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If you want to know about a hunter, study his prey:
detection of network based attacks on KVM based
cloud environments
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Abstract

Computational systems are gradually moving towards Cloud Computing Infrastructures, using the several advantages
they have to offer and especially the economic advantages in the era of an economic crisis. In addition to this
revolution, several security matters emerged and especially the confrontation of malicious insiders. This paper proposes
a methodology for detecting the co-residency and network stressing attacks in the kernel layer of a Kvm-based cloud
environment, using an implementation of the Smith-Waterman genetic algorithm. The proposed approach has been
explored in a test bed environment, producing results that verify its effectiveness.
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Introduction
Distributed systems have made a huge renovation in
Information Technology (IT) infrastructures. Their con-
tinuation is the Cloud Computing. Despite a modern
trend and a new economic model, Cloud Computing has
made its statement turning into the technological model
employed by the majority of large companies and orga-
nizations for facilitating their everyday needs. It is well
known however that every novelty, despite offering a
lot of advantages, also brings several disadvantages. The
latter usually remains hidden, until a ? horror story ?
appears. We refer to the security threats that the new
technology has raised. They can be classified as: related
to the service provider or to the infrastructure or to the
host of the Cloud System.
Several of them are well known from conventional IT

infrastructures: Distributed Denial of Service [1] came
with distributed systems and still draws the attention of
security experts, while social engineering attacks [2],
malware and Trojan horses [3] are also popular for
their impact on modern IT infrastructures. Despite
the inherited threats, there are newly generated risks
that need confrontation. The most important of them
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are Loss of governance [4], data interception [3] and
replay attacks [3].
Our work focuses on the older and most unpredictable

threat that existed before IT systems were born: the
human factor. We refer to malicious insiders [4,5] of a
Cloud Computing Infrastructure. Their activities can
harm the confidentiality, integrity and availability of the
data and services of a cloud system. The commonest
role that a malicious insider has in a cloud infrastructure
is that of the administrator; either the administrator of
the host or one of the administrators of the virtual ma-
chines (VM). The privileges of an administrator allow
several kinds of attacks to be launched. However, our
work focuses on the network attacks and especially the
stressing of the host network and the ? co-residency ? at-
tack [6]. To be specific the stressing of the network is
the basic component of DOS and DDOS attacks [7] ,
where packets are continuously sent to the target in
order to stop it from behaving properly and eventually
deny its services to others. In the case of ? co-residency ?
attack [6], we talk about the detection of neighbouring
VMs and the retrieval of information about them such
as their operating system. The leakage of so important
information can seriously harm the cloud infrastructure.
There have been numerous attempts to counter net-

working stressing attacks [7,8] in their DOS and DDOS
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form. There are also attempts aiming to handle the activ-
ities of a malicious insider through the implementation of
several different IDSs, connected through an event gath-
erer [9]. However, none of these attempts has managed to
successfully prevent the actions of malicious insiders.
This paper, presents a novel method for identifying

network based attacks in a cloud infrastructure. To this
respect a KVM-based [10] system has been employed
with its host OS Dom0 having direct access to all I/O
functions of the system. . This access is materialized by
monitoring the system calls made by the kernel of the
Dom0 operating systems. The proposed method has uti-
lized the Smith-Waterman algorithm [11] to prove that
by monitoring the system calls, the malicious actions of
a potential cloud insider can be detected.
The rest of the paper is organised as follows: Section

Related work and network attacks briefly describes the ? co-
residency? and the network stressing attacks. Section
Detection method provides background information about
the Smith-Waterman algorithm and detailed description of
the proposed method. Section Test-bed environment and
results of the experiments presents the test-bed environ-
ment, the applied automation methodology and the results
of the tests conducted. Section Discussion contains anno-
tations about the results, while section Conclusion and fu-
ture work draws the conclusions giving some pointers to
future work.

