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Abstract
In this paper we compare two different approaches for surface waves cloaking. The first
technique is a unique application of Fermat’s principle and requires isotropic material properties,
but owing to its derivation is limited in its applicability. The second technique utilises a
geometrical optics approximation for dealing with rays bound to a two dimensional surface and
requires anisotropic material properties, though it can be used to cloak any smooth surface.
We analytically derive the surface wave scattering behaviour for both cloak techniques when
applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a
commercially available full-wave electromagnetic solver and demonstrate a good level
of agreement with their analytically derived solutions. Our analytical solutions and
simulations provide a complete and concise overview of two different surface wave cloaking
techniques.

Keywords: transformation optics, surface wave, invisibility cloak

(Some figures may appear in colour only in the online journal)

1. Introduction

Since the inception of transformation optics [1–4], many new
and exciting devices have been proposed not only for elec-
tromagnetics space waves [5–13] ranging from cloaks to
illusion devices, but also in the field of acoustics [14] and
thermodynamics [15]. Over the past few years; however,
there has been a growing interest in the manipulation of
surface waves as well [16–29]. This particular study focuses
on two methods of manipulating surface waves first proposed
by Mitchell et al [16] and McManus et al [28], which are
effectively an adaptation of Fermat’s principle and a 2D
approach similar to [1], respectively.

The importance of this work is that it is the first attempt,
to the best of the authors knowledge, of a side-by-side
comparison of two fundamentally, different surface wave

cloaking schemes. In terms of practical importance, the
manipulation of surface waves has applications in, but not
limited to, communications (e.g. surface wave antennas) and
obviously scattering reduction from undesirable, yet immo-
vable surface deformations (SDs) (i.e. surface wave
cloaking).

The overall structure of this article is as follows. First, we
introduce the cloaking technique derived in [16], discuss
some of its limitations and then solve for the required material
overlay. Next, we derive a closed form analytical solution to
show that said material overlay does in fact behave like a
surface wave cloak. Then, we introduce the cloaking techni-
que derived in [28], and follow the same procedure. Lastly,
we use a commercially available full-wave electromagnetic
solver (COMSOL 5.0) to further validate the performance of
both methods and carry out a one-to-one comparison between
them in terms of how well they emulate the amplitude,
magnitude and phase of a surface wave travelling along a flat
surface (i.e. how well they can be used as surface wave
cloaks).
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2. Two different cloaking techniques: theoretical
approach

2.1. Isotropic cloaking formalism

Owing to the inherent limitations of the method proposed in
[16], a rotationally symmetric SD is chosen as the test surface.
Here a simple Gaussian deformation is selected due to its
inherently smooth (no curvature mismatch between the flat
approach-plane and the deformation itself) nature, something
that was proven to be sought after in [16]. This surface is
defined by

z x y, e 1x y2 2( )( ) ( )s= = a- +

which can be recast in cylindrical coordinates as

z , e , 2
2( ) ( )s r q= = ar-

and is displayed in figure 1.
Setting out to determine the necessary material properties

to cloak the SD from a surface wave leads to the following
equations (3a) and (3b) where nc is the cloaking refractive
index that is sought, and R(f) is the radial length from the
centre of the origin to a point on the SD
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Here f is as it is defined in polar coordinates. Utilising a
simple finite difference approximation and setting nc,1=1, it
is possible to solve for nc(f) numerically via
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Equation (4) is solved and the resulting material profile
(though for relative permittivity and not refractive index) is
produced (see figure 2). Here it is important to note that this
technique leads to an isotropic material overlay and in turn
this cloak will be referred to as the isotropic surface wave
cloak (ISC).

To describe the surface wave behaviour analytically, we
start with the Helmholtz differential equation in two dimen-
sional cylindrical form

E E
kE

1 1
0, 5z z

z2

2

2
( )

⎛
⎝⎜

⎞
⎠⎟r r

r
r r q

¶
¶

¶
¶

+
¶
¶

+ =

where by using separation of variables [30] we have
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Equation (5) is then recast as
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where upon multiplying both sides by
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The second part of equation (8) must be periodic implies
that

m
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meaning that it has solutions of the form

A m B mcos sin , 10m m( ) ( ) ( ) ( )q q qQ = +

where Am and Bm are constant coefficients, whose values
depend on the chosen boundary conditions. Substituting
equation (10) into (8) and using the following piece-wise
defined permittivity distribution

a
1 , 11
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Figure 1. Isometric view of Gaussian surface deformation.

Figure 2. Isotropic re profile as solved for by equation (4).

