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Abstract

With the rapid pervasion of location-based services (LBSs), protection of location privacy has
become a significant concern. In most continuous LBSs’ privacy-preserving solutions, users
need to transmit the location query data to an untrusted location service provider (LSP) to
obtain query results, and the users discard these results immediately after using them. This
results in an ineffective use of these results by future queries and in turn leads to a higher risk to
user privacy from the LSP. To address these issues, we generally use caching to cache the query
results for users’ future queries. However, the minimization of the interaction between users
and LSPs is a challenge. In this paper, we propose an enhanced user privacy scheme through
caching and spatial K-anonymity (CSKA) in continuous LBSs; it adopts multi-level caching
to reduce the risk of exposure of users’ information to untrusted LSPs. In continuous LBS
queries, our scheme first utilizes the Markov model to predict the next query location according
to the user mobility. Then, according to the predicted location, cell’s cache contribution rate,
and data freshness, an algorithm for forming spatial K-anonymity is designed to improve
the user’s cache hit rate and enhance the user location privacy. The security analysis and
simulation results demonstrate that our proposed CSKA scheme can provide higher privacy
protection than a few previous methods, and it can minimize the overhead of the LBS server.

Keywords: Location privacy, Multi-level caching, Spatial K-anonymity, User mobility,
Cache hit rate

1. Introduction

With the proliferation of wireless communication and mobile phones featuring global posi-
tioning system (GPS), location-based services (LBSs) have attracted substantial interest and
are becoming one of the fastest-growing services [1, 2]. In an LBS, a mobile user sends a
request containing his/her location and interests to a location service provider (LSP). The
LSP returns the point of interests (POIs) near the user’s current location (e.g., garages, car
parks, supermarkets, and restaurants) according to the user’s interests. However, the LSP has

*Corresponding author
Email address: csgjwang@gmail.com (Guojun Wang)
URL: http://trust.gzhu.edu.cn/faculty/ csgjwang/ (Guojun Wang)

Preprint submitted to Future Generaten Computer System October 20, 2018



the potential to violate the user’s privacy [3]. By collecting the user’s requests, an untrustwor-
thy LSP can infer personal information about the user, such as his/her location, preferences,
mode of transport, and possibly his/her state of health [4]. Even worse, the LSP could dis-
close the user’s private information to third parties for financial or other business advantage.
Consequently, it is advantageous to protect the user’s privacy.

Several approaches have been proposed to mitigate the threat of loss of privacy in LBSs.
Most adopt an architecture based on a completely-trusted third party (CTP) [5, 6], which
functions as an anonymizer. When a user issues a request, it is sent to the anonymizer to
remove the user’s caller identity before forwarding the request to the LSP. In addition to
removing the caller identity, the anonymizer also blurs the location of the user, most often
by “cloaking”. Cloaking is where the user’s actual location is replaced by a circle. The user
is somewhere in this circle, as are K — 1 other users, thereby providing K-anonymity [7, 8].
However, this degrades the POI service. Consequently, the POI results are returned to the
anonymizer for refinement so that more accurate results can be returned to the user. While the
user is likely to discard the results almost immediately, it is in the interests of the anonymizer
to cache them in order to aid it to answer future requests. If other users can obtain their
POI service directly from the anonymizer’s cached results, it will not be required to send their
requests to the LSP.

In Reference [9], we proposed a caching-based scheme to enhance user privacy for continu-
ous LBSs; the scheme employs a two-level caching to cache result data. However, this scheme
does not consider the user’s neighbor cache and the anonymity based on user mobility. To
further enhance user privacy and increase cache hit rate, we propose an enhanced privacy
protection scheme based on caching and spatial K-anonymity (CSKA) for continuous LBSs,
in this paper. Our scheme adopts a multi-level caching to cache users’ results. When a user
issues a query request in continuous LBSs, he/she first queries the results in the cache of the
local client, user’s neighbor, and anonymizer in turn. If the user can obtain the results directly
from these caches, he/she will not be required to interact with the LSP, and it will not expose
any information to the untrusted LSP. Otherwise, a spatial K-anonymity that includes K
cells [10] is formed by the anonymizer, and it is sent to the LSP for query. In the process of
forming a spatial K-anonymity, our scheme first utilizes the Markov model to predict the next
query location according to the user mobility; then, it selects K cells based on the predicted
location, cell’s cache contribution rate, and data freshness to improve the cache hit rate, con-
sequently reducing the number of the interactions between the user and LSP and minimizing
the overhead of the LBS server.

The main contributions of this study are as follows:

(1) We propose a novel CSKA scheme to provide enhanced user privacy for continuous
LBSs. Our scheme adopts multi-level caching to cache users’ results; moreover, a few of the
user queries can be answered directly by cache, which can reduce the risk of exposure of user
information to untrusted LSP.

(2) We employ spatial K-anonymity to enhance user privacy. According to the cells that
the user are required to query, the anonymizer selects K cells to form a cloaking region, which
can conceal the real user’s location.

(3) We utilize the Markov model to predict the users’ next location according to the user’s
mobility. To improve the cache hit rate, the cloaking region will be formed according to
the predicted location, cell’s cache contribution rate, and data freshness, thus reducing the
interaction between the users and LSP.



