
Interacting with Computers ~014 no 2 (1992) 246-259 

Task analysis and system design: the 
discipline of data 

David Benyon 

In the previous issue of ~~ter~cfi~g with Compufers, I offered a critique of task 
analysis (TA) arguing that, in general, task analysis techniques had failed to 
appreciate the significance of the shift in emphasis - towards logical modelling 
of the system and away from physical modelling - which had taken place 
during the early 1980s in information systems. As a result TA (if used on its 
own) would produce poor system designs because it fails to achieve sufficient 
device-independence (Benyon, 1992). In the commentary on this paper, Diaper 
and Addison (1992) defended TA in general and TAKD (e.g. Diaper, 198913) in 
particular against the criticisms and made a number of assertions about my 
stance regarding humans and computers. 

In this reply, I intend to clarify first what I mean by a data-centred view, 
second what I mean by device independence and finally why the data-centred 
view is a vital part of systems development. In doing this I hope to deal with 
many of the specific points raised by Diaper and Addison. 

Underlying this discussion is a view of how system designers should 
undertake their designs and a theoretical, or philosophical basis of human- 
computer interaction (I-ICI) provided by the data-centred view. Whilst both of 
these are important subjects, there is neither the space nor the time to give 
adequate coverage here. However, I am sure that both the theory and the 
practice of HCI will benefit from this continuing debate on the preferred role of 
task analysis in system design. 

My original concern about TA stemmed from the claim made by its advocates 
that ‘task analysis is potentially the most powerful method in HCI . . . for 
producing requirements specifications’ (Diaper, 1989a; preface). I believe this 
view is unsatisfactory because TA does not focus sufficiently on the data in the 
system. This paper is aimed at explicating this position. 

The central part of this paper is an exposition of data models as conceptual 
models which capture both a human and a computer view of systems. This 
discussion is necessary in order to understand the notion of device independ- 

Department of Computer Science, Open University, Milton Keynes, MK7 6AA, UK 

246 0953~5438/92/020246-14 @J 1992 Buttetworth-Heinemann Ltd 

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article-abstract/4/2/246/697945 by guest on 23 N
ovem

ber 2018



ence which is presented in the following section. Before turning to the details of 
data, it is important to obtain a perspective on system development. 

System development 

There are many characterizations of how systems are developed and how 
systems should be developed. The model used in Benyon (1992) was chosen to 
emphasize the importance of conceptual modelling and task allocation rather 
than to prescribe a system development method. Many methods advocate a task 
allocation phase (such as Avison and Wood-Harper, 1990; Sutcliffe and McDer- 
mott, 1991; Damodaran ef al. 1988). However, task allocation is not something 
that happens after conceptual modelling is complete. Task allocation is an 
extended and considered process of analysis, design and implementation. The 
allocation of tasks to human, to machine or to some combination prompts a 
discussion of both human and machine capabilities and resources. Performing 
task analyses here is an effective way of informing this process. No doubt errors 
in the analysis and omissions in the design will be exposed and the develop- 
ment process will cycle round to consider alternatives. 

Models of system development are produced for different purposes, are more 
or less useful for those purposes and are more or less applicable to different 
systems, However it is clear that designers have to undertake some analysis 
work, some design - both logical and physical - and the system has to be 
implemented. There exists an uneasy relationship between these activities both 
in respect of the order in which they are undertaken and their respective 
contents. 

Diaper and Addison (1992) view the stages of systems development as having 
identifiable inputs and outputs, but this is only one perspective. Analysis 
suggests design solutions. Design exposes holes in the analysis. Implementa- 
tion, at least in the form of prototypes, is an aid to both analysis and design. 

Data capture (or requirements specification), for example, is certainly some- 
thing that has to be done thoroughly and thoughtfully and which is not easy. 
But what do we want to achieve? Simply describing the current system is useful 
only insofar as it reassures the users that the analyst understands what they, the 
users, do. It is analysing the current system that is important. Methods for data 
capture (such as task analysis) must demonstrate their analytic power. Obtain- 
ing appropriate descriptions of what people want to do and how they want to 
do it, coupled with how they should do it (e.g. for safety, security and integrity 
reasons) is vital for both analysis and design. Part of systems analysis is 
understanding the tasks which the system has to support. Structured methods 
of analysis and design are poor in both respects. It is for this reason that the 
systems view and rich pictures have been advocated in information systems 
design (Avison and Wood-Harper, 1990), TA has become popular in HCI and 
the urgent need to integrate HCI with information systems design has been 
recognized (e.g. Sutcliffe, 1989; Damodaran et al., 1988). 

