
2-Dimensional Outline Shape Representation

for Generative Design with Evolutionary Algorithms

Paul Lapok, Alistair Lawson and Ben Paechter

Edinburgh Napier University, Edinburgh EH10 5DT, UK
{p.lapok,a.lawson,b.paechter}@napier.ac.uk

Abstract. In this paper, we investigate the ability of genetic representation meth-

ods to describe two-dimensional outline shapes, in order to use them in a gener-

ative design system. A specific area of mechanical design focuses on planar

mechanisms. These are assembled of mechanical components, e.g. multiple lev-

ers, which transmit forces and torques over their contour. The shape of the con-

tour influences the performance of the overall system. The genetic representa-

tions are based on floating-point chromosomes, where each value maps to a spe-

cific parameter of a resulting shape. In order to evaluate the performance of each

representation method, a set of target shapes was defined. These consist of simple

symmetric and asymmetric shapes with edges and curves, and also of more com-

plex mechanical lever shapes, extracted from an automotive device. An evolu-

tionary algorithm with crossover and mutation operators is used to search for the

best approximation of these target shapes. The fitness function is based on two

penalty values: first, calculated by comparing the area of a candidate solution

with the area of a target shape; and second, based on the intersection area between

a candidate solution and a target shape compared to the entire area of the target.

Experiments were undertaken to investigate the capabilities of the representations

in terms of search space coverage; compatibility with evolutionary operators; and

the ability to produce shapes with mechanical characteristics. The results show

the benefits and drawbacks of using each of selected methods of representation,

and their suitability of reassembling different outline shapes.

Keywords: Evolutionary Representation, Shape Representation, Shape Optimi-

zation, Evolutionary Algorithm

1 Introduction

The performance of many engineering applications is highly dependent on functional

shapes. A Generative Design System (GDS) can support the design process by provid-

ing potential solutions, and subsequently, saving designer’s time. They are commonly

used for aerodynamic shape optimization, e.g. to evolve airfoils [1–3], and also in to-

pology optimization to improve the material usage of components with a focus on the

inner structure. The shapes are represented in various ways, such as using constructive

solid geometries [4], and voxel based representations [5]. Shape representations for

2

evolving turbine blades were also investigated with a focus on material stress [6]. In

mechanisms design [7], the shape and position of each component has a significant

influence on the feasibility, function, and performance of the whole device. Some ex-

isting GDSs focus on the kinematics of massless mechanisms, such as on the problem

of four-bar linkages [8]. However, these GDSs do not consider neither interactions be-

tween components’ outlines, nor their relationships with the environment. Yet, in many

applications, components require to be in contact with each in order to transfer forces

and moments over their outline between an input and an output, e.g. in vehicle locking

mechanisms [9]. Designing such devices is often a time-consuming task, which requires

expertise. Usually they are created using Computer-Aided Design software, and evalu-

ated with multi-body simulation, finite-element analysis, or by building prototypes.

This work is a step towards development of a GDS for planar mechanical systems

with a focus on their dynamics, which can be evaluated using aforementioned multi-

body simulation. It will not consider aerodynamic properties involving flow simulation,

or material properties using topology optimization because generative systems for these

areas do already exist. GDSs are not commonly used when creating dynamic mechan-

ical systems, as there are numerous challenges which need to be addressed simultane-

ously to produce one. Three of the main challenges are discussed below.

First, the domain of mechanical systems is broad and involves a wide variety of

applications and a large number of potential components which could be used to create

a design solution. It is difficult to design a general GDS from scratch which copes with

this large number of potential components. For this reason, the GDS needs to be limited

to a specific set of capabilities, having just enough flexibility to generate design solu-

tions within its’ application area. Furthermore, the GDS should provide the possibility

to be extended in future.

Secondly, it is difficult to describe a design problem or an aim in a general way for

a mechanical system in a machine-readable format. Joskowicz worked on a description

language for conceptual mechanical design and mechanical behavior [10, 11], which

would allow mechanism performance categorization regardless of their design. How-

ever, this work was not linked to GDSs.

