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Abstract. In this paper, we investigate the ability of genetic representation meth-

ods to describe two-dimensional outline shapes, in order to use them in a gener-

ative design system. A specific area of mechanical design focuses on planar 

mechanisms. These are assembled of mechanical components, e.g. multiple lev-

ers, which transmit forces and torques over their contour. The shape of the con-

tour influences the performance of the overall system. The genetic representa-

tions are based on floating-point chromosomes, where each value maps to a spe-

cific parameter of a resulting shape. In order to evaluate the performance of each 

representation method, a set of target shapes was defined. These consist of simple 

symmetric and asymmetric shapes with edges and curves, and also of more com-

plex mechanical lever shapes, extracted from an automotive device. An evolu-

tionary algorithm with crossover and mutation operators is used to search for the 

best approximation of these target shapes. The fitness function is based on two 

penalty values: first, calculated by comparing the area of a candidate solution 

with the area of a target shape; and second, based on the intersection area between 

a candidate solution and a target shape compared to the entire area of the target. 

Experiments were undertaken to investigate the capabilities of the representations 

in terms of search space coverage; compatibility with evolutionary operators; and 

the ability to produce shapes with mechanical characteristics. The results show 

the benefits and drawbacks of using each of selected methods of representation, 

and their suitability of reassembling different outline shapes. 

Keywords: Evolutionary Representation, Shape Representation, Shape Optimi-

zation, Evolutionary Algorithm 

1 Introduction 

The performance of many engineering applications is highly dependent on functional 

shapes. A Generative Design System (GDS) can support the design process by provid-

ing potential solutions, and subsequently, saving designer’s time. They are commonly 

used for aerodynamic shape optimization, e.g. to evolve airfoils [1–3], and also in to-

pology optimization to improve the material usage of components with a focus on the 

inner structure. The shapes are represented in various ways, such as using constructive 

solid geometries [4], and voxel based representations [5]. Shape representations for 
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evolving turbine blades were also investigated with a focus on material stress [6]. In 

mechanisms design [7], the shape and position of each component has a significant 

influence on the feasibility, function, and performance of the whole device. Some ex-

isting GDSs focus on the kinematics of massless mechanisms, such as on the problem 

of four-bar linkages [8]. However, these GDSs do not consider neither interactions be-

tween components’ outlines, nor their relationships with the environment. Yet, in many 

applications, components require to be in contact with each in order to transfer forces 

and moments over their outline between an input and an output, e.g. in vehicle locking 

mechanisms [9]. Designing such devices is often a time-consuming task, which requires 

expertise. Usually they are created using Computer-Aided Design software, and evalu-

ated with multi-body simulation, finite-element analysis, or by building prototypes.   

This work is a step towards development of a GDS for planar mechanical systems 

with a focus on their dynamics, which can be evaluated using aforementioned multi-

body simulation. It will not consider aerodynamic properties involving flow simulation, 

or material properties using topology optimization because generative systems for these 

areas do already exist. GDSs are not commonly used when creating dynamic mechan-

ical systems, as there are numerous challenges which need to be addressed simultane-

ously to produce one. Three of the main challenges are discussed below. 

First, the domain of mechanical systems is broad and involves a wide variety of 

applications and a large number of potential components which could be used to create 

a design solution. It is difficult to design a general GDS from scratch which copes with 

this large number of potential components. For this reason, the GDS needs to be limited 

to a specific set of capabilities, having just enough flexibility to generate design solu-

tions within its’ application area. Furthermore, the GDS should provide the possibility 

to be extended in future.  

Secondly, it is difficult to describe a design problem or an aim in a general way for 

a mechanical system in a machine-readable format. Joskowicz worked on a description 

language for conceptual mechanical design and mechanical behavior [10, 11], which 

would allow mechanism performance categorization regardless of their design. How-

ever, this work was not linked to GDSs.  

A third problem is the development of the GDS itself which is addressed in this 

work. GDSs use optimization algorithms which require a representation of the design 

problem and its prospective solutions. The latter require to define the components’ 

shapes, which can be especially problematic. Other GDSs such as used in aerodynamic 

design or topology optimization have usually a specified outline shape or initial shape 

which is parameterized or sometimes segmented and can be manipulated by changing 

a limited number of parameter values. A GDS generating dynamic mechanical systems 

has no such initial shape or structure to apply changes to. It needs to identify a constel-

lation of components which can work together to solve the design problem with each 

of them being in the right position and having the right shape. Using multiple compo-

nents and describing every detail of their shapes in from of coordinates can lead to a 

large number of parameters which an optimization algorithm may have difficulty cop-

ing with efficiently. The number of parameters can be reduced by describing shapes 

approximately at an abstract level. This work presents four different representation 
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methods and compares their performance to describe a shape. An evolutionary algo-

rithm was developed which uses these representation methods to evolve target shapes. 

