
1 
 

Analysis of accident injury-severity outcomes: The zero-inflated 
hierarchical ordered probit model with correlated disturbances 

 
 

 
 

by 
 
 
 

Grigorios Fountas, Ph.D. (Corresponding Author) 
Lecturer 

Transport Research Institute 
School of Engineering and the Built Environment 

Edinburgh Napier University 
10 Colinton Road, Edinburgh, EH10 5DT, UK 

Phone: +44 131 455 2711; Email: G.Fountas@napier.ac.uk 
 
 

And 
 
 

Panagiotis Ch. Anastasopoulos, Ph.D.  
Associate Professor and Stephen E. Still Chair of Transportation Engineering 

Department of Civil, Structural and Environmental Engineering 
Stephen Still Institute for Sustainable Transportation and Logistics 

University at Buffalo, The State University of New York 
241 Ketter Hall, Buffalo, New York 14260 

Phone: (716) 645-4362; Email: panastas@buffalo.edu 
 

 

 

 

 

 

September 7, 2018 

 

mailto:G.Fountas@napier.ac.uk
https://www.buffalo.edu/istl.html


Abstract   

In accident injury-severity analysis, an inherent limitation of the traditional ordered probit 

approach arises from the a priori consideration of a homogeneous source for the accidents that 

result in a no-injury (or zero-injury) outcome.  Conceptually, no-injury accidents may be subject 

to the effect of two underlying injury-severity states, which are more likely to be observed in 

accident datasets with excessive amounts of no-injury accident observations.  To account for this 

possibility along with the possibility of heterogeneity stemming from the fixed nature of the 

ordered probability thresholds, a zero-inflated hierarchical ordered probit approach with correlated 

disturbances is employed, for the first time – to the authors’ knowledge – in accident research.  

The latter consists of a binary probit and an ordered probit component that are simultaneously 

modeled in order to identify the influential factors for each underlying injury-severity state.  At 

the same time, the model formulation accounts for possible correlation between the disturbance 

terms of the two model components, and allows for the ordered thresholds to vary as a function of 

threshold-specific explanatory variables.  Using injury-severity data from single-vehicle accidents 

that occurred in the State of Washington, from 2011 to 2013, the implementation potential of the 

proposed approach is demonstrated.  The comparative assessment between the zero-inflated 

hierarchical ordered probit approach with correlated disturbances and its lower-order counterparts 

highlights the potential of the proposed approach to account for the effect of underlying states on 

injury-severity outcome probabilities and to explain more with the same amount of information.  
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Introduction 

 In contemporary accident research, the investigation of the determinants of accident injury-

severity outcomes is largely based on high-scale datasets consisting of police-reported accidents 

that occurred throughout a specific period of time.  A structural characteristic of such datasets 

originates from the preponderance of accident observations that are associated with a no-injury 

outcome (Jiang et al., 2013).  Even though the high percentage of no-injury accidents does not 

imply traffic safety improvements in the roadway network, such excessive amount of observations 

is typically anticipated, especially when information about urban settings or highly congested 

networks is collected.  In this context, accounting for such a common pattern in the injury-severity 

data constitutes an imminent statistical challenge with possible effect on parameters’ efficiency 

and inferences’ accuracy. 

 Recent advances on statistical and econometric approaches have addressed several issues 

arising from the restrictive formulations of the traditional ordered and discrete outcome 

frameworks, which are typically used in the analysis of accident injury-severity data (for a detailed 

review, see: Lord and Mannering, 2010; Savolainen et al., 2011; Mannering and Bhat, 2014, 

Mannering et al., 2016; Mannering, 2018).  Such issues include various patterns of unobserved 

heterogeneity (Russo et al., 2014; Yasmin et al., 2014; Behnood et al., 2014; Eluru and Yasmin, 

2015; Bogue at al., 2017; Seraneeprakarn et al., 2017; Behnood and Mannering, 2016; Fountas 

and Anastasopoulos, 2017;Osman et al., 2017; Fountas et al., 2018a), endogeneity (Rana et al., 

2010; Abay et al., 2013; Sarwar and Anastasopoulos, 2017), temporal and spatial correlation 

(Castro et al., 2012; Chiou and Fu, 2015; Behnood and Mannering, 2015; Bhat et al., 2017; Zeng 

et al., 2018; Osama and Sayed, 2017; Paleti et al., 2017; Mannering, 2018), and under-reporting 

of accidents (Savolainen et al., 2011; Mannering et al., 2014).  Despite the development of more 
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flexible estimation structures (such as random parameters and latent class techniques, multivariate 

formulations, and so on), the theoretical causality for the preponderance of no-injury accidents and 

its possible implications on model estimation are not effectively accounted for in such structures. 

 The latter is important, especially when consideration is given to the sources of no-injury 

observations (or zero-injury observations, according to the typical numbering of the injury-severity 

outcomes in an ordinal scale).  Specifically, zero-injury observations may not arise from a uniform 

source, because the underlying accident generation mechanisms may vary.  For example, a portion 

of the zero-injury observations may be associated with very minor accidents, whose accident-

specific conditions and contributing factors are unlikely to lead to a more severe, injury-involved 

outcome.  Acknowledging that in the majority of injury-severity analyses the property-damage-

only and possible injury outcomes are aggregated within the no-injury outcome (Savolainen et al., 

2011), the aforementioned group of accidents is more likely to result in property damage only.  

Some indicative accident types relating to the aforementioned group of zero-injury observations 

include (but are not limited to): parking-related accidents, low-speed accidents, accidents at 

bottlenecks, or accidents involving low impact collision.  Similarly, the remaining group of zero-

injury observations may be associated with accidents that under different traffic-, weather-, 

roadway-, driver-, or vehicle-specific circumstances could naturally result in a more severe, injury-

involved outcome.  In the context of single-vehicle accidents, possible accident types associated 

with the latter group of zero-injury observations involve run-off-road accidents, collision with 

roadway structures, animal-involved accidents, and so on.  Despite their observed no-injury 

outcome, the underlying mechanism corresponding to this group of zero-injury observations may 

share considerable (observed or unobserved) similarities with the mechanism of the injury-

involved accidents.  
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 From a theoretical perspective, the possible presence of alternate injury-severity 

mechanisms can lead to the consideration of two distinct injury-severity states in the analysis of 

accident data: (i) the zero-injury state; and (ii) the ordered injury-severity state.  In line with the 

previous distinction of the zero-injury observations, the group of zero-injury observations that do 

not have the potential to result in more severe outcomes, form the basis of the zero-injury state.  

On the contrary, the second group of no-injury accidents (i.e., those that can potentially result in 

more severe outcomes) as well as all the injury-involved accidents, form the basis of the ordered 

injury-severity state.  Note that the consideration of the ordered injury-severity state has a two-

fold function: (i) to illustrate the generation mechanism of the non-zero-injury state; and (ii) to 

account for the inherent generation differences among the injury-severity outcomes.   