A third problem is the development of the GDS itself which is addressed in this

work. GDSs use optimization algorithms which require a representation of the design

problem and its prospective solutions. The latter require to define the components’

shapes, which can be especially problematic. Other GDSs such as used in aerodynamic

design or topology optimization have usually a specified outline shape or initial shape

which is parameterized or sometimes segmented and can be manipulated by changing

a limited number of parameter values. A GDS generating dynamic mechanical systems

has no such initial shape or structure to apply changes to. It needs to identify a constel-

lation of components which can work together to solve the design problem with each

of them being in the right position and having the right shape. Using multiple compo-

nents and describing every detail of their shapes in from of coordinates can lead to a

large number of parameters which an optimization algorithm may have difficulty cop-

ing with efficiently. The number of parameters can be reduced by describing shapes

approximately at an abstract level. This work presents four different representation

3

methods and compares their performance to describe a shape. An evolutionary algo-

rithm was developed which uses these representation methods to evolve target shapes.

This method is often used as a benchmark problem to investigate shape related optimi-

zation algorithm’s performance [12–15]. The representation methods were tested with

24 different target shapes, 12 being basic shapes and 12 were created based on the out-

line of mechanical levers taken from an automotive closure system. This is a first step

towards developing a GDS for mechanical systems with a focus on the kinetic proper-

ties of the system.

2 Proposed Method

This section introduces the evolutionary algorithm and the fitness function which was

used to evolve target shapes using different representation methods. These methods are

explained and the experimental setup is presented in detail.

2.1 Evolutionary Algorithm

An evolutionary algorithm (EA) is a population-based algorithm inspired by the natural

evolutionary processes. A population of random individuals is initially created. Each

individual contains a chromosome. The chromosome used in this work consists of an

array of floating-point values (genomes) in a range from 0.0 to 1.0. The chromosomes

are mapped to shapes. The EA improves the quality of the fitness of the population in

an iterative process. Individuals are selected from the population, copied, and mutations

are applied in a systematic way which leads to new individuals called children of which

subsequently the fitness is evaluated. Weaker individuals in the population are replaced

with those children. One individual represents the best solution. The iterative process

continues until a stop criterion is reached, in this case a set number of generations. The

pseudo code for the EA used is shown in Fig. 1.

4

set POPULATION SIZE to 100
set NUMBER OF CHILDREN per generation to 20
set STOP CRITERION to 500000 evaluations

initialize random population of POPULATION SIZE
identify individual with best fitness in population

run generation loop
 repeat for NUMBER OF CHILDREN

set PROBABILITY to random number between 0.0 and 1.0
if PROBABILITY < 0.5

 select two parents from population using binary tournament selection
create CHILD from both parents using two-point crossover
apply simple mutation to CHILD

else
 select one individual from population using binary tournament selection

make CHILD by coping individual
 apply simple mutation to CHILD

end if
 end loop

 for each CHILD
 select weaker individual using binary tournament selection
 replace weaker individual in population with CHILD
 if CHILD fitness is better than best individual
 mark CHILD as best individual
 end if

next child

until STOP CRITERION is reached

Fig. 1. Pseudo Code

The algorithm holds a population of 100 individuals and produces 20 children in every

generation. Children are created by copying selected individuals from the population

using binary tournament selection and through gene mutation. The selection operator

picks two random individuals and selects the one with the better fitness. There are two

mutation operators which are applied with a probability of 50%. First of them, is a

simple mutation which changes between one to four random genomes of a selected

individual. The genome values are altered to random new ones, determined by a gauss-

ian distribution based on the previous value. The second operator is a two-point cross-

over recombination. It takes two individuals from the population using the same selec-

tion method and swaps a chromosome segment between them. The segment is deter-

mined by two random points defining its’ start and end position. This produces one

child containing the segment of the first parent and up to two segments at the beginning

and the end of the second parent. The children are added to the population by replacing

selected individuals of the population using a tournament selection which picks in this

case the weaker of two random chosen individuals.

2.2 Fitness Evaluation

The fitness of a candidate solution depends on the similarity between a candidate shape

and a target shape. The fitness function is calculated using two penalties. These are

based on a comparison of target and solution surface areas. As smaller the penalty value

as more similar the candidate shape is to the target shape. Fig. 2 shows target shape

area, the solution shape area, and the intersection between both.

5

Fig. 2. Fitness Evaluation

The first penalty Ps results from a difference between the total area size of target and

solution. Eq. 1. shows the calculation of the size penalty Ps. The second penalty Pi is

given for a difference in the intersection area between target and solution and the area

of the target. Eq. 2 shows the penalty Pi for the intersection. Eq.3 shows the total pen-

alty Pt.

 |As - At| = Ps (1)

 |At - Ai| = Pi (2)

 Ps + 2 Pi = Pt (3)

The intersection penalty is multiplied by two to make the penalties less comparative

and to avoid creating local optima as the size penalty Ps and intersection penalties Pi

may work against each other.