(4) We analyze the effectiveness and efficiency of our proposed CSKA scheme. The sim-
ulation results reveal that our proposed CSKA scheme can provide higher privacy protection
than a few previous methods and that it can minimize the overhead of the LBS server.

The rest of this research paper is organized as follows: Section 2 presents the related work.
Section 3 provides a general overview of our system model and the fundamental definition.
Section 4 presents details of the proposed scheme. A detailed discussion on the security
analysis is presented in Section 5, and an analysis of the system’s performance-efficiency is
presented clearly in Section 6. Finally, Section 7 concludes this paper.

2. Related work

In this section, we review certain available research on system architectures, the main
techniques, and cache methods for privacy preservation in LBSs.

2.1. Architectures

There are mainly two types of commonly-used architectures of privacy preservation in
LBSs: user-centralized architecture [11] and centralized architecture [12].

In the user-centralized architecture, users can communicate with an LSP directly. Prior
to sending queries, the users are generally required to blur their location information. The
typical methods include generating fake locations, adding noise, and forming anonymity. The
advantage of this architecture is its convenient deployment. However, for a user requiring high
privacy protection, these methods for blurring user location will substantially reduce his/her
experience.

The centralized architecture introduces a trusted third-party component called anonymizer,
which sits between the users and LSP. The main role of the anonymizer is to perform location
anonymity so that the LSP cannot identify the real user from the other users, thereby pro-
tecting the privacy of the user. The introduction of the anonymizer improves the capability
to protect user privacy. However, as all the submitted queries of users have to go through the
anonymizer, it will be the performance bottleneck of this architecture.

2.2. Techniques

At present, certain techniques of location privacy protection have been proposed in LBSs.
Generally, we classify them into two main categories: dummy-based techniques and generalized
techniques.

In the dummy-based techniques, there are mainly fake location methods and pseudonym
methods. The former primarily conceals the user’s query by generating a few fake locations in
order to reduce the risk of user privacy exposure [13]. For example, Zhang et al. [14] presented
a method of generating fake locations uniformly according to the actual road network. The
method is simple and incurs marginal computational overhead. However, it is challenging to
effectively generate fake locations according to the actual situation to confound an attacker.
The pseudonym methods conceal the user’s true identity by using the user’s temporary identity;,
so that the attacker cannot be associated with the real user. For example, Gong et al. [15]
presented an incentive strategy to motivate users to change their pseudonyms according to
the social relationship between mobile social groups. The user privacy-preserving degree of
this method depends mainly on the association between the user’s identity and the special
location; therefore, the user needs to change his/her pseudonym frequently.



The generalized techniques ordinarily generalize a query point of a user into an area and
then sends it to the LSP for query; thus, the attacker only knows that the user is in a specific
region [16]. The typical method is K-anonymity, which forms a cloaking region containing
at least K wusers; the attacker cannot distinguish a particular user from the other K — 1
users. For example, Zhang et al. [17] presented a dual privacy-preserving scheme to protect
user’s trajectories and content privacy; here, the user can select different anonymizers to form
the cloaking region. Zhao et al. [18] proposed a K-anonymity solution to prevent injection
attacks against user location, in which the attacker cannot obtain knowledge about the user’s
fake location. In general, the generalized techniques increase the overhead of the LBS server
because it provides inaccurate location queries to LSP. Furthermore, using only this technology
in continuous LBSs can provide limited privacy protection.

2.3. Cache methods

In a few recent works, the cache methods have been applied to user privacy protection,
and users can employ the cached data of previous queries to answer subsequent queries. For
example, Amini et al. [19] designed a system architecture involving the pre-fetching of the
service data to enhance user privacy; however, the mobile user needs to cache a large amount
of data during the query. Shokri et al. [20] proposed a distributed privacy protection scheme
based on a collaborative group in the LBS. Before a mobile user issues a query request to the
LSP, he /she first queries his/her neighbors for service data to reduce the probability of location
exposure. However, the solution does not pay attention to the design of the caching strategy
to enhance user privacy. Park et al. [21] proposed a location-based cache strategy to support
spatial query processing; furthermore, a mobile user pre-fetches data that are likely to be used
in the near future. However, it is suitable only for wireless broadcast environments. Jung et al.
[22] proposed a privacy-preserving scheme that employs a virtual individual server to preserve
the location privacy in an LBS; this can prevent system performance degradation during
anonymity through collaborative caching. Peng et al. [23] presented a privacy protection
scheme that protects user trajectories through collaborative caching. It is challenging for an
attacker to reconstruct the user’s trajectory. Zhang et al. [24] presented a scheme to enhance
user privacy protection through unified grid and cache. This scheme can prevent different
users from querying an identical region; however, the overhead of the client is large. Niu et
al. [25] presented a caching-based scheme in which two cache-based dummy location selection
algorithms are designed to enhance user location privacy; however, this method is not well
suited for continuous queries.

None of the above studies considered the user mobility in continuous LBSs. As a departure
from these, we propose a method to form a cloaking region based on user mobility and adopt
multi-level caching to improve user privacy.

3. The system model and definition

This section first describes the CSKA scheme to provide enhanced privacy in continuous
LBSs. Then, we state the motivation for this work. Finally, we define the adversary model,
privacy metric, and Markov model.