Many techniques are available for both analysis and design and should be 
used as appropriate. Rather than trying to find an all-encompassing methodolo- 
gy, or the ‘right’ representation, the ‘tool-kit’ approach to systems development 

Benyon 247 

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article-abstract/4/2/246/697945 by guest on 23 N
ovem

ber 2018



(Benyon and Skidmore, 1987) recognizes that different situations demand 
different techniques. In this approach designers are trained in the use of 
different tools and techniques which they select as appropriate given their 
knowledge of the tool’s strengths and weaknesses, personal preferences and the 
demands of the problem at hand. Task analysis techniques are a welcome 
addition to the analyst/designer’s tool-kit, but they do not capture all the 
required views. An essential component of the tool-kit, or of any methodology, 
is one or more techniques for logical or conceptual modelling. 

Conceptual modelling 

The purpose of conceptual modelling is to allow analysts to reason about a 
problem and come up with design solutions in the abstract. A good conceptual 
model is one that is appropriate to the situation at hand. It highlights 
significant information and suppresses unnecessary detail. Models may be used 
to aid analysis - constructing the model forces the analyst to consider what is 
significant - as a formal design technique, to communicate ideas or to test 
hypotheses. 

Models can be made of many things and can be about different aspects of the 
situation. The constructs which a model employs, the ability to manipulate 
those constructs and the constraints which can be expressed are essential to its 
efficacy. Mathematics is a conceptualization which has been well used in many 
areas. Models made of plastic or wood are appropriate for conceptualizing 
physical structure. A good introduction to the principles of conceptual models 
in general and data models in particular is provided by (Tsichritzis and 
Lochovsky, 1982). 

As HCI focuses on the interaction between humans and computers, a 
conceptual model of the human-computer system which is both an abstraction 
of humans and of the computer system would be desirable. On the human side, 
we may wish to model the conceptual structures which people have, the tasks 
which they perform, the likelihood of their making mistakes, the cognitive 
processing which they undertake, the learnability of the system, the knowledge 
required to use the system, and so on. On the computer side we may wish to 
model the structure of the computer system, the processing, the interface, the 
performance, the quality and so on. 

We certainly do not want models to be tied to particular computer languages 
or programming paradigms (e.g. logic programming, object-oriented program- 
ming, etc) nor to particular individual people, because such models would fail 
in the objective of achieving an appropriate level of abstraction. The analytic, 
explanatory and communicative power of a conceptual model arises from the 
stucture, operations and constraints which that model is able to capture. 

Data models 

I believe that it is unhelpful to see data models as models ef data. Data models 
are models of some aspect of the system, in our case a human-computer system, 
which are made of data. The object of the model is the human-computer system; 

248 Interacting with Computers vol 4 no 2 (2992) 

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article-abstract/4/2/246/697945 by guest on 23 N
ovem

ber 2018



data is the material from which the model is constructed. The contention here is 
that using data as the building block of models is particularly appropriate for 
human-computer systems. 

The basic structural component of a data model is a data item. A data item is a 
semantic object consisting of one or more symbols, a name (and usually a more 
comprehensive description of the meaning of the data item) and a context. The 
name, description and context ascribe the semantics to the data item. Instances 
of data items - the actual and potential values - are conveniently generalized by 
the data item’s name. Details of data items and their meaning can and should be 
stored in a data dictionary, thus making the semantics explicit. Resolving 
conflicting understandings and meanings for the same data item, or for the 
same name of a data item is a major part of the analyst’s work. 

For example an analysis of an electronic mail system, may reveal that there is 
a data item type which the analyst, in consultation with the users, decides to call 
WhoTo. This data item may be defined as the input which is entered in response 
to the mail system prompt. 