Related work and network attacks
There are several approaches attempting to track, dis-
able or even eliminate the malicious insider threat. Some
of them focus on a specific aspect of the cloud such
as the employees or the network, while others try to
present a global solution. Few of them are able to differ-
entiate themselves from existing solutions, inherited by
conventional information systems.
Spring suggests that a firewall at the cloud border that

blocks troublesome packets can limit, but cannot elimin-
ate, access to known malicious entities [12]. Alzain,
Pardede, Soh and Thom suggest that moving from single
cloud to ? multi-clouds? will greatly reduce the malicious
insider ? s threat as the information is spread among the
interclouds and can? t be retrieved from a single Cloud In-
frastructure [13]. Another effort focuses on employing lo-
gistic regression models to estimate false positive/negatives
in intrusion detection and identification of malicious in-
siders. Furthermore, it insists on developing new protocols
that cope with denial of service and insider attacks and en-
sure predictable delivery of mission critical data [14].
Magklaras, Furnell and Papadaki [15] suggest an audit

engine for logging user actions in relational mode
(LUARM) that attempts to solve two fundamental prob-
lems of the insider IT misuse domain. Firstly, is the lack of
insider misuse case data repositories that could be used by
post-case forensic examiners to aid incident investigations
and, secondly, how information security researchers can
enhance their ability to accurately specify insider threats at
system level.
Tripathi and Mishra [16] insist that cloud providers

should provide controls to customer, which can detect
and prevent malicious insiders threats. They add that
malicious insider threats can be mitigated by specifying
human resources requirements as part of legal contracts,
conducting a comprehensive supplier assessment. This
procedure would lead to reporting and determining
security breach notification processes.
? Fog computing? [17] suggests an approach totally differ-

ent from the others. The access operations of each cloud
user are monitored, realising a sort of profiling for each
user. This profiling facilitates the detection of abnormal be-
haviour. When unauthorized access is suspected and then
verified, the method uses disinformation attacks by return-
ing large amounts of decoy information to the malicious in-
siders, keeping this way the privacy of the real users? data.
An approach, which is totally different from the latter, is

that of Cuong Hoang H. Lee [18], which achieves security
in a Xen based hypervisor [19] by trapping hypercalls, as
they are fewer than system calls. The hypercalls are checked
before their execution and thus malicious ones can be de-
tected. A combination of the two latter methods takes ad-
vantage of the system calls, collecting them and classifying
them in normal and abnormal through binary weighted co-
sine metric and k nearest neighbour classifier [20].
Paying special attention to access control mechanisms,

Kollam and Sunnyvale [21] present a mechanism that
generates immutable security policies for a client, propa-
gates and enforces them at the provider ? s infrastructure.
This is one of the few methods aiming directly at mali-
cious insiders and especially system administrators.
The reference to ? co-residence? or (co-tenancy) implies

that multiple independent customers share the same phys-
ical infrastructure [22]. This fact results in a scheme where
Virtual Machines owned by different customers may be
placed in the same physical machine. There are several
methods that can achieve the discovery of neighbouring
Virtual Machines in a Cloud infrastructure. There are also
other methods who wish to counter this specific attack.
Adam Bates [23], claims that ? co-residency ? detection

is also possible through network flow watermarking. To
be specific, this is a type of network converting timing
channel, capable of breaking anonymity by tracing the
path of the network flow. It can also perform a variety of
traffic analysis tasks. However, many drawbacks exist in
this method, with the most important one being the
introduction of a considerable delay in the network.
Ristenpart [6] presents the ? co-residency? potential attacks

on Amazon EC2, one of the largest Cloud Infrastructures.
In his methodology he includes network tools such as
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nmap [24], hping [25] and wget [26], which are utilized in
order to create network probes that will acquire the ad-
dresses of the potential targets. Additionally, the addresses
are used to make a hypothetic map of the cloud network
that will be tested in the third step. In the manifestation of
the method he explores whether two instances are ? co-resi-
dent? or not through a series of checks that depend on:

1. matching Dom0 IP address,
2. small packet round trip times, or
3. numerically close internal IP address