3.1. System architecture

To improve user privacy, we propose a CSKA scheme in continuous LBSs; its architecture
is shown in Figure 1. It is a centralized architecture with three main entities: mobile clients,
anonymizer, and LSP. Their main functions can be described as follows:
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Figure 1: The architecture of CSKA

Mobile clients. Each mobile client carries a mobile device with rudimentary functions
such as information processing, data storage, and global positioning (e.g., GPS); more im-
portantly, it exhibits short-distance communication capabilities for it to communicate with
other mobile users around it, through wireless communication protocols such as IEEE 802.11,
Bluetooth, and Radio Frequency IDentification [26, 27]. Mobile clients can also collaborate to
share query content in each other’s cache.

Anonymizer. An anonymizer is a trusted entity between the mobile clients and LSP.
Its main function is to form spatial K-anonymity and cache users’ query results. It can also
collect all the users’ query information and count the number of queries issued in each cell in
the past. In the process of continuous LBSs, an anonymizer can predict the user’s next query
according to the user mobility.

LSP. An LSP is an online location-based service solution provider with a number of LBS
application servers that store map resources and location-related POIs such as restaurants,
hotels, and supermarkets. It can provide users with timely location-based comprehensive
query service. When receiving a user query request, it searches the database for the POlIs
that satisfies the user’s needs according to the clocking region provided by the anonymizer
and returns it to the user via the anonymizer.

The CSKA scheme adopts multi-level caching to reduce the risk of exposure of users’
information to an LSP and combines spatial K-anonymity to enhance user privacy. The work
process is as follows:

(1) When a user issues a query request in continuous LBSs, he/she first queries in the
cache of the local client, user’s neighbors, and anonymizer in turn. If the service data in the
cache can satisfy the user’s requirements, the user obtains the query results directly.

(2) Otherwise, the user’s query request is sent to the anonymizer to form a spatial K-
anonymity. We utilize the Markov model to predict the users’ next location according to the
user mobility and select K cells to form a cloaking region based on the predicted location,
cell’s cache contribution rate, and data freshness.

(3) Then, the cloaking region is sent to the LSP for query, and the LSP searches the POlIs
within the user query range from the database, obtains the query results, and returns them
to the anonymizer.

(4) The anonymizer updates the query results to the cache and returns the matched user
service data to the user. Similarly, the user also updates the cache and refines the matched
service data to obtain accurate results.



3.2. Problem statement

In LBSs, users need to send information related to the current location to an untrusted
LSP to obtain the desired service. We consider the following scenario: In densely populated
areas, numerous mobile users need to send continuous range queries to an LSP that queries the
same POIs, such as discounted information for nearby restaurants. There are two concerns:
first, during continuous LBS queries, the submitted queries include the current locations and
interests of the mobile user, and a user frequently submits these queries to the untrusted LSP;
this increases the risk of identification of his/her trajectory by the LSP. Secondly, different
users send the same query request to the LSP for repeated queries; this increases the risk of
exposure of the user’s privacy and the overhead of the LBS server. For the first issue, the
general approach is to use K-anonymity; however, the selected dummy locations are vulnerable
to data mining attacks aimed at identifying the real user. On the second question, we naturally
consider the caching method, which permits users to obtain data directly from the cache; this
enhances the user privacy and reduces the overhead of the LBS server. Nevertheless, improving
the cache hit rate is a challenging problem.

To address the issues mentioned above, the fundamental concept of our proposed scheme
is to integrate caching and spatial K-anonymity to provide enhanced privacy. Our solution
employs a multi-level caching to cache the data previously queried by the user on the local
client, user’s neighbor, and anonymizer for subsequent queries to mitigate the risk of exposure
of user information to an untrusted LSP. To improve the cache hit rate, we use Markov-
based location prediction to predict the user’s next location according to the user mobility in
continuous LBS queries and select K cells to form a cloaking region according to the predicted
location, cell’s cache contribution rate, and data freshness. Simultaneously, in order to solve
the risk of exploitation of the dummy location in K-anonymity, we adopt spatial K-anonymity
to further enhance user privacy.

3.3. Adversary model and privacy metric

In our system, we assume that both the anonymizer and the mobile clients are trusted
entities. The initiating query user and the neighboring users within the user’s communication
range will not collect the data information of the other party from the peer node and will
not send malicious information to the other node. Additionally, the communication channel
between them is secure, and available security schemes such as cryptographic and hashing
algorithms can be employed to protect the integrity and confidentiality of the transmitted
data [28, 29].

In our adversary model, we regard the main purpose of an adversary as the determination
of the users’ location associated with the true identity; the knowledge of the adversary is an
important factor in assessing our scheme’s privacy. Therefore, according to the background
knowledge gained by the adversary, our scheme mainly considers two types of adversary mod-
els.

(1) The LSP in the system is regarded as an honest albeit curious entity that straightfor-
wardly obtains all the user query information by monitoring the queries sent by the user; it
also knows the privacy protection mechanisms used in the system. Based on this information,
it can attempt to infer certain information related to the user’s location, and it may even leak
the user’s sensitive information to a third party.