To: 

indicating the recipient of a message. The instances of this data item include 

rpt@uk.ac.leeds.dcs 
@Researchgroup 
T_Bolton 
Earn-relay”John@ibm.com” 

Data items are established by the analyst through data capture techniques such 
as interviewing, observation, recording, prototyping, searching and so on. 
Analysts do not simply perceive the world, they interact with the existing 
system, or descriptions of it, and decide to represent certain aspects using 
certain data items. Analysts must take great care to identify implicit as well as 
explicit data. The height of a pile of boxes in a warehouse or the whirring of a 
disc drive are just as much data as a user’s name or a product code. 

Using this basic component, data models impose a discipline. In the first 
instance, the meaning of each data item has to be established. In the example 
above, the meaning of WhoTo is far from clear. Analysts must consider the 
structure of the data item, the allowable values of the data item and whether 
there is more than one type of data item. In this case, the analysis would reveal 
that 

l rpt@uk.ac.leeds.dcs 

l @Researchgroup 

is an address on the JANET network, the 
syntax is Userld@Address and that Address is 
made up of Country.TypeOfOrganisation.In- 
stitution.Node. This type of WhoTo in fact 
consists of five distinct data items. 
is a distribution list which actually refers to 
a file called Researchgroup.dis consisting of 

Benyon 249 

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article-abstract/4/2/246/697945 by guest on 23 N
ovem

ber 2018



any number of individual data items of the 
type WhoTo. 

0 T_Bolton is a user on the same node of the network as 
the sender. 

l Earn-relay”John@ibm.com” Includes a NetworkName data item (in this 
instance, ‘Earn-relay’) and that is followed 
by an address of the form 
Userld@Node.lnstitution.TypeOfOrganization. 
Country (though Node and Country do not 
appear in this instance). 

This analysis has already highlighted the existence of a number of other data 
items - NodeName, NetworkName, Country and so on - each of which will 
require further analysis. This analysis will subsequently reveal the wealth of 
detail about names and addresses that permeate electronic mail systems. 

An important modelling technique is that of generalization and specializa- 
tion. We recognize that all the data items listed above are of a certain type as 
demonstrated by the fact that they are all input in response to the ‘To’; prompt. 
The type of data item is a generalization of the specific instances. However, we 
have also recognized that there are further types within this - the people on the 
same network type, the people who have a network name as part of their WhoTo 
etc. 

The next level of data analysis considers the relationships which exist 
between data items. All data items have relationships to other data items. 
Analysts have to establish which relationships are important for the system 
under consideration. The relationships which are of particular interest are the 
mappings between the actual and potential values of the data items (Benyon, 
1990). The technique of normalization enables the analyst to explore the 
semantics of the data by examining these syntactic relationships. On the basis 
of this well-defined and rigorous technique, data items can be grouped together 
in a way which clearly expresses the semantics which hold in a particular 
context. 

In the e-mail example, analysts must consider the relationship between the 
data items NodeName and NetworkName, for example. Clearly a value of 
NetworkName may be associated with many values of NodeName, but can a 
value of NodeName be associated with one or more values of NetworkName? The 
semantics of this relationship concerns whether a node can be on more than one 
network or not. This depends on how NetworkName and NodeName are defined. 
The analyst is thus forced to go back to the users and discover how these data 
items will be defined. This in turn will determine the relationships which they 
have with other data items. 

Another level of abstraction within the data modelling paradigm is provided 
by an object which is usually known as an ‘entity’. An entity is an aggregation 
of data items, expressing the semantics that certain data items belong together. 
Entities may be derived from the normalization process, or they may be 
determined in a top-down manner by analysts using their experience. These 
entities can then be examined in terms of the relationships which exist between 

250 Interacting with Computers ml 4 no 2 (1992) 

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article-abstract/4/2/246/697945 by guest on 23 N
ovem

ber 2018



Network details 

UserId@Node Network’UserIdGNode 
c 

Figure 1. Example dataflow diagram 

them. The most usual technique here is the entity-relationship (ER) model 
which is an excellent analytic tool as well as a design specification. 

In the e-mail example, we may discover entities such as User, Node, Network, 
DistributionList, TypeOfOrganization and so on. Part of the discipline imposed 
by ER models is that every entity must have an identifying data item. The 
choice of identifier dictates what the entity means. For the entity, User, for 
example, if I choose UserId (such as T_Bolton, John or rpt) as my identifier it 
means something very different than if I choose UserId@Node (T_ 
Bolton@uk.ac.open.acs.vax, John@IBM.COM or rpt@uk.ac.leeds.dcs) or 
Network”Userld@Node” (e.g. Earn-Relay”John@IBM.COM”). In choosing an 
identifier (and hence defining the meaning of the entity) analysts must ensure 
that there is a close correspondence between the entity and the concept(s) 
employed by users. 