Project ? Silverline ? [27] aims to achieve both data and
network isolation. ? Pseudo? randomly-allocated IP ad-
dress are used for each VM, hiding the actual IP ad-
dresses provided by the cloud provider. Then, in each
Dom0, SilverLine replaces the pseudo IP addresses by
the actual addresses before packets leave the machine.
Since IP addresses are also discovered through DNS re-
quests, the SilverLine also rewrites DNS responses to ap-
propriate pseudo addresses.
Another approach, namely ? Homealone? [28] allows the

verification of the physical isolation of a Virtual Machine
through the same tool that can launch ? co-residency ?
attacks, performed through side channels that usually
offer vulnerabilities. L2 memory cache is a popular way to
reach the data of another VM. However, in the latter sce-
nario L2 memory is silenced for the period of time needed
by the system with upper purpose the residence informa-
tion not to be acquired by another physical machine. In
practice this is rather difficult as the L2 memory in a vir-
tualized environment is never quiet and in most cases
there is no physical isolation among the Virtual Machines.
There are numerous attempts to protect Cloud Infra-

structures, not only from the ? co-residency ? attack but
from other network stressing attacks too, by employing
Intrusion Detection Systems (IDS). Most of them make
use of multiple agents that are installed in different Virtual
Machines and collect the data into a centralized point.
The disadvantage is that they introduce considerable over-
head to the Cloud infrastructure, since they consume
significant amount of resources [29-34]. An interesting
approach is that of Bakshi and Yogesh [7], who transfer
the targeted applications to VMs hosted in another data
center when they pick up grossly abnormal spike in in-
bound traffic.
It can be deduced that the majority of attacks that can

be launched by insiders for detecting neighbouring vir-
tual machines or just stressing the network of a Cloud
Infrastructure, are based on simple network attacks. In a
similar fashion the attacks that have been utilized in this
paper for demonstrating the proposed detection method
are very simple. Before explaining the attacks it should
be stated that in order to launch them the attacker
should know the ip address of the virtual machine. In
our scenario the attacker is the administrator of a virtual
machine with the Kali Linux Operating System [35], the
ancestor of Backtrack Operating System [36], which offers
to our hypothetic malicious insider a variety of tools.
In the case of the ? co-residecny ? attack, the attacker

after obtaining the ip address of his virtual machine, is
working on finding the Domain Name System (DNS) ad-
dress. This can be easily retrieved through the command
? nslookup ? followed by the ip address of the Virtual
Machine (VM). This command, executed in the Kali
Linux kernel, will return the DNS address. After obtaining
the DNS address, the attacker can use the ? nmap? com-
mand to acquire the ip addresses of all virtual machines
(including host) utilising the specific DNS. Specifically the
command executed is ? nmap ? sP DNS_Adress/24? . Hav-
ing the ip addresses of all virtual machines that use the
same DNS, the attacker can identify the Operating System
of either the Host or of the other Virtual Machines, by
executing the command ? nmap ? v ? O Ip_address? .
Through the aforementioned three distinct steps, all co-
residents can be identified along with additional informa-
tion about their operating systems, something that can
allow the attacker to launch further attacks harming the
Cloud Infrastructure.
Network stress is executed by launching a smurf attack

[37] on a specially configured virtual network. In order to
perform a smurf attack, the attacker needs the IPv6 ad-
dress of the victim. The victim can be the Host or any
other Virtual Machine on the same network. His IPv6 ad-
dress can be obtained using two methods. The first one is
via the ifconfig command, which can be executed on the
Host. The second method is detecting IPv6-active hosts on
the same network via the ping6 command [38]. The at-
tacker can easily ping the link-local all-node multicast ad-
dress ff02::1 from any virtual machine by executing the
command "ping6 -I < interface > ff02::1". After obtaining
the IPv6 address, the attacker can use the smurf6 tool to
perform the attack, executing the command "smurf6 <
interface > victim_ipv6_address". Through this method the
attacker VM (or the Host) will flood the Virtual Network
with spoofed ICMPv6 echo request packets, the source ad-
dress of which is the IPv6 address of the victim machine
and destination address is the link-local all-node multicast
address ff02::1. Then the remaining machines on the same
network will flood the victim with ICMPv6 echo replies,
thus stressing the virtual network even more.