2.3 Genetic Representation

Selecting a shape representation is one of the most important decisions in EA based

shape optimization [16]. The main purpose of the representations is to define the outline

shape of mechanical components. These are subject to three requirements. Firstly, the

representation should produce only non-intersecting shapes. Connecting random coor-

dinates to make closed shapes can produce a large number of invalid shapes due to self-

intersections which should be avoided as it requires additional processing to resolve

them. Secondly, a shape representation should be able to cover a large search space.

One representation may be able to produce shapes which another representation is not

capable of which may limit the solution space. Thirdly, the representation needs to be

compatible with the evolutionary mutation and crossover operators. This is important

for the optimization algorithm to be able to traverse the search space efficiently.

In the following section four representation methods are explained. The first three

are based on vectors and the fourth is based on rectangles. Each generates control points

which are further processed by two functions. The first uses the control points to gen-

erate a spline function which makes the shape curvier by adding additional vertices.

6

Applying spline functions is commonly used in shape optimization [17–20]. The sec-

ond function removes vertices which are too close to each other with a distance smaller

than 90% of the minimum allowed shape size. This approach removes unnecessary ag-

gregation of vertices in one location and enables the shape to contain sharp edges.

Fig. 3. Representations

Cartesian Coordinate Representation (R1). This representation is a basic mapping

of chromosome float values to coordinates on a cartesian coordinate system. The coor-

dinates are connected in the order they appear in the chromosome to form a closed

shape. The representation is shown in Fig. 3 (top, left). Each float value is translated to

an x or y value between a defined min and max range. The first two genes represent the

coordinate of the center of the shape. Further gene pairs represent the coordinates rela-

tive to the center. However, connecting each coordinate in the order they appear in the

chromosome leads to a very high number of intersections between lines. Self-intersect-

ing shapes cannot be evaluated so the intersections are resolved by adding a post-pro-

cessing procedure. The procedure removes intersecting lines and closing the shape us-

ing the next coordinate. This reduces the number of invalid shapes significantly. The

7

representation was chosen to investigate a direct mapping between chromosome and

solution, and the influence of a post-processing procedure to resolve intersections.

Polar Vector Representation (R2). This representation maps floating-point values to

vectors with a common center. The representation is shown in Fig. 3 (top, right). The

chromosome’s genomes correspond to directions and lengths of vectors on a polar co-

ordinate system. The directions are mapped to angles between 0 and 360 degrees, and

the length is mapped in a range between a defined min and max value. The first two

genomes represent the center position of the shape. Further gene pairs represent the

vector coordinates which are connected in clockwise direction to avoid intersections in

the outline. This representation is inspired by BoxCar2D [21] where it was partly used

to describe the shape of an abstraction of a car body.

Hub and Spoke Representation (R3) [22]. This representation uses a polar coordinate

system similar to the previous described method. It is shown in Fig. 3 (bottom, left).

Floating-point values are mapped to vectors with direction and length. The center of

the shape is defined by the first two genomes, and the shape is tilted by an angle spec-

ified in the third genome. Each vector has its own angle segment in which it operates.

E.g. when using 6 vectors, each would have its own fixed range between 0 and 60

degrees in which it can move. The vectors are connected in clockwise direction to form

a shape which makes this approach produce only valid shapes.

Rectangle-based Representation (R4). This representation uses multiple rectangles

as basis shapes. It is shown in Fig. 3 (bottom, right). The first two genes are mapped to

a coordinate for the center of the shape. Then, every group of five genes is mapped to

a position coordinate, tilt-angle, width and height to create a rectangle. Multiple rectan-

gles are positioned relative to the center. The rectangles can intersect with each other

and the overall outline is extracted. A similar representation which uses rectangles as

basis shapes was developed by Lee and Nagao [23]. However, there are some differ-

ences. First, their representation does not extract the outline of the intersecting rectan-

gles. Instead they force the EA to avoid intersections by giving an additional penalty

for them. Second, the representation is not used with additional functions such as the

spline function or a procedure to remove close vertices.