Another way to model the system is to look at how data flows between 
processes. A process, or functional, model made of data concentrates on the data 
that is strictly necessary for processing to occur. This may be contrasted with a 
model of the physical system (such as a flowchart) which models the movement 
of physical objects such as documents. The discipline imposed by a data- 
centred process model (such as the dataflow diagram, DFD) is concerned with 
the completeness and consistency of the description. By casting the model in 
terms of data, processes can be examined to ensure that they have access to 
enough data to complete the transformation of the data entering the process to 
the data leaving the process. 

The DFD shown in Figure 1 illustrates this property of data-centred process 
models. If the input to the process ‘form complete address’ is just the data 
item(s) UserId@Node and if the full address required by the system is 
Network”Userld@Node” then the network details have to be provided from 
some store of data. Coupled with the requirements for precise definitions of the 
data items involved, the DFD can be checked for completeness and for logical 
processing capability. For example, is it possible to access, automatically a list of 
networking details given the data Userld@Node or is this necessarily a human 
activity? 

Data models impose a discipline on the processes of analysis and design. 
They demand precise definitions of data items to be formulated. They provide 

Benyon 251 

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article-abstract/4/2/246/697945 by guest on 23 N
ovem

ber 2018



rigorous techniques for aggregating data and establishing semantically sensible 
data objects. They provide analytic techniques and force the designer to ensure 
that the processing of data is logically possible. 

Data models, humans and computers 

One of the criticisms levelled at the data-centred approach by Diaper and 
Addison (1991) is that it is ‘computer-centric’ by which they mean ‘more suited 
to modelling computer systems than people’ (p. 128). In making this claim, they 
fail to distinguish between infological data models which are concerned with 
establishing a user-orientated model of the system and datalogical models 
which are concerned with representing the computer view (Sundgren, 1979; 
Benyon, 1990). Conceptual data models may capture both the infological and the 
datalogical perspective. 

In the previous section, I emphasized that data is a semantic concept and as 
such it is an appropriate mechanism for modelling humans. The underlying 
assumption of cognitive psychology is that the human is an information 
processor. But information only becomes available when data items are 
structured and associated with each other. Indeed it is the way that data items 
are associated which enables information to be derived. 

For example, a piece of data (i.e. a value of a data item) such as ‘13.50’ is 
meaningless until it is associated with a name or description such as ‘PriceIn- 
Pounds’ or ‘DepartureTime’. We are now able to obtain some meaning from the 
data, but it still provides no information until it is associated with another data 
item such as ‘TrainJourney’ and a value for this item such as ‘Leicester to 
Nottingham’. The relationship type such as 

a TrainJourney has a DepartureTime and a PriceInPounds 

should approximate to the human concept (of a train journey, in this case). This 
is the infological model. 

Data can also represent the computer data structure (the datalogical model). 
An instance of the relationship is provided by appropriate values of the data 
items, for example, 

TrainJourney 

Leicester to 
Nottingham 

DepartureTime PricelnPounds 

13.50 14.20 

Notice that without the data descriptions, it would be unclear which value was 
the price and which was the departure time. Context is also important. In this 
case we need to know when this relationship is valid in order to obtain 
information. 

Exactly what information is derived depends on the previous knowledge of 
the user, the semantics which they attribute to the data items and the 
relationships which are perceived. This is one reason why data modelling is so 
vital; the semantics of, and relationships between data items are made explicit. 

252 Interacting with Computers ml 4 no 2 (1992) 

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article-abstract/4/2/246/697945 by guest on 23 N
ovem

ber 2018



If the conceptual data model is carefully designed it will have a close 
resemblance to human conceptual structures. The ER model, being an infologic- 
al data model, represents a user-oriented view of the system. Entities are 
created by the analyst in order to model the world. ‘Concepts are inventions of 
the human mind used to construct a model of the world’ (Sowa, 1984; p.344). 