 From a modeling perspective, several statistical and econometric approaches have been 

developed to accommodate the possibility of excessive amount of zero observations in accident 

datasets.  Such approaches include the zero-inflated count data models, such as the zero-inflated 

Poisson (Shankar et al., 1997; Boucher et al., 2009; Aguero-Valverde, 2013; Dong et al., 2014a,) 

and the zero-inflated negative binomial models (Jang et al., 2010; Usman et al., 2010; Dong et al., 

2014b; Anastasopoulos, 2016; Cai et al., 2016; Liu et al., 2018) as well as the (univariate or 

multivariate) tobit models (Anastasopoulos et al., 2012a, 2012b; Anastasopoulos, 2016; Zeng et 

al., 2017).  In accident research, these two streams of statistical techniques primarily account for 

the presence of zero-accident and non-zero-accident states in roadway segment based accident 

frequency and rate analysis, respectively (Anastasopoulos, 2016).  However, the possibility of two 

distinct states at a more disaggregate level, and particularly at the level of accident observations, 

has been left under-explored, especially within the context of accident injury-severity research.  

Accounting for the presence of underlying states in the level of accident observations can result 
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not only in more reliable parameter estimates, but also in the efficient use of after-crash 

information (i.e., accident-, vehicle-, driver-, time-varying weather-, and pavement-specific 

information) that cannot be used for the identification of underlying accident states at the roadway 

segment level.  

 In the context of injury-severity studies, Jiang et al. (2013) identified two possible 

underlying classes for the zero-injury accidents: (i) the injury-free accidents; and (ii) the injury-

prone accidents.  To statistically account for this possibility within an ordered probability setting, 

Jiang et al. (2013) employed a zero-inflated ordered probit approach; the latter can address the 

excessive amount of zero observations by identifying distinct regimes on the basis of binary probit 

and traditional ordered probit processes.   

This study aims to extend the methodological potential of the zero-inflated ordered probit 

model, by additionally accounting for the common unobserved characteristics captured by the 

disturbance terms of the two distinct processes, and by simultaneously relaxing the fixed 

thresholds restriction of the traditional ordered probit formulation.  To that end, a zero-inflated 

hierarchical ordered probit approach with correlated disturbances is employed for the first time – 

to the authors’ knowledge – in accident research.  The unrestricted formulation of the latter allows 

for capturing possible correlation between the disturbance terms corresponding to the binary and 

ordered probit components, while at the same time, decomposes the fixed thresholds as a function 

of threshold-specific explanatory variables.  To examine the statistical merits of the proposed 

approach, various ordered probit counterparts (i.e., hierarchical ordered probit and zero-inflated 

ordered probit models) are estimated and compared vis-à-vis the former.  
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Methodology 

 The zero-inflated hierarchical ordered probit framework is formulated on the basis of two 

separate, but interrelated processes: (i) a binary probit process, which serves as an assignment 

function for the accidents between the zero-injury state and the ordered injury-severity state; and 

(ii) an ordered probit process, which can provide the determinants of the injury-severity outcomes, 

under the condition that the accident does not belong to the zero-injury state.   

 Following the formulation of Harris and Zhao (2007) and Greene (2016), the model 

structure of the zero-inflated ordered probit model consists of two latent variable equations 

corresponding to the aforementioned distinct processes.  The splitting function between the zero-

injury and ordered injury-severity state is expressed through a binary probit model (Harris and 

Zhao, 2007; Greene, 2016): 

 * , 1 ( * 0)i i i ik w k k= + = >dC         (1) 

where, ki* denotes a latent variable being observed as a binary variable ki, with the latter 

representing whether an accident belongs to the zero-injury-state (ki = 1) or not (ki = 0), C denotes 

a vector of explanatory variables that determine whether an accident belongs to the zero-injury 

state or not, d is a vector of estimable parameters, and w is the disturbance term, which is assumed 

to follow the standard normal distribution (with mean equal to zero and standard deviation equal 

to one).  

 In this context, the probability of an accident belonging in the zero-injury state is computed 

as (Washington et al., 2011): 

 ( 1) ( )= = Φ dCi i iP k          (2) 
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where, Φ denotes the standardized cumulative normal distribution (with mean equal to zero and 

standard deviation equal to one), and all other terms are as previously defined. 

 Conditional on an accident belonging to the ordered injury-severity state, the specific 

accident injury-severity outcome is determined through the ordered probit model component.  In 

this context, the latent variable zi*, which constitutes the basis of the ordered probability 

formulation, is defined as (Harris and Zhao, 2007; Washington et al., 2011; Greene, 2016): 

* ,i iz ε= +Xβ            (3) 

and 

 1

1

0 * 0 1
* 0

* 0,
−

−

 ≤ =


= µ < < µ =
 ≥ µ =

i i

i j i j i

i J i

if z or k
z j if z and k

J if z and k

   with j=1,2….J-1   (4) 

where, zi is an integer corresponding to the observed injury-severity outcome of the accident i, X 

is a vector of explanatory variables, β is a vector of estimable parameters associated with X, j 

denotes the observed injury-severity level, J denotes the most severe injury outcome, μ denote the 

threshold parameters of the ordered probit model that distinguish the various injury-severity 

outcomes, and ε is a normally distributed disturbance term1.    

 On the basis of Equation (4), the probabilities corresponding to various injury-severity 

outcomes are expressed as (Washington et al., 2011): 

 ( 0 | 0) ( )i iP z k= = = Φ − Xβ          (5) 

                                                           
1 It should be noted that the threshold μ0 is assumed to be zero, without loss of generality (Washington et al., 2011).  

To that end, the number of estimable thresholds is equal to Γ-2, where Γ denotes the number of the ordered outcomes 
of the dependent variable.  In this study, four injury-severity outcomes are considered, thus only two thresholds are 
estimated.  
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 1( | 0) ( ) ( )i j i j iP z j k µ µ −= = = Φ − −Φ −X Xβ β       (6) 

 1( | 0) 1 ( )i J iP z J k µ −= = = −Φ − Xβ .       (7) 

 Note that the zero-inflated ordered probit model is formulated to statistically account for 

two different types of zeros for the no-injury outcomes, associated with: (i) accidents that belong 

to the zero-injury state (ki = 1); and (ii) accidents that do not belong to the zero injury-severity 

state, but they result in no evident injury (ki = 0 and zi = 0).  In this context, the unconditional 

probability of an accident to result in a no-evident injury, P(z=0), is directly associated with the 

probabilities of the aforementioned conditions to occur, and is formulated as (Harris and Zhao, 

2007; Jiang et al., 2013): 

 ( 0 | , ) ( 1| ) ( 0 | ) ( 0 | )P z P k P k P z= = = + = =C X C C X .     (8) 

 In a similar fashion, the unconditional probability of an accident to result in an injury-

severity outcome j, P(z=j), is also dependent on the probability that the specific accident belongs 

to the ordered injury-severity state, and thus, is expressed as (Harris and Zhao, 2007; Jiang et al., 

2013): 

 ( | , ) ( 0 | ) ( | )P z j P k P z j= = = =C X C X .      (9) 

 It should be noted that the binary probit and ordered probit model components may 

encounter similar unobserved characteristics, since the component-specific dependent variables 

stem from the injury-severity outcome of the same accident.  In this context, there is strong 

possibility for the random disturbance terms of the two components to be correlated.  Not 

accounting for the contemporaneous disturbance term correlation between the latent variables of 

the model formulation may result in inconsistent parameter estimates and inaccurate statistical 
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inferences (Washington et al., 2011; Sarwar et al., 2017).  To that end, the disturbance terms are 

specified to follow a standard bivariate normal distribution, which allows for possible correlation 

between the former through the estimation of a correlation coefficient.  

