc 46% 

Baseline threshold 38% 

Peak area/height thresholdd 29% 

Presence/Absence matrixe 29% 

Relative abundance matrixe 61% 

  

Main ordination/statistical analysis Proportion (n = 159) 

Cluster 18% 

nMDS 25% 

PCA 25% 

ANOSIM 13% 

MRPP 6% 

PERMANOVA 11% 

a For 81 studies amplifying the bacterial 16S rRNA gene, the restriction enzymes the most frequently used were 739 

HhaI (37%), MspI (36%), HaeIII (30%), RsaI (12%) and AluI (10%).  740 
b The total percentage is > 100% because some studies using one or more enzymes for different communities 741 

within the same study, and were subsequently counted twice.  742 
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c article that used or indicated the interval-size (base pair or nucleotide) of T-RFs included in their analysis. 743 
d 1% peak threshold was the most used (16%) and then 0.5% (8%), 0.1% (3%), followed by 1.5%, 2%, 3% or 744 

5% representing 1% of the studies. 745 
e 9% of the studies did not indicate which matrix they used. The total percentage of studies is > 100% because 746 

some studies used presence / absence and relative abundance in their analysis and were counted twice. 747 

Table S2. Number of T-RFs obtained by in silico digestion or T-RFLP. The in silico 748 

digestion was performed on 51 sequences previously published from the Ultuna experiment 749 

(Sessitsch et al., 2001). The number of unique T-RFs and the total number of T-RFs for all the 750 

sequences or samples are given at peak area threshold 0%. 751 

Restriction 

enzyme 
In silico digestion  T-RFLP 

 
Unique 

T-RFs 

Total 

number 

of T-RFs 

 
Unique 

T-RFs 

Total 

number 

of T-RFs 

AluI 33 51  136 1049 

HaeIII 34 49  162 872 

MspI 27 41  137 720 

RsaI 24 33  138 1368 

 752 