Entities should map onto the concepts employed by people. They also map 
onto computer data structures. Thus starting from a shared conceptual data 
model, the technical system designer can develop the computer implementation 
and the interface designer can specify a system structure that reflects users’ 
concepts. 

Information is derived from data, hence humans, at one level of abstraction, 
are data processors rather than information processors. Computers are also data 
processors. All computer systems can be considered as (datalogical) data 
models. They use data to present some aspect of the world as interpreted by 
analysts in consultation with users. The big difference is that humans (or more 
generally, agents) are task-centred as well, whereas computers are not. Compu- 
ters are process-tentred. 

By task-centred I mean that agents undertake activities which they believe are 
necessary and/or desirable for their purpose. Computers, in general, lack the 
sense of purpose. In designing computer systems we impose a task structure 
onto the computer system to make it easier to use. We organize the processes 
into some structure which reflects the tasks which humans want to perform. 
The problem with imposing a task structure is that a complex relationship exists 
between data, users and tasks. The same data is used in many tasks, different 
users have different tasks, different users use different data for different tasks 
and new tasks emerge which could not have been anticipated during the 
analysis and design of the system. 

For example, within the e-mail system, I store the messages which I have 
received in various ‘folders’ (directories). This data can be used to accomplish a 
task such as ‘display the messages which I have received since November 1991’. 
It is not easy but it can be used. On another occasion I may have a different task 
such as ‘I need to find the e-mail address of that person who mailed me from 
France about the Marseille conference’. Since I have saved my messages, I know 
that the data exists, but because it is structured according to task and this task 
has not been anticipated, I cannot accomplish my task. 

Data models represent the semantics of the system. They perform several vital 
functions. First they provide an abstraction of human cognitive structures. They 
represent the concepts which people have, or must understand, in order to use 
the system. Second they discipline designers by forcing the semantics to be 
made explicit. Third, they can be used to structure the data in the computer in a 
way which is independent of task, allowing flexibility for users to develop their 
own task structures. In this sense data models bridge the ‘anthropocentric gulf’. 

There is certainly a computer-centric view of data models, but it is not the 
only view. For example, Green (1991) uses ER models to represent human 
conceptual structures. Most texts on structured methods fail to recognize, 
explicitly the infological realm of data models and this leads them to offer poor 
definitions of the concept of an entity. 

Benyon 253 

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article-abstract/4/2/246/697945 by guest on 23 N
ovem

ber 2018



Environment 

\ / 

Figure 2. The world can be seen as consisting of agents (A) and devices (D) 
constrained and influenced by their environment 

Systems, tasks and device independence 

For the purpose of focusing attention on human-computer interaction, I 
propose that we may view the world as consisting of two types of entity - 
agents and devices - which exist within the constraints and influences of an 
environment. This is illustrated in Figure 2. Both agents and devices are 
systems (relatively complex ‘wholes’). Agents are intentional autonomous 
systems in that they have beliefs and desires and can formulate their own goals. 
People are agents. Agents undertake goal-directed activities by making use of 
devices. 

We can define a ‘goal’ (or external task) as a state of the environment or of the 
agent which is preferred by that agent to the current state. For our purposes, it 
would be helpful to exclude ‘impossible’ goals so we can add that an agent must 
believe that the goal is achievable within the environment. An agent formulates 
goals based on its desires and knowledge of the devices and agents which it 
perceives as existing in the environment. Goals are thus constrained by the 
agent’s weltanschauung. For example, I do not formulate the goal of visiting 
another galaxy because I know of no combination of devices and agents whch 
will enable me to do this. 

Given that the agent has formed a goal, the agent then selects a device which 
will enable it to achieve that goal. The process of selecting a suitable device 
depends on how the agent conceptualizes the device. The agent does this at one 
or more of three levels (following Dennett, 1987). First, the agent may consider 
the intentional stance - whether the perceived purpose of the device is 
appropriate for the purpose (goal) at hand. For example, if my goal is to 
communicate with another person, then an oven is a device which would 
probably be rejected on the grounds that I perceive the purpose of an oven to be 
the cooking of food rather than to communicate with another person. 