 To decompose the aforementioned unconditional probabilities, in terms of the explanatory 

variables involved in the binary probit and ordered probit model components, Equations (2) and 

(5) - (7) are incorporated in Equations (8) and (9), with the latter two being re-written, respectively, 

as: 

 2( 0) ( ) ( , , )i i i i i iP z d C d C′ ′= = Φ +Φ − − λXβ       (10) 

 2 2 1( ) ( , , ) ( , , )i i i j i i i j iP z j d C d C −′ ′= = Φ − µ − λ −Φ − µ − λX Xβ β    (11) 

where, Φ2 denotes the cumulative function of the bivariate standard normal distribution, λ denotes 

the correlation coefficient between the disturbance terms of the binary and ordered probit 

components, and all the other terms are as previously defined.  

 To account for the heterogeneity arising from the fixed nature of the thresholds that 

determine the injury-severity outcomes, the hierarchical ordered probit formulation is incorporated 

into the zero-inflated model structure.2  Specifically, the thresholds are allowed to vary across the 

accident observations, as a function of unique explanatory variables (Greene, 2016; Fountas and 

Anastasopoulos, 2017): 

 , exp( )i j j itµ = + Uγ          (12) 

                                                           
2 The generalized ordered logit/probit and the partial proportional odds models constitute alternate ordered probability 

approaches, in which the observation-specific thresholds are estimated as a function of threshold-specific 
explanatory variables (Eluru, 2008; Eluru and Yasmin, 2015).  
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where, tj is a threshold-specific constant term, U denotes a vector of explanatory variables 

determining the thresholds, and γ is a vector of estimable parameters corresponding to U. 

 For the estimation of the model parameters, the maximum likelihood estimation technique 

is employed.  To that end, the log-likelihood function is defined as (Harris and Zhao, 2007): 

 ,
1 0

ln[ ( | , , , , , )]
N J

i j i i j
i j

LL v P z j µ λ
= =

= =∑ ∑ C X d β        (13) 

where, ,i jv  is a binary indicator indicating whether the specific injury-severity outcome is observed 

or not, and all the other terms are as previously defined.  

 To better interpret the effect of the explanatory variables on the probability of each injury-

severity outcome, marginal effects are estimated (Harris and Zhao, 2007).  As far as the binary 

probit model component is concerned, marginal effects provide the change in the probability of an 

accident to belong in the zero-injury state, due to a one unit change in the model component-

specific explanatory variables, and are computed as: 

 [ ( )]( 1) iP kME ∂ Φ∂ =
= =

∂ ∂C
dC

C C
.       (14) 

 In ordered probit component, marginal effects provide the change in the probability of a 

specific injury-severity outcome, due to a one unit change in the explanatory variables associated 

with the ordered injury-severity state, and are computed as: 

 2 2 1[ ( , , ) ( , , )]( ) i i j i i i j id C d CP z jME
µ λ µ λ−′ ′∂ Φ − − −Φ − −∂ =

= =
∂ ∂X

X X
X X

β β
.  (15) 

Note that in the case of indicator variables, marginal effects measure the difference in the predicted 

probability, due to a change from “0” to “1” in the value of the specific variable.  
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Data 

 To illustrate the potential of the proposed zero-inflated approach in identifying distinct 

states of the injury-severity mechanism, data from single-vehicle accidents – which occurred on 

urban and rural highways in the State of Washington – are analyzed.  The dataset includes 

aggregate and highly disaggregate information from police-reported accidents that occurred 

throughout a three-year period, from 2011 to 2013.  

 The portion of the dataset with aggregate information includes accident-specific 

information (date, time and location of the accident; number of passengers; injury-severity 

outcome), as well as detailed collision-specific characteristics (type of collision; vehicle action 

during the accident; sequence of events after the collision; airbag deployment; environmental and 

lighting conditions).  The aggregate accident-related information also consists of driver-specific 

characteristics (age; gender; driver’s license status; level of drugs/alcohol consumption; level of 

driver’s consciousness and inattention; seat belt use), and vehicle-specific characteristics (vehicle 

type, make and model; number of axles; vehicle condition before and after the accident; date of 

first vehicle registration).  In addition, roadway-specific information (roadway geometrics; cross-

section elements; horizontal and vertical curvature; functional class; access control), and traffic 

characteristics (average annual daily traffic, traffic counts for various vehicle types; posted speed 

limit; traffic control infrastructure and systems) are also included in the dataset.  The portion of 

the dataset with aggregate information was acquired from the Highway Safety Information System 

(HSIS), and the SHRP2 Roadway Information Database (RID). 

 The portion of the dataset with disaggregate information includes a broad range of time-

varying weather and pavement surface condition data.  To account for their dynamic variations, 

the time-varying characteristics were clustered in 30-minute time intervals, corresponding to pre-

crash and at-crash time points.  In this context, time-varying information is available for the time 
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of the accident (t) and for two time points preceding the time of the accident (t-30 and t-60, 

respectively).  Note that the time-varying information was drawn from meteorological 

measurements incorporated in the Meteorological Assimilation Data Ingest System (MADIS).  For 

a more detailed description of the time-varying characteristics, see previous studies that also used 

the specific dataset (Fountas et al., 2018a; Fountas et al., 2018b; Fountas et al. 2018c; Fountas, 

2018).  

 The injury-severity outcomes of this study are expressed in a four-level ordinal scale: no-

evident injury; non-incapacitating injury, incapacitating injury, and fatal injury (fatality).  In 

consistency with previous studies (Fountas and Anastasopoulos, 2017; Fountas et al., 2018b), the 

reported injury-severity outcome is defined as the level of injury of the most severely injured 

person that was involved in the accident.  In total 2,690 observations included complete 

information and were thus used for the empirical analysis.  Figure 1 presents a histogram with the 

number of accidents per injury-severity outcome.  The vast majority of the accidents considered 

in the analysis (approximately 72.8%) resulted in no-evident injury, as shown in Figure 1.  Table 

1 presents summary statistics for key variables – those that were found to be statistically significant 

determinants of the injury-severity outcomes.  

 



14 
 

 
Figure 1. Number of accident observations per injury-severity outcome. 
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Table 1. Descriptive statistics of key variables. 

  
Mean 
or % 

Std. 
Dev.  Min Max 

Roadway geometry characteristics  

Bridge indicator (1 if a bridge was present on the highway 
segment, 0 otherwise) 11.16% – 0.000 1.00 

Horizontal and vertical curvature indicator (1 if the accident 
occurred on a straight and level highway segment, 0 
otherwise) 

40.84% – 0.000 1.00 

Driver-specific characteristics  
Alcohol/Drugs indicator (1 if the driver was under the 

influence of alcohol or drugs, 0 otherwise) 10.49% – 0.000 1.00 

Driver's consciousness indicator (1 if the driver was 
apparently fatigued or ill, 0 otherwise) 6.37% – 0.000 1.00 

Restraints use indicator (1 if the driver did not use any 
restraint, 0 otherwise) 92.65% – 0.000 1.00 

Accident-specific characteristics 
Overturned vehicle indicator (1 if the vehicle overturned, 0 

otherwise) 7.48% – 0.000 1.00 

Animal indicator (1 if an animal was involved in the 
accident, 0 otherwise) 3.51% – 0.000 1.00 

Pedestrian indicator (1 if a pedestrian was involved in the 
accident, 0 otherwise) 1.08% – 0.000 1.00 

Airbag Deployment Indicator (1 if airbag deployed, 0 
otherwise) 23.60% – 0.000 1.00 