This method is often used as a benchmark problem to investigate shape related optimi-

zation algorithm’s performance [12–15]. The representation methods were tested with 

24 different target shapes, 12 being basic shapes and 12 were created based on the out-

line of mechanical levers taken from an automotive closure system. This is a first step 

towards developing a GDS for mechanical systems with a focus on the kinetic proper-

ties of the system. 

2 Proposed Method 

This section introduces the evolutionary algorithm and the fitness function which was 

used to evolve target shapes using different representation methods. These methods are 

explained and the experimental setup is presented in detail.  

 

2.1 Evolutionary Algorithm 

An evolutionary algorithm (EA) is a population-based algorithm inspired by the natural 

evolutionary processes. A population of random individuals is initially created. Each 

individual contains a chromosome. The chromosome used in this work consists of an 

array of floating-point values (genomes) in a range from 0.0 to 1.0. The chromosomes 

are mapped to shapes. The EA improves the quality of the fitness of the population in 

an iterative process. Individuals are selected from the population, copied, and mutations 

are applied in a systematic way which leads to new individuals called children of which 

subsequently the fitness is evaluated. Weaker individuals in the population are replaced 

with those children. One individual represents the best solution. The iterative process 

continues until a stop criterion is reached, in this case a set number of generations. The 

pseudo code for the EA used is shown in Fig. 1. 
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set POPULATION SIZE to 100 
set NUMBER OF CHILDREN per generation to 20 
set STOP CRITERION to 500000 evaluations 
 
initialize random population of POPULATION SIZE 
identify individual with best fitness in population 
 

run generation loop  
 repeat for NUMBER OF CHILDREN   

set PROBABILITY to random number between 0.0 and 1.0 
if PROBABILITY < 0.5 

   select two parents from population using binary tournament selection 
create CHILD from both parents using two-point crossover 
apply simple mutation to CHILD  

else 
   select one individual from population using binary tournament selection 

make CHILD by coping individual 
   apply simple mutation to CHILD  

end if 
 end loop 

 
 for each CHILD 
  select weaker individual using binary tournament selection 
  replace weaker individual in population with CHILD 
  if CHILD fitness is better than best individual 
   mark CHILD as best individual 
  end if 

next child 
 

until STOP CRITERION is reached  

Fig. 1. Pseudo Code 

The algorithm holds a population of 100 individuals and produces 20 children in every 

generation. Children are created by copying selected individuals from the population 

using binary tournament selection and through gene mutation. The selection operator 

picks two random individuals and selects the one with the better fitness. There are two 

mutation operators which are applied with a probability of 50%. First of them, is a 

simple mutation which changes between one to four random genomes of a selected 

individual. The genome values are altered to random new ones, determined by a gauss-

ian distribution based on the previous value. The second operator is a two-point cross-

over recombination. It takes two individuals from the population using the same selec-

tion method and swaps a chromosome segment between them. The segment is deter-

mined by two random points defining its’ start and end position. This produces one 

child containing the segment of the first parent and up to two segments at the beginning 

and the end of the second parent. The children are added to the population by replacing 

selected individuals of the population using a tournament selection which picks in this 

case the weaker of two random chosen individuals.  

 

2.2 Fitness Evaluation 

The fitness of a candidate solution depends on the similarity between a candidate shape 

and a target shape. The fitness function is calculated using two penalties. These are 

based on a comparison of target and solution surface areas. As smaller the penalty value 

as more similar the candidate shape is to the target shape. Fig. 2 shows target shape 

area, the solution shape area, and the intersection between both. 
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Fig. 2. Fitness Evaluation 

The first penalty Ps results from a difference between the total area size of target and 

solution. Eq. 1. shows the calculation of the size penalty Ps. The second penalty Pi is 

given for a difference in the intersection area between target and solution and the area 

of the target. Eq. 2 shows the penalty Pi for the intersection. Eq.3 shows the total pen-

alty Pt. 

 |As - At| = Ps (1) 

 |At - Ai| = Pi (2) 

 Ps + 2 Pi = Pt (3) 

The intersection penalty is multiplied by two to make the penalties less comparative 

and to avoid creating local optima as the size penalty Ps and intersection penalties Pi 

may work against each other. 