Second, the agent can consider the design stance. The telephone system, 

254 Interacting with Computers vol 4 no 2 (1992) 

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article-abstract/4/2/246/697945 by guest on 23 N
ovem

ber 2018



e-mail, writing and sending a letter and shouting loudly are all devices which 
are appropriate for the purpose as they can all be used to communicate with 
another person. Each of these has certain logical capabilities (the ability to store 
a message and to transmit it through time or space), but each also has certain 
logical constraints which derive from the design of the device. Telephone 
systems, because of their design, require access to a telephone. Writing and 
sending a letter imposes time constraints. It is a logical consequence of the way 
that the writing-and-sending-a-letter system works that the letter will take time 
to reach the recipient. 

Finally the agent may conceptualize the actual interaction with a specific 
device (the physical stance). Logically, e-mail requires access to a computer. 
Physically, it means using a particular computer (at a particular time and in a 
particular place) and the device may be perceived as suitable or not when 
considered from this physical perspective. 

Once the device has been selected, weighing up these different considera- 
tions, the agent begins to interact with the device. Up until this point, there has 
been no (actual) interaction. The process of selecting a device has been based on 
the agent’s conceptualization of the device; the agent’s mental model of some 
future interaction. 

Given this view of interaction, we can now define a ‘task’ (or internal task) as 
a goal plus a device. The goal can be accomplished using a variety of devices. 
Once a device is selected, the tasks necessary to accomplish the goal are 
prescribed by the logical structure and functioning of the device, i.e. by the way 
that it has been designed, or has evolved. 

This analysis may be applied at any number of levels of abstraction. Once an 
agent has started to interact with a device an agent-device (human-computer) 
system is established. This is constrained and influenced by the environment 
which consists of other agents (e.g. advisory staff) and devices (e.g. documenta- 
tion). Within this system, the agent will formulate goals and select devices to 
accomplish those goals. For example, the agent, having selected e-mail as the 
device to communicate with another agent, now formulates the goal of entering 
the text of the message. The devices available for this include editors, word 
processors or typing the message in directly. These are evaluated according to 
the agent’s conceptualization of their suitability for the purpose, their logical 
structure and functioning and their physical characteristics. A particular device 
is selected, thus establishing another agent-device interaction. 

At some point, the agent physically interacts with a device by performing an 
‘action’. That is to say, the agent transmits some signals which the device is 
capable of receiving (e.g. the agent types a command on a keyboard). The agent 
then has to evaluate any signals transmitted by the device (or some linked 
device) and decide to what extent the agent’s goals have been met. Conceptual 
interaction is based on the agent’s models of the devices. Physical interaction 
concerns phenomena observed by the agent and signals transmitted by the 
agent. 

This analysis highlights three levels of description of agent-device interac- 
tion. Level 1 concerns purpose. An agent evaluates devices on the basis of how 
appropriate they appear to be for the agent’s goal. At the conceptual or logical 

Benyon 255 

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article-abstract/4/2/246/697945 by guest on 23 N
ovem

ber 2018



level -level Z- the design of the device contrains what the agent has to do and 
describes what the logical capabilities of the device are. The third level is 
concerned with how the device does something physically. 

These three levels reveals two levels of device independence: 

l logical device independence, between levels 1 and 2, is a separation of the 
purpose of the agent-device interaction from the logical description of how 
it is to be accomplished (as determined by the type of device). 

l physical device independence, between levels 2 and 3, is a separation of the 
logical description from the requirements of a physical interaction (as 
determined by the actual device). 

It is level 2, the logical or conceptual level which is vital as it sits between levels 
1 and 3. The logical level has, first, to be an appropriate structure and have 
appropriate functions in order to fulfil its purpose, and second, it dictates 
certain characteristics of the physical design. The physical characteristics of the 
device must support the logical structure and functions. 

For example, an oven is a poor device for communicating between agents 
because it lacks certain inherent functions such as the ability to transmit 
messages. If someone were to tell me that an oven was a suitable device for 
communicating with another person, then I could be expected to question 
exactly how the physical construction of the oven could support the logical 
requirements associated with my goal. Where are the objects which can 
represent my message? Where is the functional capability to transmit? 

This is not to say that a device cannot be used for novel purposes. However, 
the design does constrain the purposes to which a device can be put. Similarly 
there can be novel implementations of the design, but any implementation 
must support the designed structure and functions. 