Towed vehicle indicator (1 if towed, 0 otherwise) 63.55% – 0.000 1.00 
Off-the-road vehicle indicator (1 if the vehicle ran-off-the-

road during the accident, 0 otherwise) 27.81% – 0.000 1.00 

Time-varying weather characteristics 
Relative humidity indicator in t–30 minutes (1 if humidity 

was greater than 75%, 0 otherwise) 74.47% – 0.000 1.00 

Threshold parameters decomposition     
Gender indicator (1 if the driver is female, 0 otherwise) 40.46% – 0.000 1.00 
Vehicle direction indicator (1 if the vehicle was traveling on 

a straight ahead direction at the time of the accident, 0 
otherwise) 

86.11% – 0.000 1.00 

Lighting conditions indicator (1 if the accident occurred 
during the daylight, dawn or dusk time periods, 0 
otherwise) 

54.97% – 0.000 1.00 

Segment length indicator (1 if the segment length is greater 
than 0.55 miles, 0 otherwise) 20.65% – 0.000 1.00 

Zero-injury state     
Annual Average daily traffic (AADT) per lane Indicator (in 

thousands of vehicles per day) 
18.75 8.44 0.000 45.82 

Month indicator (1 if the accident occurred after December 
31st and before April 1st, 0 otherwise) 27.42% – 0.000 1.00 
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Mean 
or % 

Std. 
Dev.  Min Max 

County indicator (1 if the accident occurred in the King 
county, 0 otherwise) 

62.35% – 0.000 1.00 

Truck involvement indicator (1 if a truck was involved in 
the accident, 0 otherwise) 35.17% – 0.000 1.00 

Traffic control indicator (1 if  traffic was not controlled, 0 
otherwise) 96.34% – 0.000 1.00 
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Analysis and Results 

To statistically assess the potential of the zero-inflated hierarchical ordered probit model 

with correlated disturbances, conventional hierarchical ordered probit and zero-inflated ordered 

probit models are also estimated. 

Figure 1 shows that the accident injury-severity data exhibit significant clustering at zero 

observations (i.e., observations associated with a no-evident injury outcome).  This supports the 

use of a modeling technique that can address the excessive amount of zero observations.  In this 

context, the zero-inflated hierarchical ordered probit framework is a methodological candidate for 

identifying the determinants of the injury-severity outcomes.   

Table 2 presents the model estimation results for the zero-inflated hierarchical ordered 

probit model with correlated disturbances, alongside its model counterparts (i.e., the zero inflated 

ordered probit, and the hierarchical ordered probit)3.  Note that under the hierarchical ordered 

probit approach, all the zero observations (i.e., the observations corresponding to no evident injury 

outcome) are assumed to stem from a homogeneous underlying state, while the thresholds are 

allowed at the same time to vary as functions of explanatory variables (Eluru et al., 2008; Fountas 

and Anastasopoulos, 2017; Xin et al., 2017).  On the contrary, the zero-inflated ordered probit 

approach allows for the presence of two underlying states, without accounting for threshold 

heterogeneity and for cross-equation disturbance correlation.  Table 3 shows the marginal effects 

of the zero-inflated hierarchical ordered probit model with correlated disturbances.  Specifically, 

two sets of marginal effects are estimated: (i) marginal effects of the explanatory variables 

associated with the probability of an accident belonging in the zero-injury state; and (ii) marginal 

effects of the explanatory variables associated with the overall probability of an accident resulting 

                                                           
3 It should be mentioned that all competitive models are estimated on the basis of the same explanatory variables.  
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in a specific injury-severity outcome j.  As it can be inferred from Equations (14) and (15), the 

first set of marginal effects is computed only for the group of explanatory variables affecting the 

zero-injury state probability, whereas the second set is computed for all the explanatory variables, 

regardless of the injury-severity state they are associated with.



19 
 

Table 2. Estimation results for the zero-inflated hierarchical ordered probit model with correlated 
disturbances and its model counterparts. 

 

Hierarchical 
ordered probit 

model 

Zero-inflated 
ordered 

probit model 

Zero-inflated 
hierarchical 

ordered probit 
model with 
correlated 

disturbances 
  Coeff. t-stat Coeff. t-stat Coeff. t-stat 

Roadway geometry characteristics       

Bridge indicator (1 if a bridge was 
present on the highway segment, 0 
otherwise) 

0.132 1.53 0.196 1.77 0.219 2.13 

Horizontal and vertical curvature 
indicator (1 if the accident occurred 
on a straight and level highway 
segment, 0 otherwise) 

-0.148 -2.69 -0.166 -2.59 -0.170 -2.76 

Driver-specific characteristics       

Alcohol/Drugs indicator (1 if the driver 
was under the influence of alcohol or 
drugs, 0 otherwise) 

0.457 5.49 0.556 5.47 0.51 5.06 

Driver's consciousness indicator (1 if 
the driver was apparently fatigued or 
ill, 0 otherwise) 

0.347 3.21 0.344 2.61 0.312 2.44 

Restraints use indicator (1 if the driver 
did not use any restraint, 0 otherwise) -0.760 -12.87 -0.676 -9.33 -0.498 -4.97 

Accident-specific characteristics       

Overturned vehicle indicator (1 if the 
vehicle overturned, 0 otherwise) 0.783 6.65 0.849 4.84 0.786 4.71 

Animal indicator (1 if an animal was 
involved in the accident, 0 otherwise) -0.660 -3.21 -0.654 -2.98 -0.562 -2.63 

Pedestrian indicator (1 if a pedestrian 
was involved in the accident, 0 
otherwise) 

3.146 9.39 3.231 9.97 3.030 7.80 

Airbag deployment indicator (1 if 
airbag deployed, 0 otherwise) 0.696 11.67 0.799 9.34 0.768 8.86 

Towed vehicle indicator (1 if towed, 0 
otherwise) 0.097 1.78 0.193 2.91 0.200 3.10 

Off-the-road vehicle indicator (1 if the 
vehicle ran-off-the-road during the 
accident, 0 otherwise) 

0.121 1.95 0.190 2.55 0.204 2.88 

Time-variant characteristics       

Relative humidity indicator in t–30 
minutes (1 if humidity was greater 
than 75%, 0 otherwise) 

-0.316 -5.84 -0.276 -4.38 -0.237 -3.49 

Threshold parameters   
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Hierarchical 
ordered probit 

model 

Zero-inflated 
ordered 

probit model 

Zero-inflated 
hierarchical 

ordered probit 
model with 
correlated 

disturbances 
  Coeff. t-stat Coeff. t-stat Coeff. t-stat 
Intercept for μ1 0.252 2.38 – – 0.272 2.08 
Intercept for μ2 0.625 5.96 – – 0.617 4.82 
μ1 – – 1.994 21.82 – – 
μ2 – – 2.710 20.84 – – 

Threshold parameters decomposition       

Gender indicator (1 if the driver is 
female, 0 otherwise) 0.236 2.540 – – 0.231 2.65 

Vehicle direction indicator (1 if the 
vehicle was traveling on a straight 
ahead direction at the time of the 
accident, 0 otherwise) 

0.266 2.630 – – 0.271 2.85 

Lighting conditions indicator (1 if the 
accident occurred during the daylight, 
dawn or dusk time periods, 0 
otherwise) 

0.175 2.110 – – 0.164 2.14 

Segment length indicator (1 if the 
segment length is greater than 0.55 
miles, 0 otherwise) 

-0.183 -2.200 – – -0.183 -2.35 

No-Injury State             
Annual Average daily traffic (AADT) 

per lane Indicator (in thousands of 
vehicles per day) 