Detection method
Algorithm
The proposed detection scheme has adopted the stand-
ard Smith-Waterman algorithm which was originally
introduced in the context of molecular sequence analysis
[9]. This was possible because the data streams under
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study consist of symbols drawn from a finite discrete
alphabet. A minor modification introduced has to do with
two parameters which refer to the number of horizontal
and vertical predecessors which are allowed to be scanned
in order to determine the accumulated cost at each node
of the similarity grid. In other words, these two parameters
define the maximum allowable gap length, both horizon-
tally and vertically. This type of minor modification causes
a significant improvement in response times and it is also
in accordance with the nature of the data that are proc-
essed. The values of these two parameters, along with the
gap penalty have been the result of extensive experimen-
tation. Next the adopted Smith-Waterman algorithm is
presented.
First of all, the pair wise (local) similarity between the

individual elements of the two symbol sequences must
be defined. To this end, let A and B be the two symbol
sequences and A(i),i = 1, ? M, B(j), j = 1, ? N, be the i-th
symbol of A and j-th symbol of B, respectively. The local
similarity, S(i,j), between A(i) and B(j) is then defined as

S i; j? ? ? ? 1; if A i? ? ? B j? ?
and

S i; j? ? ? −Gp; if A i? ? ≠B j? ? ;

where Gp is the penalty for dissimilarity (a parameter to
our method).

Initialization
Then a similarity grid, H, is created with its first row
and column being initialized to zeros, i.e.,

H 0; j? ? ? 0; j ? 0; ? N

and

H i; 0? ? ? 0; i ? 0; ? M

As a result, the dimensions of the similarity grid are
(M + 1)x(N + 1), its rows are indexed 0,..,M and its col-
umns are indexed 0,? N.

Iteration
For each node, (i,j),i > =1, j > =1, of the grid, the accumu-
lated similarity cost is computed according to the equation:

H i; j? ? ? max

0;
H i−1; j−1? ? ? S i; j? ? ;

H i−k; j? ? − 1 ? k � Gp? ? ; k ? 1; ? Pv;
H i; j−l? ? − 1 ? l � Gp? ? l ? 1; ? Ph;

8>><
>>:

9>>=
>>;
;

i ? 1; ? ;M; j ? 1; ? ;N;

where Pv and Ph are the maximum allowable vertical and
horizontal gaps (measured in number of symbols)
respectively and Gp is the previously introduced dissimilar-
ity penalty (which in this case also serves as a gap penalty).
The above equation is repeated for all nodes of the grid,
starting from the lowest row (i = 1) and moving from left
to right (increasing index j). It can be seen that vertical and
horizontal transitions (third and fourth branch of the
equation) introduce a gap penalty, i.e., reduce the accumu-
lated similarity by an amount which is proportional to the
number of nodes that are being skipped (length of the gap).
In addition, if the accumulated similarity, H(i,j), is

negative, then it is set to zero (first branch of the equation)
and the fictitious node (0,0) becomes the predecessor
of (i,j). If, on the other hand, the accumulated similarity is
positive, the predecessor of (i,j) is the node which maxi-
mizes H(i,j). The coordinates of the best predecessor of
each node are stored in a separate matrix. Concerning the
first row and first column of the grid, the predecessor is
always the fictitious node (0,0).

Backtracking
After the accumulated cost has been computed for all
nodes, the node which corresponds to the maximum de-
tected value is selected and the chain of predecessors is
followed until a (0,0) node is encountered. This proced-
ure is known as backtracking and the resulting chain of
nodes is the best (optimal alignment) path.
In the experiments performed, different values of the

parameters Pv, Ph and Gp have been used and finally
the values that provided the most satisfactory perform-
ance have been selected.

Proposed method
Fictional character David Rossi, inspired by John E.
Douglas, one of the creators of criminal profiling pro-
gram, once said ? If you want to know about a hunter
study his prey ? [39]. The proposed methodology has
been inspired by the above quote. The ? work? of a mali-
cious insider on a KVM-based cloud system, is per-
formed with system calls of the host operating system.
In order to investigate the type and sequence of system
calls employed, the Linux Audit [40] tool has been used
for capturing them.
The procedure that has been followed is the following:

� The system calls engaged during the execution
of the ? nslookup ? command (first step of the
? co-residency? attack), ? nmap ? sP DNS_Adress/24 ?
command (second step of the ? co-residency ?
attack), ? nmap ? v ? O Ip_address ? (third step of
the ? co-residency ? attack) and smurf6 < interface >
victim_ipv6_address (smurf attack) are captured.