2

J. Opt. 18 (2016) 044005 T M McManus et al



where the variable a is derived from the permittivity map
found in figure 2, we obtain
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which has solutions of the form

R C J k D Y k , 13m A m A( ) ( ) ( ) ( )r r r= +

where JA(z) and YA(z) are the Bessel function of the first and

second kind, respectively, with A ak m2 2= + .
Recombining the equations as proposed in equation (6)

results in the desired solution
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2.2. Anisotropic cloaking formalism

In [28] the required material coating to cloak a SD is obtained
as follows. To start, the E-field is written as an amplitude
times a phase, E=aeiS, and we assume that the phase of the
wave varies (spatially) much more quickly than the amplitude
of the wave, or the properties of the medium through which
the wave is propagating. In doing so, Maxwell’s equations
can be recast as

aS a 0, 15( )e ⋅ ⋅ =
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Then, assuming that the medium is in an electrically thin
waveguide, the fundamental mode for the cavity is always
normal to the top and bottom of the waveguide, meaning

εzi=δzz and aa z.ˆ= Then, equation (15c) is recast as

S

x

S

x

S

y

S

y
a

1
2 , 16xx xy yy

2 2
2

˜
( )⎜ ⎟

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥m

m m m w
¶
¶

+
¶
¶

¶
¶

+
¶
¶

=

where
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Taking into consideration the eikonal equation in a
general 2D coordinate system
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we can relate equations (16a) and (17) to solve for the desired
material parameters (see figure 3) to make a patch that is
physically curved appeared to be electrically flat as detailed in
[28] via
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Here it is important to note that any SD that can be
defined parametrically (or more generally is a one-to-one
mapping with a flat plane) can be cloaked using this method,
and it is simply out of a desire to compare the ISC and ASC,
that it is applied to a rotationally symmetric SD.

To demonstrate that the proposed solution is in fact valid
for cloaking SDs from surface waves we start with one of the
components of the solved for material tensor, xxe
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Figure 3. Anisotropic material properties called for by equation (18) where e .x y3 2 2( )s = - + (a) εxx=μxx. (b) εxy=μxy. (c) εyy=μyy.
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which can be can recast in cylindrical coordinates as

e
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,
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Equation (20) is then separated into
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where the radial and the angular functions can be expressed,
respectively as:

f a b a222( ) ( )r r= +

and
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Following a similar procedure used for the ISC case, the
Helmholtz differential equation is separable and takes on the
form [30]:
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This implies that the second part of equation (23) is
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which has solutions of the form
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where Ca
q and Sa

q are the even and odd Mathieu functions,
respectively, with characteristic values a=m2+1/2 and
q=−1/4. Focusing on to the radial components of
equation (23), we have
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gives the general solution:
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3. Results and discussion

Utilising the same modelling technique proposed in
[16, 27, 28, 31], where the behaviour of a surface wave is
emulated by placing a medium in between two PEC sheets,
and along the bounding edges, placing a perfectly matched
layer, we model the devices. In all the following results, the
method of excitation is a plane of unity amplitude polarized in
the z-direction travelling from right to left. Also, it is
important to keep in mind that the results displayed in
figures 4–6 are for the total E-field which means it is a
summation of both the incident and scattered fields.

Figure 4 displays Ez for a number of different surface
configurations and angles of incidence: the SD is either
uncloaked, cloaked with the isotropic material overlay (ISC)
or cloaked with anisotropic material overlay (ASC).

Starting with figures 4(a) and (d) we note a large amount
of forward surface wave scattering (FSWS) via the creation of
mostly destructive interference patterns in the area behind the
SD (sometimes referred to as the shadow region). Equally
important to note is the very small amount of backward
surface wave scattering caused by the uncloaked SD and this
can be attributed to the smooth transition from the flat plane
provided by equation (1) in figure 1.

Figures 4(b) and (e) displays the results for the ISC
technique applied to the SD. Here it is clear that the cloak
greatly reduces the amount of FSWS, but not entirely as one
would expect considering that the formalism which it is based
upon does not take into account magnitude preservation (it is
only concerned with preserving electrical path lengths). The
small amount of scattering that does occur in the forward
direction, though difficult to see in figures 4(b) and (e) is
easily identified in figures 5(b) and (e). Lastly, figures 4(c)
and (f) demonstrates the ASC also greatly reduces the amount
of FSWS, but is not entirely perfect in that a small amount of
destructive interference is visible in its shadow region.