(2) An adversary may collect certain user query information by eavesdropping on the
communication channel between the user and LSP and attempt to obtain certain sensitive



information about the user from the data, such as the user identity, sensitive query content,
and location. It generally exhibits limited background knowledge of the user and can be
localized and short-term operated.

In this paper, we quantify location privacy by entropy-based metrics [30], which is mainly
determined by two factors. One is that the user obtains the privacy degree when he/she sends
a query to the LSP. The other is the effect of caching, because certain users’ query requests
are answered by cached data. We will evaluate the privacy of our system mainly based on the
cache hit rate; a higher cache hit rate indicates that fewer user queries are sent to the LSP,
which can mitigate the risk of exposure of user information.

3.4. Markov model

In daily life, a user’s mobility generally exhibits certain regularity, such as a fixed location
that the user has to pass in turn on the way to and from work. In this study, we use the Markov
model to predict the user’s next query location according to the user mobility and select K
cells to form spatial K-anonymity according to the predicted location; this can improve the
cache hit rate of the user’s next query.

The trajectory T of a moving object can be represented by a set of discrete two-tuple
locations [ at sampling time, which can be expressed as follows:

T= {p17 D2, -, pn} = {(llv tl)? (l27 t2)7 Ty (lnv tn>} (1>

where p; denotes the ith point of trajectory T and py -t < py-t < -+ <pp-t,(pi-t—pi_1-t<
e, 2<1i<mn). Thelocation p; -l can be denoted by a two-tuple (z,y), where x and y represent
latitude and longitude, respectively.

A mobile user’s trajectory can be expressed as an nth order Markov chain; the location [; of
each sampling point p; on the trajectory is related only to the n positions {p; n11, Pi—n+2, ---, Pi1, Di}
ahead of it [31, 32].

Pr(pi-i-l = li+1|pz’ A=, pia-l=lLi, ..., ;1 1= ll)
= Pl"(pz‘+1 = li+1|pi =1, pii- =11, ..., Picpgr -l = lz’—n+1>}

(2)

where p; - [ = [; denotes the location of sampling point p; on the trajectory.

For the first n locations on the trajectory, the next location can be predicted by Equation
(3):

Pr(pi-l=blpi-l=10pa-l=li1, . ..,p1-1=0)=

ma@"Z:lPr(piH = lk|pi =1l pici-l=lL_1,...,Picpt1 -l = lz’—n-‘rl)

(3)

where [, denotes the predicted next location on the trajectory. Therefore, there are n candi-
date locations on the user’s trajectory. We can predict the next location by calculating the
maximum probability of /.

4. Our proposed CSKA scheme

In this section, we first elaborate the process of LBS query in our proposed scheme. Then,
we introduce the process of location prediction based on Markov. Finally, we present the
method of cloaking region formation. The important notations used in our CSKA scheme are
listed in Table I for reference.



Table 1: Summary of important symbols

Symbol Description

E E, Asymmetric and symmetric encryption functions
PKg,SKg Public and private key pairs of LSP

PK,,SK, Public and private key pairs of anonymizer

k., The usr’s key

(¢i,7j) Cell identifier of POI

[y Location of the query point

D, Movement direction of the user

I, Cell identifier set that need to be queried

POI type  Query content

MSGys4  The query request from user to anonymizer
MSG a5 Anonymizer forwards the user’s request to LSP
MSGg9a LSP returns the candidate results to anonymizer
MSG a0 The matched results return from anonymizer to user

4.1. Process of LBS query

Our system first specifies a rectangular query area that is divided into M x M grid structure
with the equal cell, and each cell has a unique identifier (¢;,r;),1 < 4,5 < M. If a user’s
coordinate is (x;,y;), its cell identifier (¢;, r;) can be computed by Equation (4):

won=(J@mim] - (e 8

where (z1,y1) and (z3,y2) denote the bottom-left and top-right vertex coordinates, respec-
tively, of the rectangular query area. Then, our system sets a desired threshold 6 (0 < 6 < 1)
according to the tradeoff between service quality and privacy. In the process of searching for
results in the cache, if the proportion of the matched cell identifiers in the cache is higher than
0, it implies that the cache can satisfy the user’s query needs. That is, the user can obtain the
query results directly from the cache without interacting with the LSP. The higher the value
of 0 is, the better the service quality will be, although it will reduce user privacy.

4.1.1. Query request

When a user issues a query request, he/she first identifies all the cell identifiers I, that
cover the query range of radius R; here, I, = {(¢;,7;)},1 <4,j < M. Then, the user searches
for these identifiers I, with identical POIs in the client cache, and the matched cell identifiers
in the client cache is I.. if Num(1l.)/Num(I,) > 0, and Num() is a function for counting the
number of cell identities, it implies that the client cache can satisfy the user’s needs and that
the user can obtain the result data directly. Otherwise, the user sends the POI type and the
cell identifier set I} = I, — I. that need to be queried to the cache of the neighbor clients for
query. In mobile clients, we adopt the cooperative caching mechanism based on the signature
augment tree structure proposed in reference [33] to achieve cache sharing among clients.
Similarly, if the matched cell identifiers I, from the neighboring users satisfy (Num(I.) +
Num(I,))/Num(l,) > 6, the user obtains the result data directly. Otherwise, the user needs
to send a request message M SGpaa to the anonymizer.