Goals, or external tasks are dependent on the environment and the agent’s 
conceptual knowledge of the devices (and other agents) available. Internal tasks 
are dependent on the design of the device. The (type of) device dictates the 
tasks which the agent has to undertake. Actions are dependent on the actual, 
physical device (and other constraints such as time and place). 

Conceptual data models are representations of the logical device. Task 
analysis is a model of HCI (or agent-device interaction) which focuses on the 
mappings between two or three of the three levels; goals map onto internal 
tasks which map onto actions. In focusing on this, TA is a vital part of system 
development. A straightforward goal-task-action mapping will certainly im- 
prove the human-computer interaction. But because TA focuses on the map- 
pings, it is necessarily device dependent. Indeed that is surely the raison d’etre 
of TA. 

Conclusion 

The purpose of this paper has been to explicate a particular view of human- 
device systems. Data is the most important and probably the only thing which 
humans have in common with computers. By building models made of data we 

256 Znteracting with Computers ml4 no 2 (1992) 

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article-abstract/4/2/246/697945 by guest on 23 N
ovem

ber 2018



establish a representation which is common to both agents and devices and 
avoid making physical design decisions too early. Conceptual data models are 
particularly appropriate for representing the logical level of a device. In addition 
to the logical level we have recognized the existence of a physical level of 
description and a level concerned with (perceived) purpose. 

If we accept this description of HCI, then we have to acknowledge that the 
development of agent-device systems involves four major activities: 

l declaring the purpose(s) of the system 
* defining a logical structure and functions which can accomplish the 

declared purpose(s) 
l deciding which elements of the agent-device system will perform which 

functions and provide the necessary structural components 
* physically developing devices which are capable of supporting the logical 

structure and functions and ensuring that agents have the appropriate 
knowledge and skills to perform their actions. 

These activities are interdependent, iterative and may occur simultaneously. 
The results of these activities require constant prototyping, evaluation and 
refinement. 

There is a wealth of tools and techniques to assist analysts and designers in 
their tasks. Techniques for establishing purpose include the CATWOE method 
of the soft systems methodology (Checkland, 1981) and the rich pictures of 
Multiview (Avison and Wood-Harper, 1991). Methods from systems analysis 
and psychology such as interviewing, protocol analysis, card sorting, question- 
naires, personal construct psychology and document analysis can be used for 
many purposes. Prototyping, formal evaluation techniques, simulations and 
animation similarly are applicable at different times. The large numbers of TA 
techniques may be used at various points in the process. Data-centred techni- 
ques provide another perspective. 

The question which needs to be addressed with regard to any technique is; 
how appropriate is it for the purpose at hand? This depends on the nature of the 
system, the nature of the analyst, the level of description being sought, the 
constructs and operators provided by the technique and its usability (ease of 
use, clarity, learnability, flexibility etc.) with respect to the purpose to which it 
is being put. 

It is always difficult to separate the effect of a technique from the influence of 
the analyst. A good analyst will achieve a good analysis almost despite the 
technique used. It is the average analyst who gains most from a well-defined 
and rigorous technique. Diaper and Addision are, no doubt, good analysts and 
are able to arrive at novel solutions using TAKD. The technique has yet to prove 
that it can be used effectively by average analysts and that it can produce similar 
analyses of a situation by a variety of analysts. Data-centred techniques, on the 
other hand, do produce this type of consistency. 

TAKD includes a number of tools. The TDH, since it is a hierarchy (whether a 
‘true hierarchy’ (Diaper, 1989b) or used in its weak sense (Diaper and Addision, 
1991) can only represent explicitly one side of a relationship or it must include 

Benyon 257 

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article-abstract/4/2/246/697945 by guest on 23 N
ovem

ber 2018



unnecessary duplication in its descriptions. (A directed graph is just as bad. 
I may want to go in a different direction! As a contrast, the ER diagram is a 
non-directed graph.) A hierarchical representation may be suitable once a 
system has been designed (i.e. to represent the physical device level), but is 
restrictive during analysis. 

TAKD incluces no definition of its objects or details of its actions. Johnson 
(1992) provides an example of TAKD for a computer-assisted jewellery design 
system which includes the generic objects: ‘Setting’, ‘Orientation’ and ‘Jewel 
choice’. Although I have an intuitive understanding of what these things are, no 
precise definition is offered and, I suspect, confusions will arise. In contrast, 
entities demand rigorous and unambiguous definitions. 