The reason for this is very similar to that of the ISC, in
that the solution put forward in equation (18) is not concerned
with mimicking the magnitude behaviour of a plane wave
travelling along a flat surface, but instead its phase (eikonal
equations). Ultimately, both of these techniques relay on the
geometrical optics approximation and with that being said,
one can also attribute the minor shadowing in the FSWS
region to not ensuring that the devices are in fact electrically
large.
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As Ez is effectively a function of both the magnitude and
phase of Ez it makes sense to focus on these components in an
attempt to gain a further understanding of how the ISC and
ASC are behaving. In figure 5, |Ez| is plotted for a number of
different surface configurations and angles of incidence.

Starting with the uncloaked SD (figures 5(a) and (d)) the
magnitude of the FSWS are far more pronounced (as they
were alluded to figures 4(a) and (d)), and it is apparent that
there are constructive interference patterns also established
along the sides of the SD as well.

Figures 5(b) and (e) displays the results for the ISC
where it is now apparent that a small amount of shadowing is
in fact occurring. The same can be said for the ASC
(figures 5(c) and (f)), but in this case there exists, in addition
to the pattern seen in figures 5(b) and (e) a small ‘beam’

where the magnitude decreases. This ‘beaming’ effect is
caused by the material gradient of the ASC not completely
obeying the geometrical optics approximation mentioned
earlier (the phase of the wave varies (spatially) much more
quickly than the amplitude of the wave, or the properties of
the medium through which the wave is propagating). To
correct for this aberration, either the frequency of the incident
wave would need to be increased or the decay rate (α in
equation (1)) of the SD decreased.

Finally the phase behaviour for a number of different
surface configurations and angles of incidence are displayed

in figure 6. Starting with the uncloaked SD in figures 6(a) and
(d) we note the extent to which the scattering is dictated by
phase (as opposed to magnitude). Figures 6(b) and (e) dis-
plays the excellent phase preserving performance of the ISC,
so much so in fact that if it were not for the SD itself in the
centre of the plots, one would think it represented a surface
wave travelling along a flat surface. Lastly, figures 6(c) and
(f) demonstrates that the ASC performs just as well as the ISC
in terms of phase-preservation and in this instance even the
phase behaviour on the SD itself is virtually indistinguishable
from the performance of surface wave travelling along a flat
plane.

In an attempt to gain a deeper understanding of the
FSWS behaviour of the ASC and ISC techniques a 10λ0 long
probe line (see figure 7) is placed in the shadow region of the
SD and the wave behaviour, as predicated by the numerical
full-wave solution and the analytical solutions, is analysed.

Here we note the excellent level of agreement between
the cloaks and a flat plane (first alluded to in figures 4–6) in
terms of the amplitude (figure 8), magnitude (figure 9) and
phase (figure 10) of Ez. Starting with figure 8, it can be seen
that the ASC (red curve) virtually perfectly matches the
spatial frequency and amplitude of the flat plane whereas the
ISC (blue curve) is slightly out of phase and has greater
amplitude variations relative to the flat plane. Next, inspecting
the results for |Ez| for the different cloaking techniques in

Figure 4. Ez for different surface configurations, and angles of incidence. (a) and (d) are for the uncloaked SD at θi=0 and π/2, respectively.
(b) and (e) are for the ISC at θi=0 and π/2, respectively. (c) and (f) are for the ASC at θi=0 and π/2, respectively.
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figure 9, we note what a difference between the cloaked and
flat configurations which, as mentioned previously, arises
from an inherent limitation of the proposed cloaking techni-
ques. Lastly, f(Ez) along the probe line for the different
cloaking techniques is plotted (see figure 10) and near perfect
agreement is displayed by both cloaking techniques, but with
the ISC results (blue curve) being slightly out of phase with
the flat plane results (black curve).

To better understand the scattering loses from the two
cloaks, an error study is conducted. First, a 20λ0 long probe
line is oriented parallel to the incident plane wave (θi=0) at
a distance of 10λ0 away from the centre of the SD on its
exiting side (see inset of figure 11) and Ez is calculated for
various surface configurations (see figure 11). In figure 11 it is
demonstrated that both cloaking schemes slightly deviate
from the ideal (flat surface) value of 1 Vm−1 and this
deviation can be regarded as one of the ways scattering loss
can manifest itself. Note that Ez is not perfectly symmetric
about the centre (at 10λ0) of the probe line because of a
numerical artefact introduced by using the unstructured (and
in turn often axially asymmetric) mesh used by the full-wave
electromagnetic solver. In order to establish the level of
agreement between the flat surface and the different cloaking
techniques, the mean absolute error for each cloak is

calculated. The mean absolute error (MAE) is defined as

n
E EMAE

1
, 29

i

n

zf i z i
1

, c, ( )å= -
=

where n is the number of points along the probe line and Ezf,i

and Ezc,i are the field values for the flat surface and cloak
respectively. Barring numerical artefacts, a perfectly function-
ing cloak would have a MAE of zero, meaning that there are
no scattering loses. Using this metric, the cloak that has an
MAE closer to zero would be considered the ‘better’
performing of the two and in this instance it is the ISC
which has an MAE of 0.0361, which is slightly closer to zero
than the MAE of the ASC which is 0.0376. To help put these
values into context, the MAE for an uncloaked SD is 0.5320,
which is 14.7315 and 14.1358 times greater than the MAE of
the ISC and ASC, respectively.