 

2.3 Genetic Representation 

Selecting a shape representation is one of the most important decisions in EA based 

shape optimization [16]. The main purpose of the representations is to define the outline 

shape of mechanical components. These are subject to three requirements. Firstly, the 

representation should produce only non-intersecting shapes. Connecting random coor-

dinates to make closed shapes can produce a large number of invalid shapes due to self-

intersections which should be avoided as it requires additional processing to resolve 

them. Secondly, a shape representation should be able to cover a large search space. 

One representation may be able to produce shapes which another representation is not 

capable of which may limit the solution space. Thirdly, the representation needs to be 

compatible with the evolutionary mutation and crossover operators. This is important 

for the optimization algorithm to be able to traverse the search space efficiently. 

In the following section four representation methods are explained. The first three 

are based on vectors and the fourth is based on rectangles. Each generates control points 

which are further processed by two functions. The first uses the control points to gen-

erate a spline function which makes the shape curvier by adding additional vertices. 
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Applying spline functions is commonly used in shape optimization [17–20]. The sec-

ond function removes vertices which are too close to each other with a distance smaller 

than 90% of the minimum allowed shape size. This approach removes unnecessary ag-

gregation of vertices in one location and enables the shape to contain sharp edges. 

 

 

Fig. 3. Representations 

Cartesian Coordinate Representation (R1). This representation is a basic mapping 

of chromosome float values to coordinates on a cartesian coordinate system. The coor-

dinates are connected in the order they appear in the chromosome to form a closed 

shape. The representation is shown in Fig. 3 (top, left). Each float value is translated to 

an x or y value between a defined min and max range. The first two genes represent the 

coordinate of the center of the shape. Further gene pairs represent the coordinates rela-

tive to the center. However, connecting each coordinate in the order they appear in the 

chromosome leads to a very high number of intersections between lines. Self-intersect-

ing shapes cannot be evaluated so the intersections are resolved by adding a post-pro-

cessing procedure. The procedure removes intersecting lines and closing the shape us-

ing the next coordinate. This reduces the number of invalid shapes significantly. The 



7 

representation was chosen to investigate a direct mapping between chromosome and 

solution, and the influence of a post-processing procedure to resolve intersections. 

 

Polar Vector Representation (R2). This representation maps floating-point values to 

vectors with a common center. The representation is shown in Fig. 3 (top, right). The 

chromosome’s genomes correspond to directions and lengths of vectors on a polar co-

ordinate system. The directions are mapped to angles between 0 and 360 degrees, and 

the length is mapped in a range between a defined min and max value. The first two 

genomes represent the center position of the shape. Further gene pairs represent the 

vector coordinates which are connected in clockwise direction to avoid intersections in 

the outline. This representation is inspired by BoxCar2D [21] where it was partly used 

to describe the shape of an abstraction of a car body. 

 

Hub and Spoke Representation (R3) [22]. This representation uses a polar coordinate 

system similar to the previous described method. It is shown in Fig. 3 (bottom, left). 

Floating-point values are mapped to vectors with direction and length. The center of 

the shape is defined by the first two genomes, and the shape is tilted by an angle spec-

ified in the third genome. Each vector has its own angle segment in which it operates. 

E.g. when using 6 vectors, each would have its own fixed range between 0 and 60 

degrees in which it can move. The vectors are connected in clockwise direction to form 

a shape which makes this approach produce only valid shapes.  

 

Rectangle-based Representation (R4). This representation uses multiple rectangles 

as basis shapes. It is shown in Fig. 3 (bottom, right). The first two genes are mapped to 

a coordinate for the center of the shape. Then, every group of five genes is mapped to 

a position coordinate, tilt-angle, width and height to create a rectangle. Multiple rectan-

gles are positioned relative to the center. The rectangles can intersect with each other 

and the overall outline is extracted. A similar representation which uses rectangles as 

basis shapes was developed by Lee and Nagao [23]. However, there are some differ-

ences. First, their representation does not extract the outline of the intersecting rectan-

gles. Instead they force the EA to avoid intersections by giving an additional penalty 

for them. Second, the representation is not used with additional functions such as the 

spline function or a procedure to remove close vertices. 

