
A Novel Adaptive and Efficient Routing Update Scheme for Low-power
Lossy Networks in IoT

Mamou

Baraq Ghaleb, Ahmed Al-Dubai, Elias Ekonomou, Imed Romdhani, Youssef Nasser, and Azzedine Boukerche

Abstract—In this paper, we introduce Drizzle, a new algorithm

for maintaining routing information in the Low-power and Lossy

Networks (LLNs). The aim is to address the limitations of the

currently standardized routing maintenance (i .e. Trickle algorithm)

in such networks. Unlike Trickle , Drizzle has an adaptive

suppression mechanism that assigns the nodes different transmission

probabilities based on their transmission history so to boost the

fairness in the network. In addition, Drizzle removes the listen-only

period presented in Trickle intervals leading to faster convergence

time. Furthermore, a new scheme for setting the redundancy counter
has been introduced with the goal to mitigate the negative side effect

of the short-listen problem presented when removing the listen-only

period and boost further the fairness in the network . The

performance of the proposed algorithm is validated through

extensive simulation experiments under different scenarios and

operation conditions. In particular, Drizzle is compared to four

routing maintenance algorithms in terms of control-plane overhead,

power consumption, convergence time and packet delivery ratio

(PDR) under uniform and random distributions and with lossless

and lossy links. The results indicated that Drizzle reduces the

control-plane overhead, power consumption and the convergence

time by up to 76%, 20% and 34% respectively while maintaining
approximately the same PDR rates.

Keywords—RPL, Trickle algorithm, Low power and lossy

networks, Load balancing, IoT.

I. INTRODUCTION

The ever-tighter integration of physical world with

computing has given birth to a new communication paradigm

referred to as the Internet of Things (IoT) [1][2]. One of the

building blocks of the IoT is the Low-power and Lossy Network

(LLN), a collection of interconnected embedded devices, such as

sensor nodes, typically characterized by constraints on both node

resources and underlying communication technologies. The

introduction of IPv6 over Low Power Wireless Personal Area

Networks (6LoWPAN) protocol has addressed the gap between

these tiny devices and the Internet enabling such integration [1].

The network limitations in terms of energy, memory, and

processing resources impose a set of challenges to design efficient

routing protocols for LLNs [2]. In fact, various efforts have been

made by the IETF Routing Over LLNs (ROLL) working group to

address such issues. The Routing Protocol for LLNs (RPL) [2],

the Collection Tree Protocol (CTP) [3], the Hybrid Routing

Protocol for LLNs (Hydro) [4] and the Lightweight On-demand

Ad hoc Distance vector routing protocol – Next generation

(LOADng) [5] are among the latest standards proposed by

research community. A key design principle of any routing

protocol is to have an efficient mechanism for disseminating

routing information through the network, and maintaining up-to-

date information. One of the mechanisms to perform this task is

to propagate the routing information periodically, which is widely

used in unconstrained wired networks. When adopting such

proactive update and maintenance scheme in resource-

constrained large-scale LLNs, the performance of such networks

decreases dramatically due to high traffic overhead [6][7].

To address this issue, the IETF ROLL group proposed Trickle

algorithm to regulate the emission of routing information in LLNs

[8][9]. The basic idea behind Trickle is to equip resource-

constrained nodes with a simple and energy-efficient primitive for

disseminating routing information throughout the network.

Trickle uses two mechanisms to achieve this goal. The first

mechanism is to increase adaptively the signaling rate upon

detecting a new routing information. In contrast, it exponentially

reduces the signaling rate when the network state is up-to-date in

order to save energy and bandwidth. The second is the

suppression mechanism in which a node suppresses the

transmission of its routing information if it detects that enough

number of its neighbors have transmitted the same piece of

information. The main issue with Trickle is its code propagation

technique, which in one way or another has different

characteristics in comparison with routing maintenance in a

routing protocol. This is especially in the context of LLNs [10],

which exhibit the features of Scarcity of resources, links

unreliability, load balancing and Dynamic and various densities

that will be addressed, in turn, below.