� The system calls engaged during the same time
period of normal system operation (no attack is
being launched)are captured.
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� The above log files have been processed with the use
of regular expressions and the "sed" command [41],
leaving only the ID of each system call.

� Finally, the Smith-Waterman algorithm has been
employed to compare the logs (every system call ID
is being used by the algorithm as a DNA element).

Initially, the similarity between multiple executions of
each attack step, at different time periods, was calculated
with the use of an automated system that reduced the
errors because of the human responsiveness. Then the
similarity between an attack step and the respective time
period of normal operation was derived. Ideally, this
approach would facilitate the identification of specific
system call patterns that will form the attack signature.

Test-bed environment and results of the
experiments
Setup the environment
In order to launch the attack and monitor the system
logs, a minimal Cloud Infrastructure was built using one
Dell PowerEdge T410 server with the following configur-
ation: Intel Xeon E5607 as Central Processing Unit, 8
Gigabytes of memory running at 1333 MHz and 300
Gigabytes SAS HDD @10000rpms. The server was run-
ning OpenSuse Linux 12.1 [42]. Also the Linux audit
[40] tool was installed; this tool has a configuration file
that stores a list of rules that specify which type of system
Figure 1 Test-bed environment.
calls will be logged. To avoid losing valuable information
during our experiments all system calls were captured.
Specifically the rule used was ? -a entry, always ? s all? . Fi-
nally, two VMs with Kali Linux [35], containing the major-
ity of the tools used for penetration testing and attacks,
were set up on the server (see Figure 1).

Automating the attack and system calls auditing procedure
During our effort to automate the attack and the system
call auditing procedure, a script was written in Expect
[43]. Expect is an extension to the Tcl scripting language
and it's used to automate interactions with programs
that expose a text terminal interface. This feature can be
installed through the expect package. Our script focuses
on waiting for expected output with the use of the
"expect" command, sending proper input with the use of
the "send" command and eventually execute the neces-
sary bash commands with the use of the "system" com-
mand. Initially, a directory in which the system calls are
going to be saved, was created. Next, the "spawn" com-
mand to open the Virsh console [44] and connect to the
virtual machine via a configured serial console, was exe-
cuted. Virsh is a command line interface tool, used for
the management of guests and the hypervisor. Then the
Linux auditing system was enabled and the attack com-
mand was sent to the virtual machine that will be exe-
cuted. Knowledge about when the attack is finished is
acquired by waiting for a specific output of the ? expect ?
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normal state.
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command. Finally, the Linux auditing system is disabled
and the the saved system calls are extracted.

Launching the attack
Having setup the environment, each one of the three steps
of the ? co-residency? attack (? nslookup? , ? nmap? and
? nmap ? v ? O Ip_address? commands; see section
Proposed method) and the step of smurf attack (smurf6
< interface > victim_ipv6_address) were executed six times,
each time capturing the system calls engaged.
Figure 3 Time periods for the execution of the smurf attack and the
After every single execution of a command (attack
step), the system was left working in normal state for a
time period equal to the execution time of the command,
capturing again all the system calls engaged during that
period. The time periods for the attack and the respective
normal state periods are depicted in Figures 2 and 3.
Then by employing the Smith Waterman implementa-

tion (see Section Algorithm) in Matlab, using Gp equal
to 1/3 and 1/5, Pv and Ph equal to 5 the following log
sets were compared between them:
respective time periods that the system was kept in normal state.



Table 3 Comparison of the six log files (one for each
execution round) of the second attack step for Gp equal
to 1/3 and 1/5

Log file comparison Gp = 1/3 Gp = 1/5

secondstep 1-2 2419.333333 3103.000000

secondstep 2-3 1870.666667 2662.200000

secondstep 3-4 1907.666667 2816.600000

secondstep 4-5 2477.333333 3276.600000

secondstep 5-6 1668.000000 2351.200000

Table 4 Comparison of the six log files (one for each
execution round) of the second attack step for Gp equal
to 1/3 and 1/5

Log file comparison Gp = 1/3 Gp = 1/5

secondstep1 ? snormal1 171.333333 174.400000

secondstep2 ? snormal2 452.333333 889.200000

secondstep3 ? snormal3 1004.666667 1343.800000
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� The six log files (one for each execution round) of
the first attack step; ? nslookup ? command.