 

2.4 Experiments 

Experiments were run 25 times on each of the 24 target shapes for 500,000 evaluations 

with each representation method. An Intel Core i5-2500 3.3Ghz and 4GB RAM was 

used for all experiments. The target shapes used are shown in Fig. 4. Shape p01 to p12 

are lever shapes extracted from an automotive closure system and shape p13 to p24 are 

general basic shapes. 
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Fig. 4. Target Shapes 

The algorithm was configured as follows: The population was set to 100 and the number 

of children generated per generation was set to 20. There was no parameter optimization 

conducted, these values resulted from testing and observations. The number of genera-

tions was set to 25,000 which results in a total number of 500,000 evaluations after 

which the experiment was stopped. The chromosome for each representation was set to 

a fixed length of 77 genes to represent one solution to make the comparison fair. 

3 Experimental Results and Evaluation 

 

Fig. 5. Method comparison 

Fig. 5 presents the comparison of the shape representation methods performance on 

every target shape. Each of the four tested method’s mean penalty through all runs for 

every problem are listed next to each other. 
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The significance of the difference of the methods performance was evaluated using 

Vargha-Delaney A-measure (VDA) [24]. VDA is a statistical test which shows the dif-

ference between two non-normally distributed populations. It provides a value (A-

measure) between 0 and 1 which indicates if there is a small, medium, large or no dif-

ference between populations. A value of 0.5 refers to no difference. A value under 0.44 

or above 0.56 indicates a small difference. A value under 0.36 or above 0.64 states a 

medium difference and a value under 0.29 or above 0.71 indicates a large difference.  

Table 1 (lever shapes) and Table 2 (basic shapes) show the comparison of all meth-

ods to each other for every problem providing the A-measure. 

Table 1. Comparison of methods using VDA (part 1). 

 

Table 2. Comparison of methods using VDA (part 2). 

 
 

The focus of the comparison was on medium and large differences between the 

methods. The arrows show if the first method was significantly better (arrow up), or 

significantly worse (arrow down), than the second method. The diagonal arrows indi-

cate a medium difference, and the horizontal arrows indicate no difference between the 

compared methods. The last column shows which representation performed best on the 

particular problem. 

Results show that R1 has the worst performance on every problem compared to the 

other methods. It was found that using a post-processing procedure which disables co-

ordinates to resolve intersections consequently disables parts of the chromosome. It 

makes the shape optimization inefficient because mutation operators are applied to seg-

ments of the chromosome which have no influence on the solution. Furthermore, disa-

bling coordinates also lowers the method’s ability to represent complex shapes because 

less coordinates are left to represent it. 

It was also found that R2 and R3 perform mostly equally, with R3 being the best 

performing solution more often. The reason for this is that both methods have a similar 

basis and similar range of operation. R2 has a larger flexibility in terms of shapes it can 

produce. R3 distributes its coordinates in specific sectors whereas R2 can concentrate 

all its coordinates in one sector. However, R3 has the benefit that large changes in the 

chromosome lead to smaller changes in the solution compared to R2. The optimization 