Scarcity of resources: The resource-constrained nature of

LLNs imposes new restrictions on developing an efficient

algorithm for disseminating routing information through such

networks. Generally speaking, the small-battery size of a sensor

node is the most restrictive factor and should be taken in a great

consideration. A routing maintenance primitive should opt to

send just enough updates to ensure the freshness of the

constructed routes. Sufficient route updates can vary from

transmitting one update every second to every bulk of minutes

through the network lifetime depending on the current conditions

of the network to ensure that application energy requirement is

met [7].

Link unreliability: LLNs are characterized by lossy and

unreliable links, and an update is not guaranteed to reach its

destination when it is sent for the first time [7]. In some cases, the

link loss rate in a network cannot be predicted beforehand, and

even worse, the same link may exhibit different loss rate over time

due to several different factors such as collisions at the receiver,

hidden terminal problem and interference with other radios of

neighboring sensor nodes [8].

Load balancing: a network can benefit from the presence of

load-balancing mechanism among its sensor nodes in two ways:

first, it enables the network to discover all the possible routes

available for routing and second it distributes the load evenly in

the network to maximize the network lifetime. In other words, the

absence of load balancing may render some routes undiscoverable

even though they might be more efficient than those already

active in the network [10].

Dynamic and various densities: it is envisioned that LLNs

would be deployed using different density scenarios, ranging

from a few neighbors per node to hundreds. The density of a

specific deployment may or may not be known in advance. Thus,

the algorithm should be tailored to handle all cases and its

parameters should be tuned according to the specific case it

encounters. In other words, the algorithm has to be scalable and

dynamic.

Considering the above-mentioned features, this paper proposes

a new algorithm for disseminating routing information in LLNs,

namely, the Drizzle algorithm. Elevating the shortcomings of the

previous algorithms, Drizzle has a solid and configurable nature

that makes it suitable for various application requirements. More

specifically, it offers an adaptive suppression mechanism that

permits the nodes to have different transmission probabilities,

which are consistent with their transmission history. It removes

also the listen-only period to fasten the convergence time and

implements a new policy for setting the redundancy coefficient.

The rest of the paper is organized as follows: Section II presents

an overview of related work. A detailed description of Drizzle

algorithm is presented in Section III highlighting its main

principles. Section IV introduces detailed description of the

simulation environment and the obtained results. Finally, Section

V overviews the entire study and then presents conclusions and

recommendation for future work.

II. RELATED WORK AND STATE-OF-THE-ART

Ad-hoc routing strategies such as the Dynamic Source Routing

(DSR) [11][12], the Ad hoc On-Demand Distance Vector

(AODV) [13], the Optimized Link-state (OLSR) [14][15], and the

Open Shortest Path First (OSPF) routing protocols [16], have

been found to be unsatisfying for the unique routing requirements

in LLNs [17]. Therefore, several standard bodies have assigned

different working groups in order to develop the necessary

protocols and standards that meet the new requirements imposed

by LLNs. For instance, the MANET working group has

developed the Dynamic MANET On-Demand Routing (DYMO)

[18] and OLSRv2 [19] as successors for AODV and OLSR for

routing in LLNs [20]. Additionally, 6LowPAN (IPv6 over low

power WPAN) working group has presented several routing

proposals including the 6LoWPAN Ad hoc On-Demand Distance

Vector Routing (LOAD) [5]. Finally, the 6LowPAN delegated the

ROLL working group for advising an efficient LLNs routing

protocol. Their efforts has culminated in producing the proactive

Routing Protocol for LLNs (RPL). A primary constituent part of

any routing protocol is how to update and maintain the routing

information in order to keep the network routing states up-to-date

and insure the freshness of the active routes. In the reactive

routing protocols such as AODV and LOAD, the route

maintenance process is simplified as it is only triggered when a

node has a data packet to send and, thus, there is no need for a

periodic update of routing information. On the other hand,

proactive routing protocols such as OLSRv2 and RPL use more

complex route maintenance process as the routes are created, and

thus need to be maintained regularly. The motivation behind the

prior constructing of network topology is that it enables the data

packet to be sent immediately, avoiding unnecessary delays. Each

reactive routing protocol has its own mechanism to handle the

routing maintenance process. For instance, OLSRv2 maintains its

state by having each router transmits HELLO messages

proactively at a regular rate. The rate which HELLO messages are

transmitted at, may be constant or dynamic, for example, it might

be backed off due to transmission problems such as collisions,

congestion or stability of the network. The Babel [21] routing

protocol uses a more sophisticated mechanism for updating the

routing information. First, each Babel speaker propagates its

routes every specified interval of time. Second, upon discovering

that a significant change in network topology has occurred, Babel

speakers advertises what they called “a triggered update” in a

timely manner in order to alert the network of this abrupt change.