MSGuyaa = Epg,{lu, Dy, 12, \, k., POI type} (5)
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where [, indicates the location of the user’s current query point, D, denotes the direction of
user movement, I2 indicates the cell identifier set that needs to be queried, and 12 = I,—I.—1I,,.
A indicates the minimum number of cell identifiers that the anonymizer requires to query, and
A = 0% Num(Il,) — Num(Il.) — Num(l,). k, indicates the randomly generated key of the
user; and POI _type indicates the type of POI that the user queries, which is encrypted by
asymmetric encryption £ with the anonymizer’s public key PK 4.

When receiving the request message M SGyoa, the anonymizer first decrypts it with the
private key SK4. Then, the anonymizer matches each cell identifier of I? in the anonymizer’s
cache and obtains the matched cell identifier set I,. If Num(I,) > A, the content of multi-
level caches can satisfy user needs, and the user privacy can be protected through the caching
because he/she does not send any query to the LSP. Otherwise, the anonymizer selects other
K — Num(I?) cells based on the cell identifier set I3 (I2 = I, — I. — I, — I,) that needs to
be queried to form a cloaking region. The detailed process of cloaking region formation is
described in Section 4.3. Finally, the anonymizer forwards the user’s request M SG 425 to the
LSP.

MSG ass = Epk{Region, POI type} (6)

where Region indicates the cloaking region and POI _type indicates the query content. Then,
the anonymizer encrypts the Region and POI _type by asymmetric encryption E with the
LSP’s public key PKg.

4.1.2. The results return

The LSP receives the M SG 425, decrypts it with the private key SKg and obtains the K
cells in the Region. Then, it searches the POIs according to the POI _type in these cells and
obtains G POIs. If the location of the jth POl is (x;,y;)(1 <14, j < G), we can obtain the cor-
responding cell identifier for each POI by Equation (4) and thus obtain the set ¢, (1 <r < K)
of cell identifiers containing these POIs. Finally, the LSP encrypts the ¢, by asymmetric
encryption F with the anonymizer’s public key PK 4, forms the candidate result set message
MSGgo4, and returns it to the anonymizer.

MSGg2a = Epx, e} (1 <r<K) (7)

The anonymizer receives the M SGgay; it first decrypts it with the private key SK 4 and
updates these POIs and corresponding cell identifiers to its cache. Then, the anonymizer
matches the cell identifiers by comparing ¢,(1 < r < K) with the I previously needed be
queried and obtains all the cell identifier set I? along with the POIs that the user previously
needs to query. Finally, the anonymizer encrypts the I? along with the POIs by symmetric
encryption En with the key k,. The query result message M SG 4o that the anonymizer
forwards to the user is

MSG poy = Eng {17, (i, y;)} (8)

The user receives the M SG 4o1; he/she first decrypts it with the key k, and updates it to
the client cache. When the client cache cannot satisfy the storage requirements, we need to
manage the cell identifiers along with the POIs in caching. In our scheme, we adopt the cache
replacement strategy based on the user’s movement trend. According to the user’s current
location and movement direction, we replace the cell identifiers together with the POIs that are
farthest from the predicted location with the opposite movement direction; this can increase
the cache hit rate. Finally, the user computes the POIs contained in the query range of radius
R and obtains accurate results.



4.2. Location prediction based on Markov

In our CSKA scheme, we utilize the Markov model to predict the next location of a mobile
user according to the user mobility and form a spatial K-anonymity based on the predicted
location to enhance privacy. We first obtain certain stay points of significance from the
users’ historical trajectories. Then, we construct a Markov state-transit matrix comprising
the probabilities of users moving between locations. Finally, we can predict the future states
according to this matrix and the user’s current state.

4.2.1. The stay points

In this section, we extract the stay points from the users’ historical trajectories in the
anonymizer. Suppose the historical trajectory of user u; is represented by T° = {p}, pb, ---, pi}.
Consider p} = (I, t}) = (a7, yi, t%), where 2} and y; are the geographical coordinates of the
Jth position in the trajectory of user u; and ¢} is the timestamp when the user is at the jth
position. We can calculate the distance between the two positions p! and p; with Equation
(9),and 1 < a,b<n:

Dis(a,b) = 2R - arcsin/X + Y cos(p, - v)cos(py - ) 9)

where R is the radius of the earth, X = haversin(p,-x —py-x), Y = haversin(p, -y —py-y),
and x and y are the longitude and latitude of the moving position p, and py.

A stay point is the location at which a mobile user stays in the area within the distance
AD, for at least At, time; here, AD, and At, are the thresholds of the distance and time,
respectively. In our paper, the stay point is defined as a set of continuous positions that satisfy
the following conditions:

T = (pm s Pmi1s ==+ » Dn) (10)
For Vm < 1 < n, Dis (pmapz) S ADra Dis (pmapn-H) > ADra and |pnt_pmt| Z

At,.. We use the center of T to represent the coordinate of the stay point sp, which can be
represented by a four tuple:

Sp = (jv gv tl ) tO) (11>
2 Di-Z
> piy

sp-y = Z_mT (13)

where t; and ¢, indicate the time at which the mobile user enters and leaves the stay point,
respectively, and |p| indicates the number of continuous positions that the stay point contains.
Then, we can extract all sets of stay points SP* of user u; from his/her historical trajectories,

SP'={sp}, spb, ..., sp.}.