– – -0.021 2.63 -0.017 3.13 

Month indicator (1 if the accident 
occurred after December 31st and 
before April 1st, 0 otherwise) 

– – 0.342 2.11 0.251 2.15 

King county indicator (1 if the accident 
occurred in the King county, 0 
otherwise) 

– – -0.235 -1.54 -0.226 -2.22 

Truck involvement indicator (1 if a 
truck was involved in the accident, 0 
otherwise) 

– – -0.331 -1.94 -0.264 -2.34 

Traffic control indicator (1 if  traffic 
was not controlled, 0 otherwise) – – -0.288 -1.58 -0.369 -2.41 

Correlation of disturbances         
Correlation coefficient (λ) – – – – 0.511 2.68 

Number of observations  2690 2690 2690 
Log-Likelihood at zero, LL(0) -1780.64 -1780.64 -1780.64 
Log-Likelihood at convergence, LL(β) -1575.56 -1575.32 -1558.38 
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Table 3. Marginal effects for the zero-inflated hierarchical ordered probit model with correlated 
disturbances. 

  Zero-
injury 
state 

P(k=0) 

Overall marginal effects 

  

No-
evident 
injury 
P(j=0) 

Non-
incapacitating 

injury 
 P(j=1) 

Incapacitating 
injury P(j=2) 

Fatal 
injury 
P(j=3) 

Roadway geometry characteristics      
Bridge indicator (1 if a bridge was 

present on the highway segment, 0 
otherwise) 

– -0.0863 0.0755 0.0093 0.0016 

Horizontal and vertical curvature 
indicator (1 if the accident 
occurred on a straight and level 
highway segment, 0 otherwise) 

– 0.0661 -0.0593 -0.0059 -0.0009 

Driver-specific characteristics      
Alcohol/Drugs indicator (1 if the 

driver was under the influence of 
alcohol or drugs, 0 otherwise) 

– -0.2014 0.1684 0.0275 0.0055 

Driver's consciousness indicator (1 if 
the driver was apparently fatigued 
or ill, 0 otherwise) 

– -0.1235 0.1062 0.0146 0.0027 

Restraints use indicator (1 if the 
driver did not use any restraint, 0 
otherwise) 

– 0.1970 -0.1644 -0.0272 -0.0054 

Accident-specific characteristics      
Overturned vehicle indicator (1 if 

the vehicle overturned, 0 
otherwise) 

– -0.3029 0.2350 0.0547 0.0132 

Animal indicator (1 if an animal was 
involved in the accident, 0 
otherwise) 

– 0.1983 -0.1846 -0.0121 -0.0016 

Pedestrian indicator (1 if a 
pedestrian was involved in the 
accident, 0 otherwise) 

– -0.5894 0.2058 0.2604 0.1233 

Airbag Deployment Indicator (1 if 
airbag deployed, 0 otherwise) – -0.2991 0.2476 0.0425 0.0090 

Towed vehicle indicator (1 if towed, 
0 otherwise) – -0.0776 0.0697 0.0068 0.0011 

Off-the-road vehicle indicator (1 if 
the vehicle ran-off-the-road during 
the accident, 0 otherwise) 

– -0.0800 0.0707 0.0080 0.0013 

Time-variant characteristics      
Relative humidity indicator in t–30 

minutes (1 if humidity was greater 
than 75%, 0 otherwise) 

– 0.0932 -0.0820 -0.0096 -0.0016 
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  Zero-
injury 
state 

P(k=0) 

Overall marginal effects 

  

No-
evident 
injury 
P(j=0) 

Non-
incapacitating 

injury 
 P(j=1) 

Incapacitating 
injury P(j=2) 

Fatal 
injury 
P(j=3) 

Threshold parameters decomposition     
Gender indicator (1 if the driver is 

female, 0 otherwise) – 0.0000 0.0404 -0.0121 -0.0283 

Vehicle direction indicator (1 if the 
vehicle was traveling on a straight 
ahead direction at the time of the 
accident, 0 otherwise) 

– 0.0000 0.0522 -0.0145 -0.0377 

Lighting conditions indicator (1 if 
the accident occurred during the 
daylight, dawn or dusk time 
periods, 0 otherwise) 

– 0.0000 0.0294 -0.0087 -0.0207 

Segment length indicator (1 if the 
segment length is greater than 0.55 
miles, 0 otherwise) 

– 0.0000 -0.0340 0.0097 0.0243 

Zero-injury state variables           
Annual Average daily traffic 

(AADT) per lane Indicator (in 
thousands of vehicles per day) 

-0.0050 -0.003 0.0024 0.0002 0.0004 

Month indicator (1 if the accident 
occurred after December 31st and 
before May 1st, 0 otherwise) 

0.0580 0.0314 -0.0282 -0.0023 -0.0009 

King county indicator (1 if the 
accident occurred in the King 
county, 0 otherwise) 

-0.0809 -0.0446 0.0400 0.0033 0.0013 

Truck involvement indicator (1 if a 
truck was involved in the accident, 
0 otherwise) 

-0.0876 -0.0492 0.0440 0.0037 0.0015 

Traffic control indicator (1 if  traffic 
was not controlled, 0 otherwise) -0.0158 -0.0090 0.0080 0.0007 0.0003 
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Table 2 shows that 5 explanatory variables are found to significantly affect the probability 

of an accident to be involved in the zero-injury state, under the zero-inflated hierarchical ordered 

probit approach.  These variables include traffic characteristics (annual average daily traffic, and 

traffic control indicator), accident-specific characteristics (winter month indicator, and truck 

involvement indicator) and a location-specific attribute (County indicator).  In contrast with the 

past zero-inflated ordered probit approaches, herein, a positive sign of a parameter associated with 

the zero-injury state implies that the probability of an accident belonging in the zero-injury state 

increases.  Under this consideration, accidents occurred during the winter period are more likely 

to belong in the zero-injury state, with the corresponding probability increasing by 0.058, as shown 

in Table 3.  This finding is intuitive and can be attributed to the possible risk-compensating 

behavior of drivers under inclement weather conditions (for a further discussion, see Fountas and 

Anastasopoulos, 2017; Fountas et al., 2018a; Fountas, 2018).  In line with previous studies (Eluru 

et al., 2008; Xiong et al., 2014; Yasmin et al., 2016; Fountas and Anastasopoulos, 2017; Sarwar 

and Anastasopoulos, 2017; Fountas et al., 2018b), the annual average daily traffic, the traffic 

control indicator, the County indicator, and the truck involvement indicator are found to decrease 

the zero-injury state probability (by -0.005, -0.016, -0.081, and -0.088, respectively, as shown in 

Table 3).  In line with Jiang et al. (2013), accidents occurred in highways with high annual traffic 

volumes have the potential to result in more severe injury outcomes, possibly due to significant 

speed fluctuations between peak and non-peak hours, or due to risk-taking driving patterns, which 

are more evident during congested traffic conditions (i.e., unsafe lane changes, tailgating, stop 

sign, or traffic signal violations).  Similar effect is also observed for truck-involving accidents, 

since they are more likely to belong in the ordered injury-severity state.  This type of single-vehicle 
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accidents is associated with release of greater amount of energy, compared to accidents involving 

passenger cars, possibly resulting in more severe injury outcomes (Chen et al., 2015).  