A major problem associated with the periodic update of routing

information is that every sensor node must advertise a regular

routing updates, even though, there is no change in the routing

information. This will result in an excessive use of the battery

power in addition to generating unnecessary routing overhead,

which in return affects negatively the network performance.

A recent approach for updating routing information in LLNs is

that adopted by RPL routing protocol, namely, Trickle algorithm.

The basic idea behind Trickle is to equip the nodes with a simple,

yet scalable and energy-efficient primitive for exchanging routing

information. Trickle relies on two primary mechanisms to

disseminate efficiently the routing information. The first

mechanism is to change adaptively the signaling rate according to

the conditions that are currently present in the network. The

second is the suppression mechanism in which a node blocks the

transmission of its control packet if it detects that it is redundant.

The adaptive signaling rate in addition to suppressing redundant

information enables the network to use its available resources

efficiently, consequently save energy and bandwidth. However,

several research studies have recently reported some issues that

limit the efficiency of Trickle algorithm in LLNs. For instance,

the study in [22] has indicated that introducing the listen-only

period in the first half of each Trickle interval (I) would exhibit

growing delay while propagating transmissions intended to

resolve the discovered inconsistency in routing information.

In fact, the goal behind introducing the listening period is to

solve the so-called short-listen problem in asynchronous

networks. In the asynchronous network with no listen-only

period, a node may start emitting its current DIO message

(DODAG Information Object) very soon after starting a new

interval, a behavior that may result in turning down the

suppression mechanism in the current interval and the subsequent

intervals leading to significant redundant transmissions and, thus,

limiting the algorithm scalability [8]. However, introducing the

listen-only period has its own shortcomings. Firstly, this period

will impose a delay of at least half of the interval before trying to

propagate an update. In m-hop network, the inherited delay will

be progressively accumulated at each hop resulting in an overall

delay proportional to the number of hops. Secondly, this period

may also result in uneven load distribution with some nodes

transmitting less than others. In the worst-case scenario, the

transmission period of a node may completely overlap with the

listen-only period of another neighboring node consequently,

forbidding that node from transmitting for a long time.

A major issue in this scenario is that the forbidden node might

be a critical node whose transmission is vital for resolving

network inconsistences. Consequently, this will have a negative

impact on the convergence time of the network. In addition, the

absence of load balancing scheme may render some routes

undiscoverable even though they might be more efficient than the

active paths, which may affect the network reliability. Pertaining

to Trickle’s suppression mechanism, it is shown that the incorrect

configuration of the redundancy constant may lead to creating

sup-optimal routes especially in heterogeneous topologies

composed of regions of different densities [10]. This is attributed

to the fact that Trickle is originally designed to disseminate code

updates, which are quite similar in the context of reprograming

protocols. However, this is not the case in the context of routing

as two routing update messages originated from different sources

may carry different routing information and thus “suppressing

one transmission or another is not always equivalent” [10]. To

address the aforementioned issues, several routing maintenance

primitives have been proposed. For instance, the study in [10]

proposes an enhanced version of Trickle named Trickle-F in an

attempt to guarantee a fair multicast suppression among RPL

nodes. Trickle-F gives each node a priority to send its scheduled

DIO based on how many consequent DIOs have been suppressed

recently. In other words, the more the node suppresses its DIO,

the higher the chance it would transmit in the next interval frame.

The proposed enhancement is compared to the original Trickle

under RPL by means of simulations and in terms of network

stretch, average energy consumption and the distribution of

suppressed messages. The evaluation results show that Trickle-F

has managed to reduce the number of nodes with sup-optimal

routes while shown the same energy consumption profile.