Diaper and Addison (1991) claim that TAKD is suitable for arriving at the 
conceptual level through the ‘generification’ technique, and this may be true. 
However, the need for the analyst to be ‘insightful and creative’ (Diaper, 1989b; 
p.136) and the admission that ‘It is difficult to produce a heuristic, or even 
advice, for how to do this vital stage’ (p.137) suggests that TAKD does not 
provide sufficient support for this activity. Data models provide well-defined 
and exacting techniques for the generification process. 

TAKD certainly prescribes a thorough method for describing the current 
system. It is user-centred and focuses on the tasks which people perform and in 
this is complementary to other methods which focus on purpose, concepts, 
functions, security and so on. But I am yet to be convinced of its analytic power 
because the constructs, operators and constraints which it employs do not 
appear to provide that power. It is for this reason that I dispute the claim that 
TA is the most powerful method in HCI for requirements specification. 

There are doubtless situations in which task analysis will be effective, but 
there are many situations in which it would appear to produce a limiting and 
overly device-dependent design. There are other techniques arising from work 
in information systems which are likely to be more effective which can offer a 
representation of both human and computer which is independent of task and 
device. HCI designers should be aware of these alternatives and the power 
which they offer. 

References 

Avison, D. and Wood-Harper, T. (1990) Multiview: An Exploration in Information Systems 
Development. Blackwell Scientific Publishers 

Benyon, D.R. (1992) ‘The role of task analysis in system design’ Interacting with 
Computers 4, 1, 102-123. 

Benyon, D.R. and Skidmore, S. (1987), ‘Towards a tool-kit for the systems analyst’, 
Comput. I. 28, 1, 2-7 

Benyon, D.R. (1990) Information and Data Modelling Blackwell Scientific Publications 

Benyon, D.R. (in preparation) ‘A semiotic model of interacting systems’ Submitted to 
IEEE Trans. Systems, Man and Cybernetics 

Checkland, P.B. (1981) Systems Theory, Systems Practice Wiley 

Damodaran, L., Ip, K. and Beck, M. (1988) ‘Integrating human factors principles into 

258 interacting with Computers ~014 no 2 (1992) 

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article-abstract/4/2/246/697945 by guest on 23 N
ovem

ber 2018



structured design methods’ in Bullinger, H-J., Protonotorios, E.N. Bauwhuis, D. and 
Reim, F. (eds) Information TechnoIogy for Organizational Systems North Holland 

Dennett, D.C. (1987) The intentional Stance Bradford Books, MIT Press 

Diaper, D. (ed.) (1989a) Task Anu~ysjs for ~~~un-co~pufer ~~fer~cfio~ Ellis-I-for-wood 

Diaper D. (1989b) ‘Task analysis for knowledge-based descriptions (TAKD): the method 
and an example’ in Diaper, D. (ed.) Tusk Analysis for Human-Compufer Interaction 
Ellis-Horwood 

Diaper, D. and Addison, M. (1992) ‘Task analysis and systems analysis for software 
development’ Interacting with Computers 4, 1, 124-139 

Green, T.R.G. (1991) ‘Describing info~ation artifacts with cognitive dimensions and 
structure maps’ in Diaper, D. and Hammond N. feds.1 People and Computers W 
Cambridge University Press 

Johnson, P. (1992) Human-Computer Interaction McGraw-Hill 

Sowa, J.F. (1984) Conceptual Structures Addison-Wesley 

Sundgren, B. (1979) ‘Database design in theory and practice’ in Weber, H. and 
Wasse~an, A. (eds) issues in ~ufu~use Ma~la~~~enf North-HolIand 

Sutcliffe, A.G. and McDermott, M. (1991) ‘Integrating methods of human-computer 
interface design with structured systems development’ Int. 1. Man Much. Studies 34, 
631-655 

Sutcliffe, A. (1989) ‘Task analysis systems analysis and design: symbiosis or synthesis? 
~nferucf~rzg with Compufers 1, 1, 612 

Tsichritzis, D.C. and Lochovsky, F.H. (1982) Dufu Models Prentice Ha11 

Benyon 259 

D
ow

nloaded from
 https://academ

ic.oup.com
/iw

c/article-abstract/4/2/246/697945 by guest on 23 N
ovem

ber 2018