method 1 method 2 p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12

R1 R2 0.922 0.941 0.7208 0.936 0.912 0.998 0.9776 0.955 0.966 0.96 1 0.8384

R1 R3 0.957 0.933 0.7328 0.947 0.918 0.998 0.9776 0.96 0.9008 0.952 1 0.8352

R1 R4 0.958 0.923 0.981 0.949 0.8704 0.984 0.9296 0.946 0.995 0.923 0.99 0.931

R2 R3 0.6288 0.3776 0.4864 0.5872 0.5696 0.58 0.4496 0.8512 0.1856 0.3024 0.488 0.5112

R2 R4 0.5344 0.4736 0.976 0.632 0.078 0.4424 0.144 0.288 0.8928 0.2176 0.5264 0.7664

R3 R4 0.4144 0.5648 0.968 0.5432 0.066 0.3728 0.16 0.055 0.938 0.3832 0.5568 0.776

R2,R3,R4 R2 R4 R2,R3,R4 R2,R3 R3 R2,R3 R3 R4 R2 R2,R3,R4 R4

problemscomparison

best performance

method 1 method 2 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24

R1 R2 0.938 0.922 0.915 0.8496 0.995 0.925 0.9248 0.896 0.956 0.962 0.99 0.5488

R1 R3 0.978 0.939 0.8992 0.8704 0.984 0.936 0.912 0.938 0.955 0.991 0.997 0.5544

R1 R4 0.864 0.8016 0.856 0.8 0.93 0.888 0.8784 0.8848 0.915 0.8336 0.982 0.968

R2 R3 0.7272 0.768 0.3296 0.6288 0.4016 0.564 0.4984 0.8784 0.4912 0.7968 0.5656 0.5024

R2 R4 0.1856 0.2488 0.2368 0.1192 0.2336 0.42 0.3504 0.6608 0.038 0.304 0.4504 0.998

R3 R4 0.042 0.063 0.3648 0.032 0.3168 0.3712 0.3776 0.3344 0.035 0.1464 0.3936 0.998

R3 R3 R2 R3 R2,R3 R3 R2,R3 R3 R2,R3 R3 R2,R3,R4 R4best performance

comparison problems
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algorithm is better guided by incremental improvements which makes R3 reach a better 

solution quality. Both methods seem to be slightly better than R4 which is one of the 

best methods only 8 times, however, the difference is very small. Furthermore, R4 pro-

duces significantly better solutions on problem p03, p09, p12, and p24. The shapes in 

these problems have an undercut characteristic which cannot be produced by the other 

methods. Nevertheless, R4’s performance on p05 and p21 is still good, but worse when 

compared to R2 and R3, because R4 is based on rectangles which makes it difficult to 

represent spikes and fine details. 

 

Fig. 6 shows the solution quality increase over time. Each smoothed line shows the 

found solutions over each iteration of 25 experiment runs and all 24 problems for one 

representation method. 

 

 

Fig. 6. Improvement over time 

Taking a penalty value of 5,000 as a baseline for the solution quality, R3 needs 5,000 

iterations, R2 needs 10,000 iterations, and R4 needs around 12,000 iterations to reach 

the threshold. R1 never reaches the threshold. It shows that R3 is significantly faster in 

improving the solution quality compared to all other methods. 

Fig. 6 also shows the time needed to produce 500000 iterations with each method. 

R1, R2, and R3 need between 0.63 and 0.92 minutes whereas R4 needs around 3.1 

minutes. This is due to R4 requiring more processing for calculating the outline from 

the intersecting rectangles. It should be noted that the time for a single evaluation is not 

relevant in the context of this work. A GDS for mechanical systems uses multi-body 

simulation for the evaluation. It often takes a significantly longer time to evaluate a 

multi-body system independently to which representation is used. 
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4 Conclusions 

This work is intended as a step towards a GDS for dynamic mechanical systems and 

focuses on the shape representation of mechanical components used by an evolutionary 

algorithm. The performance of four different shape representation methods is investi-

gated with the aim to evolve a specified set of target shapes. These consist of mechan-

ical lever shapes taken from an automotive closure system and a set of basic shapes. 

The first representation (R1) uses a direct mapping of genomes to coordinates and a 

post-processing procedure to resolve shape intersections. The second representation 

(R2) maps the chromosome to vectors which are connected in clockwise direction to 

avoid intersections. The third representation (R3) also maps the chromosome to vectors 

but allows each vector only to operate in a specified area. The fourth representations 

(R4) chromosome is mapped to multiple overlapping rectangles of which the overall 

outline is extracted. Two functions are applied to the resulting shape of the four meth-

ods. The first function applies a spline filter to the shape and the second removes verti-

ces which are close to each other. A number of experiments were undertaken to evaluate 

the performance of each method to produce the target shapes. The performance was 

compared using the Vagha-Delaney A-measure. Results show that the direct mapping 

of R1 and resolving intersections in a post processing procedure leads to low quality 

solutions. The R1 representation is not able to evolve complex shapes. R2 and R3 per-

form almost equally in terms of solution quality, but with R3 performing slightly better 

and needing less iterations to reach a better solution quality. R4 is slower than the other 

representations but can produce similar results to R2 and R4 most of the time. However, 

R4 is the only representation capable of producing shapes with undercut characteristics 

to a high quality which can be considered as being more complex shapes.  

    Future work will investigate the number of genomes needed to generate all the target 

shapes with the method R3 and R4. A combined representation will be tested, able to 

switch between R3 and R4. It is hoped that this would benefit from R3’s capabilities to 

find simple target shapes fast but have the ability to evolve more complex shapes by 

switching to R4 if needed. Furthermore, the representation R3 and R4 will be extended 

and embedded in a GDS to evolve dynamic mechanical systems. 
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