4.2.2. Markov chain

The Markov chain is used to describe the probabilities that a user moves from one location
to another. We map the stay points of the users’ historical trajectories to the cell identifiers
by using the coordinates of the stay points, and the user trajectory can be represented by a
sequence of the cell identifiers. Then, we construct a weighted graph G(V, E,W); V indicates

10



(b) Probability

Figure 2: The Markov state transition.

the set of cell identifiers, E indicates a set of edges from one cell identifier to another, and W
indicates the weight of the edge. The weight w;_,; of the edge (4, j) is defined as the number
of movements of the user from position ¢ to j. Finally, we can calculate the probability p; ;
that a user moves from position ¢ to j as follows:
Wi—s 4
Pij = 3 (14)

> Wiy j
j=1

M2
Y opi=1 (15)
j=1

As shown in Figure 2, a one-step state transition of the Markov chain occurs, and p; 3 =
5/(54 3+ 2) = 50%. After counting all the transmissions on all the cells, we can obtain the
Markov state-transit matrix Pr = {p1;,p2j, .. P}, 1 < j < M.

4.2.3. The location prediction

According to the Markov state-transit matrix Pr and the user’s current location lj», we can
obtain the next location [;, by Algorithm 1 and can obtain the cell identifier of the predicted
location [;,.

Algorithm 1 Location prediction based on Markov

Input: The user’s historical trajectories T" and the current location l;
Output: The next location I

Get the stay points SP' = SP_Detection(T);

Mapping SP?* to M x M grid structure;

Constructing a weighted graph G(V, E, W);

Constructing a Markov state-transit matrix Pr;

Calculate the state transition probability according to the current location lj-, and the
maximum probability is [};

6: return [,

4.8. Forming cloaking region

In the process of forming a cloaking region, we select K cells to satisfy spatial K-anonymity
according to the user’s predicted location, cell’s cache contribution rate, and data freshness
to improve the cache hit rate.

11



4.8.1. Cache contribution rate

Figure 3: The cell selection for forming cloaking region

As shown in Figure 3, this is a 7 x 7 grid structure with the equal cell, the density of
points in the cell represents the probability that the user will issue a query. The blank cells
indicate that these regions have almost no users’ queries and are likely to have swamps, rugged
mountains, or lakes on it. The user who needs to issue the query is in the cell A, and we need to
select the other two cells to form a cloaking region. If we select the cells D and E, the attacker
can conveniently infer the user’s true cell by related background knowledge. To improve the
cache contribution rate, we need to select other cells around the user with the highest query
probability to form the clocking region. Therefore, we should select the cells B and C.

Suppose P; represents the probability that these users send queries in each cell, the cache
K—Num(I3) M?2
contribution rate of the K — Num(I?) cells can be calculated by Y. P, and >, P, = 1.
i=1 i=1
When we select other K — Num(I32) cells to form the cloaking region, the cells should have
the largest cache contribution rate Cj:

K—Num(I2)

Cs = max Z P, (16)
i=1

4.83.2. Data freshness
The cached data of a cell has a certain lifetime. Before the cached data expires, we will
update it, particularly for those cells that exhibit a high query probability. The data freshness

of the cell can be expressed as
o=1—U)r2, T >t (17)

where T denotes the lifetime of the cached data and t denotes the time that the data has
been cached. When a cloaking region is formed, the average data freshness of the selected
K — Num(I?) cells can be expressed as

1 K—Num/(I2)

2
b= 1— 4/t 18
TR Num(I3) Z ( /7_;2) (18)

=1

4.8.8. The cloaking region

Considering the above two factors, we select the cells that exhibit the maximum cache
contribution rate and the minimum data freshness to form a cloaking region; the selected cell
set can be represented as

12



K—Num(I2) 5
K—Num(I3) ti/T?

i=1
Cy; = max Z P - K — Nam(I%) (19)

Algorithm 2 illustrates the process of forming a cloaking region. We first count the number
of cells that need to be queried and select N cells around the predicted location [,. Simulta-
neously, we select the 2K cells with the highest query probability from this N cells. Then, we
randomly select W of the 2K cells as the candidate set Cs, and the cache contribution rate
and the data freshness of each candidate set are calculated. Finally, we obtain the maximum
value Cy of Cyg as the cell set selected in the cloaking region.

Algorithm 2 Process of forming cloaking region

Input: K (Anonymity degree), I! (The predicted location of the user u;), I;(Cell set that
needs to be queried), N (System parameter and 2K < N)

Output: Region (The cloaking region)

: The number of cells that need to be selected is W = K — Num/(I3);
Select N cells around the predicted location l;,

Sort N cells in descending order by P;, and select the first 2K cells;
Randomly select W out of 2K cells as the candidate set Clg;
C={C'|C" C Cs,|C'"| =W};

for each C € ' do

W L
=3B 2/

8: end for

|Cs|
9: C; = max Z Cli:

10: Region = I3

11: for each (c,,'r’z) cC,; do

122 Region = Region + (¢; , r});
13: end for

14: return Region

5. Security analysis

In the next section, we perform a security analysis of the CSKA scheme to demonstrate
how it can enhance user privacy. According to the adversary model defined in Section 3.3,
the security of the proposed scheme is analyzed to demonstrate how it can protect against
dishonest LSPs and/or eavesdropping attacks.