Moving on to the ordered injury-severity state results, Table 2 demonstrates that 12 

explanatory variables generate statistically significant parameters (at a 0.95 level of confidence) 

under the zero-inflated hierarchical ordered probit approach with correlated disturbances.  

Specifically, one roadway characteristic (bridge presence indicator), two driver-specific 

characteristics (alcohol/drug consumption indicator, and driver’s consciousness indicator) and five 

accident-specific characteristics (overturned vehicle indicator, pedestrian involvement indicator, 

airbag deployment indicator, towed vehicle indicator, and off-the-road vehicle indicator) are found 

to increase the likelihood of more severe injury outcomes (non-incapacitating injury, 

incapacitating injury, and fatality).  Alcohol or drug-impaired drivers and drivers under the effect 

of fatigue or physical illness are associated with an intuitive propensity towards critical driving 

errors that may lead to injury outcomes of higher severity (Behnood et al., 2014).  The accident-

specific determinants may be capturing either unobserved features of the single-vehicle accident 

mechanism relating to the post-crash vehicle condition (Fountas and Anastasopoulos, 2017), or 

unobserved contributing factors relating to the actions of driver or other entities (e.g., pedestrians, 

passengers) that are involved in the accident (Mannering et al., 2016; Behnood and Mannering, 

2016).   

In contrast, one roadway characteristic (horizontal and vertical curvature indicator), one 

driver-specific characteristic (restraints use indicator), one accident-specific characteristic (animal 

involvement indicator), and one time-varying weather characteristic (relative humidity indicator) 

are found to increase the likelihood of a no evident injury, conditional on the accident belonging 

to the ordered injury-severity state.  The effect of such determinants of injury-severity outcomes 



25 
 

is intuitive and likely reflects the risk-compensating behavior of drivers under the corresponding 

driving circumstances.  Similar findings – in terms of sign and magnitude – were also obtained by 

a number of studies, as for example in Abdel-Aty (2003), Quddus et al. (2009), Russo et al. (2014), 

Wu et al. (2014), and Seraneeprakarn et al. (2017), to name a few.  

Turning to the results relating to the threshold parameters decomposition, positive sign of 

a threshold-specific parameter implies an increase in the values of both intermediate thresholds.  

Such increase is equivalent to a shift of the threshold values towards the right tail of the ordered 

probability distribution and, in turn, to a decrease of the likelihood corresponding to higher injury 

severity outcomes (for further details, see Washington et al, 2011).  The opposite effect is observed 

when the sign of a threshold-specific parameter is negative.  In this context, the variables indicating 

female drivers, straight-ahead direction of the vehicle at the time of the accident, and non-dark 

conditions at the time of the accident, are all associated with greater threshold values, and 

subsequently with lower likelihood of more severe injury outcomes (incapacitating injury and fatal 

injury).  Given that the threshold between no evident injury and non-incapacitating injury is pre-

specified as zero without loss of generality, the increase of the first threshold (μ1) for female drivers 

implies that the accidents involving female drivers are more likely to result in incapacitating injury.  

Such effect is also shown by the marginal effects (Table 3) and is in line with Ulfarsson and 

Mannering (2004).  Similar inferences can be drawn for the effect of vehicle direction indicator 

and lighting condition indicator on the likelihood of the non-incapacitating injury.  

In contrast, longer highway segments (with length greater than 0.55 miles) are found to 

decrease the threshold values, and subsequently, to increase the likelihood of more severe injury 

outcomes (incapacitating injury and fatal injury).  This finding is line with previous research 



26 
 

(Fountas et al., 2018a) and possibly captures the risk-taking behavior of drivers when driving on 

highway segments with consistent design elements throughout their lengths.   

The correlation coefficient (λ) is statistically significant and strong in magnitude showing 

that the disturbance terms of the binary and ordered probit model components capture commonly 

shared unobserved characteristics.  The latter is anticipated, since both zero-injury and ordered 

injury-severity states are associated with the same accident.  However, the positive sign of the 

correlation coefficient may highlight the structural differences relating to the underlying 

mechanisms of the aforementioned states.  In words, the unobserved characteristics that play an 

important role in the determination of the injury-severity outcomes may have opposite effects 

within each underlying state.  For example, the unobserved characteristics that may be associated 

with an increase in the zero-injury probability have – under certain circumstances4 – the potential 

to favor injury outcomes of higher severity.  In fact, this finding can be attributed to the driver-

specific unobserved heterogeneity that stems from the variations in the response of drivers against 

various internal or external stimuli (Kweon and Kockelman, 2003; Bunn et al., 2005; Awadzi et 

al., 2008; Mannering and Bhat, 2014; Mannering, 2018). 

To determine which of the conventional ordered probit or the zero-inflated hierarchical 

ordered probit approach is more appropriate for statistically analyzing injury-severity data, the 

Vuong test statistic is employed and computed.  Given that the two aforementioned approaches 

are non-nested, the Vuong test (Vuong, 1989) is based on the calculation of the statistic mi for each 

accident observation, as follows (Vuong, 1989; Washington et al., 2011): 

1 2[ ( | ) / ( | )]i i i i im LN f q f q= X X         (16) 

                                                           
4  Such circumstances may include heterogeneous drivers’ reactions against variations in weather conditions, traffic 

conditions, or roadway characteristics (such as, roadway type, geometric design elements, pavement surface, etc.).  
For example, rapid changes of weather conditions may increase driving awareness for some drivers, or result in risk-
taking driving behavior for other drivers. 
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where, f1(q1|X1) and f2(q1|X1) denote the probability density functions of the conventional ordered 

probit (traditional ordered probit or hierarchical ordered probit) and the zero-inflated hierarchical 

ordered probit with correlated disturbances, respectively.  To test whether there is statistically 

significant difference in the correctly predicted outcomes provided by the competitive models, the 

Vuong statistic is calculated as (Shankar et al., 1997; Harris and Zhao, 2007; Washington et al., 

2011): 

 
m

m NV
σ

=            (17) 

where, m  and σm denote the mean and the standard deviation of the observation-specific mi, 

respectively, whereas N is the number of accident observations used for model estimation.  For a 

0.95 level of confidence, the critical value of the Vuong test statistic is equal to 1.96.  Thus, large 

positive values of the Vuong statistic – greater than the critical value (i.e., if V > 1.96) – support 

the conventional ordered probit model, whereas large negative values of the Vuong statistic – 

lower that the negative equivalent of the critical value (i.e., if V < -1.96) – favor the zero-inflated 

model.  Note that if the absolute value of the Vuong test statistic is lower that the critical value 

(i.e., if |V| < 1.96), the test statistic cannot provide conclusive results.  The results of the Vuong 

tests conducted among the zero-inflated hierarchical ordered probit model with correlated 

disturbances, and the traditional and hierarchical ordered probit models are presented in Table 4, 

and support the use of the zero-inflated model.
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Table 4. Statistical tests and goodness-of-fit measures. 