� The six log files (one for each execution round) of
the second attack step; ? nmap ? sP DNS_address/24 ?
command.

� The six log files (one for each execution round) of the
third attack step; ? nmap ? v ? O Ip_address? command.

� The six log files (one for each execution round) of
the smurf attack step.

� The twenty four log files of the attack (six log files
for all executions of each attack step and smurf
attack) with the respective log files for normal
system operation.

As demonstrated in the next section, the results met
our initial hypothesis. Greater similarity was found be-
tween the log files corresponding to the attack steps rather
than between the attack logs and the logs of a normal sys-
tem state.
secondstep4 ? snormal4 562.000000 977.600000

secondstep5 ? snormal5 787.000000 1123.400000

secondstep6 ? snormal6 595.000000 1051.800000

Table 5 Comparison of the six log files (one for each
execution round) of the third attack step for Gp equal to
1/3 and 1/5

Log file comparison Gp = 1/3 Gp = 1/5

thirdstep 1-2 2024.000000 2776.000000

thirdstep 2-3 2739.666667 3691.000000
Results
The results of the log files comparison are presented in
the following Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9. As illus-
trated in Figure 2 and Figure 3, the logs of the first at-
tack step are referred as firststep, the logs of the second
attack step as secondstep, the logs of the third one as
thirdstep and the logs of the smurf attack as smurfstep.
Furthermore, the logs corresponding to normal system
operation for a time period equal to that of the first at-
tack step are referred as fnormal, of the second attack
Table 1 Comparison of the six log files (one for each
execution round) of the first attack step for Gp equal to
1/3 and 1/5

Log file comparison Gp = 1/3 Gp = 1/5

firststep 1-2 1697.000000 1783.800000

firststep 2-3 2065.000000 2160.600000

firststep 3-4 2116.333333 2212.600000

firststep 4-5 1825.000000 1939.400000

firststep 5-6 1805.333333 1898.600000

Table 2 Comparison of the six log files (one for each
execution round) of the first attack step for Gp equal to
1/3 and 1/5

Log file comparison Gp = 1/3 Gp = 1/5

firststep1 ? fnormal1 571.333333 630.800000

firststep2 ? fnormal2 1180.666667 1261.400000

firststep3 ? fnormal3 1162.666667 1227.800000

firststep4 ? fnormal4 1107.666667 1189.000000

firststep5 ? fnormal5 1198.000000 1261.200000

firststep6 ? fnormal6 144.000000 247.000000

thirdstep 3-4 2486.666667 3447.000000

thirdstep 4-5 3226.000000 4222.800000

thirdstep 5-6 3129.333333 4140.600000

Table 6 Comparison of the six log files (one for each
execution round) of the third attack step for Gp equal to
1/3 and 1/5

Log file comparison Gp = 1/3 Gp = 1/5

thirdstep1 ? tnormal1 536.666667 559.200000

thirdstep2 ? tnormal2 573.666667 1042.400000

thirdstep3 ? tnormal3 688.666667 1269.000000

thirdstep4 ? tnormal4 478.666667 970.600000

thirdstep5 ? tnormal5 878.000000 1323.400000

thirdstep6 ? tnormal6 562.333333 973.200000
step are referred as snormal, of the third attack step
are referred as tnormal and of the smurf attack as
smnormal. The estimated similarity numbers that ap-
pear in the Gp columns represent the longest subse-
ries of system calls that ware found similar using the
Smith Waterman algorithm. It is expected from the



Table 7 Comparison of the six log files (one for each
execution round) of the smurf attack step for Gp equal to
1/3 and 1/5

Log file comparison Gp = 1/3 Gp = 1/5

smurfstep 1-2 3155.333333 3277.000000

smurfstep 2-3 2758.333333 2891.400000

smurfstep 3-4 3093.333333 3179.800000

smurfstep 4-5 3230.666667 3304.800000

smurfstep 5-6 2712.666667 2838.400000

Table 8 Comparison of the six log files (one for each
execution round) of the smurf attack step for Gp equal to
1/3 and 1/5