2.4 Experiments

Experiments were run 25 times on each of the 24 target shapes for 500,000 evaluations

with each representation method. An Intel Core i5-2500 3.3Ghz and 4GB RAM was

used for all experiments. The target shapes used are shown in Fig. 4. Shape p01 to p12

are lever shapes extracted from an automotive closure system and shape p13 to p24 are

general basic shapes.

8

Fig. 4. Target Shapes

The algorithm was configured as follows: The population was set to 100 and the number

of children generated per generation was set to 20. There was no parameter optimization

conducted, these values resulted from testing and observations. The number of genera-

tions was set to 25,000 which results in a total number of 500,000 evaluations after

which the experiment was stopped. The chromosome for each representation was set to

a fixed length of 77 genes to represent one solution to make the comparison fair.

3 Experimental Results and Evaluation

Fig. 5. Method comparison

Fig. 5 presents the comparison of the shape representation methods performance on

every target shape. Each of the four tested method’s mean penalty through all runs for

every problem are listed next to each other.

9

The significance of the difference of the methods performance was evaluated using

Vargha-Delaney A-measure (VDA) [24]. VDA is a statistical test which shows the dif-

ference between two non-normally distributed populations. It provides a value (A-

measure) between 0 and 1 which indicates if there is a small, medium, large or no dif-

ference between populations. A value of 0.5 refers to no difference. A value under 0.44

or above 0.56 indicates a small difference. A value under 0.36 or above 0.64 states a

medium difference and a value under 0.29 or above 0.71 indicates a large difference.

Table 1 (lever shapes) and Table 2 (basic shapes) show the comparison of all meth-

ods to each other for every problem providing the A-measure.

Table 1. Comparison of methods using VDA (part 1).

Table 2. Comparison of methods using VDA (part 2).

The focus of the comparison was on medium and large differences between the

methods. The arrows show if the first method was significantly better (arrow up), or

significantly worse (arrow down), than the second method. The diagonal arrows indi-

cate a medium difference, and the horizontal arrows indicate no difference between the

compared methods. The last column shows which representation performed best on the

particular problem.

Results show that R1 has the worst performance on every problem compared to the

other methods. It was found that using a post-processing procedure which disables co-

ordinates to resolve intersections consequently disables parts of the chromosome. It

makes the shape optimization inefficient because mutation operators are applied to seg-

ments of the chromosome which have no influence on the solution. Furthermore, disa-

bling coordinates also lowers the method’s ability to represent complex shapes because

less coordinates are left to represent it.

It was also found that R2 and R3 perform mostly equally, with R3 being the best

performing solution more often. The reason for this is that both methods have a similar

basis and similar range of operation. R2 has a larger flexibility in terms of shapes it can

produce. R3 distributes its coordinates in specific sectors whereas R2 can concentrate

all its coordinates in one sector. However, R3 has the benefit that large changes in the

chromosome lead to smaller changes in the solution compared to R2. The optimization