5.1. Privacy against LSP

When a user makes a query request, he/she first searches the results in the cache of the
user, user’s neighbor, and anonymizer in turn. If the cached data can satisfy the user’s need,
the user can obtain the result data directly. During this process, the user does not send any
query to the untrusted LSP; therefore, the LSP cannot obtain any information from the user.
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If the user cannot obtain the result that satisfies the user’s needs in the cache, we need
to form a cloaking region on the anonymizer; it is forwarded to the LSP by the anonymizer.
However, the request message MSG 405 sent to the LSP contains only the query content
POI type and the cloaking region Region. From this information, the LSP only knows the
user’s POI type, which cannot be associated with a specific user, and it does not obtain the
exact location of the user.

In the process of forming a cloaking region, we select K cells to satisfy spatial K-anonymity
based on the user’s predicted location, cell’s cache contribution rate, and data freshness. The
cloaking region contains K cells, which do not necessarily contain the user’s real location
because the cell containing the user’s real location may already have the result data in the
cache. Even if the real user’s location is in one of the K cells, we select other cells with the
highest query probability as the cloaking region, and each cell contains certain users; therefore,
the LSP can speculate that the probability of a specific user is at most 1/K. Although the
LSP knows the query probability P; (1 < i < M?) of each cell in the grid structure, these cells
are not focused on a sensitive area, and the LSP cannot successfully estimate the real location
from the submitted cloaking region.

From the above analysis, we observe that our CSKA scheme can effectively resist the
inference attack of the LSP.

5.2. Resistance to eavesdropping attacks

In the CSKA scheme, we employ cryptographic techniques to handle eavesdropping attacks
using asymmetric and symmetric encryption to encrypt all the messages transmitted between
the user and LSP.

When messages are sent to the anonymizer (either the request from the user or the results
from the LSP), they are encrypted by asymmetric encryption using the public key of the
anonymizer. Because an attacker will not have access to the anonymizer’s private key, it
cannot decrypt these messages.

When the anonymizer forwards the request message to the LSP, it is asymmetrically en-
crypted using the public key of the LSP. Because an attacker does not have access to the private
key of the LSP, it cannot decrypt the request. The results message from the anonymizer to
the user is symmetrically encrypted with a secret key known only to the anonymizer and user.
Because an attacker does not have access to this, it cannot decrypt the results.

6. Evaluation

In this section, we evaluate the effectiveness and efficiency of our proposed CSKA scheme
and conduct our experiments focusing on the cache hit rate, system performance, and overhead
of the LBS server.

6.1. Simulation setup

In our simulation, we deployed 20,000 mobile users on a 10 km x 10 km Beijing map; all
of them followed a walking mobility model [34, 35]. The local map is divided into M x M
cells, and the user query probability for each cell can be obtained through the Google Maps
API. The user can issue successive LBS queries during the move, and we set AD,= 400 m
and At,= 30 min to obtain a few stay points. We randomly generated 10,000 POIs on the
map, and they were set up as restaurants and hotels. The user can query the cached data of
neighboring users within 50 m. The main experimental parameters are shown in Table II.
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Table 2: Experimental Parameter Settings
Parameter Values
The number of mobile users 20,000
Bottom-left vertex (z1,y;)  (0,0)km

Top-right vertex (z2,yo) (10,10)km
The query range radius R 0.5km

The number of POIs 10,000
Continuous query points 1-20
Anonymity degree K 10-50

The number of cells 1,000-10,000
The threshold value 0.1-1.0

We carry out all the experiments on a PC with an Intel(R) Core(TM)i7-6700 CPU @ 3.40
GHz 3.41 GHz and 8 GB RAM; the CSKA schemes were implemented with the development
environment of Java Development Kit and MyEclipse. We select the MobiCrowd [20] and
CaDSA [25] schemes as the baseline algorithms. For continuous LBS queries, we measured the
average processing times on the mobile clients, anonymizer, and LSP as well as the average
communication cost between a user and the neighbors/anonymizer and that between the
anonymizer and LSP.

6.2. Effectiveness analysis

The effectiveness of our CSKA scheme is mainly analyzed by changing the continuous
query points n, anonymity degree K, and number of cells M.

6.2.1. The matching of the cells

When K=30, M = 5000, and € = 0.8, a user needs to query the POls in the cells that are
covered in the query range of radius R. When the user sends 10 continuous LBS queries, we
analyze the proportion of matched cells in the local client, LSP, neighbors, and anonymizer. As
observed in the Figure 4, when the number of user’s queries increases, the number of matched
cells obtained from the local client, neighbors, and anonymoizer gradually increases, whereas
the number of matched cells obtained from the LSP gradually reduces; eventually, they tend
to be in a relatively stable state.