  

Zero-inflated 
hierarchical ordered 

probit model with 
correlated 

distrurbances  vs 
ordered probit model 

Zero-inflated 
hierarchical ordered 

probit model with 
correlated 

distrurbances  vs 
hierarchical ordered 

probit model 

Zero-inflated 
hierarchical ordered 

probit model with 
correlated 

distrurbances  vs zero-
inflated ordered 

probit model 
Degrees of freedom – – 5 
Level of confidence – – 0.95 
Resulting χ2 – – 33.875 
Critical χ2 – – 11.071 
Vuong statistic -5.557 -3.736 – 

Statistically Superior 
Model 

Zero-inflated 
hierarchical ordered 
probit model with 

correlated 
disturbances 

Zero-inflated 
hierarchical ordered 
probit model with 

correlated disturbances 

Zero-inflated 
hierarchical ordered 
probit model with 

correlated disturbances 

  
Hierarchical 

ordered probit 
model 

Zero-inflated ordered 
probit model 

Zero-inflated 
hierarchical ordered 

probit model with 
correlated 

disturbances 
AICa  3187.100 3188.600 3164.800 
AICC

b 3187.356 3189.050 3165.250 
ρ2 0.115 0.115 0.125 
Corrected ρ2 0.105 0.105 0.111 

a The Akaike Information Criterion (AIC) is calculated as: AIC = 2[K – LL(β)], where, K is the number of model 
parameters. 

b The corrected Akaike Information Criterion (AICC) is computed as: AICC=AIC+2K(K+1)/(N-K-1), where N indicates 
the number of accident observations used for model estimation and all other terms as previously defined. 
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 To compare the statistical performance of the competitive zero-inflated models (i.e., the 

zero-inflated probit model and the zero-inflated hierarchical ordered probit with correlated 

distrurbances), a likelihood ratio test is conducted.  The likelihood ratio test statistic is defined as 

(Washington et al., 2011): 

 [ ]2
1 22 ( ) ( )z zLL LLχ = − −β β         (18) 

where, LL(βΖ1) and LL(βΖ2) denote the log-likelihood at convergence for the zero-inflated ordered 

probit and the zero-inflated hierarchical ordered probit with correlated disturbances, respectively.  

The likelihood ratio test statistic is chi-squared distributed, with the degrees of freedom being 

equal to the number of additional estimable parameters included in the zero-inflated hierarchical 

ordered probit model with correlated disturbances.  Table 4 presents the results of the likelihood 

ratio test, which support the statistical superiority of the zero-inflated hierarchical ordered probit 

approach over its zero-inflated counterpart, with greater than 95% level of confidence.  

 To further compare the relative statistical fit of nested and non-nested models, information-

based goodness-of-fit measures are estimated (Harris and Zhao, 2007).  In line with previous work 

(Anastasopoulos, 2016; Sarwar et al., 2017; Fountas and Anastasopoulos, 2017; Guo et al., 2018), 

four different measures are examined (the corresponding mathematical formulations are presented 

in Table 4): (i) the ρ2; (ii) the corrected ρ2; (iii) the Akaike Information Criterion; and (iv) the 

Akaike Information Criterion with correction for the sample size.  The resulting values of the 

goodness-of-fit measures are in line with the Vuong and likelihood ratio tests, and indicate the 

statistical superiority of the zero-inflated hierarchical ordered probit approach with correlated 

disturbances across all nested and non-nested comparisons.   

 In terms of explanatory power, Table 2 shows that accounting simultaneously for 

underlying injury-severity states, threshold heterogeneity, and disturbance term correlation can 
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lead to the identification of statistically significant effects that cannot be identified through the 

lower-order model formulations.  Such trend can be observed either for variables affecting the 

zero-injury probability, or for variables affecting the ordered injury-severity state probabilities.  As 

far as the first set of variables is concerned, the bridge indicator (presence of a bridge on the 

highway segment where the accident occurred) is statistically insignificant in the hierarchical 

ordered probit model, and becomes statistically significant under the proposed approach.  For the 

second set of variables, the effect of King County and traffic control indicators on the zero-injury 

probability is statistically insignificant under the zero-inflated ordered probit approach, and 

becomes significant in the zero-inflated hierarchical ordered probit approach with correlated 

disturbances. 

 Furthermore, the identification of different sets of explanatory variables for the zero-injury 

and ordered injury-severity states can shed more light on the decomposition of the overall 

probability for the no-injury outcome.  Such decomposition can be demonstrated through the 

computation of the zero-injury state probability, as well as of the ordered no-injury probability, for 

the set of accidents with observed no-injury outcomes.  Interestingly, the average portion of the 

no-injury probability attributed to the zero-injury state is equal to 26%, whereas the average 

portion of the no-injury probability attributed to the ordered injury-severity state is equal to 74%.  

Figure 2 illustrates these two portions of the overall no-injury probability across the no-injury 

accident observations.  Specifically, the accumulation of no-injury observations in the upper left 

section of the Figure provides additional evidence with regard to the greater influence of the 

ordered-injury severity state mechanism on the overall no-injury probability.   
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Figure 2.  Portion of zero-injury probability versus the portion of the ordered no-evident injury 
probability relative to the overall no-injury probability. 

 

 To further assess the competitive modeling approaches, their forecasting accuracy is also 

investigated.  To that end, two groups of forecasting accuracy measures are computed: (i) 

probability-based measures; and (ii) error-based and relative prediction performance measures.  

The first group of measures includes the percentage of correctly predicted outcomes and the 

average predicted probability for the observed outcomes (Yasmin et al., 2014; Fountas and 

Anastasopoulos, 2017; Fountas et al., 2018c).  For each accident observation, the injury-severity 

outcome that corresponds to the highest model-predicted probability is determined as the predicted 
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outcome.  A prediction is considered as correct when the model-predicted outcome coincides with 

the observed outcome.  For each injury outcome, this metric is calculated as the ratio of the number 

of observations with correctly predicted outcomes over the total number of observations associated 

with the specific injury outcome.  Similarly, for the computation of the average predicted 

probability of observed outcomes, the model-exported probability corresponding to the observed 

injury-severity outcome of the specific observation is considered; thus, among the observations 

that result in a specific injury outcome, the average value of the latter probabilities is calculated.  

Table 5 summarizes the results of the two metrics for all competitive models, and shows that the 

zero-inflated hierarchical ordered probit model with correlated disturbances statistically 

outperforms its zero-inflated and hierarchical probit counterparts.  Specifically, the comparison 

between the proposed approach and the hierarchical probit model shows that the addition of the 

zero-inflated structure in the hierarchical ordered framework results in forecasting accuracy 

improvements, especially for the lower injury-severity outcomes (i.e., no evident injury and non-

incapacitating injury).  Similarly, the simultaneous consideration of threshold heterogeneity 

(through the hierarchical structure) and disturbance term correlation improves the forecasting 

accuracy of the zero-inflated ordered approach, for the majority of injury-severity outcomes (no 

evident injury, incapacitating injury, and fatal injury).  Overall, the proposed approach yields more 

robust forecasts for all injury-severity outcomes.  
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Table 5. Probability-based forecasting accuracy measures for the competitive ordered models. 