Next, the scattering wave behaviour as predicted by
equation (14) (ISC) and equation (28) (ASC) along the
sample line in figure 7 is examined. Starting with figure 12 we
note excellent levels of spatial frequency as well as amplitude
agreement between the different surface configurations for
analytically calculated values of Ez. In figure 13, the analy-
tical results for calculating |Ez| are displayed and the general
trend of the ISC (blue curve) having a larger magnitude and
the ASC (red curve) having a smaller magnitude (both

Figure 5. |Ez| for different surface configurations, and angles of incidence. (a) and (d) are for the uncloaked SD at θi=0 and π/2,
respectively. (b) and (e) are for the ISC at θi=0 and π/2, respectively. (c) and (f) are for the ASC at θi=0 and π/2, respectively.
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relative to the flat results represented by the black curve) is
reproduced (see figure 8). However, the analytical and num-
erical results vary slightly here because the analytical solution
only accounts for the fundamental order of the electric field
function, whereas the numerical solution takes into account
higher orders as well.

Lastly, inspecting the analytically determined phase
behaviour for the different surface configurations (see
figure 14), an exceptionally low level of disagreement is
demonstrated with the ISC (blue curve) and ASC (red curve)
nearly perfectly emulating the flat surface phase behaviour

Figure 6. f(Ez) for different surface configurations, and angles of incidence. (a) and (d) are for the uncloaked SD at θi=0 and π/2,
respectively. (b) and (e) are for the ISC at θi=0 and π/2, respectively. (c) and (f) are for the ASC at θi=0 and π/2, respectively.

Figure 7. Isometric view of probe line in the shadow region of
the SD.

Figure 8. Numerically (COMSOL 5.0) determined Ez for different
surface configurations for θi=0.

Figure 9. Numerically determined |Ez| for different surface config-
urations for θi=0.
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(black curve). Thus, after analysing the full-wave simulation
results (figures 4–6) and the numerical/analytical quantitative
study (figures 8–14) one can conclude that both techniques
offer exceptional, though slightly differing (depending upon
the field parameter of interest), levels of performance.

4. Conclusions

In this paper, two different surface wave cloaking techniques
were compared. The first was borne out of a unique appli-
cation of Fermat’s principle and allowed for the creation of an
isotropic material overlay though the cloaked SD itself had to
be rotationally symmetric. An analytical solution to Helm-
holtz’s equation in two dimensions was derived with the SDs
material coating included, and it was demonstrated that it
emulated the behaviour of a surface wave travelling along a
flat plane (i.e. performed as a cloak).

The second technique that was investigated was an
adaptation of a formalism previously used for structures in
three dimensions. This method was a truly generalised one in
the sense that it could deal with any SDs as long as it was able
to be parameterized by two variables. In turn this meant it
could deal with surfaces that the first technique could not
immediately handle, but for the sake of comparison with the
ISC its usage was limited to a rotationally symmetric SD.
Once the necessary material properties for the cloak were
determined it was shown analytically (via solving Helmhotz’s
equations in two dimensions) that once again, the proposed
material overlay did in fact behave as a surface wave cloak.

Lastly it is demonstrated, via a number of full-wave
electromagnetic simulations, (COMSOL 5.0) that both cloaks
offered an excellent level of performance (phase-front pre-
servation) for multiple angles of incidence, and multiple
measurements (i.e. amplitude, magnitude and phase). This
statement is further supported by a quantitative study invol-
ving the analysis of the wave behaviour along a sample line in
the shadow region of the SDs (as solved for by both the
numerical and analytical solutions). A scattering loss study is
also included that quantifies just how well the proposed
cloaking schemes perform relative to both an ideal perfectly
cloaked SD as well as uncloaked SD.

Figure 10. Numerically determined f(Ez) for different surface
configurations for θi=0.

Figure 11. Numerically determined Ez for different surface
configurations for θi=0, along a probe line oriented parallel to an
incident field.

Figure 12. Analytically determined Ez for different surface
configurations for θi=0.

Figure 13. Analytically determined |Ez| for different surface
configurations for θi=0.

Figure 14. Analytically determined f(Ez) for different surface
configurations for θi=0.
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