method 1 method 2 p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12

R1 R2 0.922 0.941 0.7208 0.936 0.912 0.998 0.9776 0.955 0.966 0.96 1 0.8384

R1 R3 0.957 0.933 0.7328 0.947 0.918 0.998 0.9776 0.96 0.9008 0.952 1 0.8352

R1 R4 0.958 0.923 0.981 0.949 0.8704 0.984 0.9296 0.946 0.995 0.923 0.99 0.931

R2 R3 0.6288 0.3776 0.4864 0.5872 0.5696 0.58 0.4496 0.8512 0.1856 0.3024 0.488 0.5112

R2 R4 0.5344 0.4736 0.976 0.632 0.078 0.4424 0.144 0.288 0.8928 0.2176 0.5264 0.7664

R3 R4 0.4144 0.5648 0.968 0.5432 0.066 0.3728 0.16 0.055 0.938 0.3832 0.5568 0.776

R2,R3,R4 R2 R4 R2,R3,R4 R2,R3 R3 R2,R3 R3 R4 R2 R2,R3,R4 R4

problemscomparison

best performance

method 1 method 2 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24

R1 R2 0.938 0.922 0.915 0.8496 0.995 0.925 0.9248 0.896 0.956 0.962 0.99 0.5488

R1 R3 0.978 0.939 0.8992 0.8704 0.984 0.936 0.912 0.938 0.955 0.991 0.997 0.5544

R1 R4 0.864 0.8016 0.856 0.8 0.93 0.888 0.8784 0.8848 0.915 0.8336 0.982 0.968

R2 R3 0.7272 0.768 0.3296 0.6288 0.4016 0.564 0.4984 0.8784 0.4912 0.7968 0.5656 0.5024

R2 R4 0.1856 0.2488 0.2368 0.1192 0.2336 0.42 0.3504 0.6608 0.038 0.304 0.4504 0.998

R3 R4 0.042 0.063 0.3648 0.032 0.3168 0.3712 0.3776 0.3344 0.035 0.1464 0.3936 0.998

R3 R3 R2 R3 R2,R3 R3 R2,R3 R3 R2,R3 R3 R2,R3,R4 R4best performance

comparison problems

10

algorithm is better guided by incremental improvements which makes R3 reach a better

solution quality. Both methods seem to be slightly better than R4 which is one of the

best methods only 8 times, however, the difference is very small. Furthermore, R4 pro-

duces significantly better solutions on problem p03, p09, p12, and p24. The shapes in

these problems have an undercut characteristic which cannot be produced by the other

methods. Nevertheless, R4’s performance on p05 and p21 is still good, but worse when

compared to R2 and R3, because R4 is based on rectangles which makes it difficult to

represent spikes and fine details.

Fig. 6 shows the solution quality increase over time. Each smoothed line shows the

found solutions over each iteration of 25 experiment runs and all 24 problems for one

representation method.

Fig. 6. Improvement over time

Taking a penalty value of 5,000 as a baseline for the solution quality, R3 needs 5,000

iterations, R2 needs 10,000 iterations, and R4 needs around 12,000 iterations to reach

the threshold. R1 never reaches the threshold. It shows that R3 is significantly faster in

improving the solution quality compared to all other methods.

Fig. 6 also shows the time needed to produce 500000 iterations with each method.

R1, R2, and R3 need between 0.63 and 0.92 minutes whereas R4 needs around 3.1

minutes. This is due to R4 requiring more processing for calculating the outline from

the intersecting rectangles. It should be noted that the time for a single evaluation is not

relevant in the context of this work. A GDS for mechanical systems uses multi-body

simulation for the evaluation. It often takes a significantly longer time to evaluate a

multi-body system independently to which representation is used.

11

4 Conclusions

This work is intended as a step towards a GDS for dynamic mechanical systems and

focuses on the shape representation of mechanical components used by an evolutionary

algorithm. The performance of four different shape representation methods is investi-

gated with the aim to evolve a specified set of target shapes. These consist of mechan-

ical lever shapes taken from an automotive closure system and a set of basic shapes.

The first representation (R1) uses a direct mapping of genomes to coordinates and a

post-processing procedure to resolve shape intersections. The second representation

(R2) maps the chromosome to vectors which are connected in clockwise direction to

avoid intersections. The third representation (R3) also maps the chromosome to vectors

but allows each vector only to operate in a specified area. The fourth representations

(R4) chromosome is mapped to multiple overlapping rectangles of which the overall

outline is extracted. Two functions are applied to the resulting shape of the four meth-

ods. The first function applies a spline filter to the shape and the second removes verti-

ces which are close to each other. A number of experiments were undertaken to evaluate

the performance of each method to produce the target shapes. The performance was

compared using the Vagha-Delaney A-measure. Results show that the direct mapping

of R1 and resolving intersections in a post processing procedure leads to low quality

solutions. The R1 representation is not able to evolve complex shapes. R2 and R3 per-

form almost equally in terms of solution quality, but with R3 performing slightly better

and needing less iterations to reach a better solution quality. R4 is slower than the other

representations but can produce similar results to R2 and R4 most of the time. However,

R4 is the only representation capable of producing shapes with undercut characteristics

to a high quality which can be considered as being more complex shapes.

 Future work will investigate the number of genomes needed to generate all the target

shapes with the method R3 and R4. A combined representation will be tested, able to

switch between R3 and R4. It is hoped that this would benefit from R3’s capabilities to

find simple target shapes fast but have the ability to evolve more complex shapes by

switching to R4 if needed. Furthermore, the representation R3 and R4 will be extended

and embedded in a GDS to evolve dynamic mechanical systems.

References

1. Vicini, A., Quagliarella, D.: Airfoil and Wing Design Through Hybrid Optimization

Strategies. AIAA J. 37, 634–641 (1999).