Log file comparison Gp = 1/3 Gp = 1/5

smurfstep1 ? smnormal1 217.000000 443.600000

smurfstep2 ? smnormal2 176.666667 403.400000

smurfstep3 ? smnormal3 641.333333 791.600000

smurfstep4 ? smnormal4 695.666667 922.400000

smurfstep5 ? smnormal5 106.000000 265.000000

smurfstep6 ? smnormal6 738.333333 1052.800000

Table 9 Comparison of the two log files for each attack
step with normal execution with a large amount of
network operations for Gp equal to 1/3

Log file comparison Gp = 1/3

firststep1 ? fnormal1 422.000000

firststep2 ? fnormal2 449.000000

secondstep1 ? snormal1 529.666667

secondstep2 ? snormal2 556.333333

thirdstep1 ? snormal1 218.666667

thirdstep2 ? snormal2 259.666667

smurfstep1-smnormal1 126.333333

smurfstep2-smnormal2 211.666667

Figure 4 Graph depicting similarity between attacks and between att
Lower gp offers greater similarity.
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training procedure that the similarity values will be larger
when comparing the logs of the attack steps, and smaller
when comparing the logs of an attack step and the re-
spective log of normal system operation; i.e. it is expected
that for the same Gp the firstep 1 ? 2 will have larger simi-
larity from the similarity of firstep1-fnormal1. This as-
sumption is strengthened with the results of our last
Table 9 where we compare the logs of the execution of
each step of the attack with the logs of a system that per-
forms a large amount of network operations that greatly
increases the number of system calls. All results are visu-
alized in Figure 4.
Discussion
Recalling our main objective, that was to identify the
existence of an attack through the sequences of the
system calls. The results, which were presented in the
previous section, have indeed verified that approach,
since the comparison of the system calls triggered
during the attack steps exhibits a much larger similar-
ity than that produced when comparing the logs from
some attack step and the respective logs for normal
system operation. This assumption came true for all
three steps of the ? co-residence ? attack and the smurf
attack.
It would be a common query whether the results are

accurate or not, and how can we verify their correctness.
This question can be easily answered through the error
parameter, Gp, which was used. To be specific, Gp is a
variable that offers flexibility to the algorithm and de-
fines how tolerant the algorithm will be during the com-
parison of the data sets. If we use the error value of 1/3,
we have a less tolerant algorithm than when we use the
value 1/5. This assumption leads to greater similarity
figures being produced with a Gp of 1/5 than with a Gp
acks and normal system state for gp 1/3 and 1/5 respectively.
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of 1/3. Of course this is proved with our results, which
were presented in the previous section.
In addition to that, we have to pay attention to the fact

that the more tolerant the algorithm is, the better the
similarity that we get among the logs of the attack steps.
However, this is not the case for the comparison of logs
produced during an attack step and the respective nor-
mal operation; specifically, even though the similarity
is better for bigger values of Gp, the scaling is not the
same.
Another important issue that should be considered is

the workload of the system. During our experimenta-
tions we used three Virtual Machines and none of them
had any permanent jobs other than those corresponding
to the attack steps. In a real time environment, which
has extra load on the virtual machines, the number of
system calls would be much larger, with results on the
time required for processing the log files (as described
earlier in the paper). Furthermore, the tracking of the
attack in this workload would be more difficult as the
algorithm compares identities without being able to
recognize whether or not a specific element is useful or
not. Nevertheless, an initial set of experiments performed
with increased workload indicate that the accuracy and
effectiveness of the proposed detection method remains
unaltered.

Conclusion and future work
In this paper a practical method for detecting mali-
cious insider attacks from the system calls of the Host
Operating System of a KVM based Cloud Infrastructure
has been proposed. The approach has been evaluated
by comparing the list of system calls produced during
the different steps of the attack, not only with other exe-
cutions of the same attack steps, but also with the normal
system state during the same time the attack took place.
The results have confirmed the initial assumption that
the system calls can be utilized for the detection of an in-
sider attack.
The focus of our current research work is the construc-

tion of system call patterns that will be used as 'attack
signatures? . The latter will help us build an IDS mechan-
ism, which will be used for the generation of alerts and
the prevention of many malicious actions.
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