This is because when the user initially queries, the local client cache has almost no required
POls, and the user can only obtain result data from the surrounding neighbors, anonymizer,
and LSP. In this query process, we utilize the Markov model to predict the next query location
according to the user mobility and select K cells based on the predicted location, cell’s cache
contribution rate, and data freshness to form a spatial K-anonymity. Certain cells of the
future query has been previously queried by the spatial K-anonymity, and these result data
are stored in the cache of the mobile clients or anonymizer. Therefore, as the number of user
queries increases, the query results obtained by the user from the local client, neighbors, and
anonymizer increases, and only a small number of unmatched cells need to be queried by the
LSP.

If the user can directly obtain the result data from the cache of the local client, the user’s
privacy is higher, and the system overhead is smaller. On the contrary, if the user obtains
more result data from the LSP, the user’s privacy reduces and the system overhead increases.
As shown in this figure, when the number of queries increases, the proportion of the matched
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Figure 4: Result data obtained from different entities

Table 3: Comparison of result data obtained from different entities
Proportions  of

Different entities Privacy degree System overhead matched cells
Local client High Low 22%
Neighbors and anonymizer Medium Medium 69%

LSP Low High 9%

cells by the user from the local client, neighbors and anonymizer, and LSP is 22%, 69% and
9%, respectively. The comparison of the result data obtained from the different entities is
presented in Table 3.

6.2.2. Effect of number of cells M.

In the case of # = 0.8, n = 10 and K = 10, and 30 and 50, we evaluate the impact of
the parameters M and K on the system performance. As observed in the Figure 5, both the
communication cost and the processing time increase with the increase in M. Moreover, the
increase in the parameter K value also increases the system overhead.

This is because the number of cells M increases and the user needs to match more cell
identifiers within the specified query range, which increases the overhead for processing these
cell identifiers. Similarly, for a larger K, the cloaking region that needs to be queried is larger,
thus increasing the system overhead. Therefore, the system overhead of user queries increases
with the increase in Mand K.
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Figure 5: Effect of number of cells M.
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Figure 6: The comparison of the cache hit rate.

6.3. Comparison

We mainly compare our CSKA scheme with the CaDSA and MobiCrowd methods in terms
of cache hit rate and LBS server overhead to illustrate the effectiveness of our proposed scheme.

6.3.1. Cache hit rate.

When M = 5000 and n = 10, we compare the cache hit rate of the CaDSA, MobiCrowd,
and CSKA methods under varying 6 and K.

As shown in Figure 6(a), the cache hit rate of all the three methods decreased with the
increase in 6 at the K = 30; moreover, this rate for CSKA is higher than those for CaDSA
and MobiCrowd. This is because with the increase in 6, the user needs to match more cell
identifiers in the cache to satisfy the user’s query requirements, and the cache hit rate will
be reduced; however it can yield better service quality. Furthermore, the CSKA scheme is
mainly based on the user’s mobility to form the cloaking region; therefore, the CSKA exhibits
a higher cache hit rate relative to the MobiCrowd and CaDSA methods.

As observed from Figure 6(b), the cache hit rate of all the three methods increased with
K at 6 = 0.8; moreover, the rate for CSKA is higher than those for CaDSA and MobiCrowd.
This is because the anonymizer forms a larger cloaking region as K increases, and LSP returns
more query results to the cache of the anonymizer and mobile clients to satisfy the users’ query
requirements; then, the cache hit rate increases accordingly.

6.3.2. The Ouverheard of the LBS server.

When M = 5000, § = 0.8, and K = 30, we compare the overhead of the CSKA, CaDSA,
and MobiCrowd methods on the LBS server under varying n.

As observed from Figure 7, with the increase in n, the advantage of the CSKA method
relative to the CaDSA and MobiCrowd methods is higher in terms of the processing time and
communication cost of the LBS server. This is because the CSKA method selects K cells
to form a cloaking region according to the predicted location, cell’s cache contribution rate,
and data freshness, thus effectively improving the cache hit ratio and reducing the number of
user information queries in the LBS server. However, the MobiCrowd simply uses the cache,
and the CaDSA considers only the user’s query probability when forming a cloaking region.
Therefore, the CSKA scheme has substantial advantages over the CaDSA and MobiCrowd
methods in terms of the LBS server overhead.
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Figure 7: The comparison of the LBS server overhead.

7. Conclusion

In this paper, we proposed a CSKA scheme which adopts multi-level caching and spatial
K-anonymity to provide enhanced user privacy for continuous LBSs. When forming a spatial
K-anonymity, our scheme first utilizes the Markov model to predict the next query location
according to the user’s mobility and then selects K cells based on the predicted location,
cell’s cache contribution rate, and data freshness to improve cache hit rate; this reduces the
interaction between users and LSP and improves user privacy. Security analysis reveals that
the CSKA scheme can effectively protect user privacy and that it can counter eavesdropping
attacks and LSP inference attacks. The simulation results also verify that our proposed scheme
exhibits higher privacy protection than the previous solutions.

In the process of forming spatial K-anonymity, we only consider selecting the cells to
form a cloaking region based on the prediction location of a single user. However, we did
not consider the case of multiple user queries. Therefore, in the future work, we will further
consider the selection of appropriate cells based on multiple users’ predicted locations to form a
cloaking region when multiple users simultaneously issue queries so that they can achieve better
privacy protection. This will also be a multi-objective optimization problem. Additionally,
the security of information sharing between users and their neighbors is also an important
issue worth studying.
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