2. Arias-Montaño, A., Coello Coello, C.A., Mezura-Montes, E.: Evolutionary Algorithms

Applied to Multi-Objective Aerodynamic Shape Optimization. Comput. Optim.

Methods Algorithms Stud. Comput. Intell. Vol. 356. 211–240 (2011).

3. Olhofer, M., Jin, Y., Sendhoff, B.: Adaptive encoding for aerodynamic shape

optimization using evolution strategies. Evol. Comput. 2001. Proc. 2001 Congr. 1, 576–

583 (2001).

4. Pandey, A., Datta, R., Bhattacharya, B.: Topology optimization of compliant structures

and mechanisms using constructive solid geometry for 2-d and 3-d applications. Soft

12

Comput. 21, 1157–1179 (2017).

5. Baron, P., Fisher, R., Tuson, A., Mill, F., Sherlock, A.: A voxel-based representation for

evolutionary shape optimization. Ai Edam. 13, 145–156 (1999).

6. Smith, R., Warrington, S., Mill, F.: Shape Representation for Optimisation. 112–117

(1995).

7. Uicker, J.J., Pennock, G.R., Shigley, J.E.: Theory of Machines and Mechanisms. Oxford

University Press (2003).

8. Ghassaei, A., Ming, J.: Evolutionary Design of Mechanical Linkages. (2015).

9. Bang, J., Thomas, J.C., Bae, G.O., Lee, D.J., Korea, S.: Optimization of a Hood Latch

System. 0–49 (2008).

10. Neville, D., Joskowicz, L.: A Representation Language for Conceptual Mechanism

Design. 96–108 (1992).

11. Joskowicz, L., Neville, D.: A representation language for mechanical behavior. Artif.

Intell. Eng. 10, 109–116 (1996).

12. Khan, M.S., Ray, T.: A Memetic Algorithm for Efficient Solution of 2D and 3D Shape

Matching Problems. 362–372 (2012).

13. Chang, W.-W., Chung, C.-J., Sendhoff, B.: Target Shape Design Optimization with

Evolutionary Computation. Proc. Congr. Evol. Comput. 2003. 3, 1864–1870 (2003).

14. Nashvili, M., Olhofer, M., Sendhoff, B.: Morphing methods in evolutionary design

optimization. Proc. 2005 Conf. Genet. Evol. Comput. GECCO 05. 897–904 (2005).

15. Tai, K., Wang, N.F., Yang, Y.W.: Target geometry matching problem with conflicting

objectives for multiobjective topology design optimization using GA. 2008 IEEE Congr.

Evol. Comput. CEC 2008. 1873–1878 (2008).

16. Lampinen, J.: Choosing a shape representation method for optimization of 2D shapes

by genetic algorithms. 305–319 (1997).

17. Zhang, P., Yao, X., Jia, L., Sendhoff, B., Schnier, T.: Target shape design optimization

by evolving splines. 2007 IEEE Congr. Evol. Comput. (2007).

18. Khan, M.S., Ayob, A.F.M., Isaacs, A., Ray, T.: A novel evolutionary approach for 2D

shape matching based on B-spline modeling. 2011 IEEE Congr. Evol. Comput. CEC

2011. 655–661 (2011).

19. Sandgren, E., West, R.L.: Shape Optimization of Cam Profiles Using a B-Spline

Representation. 111, 195–201 (1989).

20. Lampinen, J.: Cam shape optimisation by genetic algorithm. CAD Comput. Aided Des.

35, 727–737 (2003).

21. Weber, R.: BoxCar2D, http://boxcar2d.com.

22. Lapok, P., Lawson, A., Paechter, B.: Evaluation of a genetic representation for outline

shapes. In: Proceedings of the Genetic and Evolutionary Computation Conference

Companion on - GECCO ’17. pp. 1419–1422. ACM Press, New York, New York, USA

(2017).

23. Lee, P., Nagao, T.: Hierarchical Description of Two Dimensional Shapes Using a

Genetic Algorithm. Proc. 1995 IEEE Int. Conf. Evol. Comput. 2, 1–4 (1995).

24. Vargha, A., Delaney, H.D.: A Critique and Improvement of the “ CL ” Common

Language Effect Size Statistics of McGraw and Wong Author (s): András Vargha and

Harold D . Delaney Source : Journal of Educational and Behavioral Statistics , Vol . 25

, No . 2 (Summer , 2000), pp . Pub. 25, 101–132 (2017).