  

Hierarchical ordered 
probit model 

Zero-inflated ordered 
probit model 

Zero-inflated hierarchical 
ordered probit model with 
correlated disturbances 

  

Percentage 
of 

correctly 
predicted 
outcomes 

Average 
predicted 

probability 
of observed 
outcomes 

Percentage 
of 

correctly 
predicted 
outcomes 

Average 
predicted 

probability 
of observed 
outcomes 

Percentage 
of 

correctly 
predicted 
outcomes 

Average 
predicted 

probability 
of observed 
outcomes 

No evident 
injury  94.45% 0.748 94.80% 0.756 95.81% 0.760 

Non- 
incapacitating 
injury  

17.53% 0.333 20.39% 0.340 20.39% 0.340 

Incapacitating 
injury  2.90% 0.091 0.00% 0.074 2.90% 0.083 

Fatal injury  27.27% 0.151 0.00% 0.101 27.27% 0.150 
 

 Turning to the second group of forecasting accuracy measures (i.e., the error-based 

measures), it should be noted that the prediction error is derived from the difference between the 

observed outcome and the model-predicted probability for each observed outcome.5  In this 

context, 7 error-based accuracy measures are computed: mean absolute deviation (MAD); sum of 

squared error (SSE); mean squared error (MSE); root mean squared errors (RMSE); standard 

deviation of error (SDE); symmetric mean absolute percentage error (SMAPE); and mean squared 

log of the accuracy ratio (MSLAR).  Note that the last measure is relatively new in the econometric 

research, and its robust formulation allows for a better evaluation of the relative prediction 

accuracy across various competitive models (Tofallis, 2015).  Specifically, for each accident 

observation, the accuracy ratio is defined as the ratio of the model-predicted probability over the 

                                                           
5 It should be noted that for the calculation of the prediction error, the observed outcome is represented by 1; thus, for 

each observation, the prediction error is computed as the difference between 1 and the model-predicted probability 
corresponding to the observed outcome.  
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observed outcome.6  Note that for all the measures of the second group, lower values indicate 

lower prediction error and, in turn, better prediction performance.  Table 6 presents the relevant 

results, which offer supplemental evidence with regard to the statistical superiority of the zero-

inflated hierarchical ordered probit approach with correlated disturbances, in terms of forecasting 

accuracy. 

 More specifically, the proposed approach provides the lowest prediction error across all 

competitive models.  Another interesting finding arises from the values of the Mean Squared Log 

of the Accuracy Ratio, for all competitive models.  In contrast to the other error-based measures, 

the former shows that the hierarchical ordered probit produces lower prediction error compared to 

the zero-inflated ordered probit model.  This finding is in line with the results of the non-nested 

goodness-of-fit measures and may highlight the potential of the specific metric for unbiased model 

selection, using the relative accuracy as primary criterion of selection (Tofallis, 2015).  

   

  

                                                           
6 For the computation of the accuracy ratio, the observed outcome is represented by 1.  To that end, the log of the 

accuracy ratio is equal to zero when the model-predicted probability of the observed outcome is equal to 1.  In this 
context, lower values of the mean squared log of the accuracy ratio reflect higher forecasting accuracy.  
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Table 6.  Error-based and relative forecasting accuracy measures. 

  
Hierarchical 

ordered 
probit model 

Zero-inflated 
ordered 

probit model 

Zero-inflated 
hierarchial 

ordered probit 
model with 
correlated 

disturbances 
Mean absolute deviation (MAD)b 

1

n

i
iMAD

n

ε
==
∑

 
0.371 0.363 0.361 

Sum of squared error (SSE)b 

2
1

n
ii

SSE ε
=

=∑  431.275 417.618 414.840 

Mean squared error (MSE)b 
2

1

n
iiMSE

n
ε

== ∑  
0.196 0.190 0.188 

Root mean squared error (RMSE)b 

2
1

n
iiRMSE

n
ε

== ∑
 

0.442 0.435 0.434 

Standard deviation of errors (SDE)b 

2
1

1

n
iiSDE

n
ε

==
−

∑
 

0.443 0.435 0.434 

Symmetric Mean Absolute Percentage 
Error (SMAPE)a 

1

| |100%
(| | | |) / 2

N
i i

i i i

p oSMAPE
N p o=

−
= ∑

+
  

0.498 0.490 0.487 

Mean Squared Log of the Accuracy 
Ratio (MSLAR)a 

2

1
(ln )

N
i

i i

p
oMSLAR

N
=
∑

=   

0.842 0.851 0.807 

a pi=model-predicted probability   oi=observed outcome 
b ε= oi - pi 

 

Summary and Conclusion 

 In injury-severity analysis, an inherent limitation of the traditional ordered probit model 

arises from the assumption that all the zero-injury accidents are governed by a homogeneous 

underlying (non-)accident-generation mechanism.  Due to the heterogeneous conditions that 
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generate the zero-injury accidents, it is likely that the generation mechanisms of such accidents is 

subject to the effect of two underlying regimes.  To statistically account for the possible presence 

of such regimes, which likely reflect the mechanisms of a zero-injury and an ordered injury 

severity state, the zero-inflated ordered probit framework was employed.  The inflation of the zero-

injury observations was accommodated through a joint estimation of a binary probit model and an 

ordered probit model.  To account for the cross-equation disturbance term correlation, as well as 

for the heterogeneity stemming from the fixed nature of the ordered thresholds (Eluru et al., 2008; 

Fountas and Anastasopoulos, 2017), a zero-inflated hierarchical ordered probit model with 

correlated disturbances was estimated for the first time, to the authors’ knowledge. 

 The model structure of the zero-inflated hierarchical ordered probit model with correlated 

disturbances allowed for the identification of three sets of determinants: (i) determinants of the 

probability that an accident belongs to the zero-injury state; (ii) determinants of the probability 

that an accident results in a specific injury-severity outcome, given that the specific accident 

belongs to the ordered injury-severity state; and (iii) determinants of the thresholds that in turn 

determine the various injury-severity outcomes.  Model estimation results showed that the 

aforementioned sets of determinants include various roadway- and traffic-specific characteristics, 

pre-crash time-varying weather conditions, as well as after-crash accident-, driver-, and vehicle-

specific attributes.  However, each set of determinants was found to be associated with unique 

explanatory variables illustrating, in such way, the potential of the proposed approach to explicitly 

identify the influential factors of the underlying states.  In addition, the statistical significance of 

the coefficient reflecting the correlation between the disturbance terms of the model components 

further supports the use of the proposed approach, especially in terms of capturing commonly 

shared unobserved characteristics.   
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 The comparative assessment of the zero-inflated hierarchical ordered probit model with 

correlated disturbances, and of its non-zero-inflated and zero-inflated counterparts (i.e., the 

hierarchical ordered probit, and zero-inflated ordered probit models) highlighted the statistical 

superiority of the former.  Specifically, the simultaneous consideration of the zero-inflated and 

hierarchical modeling schemes allowed the identification of statistically significant effects that 

likely remain masked under the more parsimonious model structures.  The results of nested and 

non-nested statistical tests and goodness-of-fit measures demonstrated the capability of the zero-

inflated ordered probit modeling framework to address the preponderance of the zero observations, 

as well as the statistical merits of the proposed methodological extensions.  Through the use of a 

broad range of absolute and relative forecasting accuracy measures, it was shown that the zero-

inflated hierarchical ordered probit approach with correlated disturbances offers prediction 

improvements, especially for the zero-injury observations.   

 Despite the statistical and explanatory benefits gained by the proposed approach, the 

introduction of additional estimation layers on the zero-inflated ordered probit framework may 

induce computational complexities or data-specific effects.  The latter is particularly important 

when the developed modeling context is implemented on datasets that may exhibit clustering at 

zero observations, but such clustering cannot be theoretically attributed to the presence of 

underlying and distinct zero and non-zero states.  In cases of datasets with the specific 

characteristics, the appropriateness of the proposed zero-inflated approach should be thoroughly 

investigated; specifically, the identification of two underlying sources for the zero-injury 

observations constitutes critical criterion that should not be overlooked.  Otherwise, incorrect 

implementation of such approach may lead not only to heavily data-specific inferences, but also 

to biased parameter estimates and inaccurate predictors.   
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