Although Trickle-F has succeeded to some extent in solving the

sub-optimality of constructed routes, the algorithm still suffers

from the slow convergence time due to the listen-only period and

higher overhead due to the un-adaptivity of its suppression

mechanism.

The work in [23] highlights the ambiguity associated with

configuring the redundancy parameters k in RPL-based networks.

For instance, Trickle RFC [9] states that the typical values for k

are 1-5, while RPL RFC [2] has set 10 as the default for k.

However, the adequate value for the redundancy constant is

claimed to be between three and five in the last IETF draft titled

“Recommendations for Efficient Implementation of RPL” [24].

Finally, it is recommended in the RFC of the Multicast Protocol

for Low-Power and Lossy Networks (MPL) to set the default

value of k to one [25]. The different recommendations for setting

the redundancy constant indicates that its optimal setting is not

trivial task and relies greatly on application scenario. Thus, the

authors propose a new algorithm named adaptive-k in which they

suggest setting the value of k for each node individually based on

that node degree (density). They used the number of Trickle

messages received during a specific window as an implicit

indication of that node degree. It was shown by simulations and

testbed experiments that adaptive-k improves the performance of

RPL in terms of control-plane overhead while discovering more

optimal routes. However, it is unclear why the study resorts to the

number of messages and not the number of actual neighbors,

received at specific node to indirectly estimate the network

density at that node. Although this method might give

approximately accurate estimation for the node degree when the

network is characterized by synchronized intervals among its

nodes, it may suffer from an inaccurate estimation in

asynchronized networks. For instance, in asynchronized network,

the frequency of transmission may differ significantly from a

node currently in its minimal interval to another node currently in

its maximum interval. Hence, the former node will transmit more

frequently giving the receiver node the impression that it has more

neighbors than it actually has affecting negatively the accuracy of

the network density estimation at that node.

In [26], it has been shown by mathematical analysis that the

single redundancy constant adopted by Trickle may result in

higher transmission load and consequently higher power

consumption rates for those nodes having less number of

neighbors. To alleviate this issue, the study proposes an

enhancement of Trickle in which each node calculates its own

version of the redundancy constant as function of its degree. Each

node with a number of neighbors less than a pre-specified

threshold called the offset will set its redundancy constant to one.

The redundancy constant of other nodes is set by subtracting the

number of neighbors from the offset and getting the ceiling of

dividing the result by another predetermined value called the step.

The simulations show that the proposed algorithm has balanced

the transmission distribution among network nodes in comparison

with the standard Trickle. However, the study does not

demonstrate the impact of the proposed enhancement either on

the quality of constructed routes neither on the network power

consumption. In addition, introducing two new parameters, the

step and the offset, will further add a complexity on how to

configure Trickle parameters which is to be avoided.

In [22], the authors highlight the problem of increased latency

resulting from introducing the listen-only period. To address this

problem, an optimized version of Trickle, namely opt-Trickle, is

proposed. The authors point out that the nodes receiving

inconsistent transmissions simultaneously will reset their timers

(returning to Imin) immediately, consequently exhibiting a form of

an implicit synchronization in the first interval among these

nodes. Such synchronization will eliminate the need for the listen-

only period in the first interval and allow the respected nodes to

pick the random time, t, from the range [0, Imin], which is their

only modification to the original Trickle. However, this study

assumes a MAC protocol with 100% duty-cycle, which is neither

reasonable nor realistic.

Table I. Summary of Trickle extensions

The name Brief description

Trickle-F

Gives the node a priority to send its scheduled DIO based on

its recent history of transmission.

opt-Trickle
Allows nodes to pick the random time, t, from the range [0,
Imin] in the first interval.

adaptive-k

Allow each node to tune its redundancy factor dynamically

based on the number of its neighbors

Trickle-
offset

Calculate the redundancy factor as a function of node degree.

Furthermore, opt-Trickle still has a listen-only period in the

subsequent intervals that will contribute to the increased latency

especially in a lossy network where it is not guaranteed that the

firstly transmitted multicast message will reach all of its

destinations. Other studies has focused on the modeling and

analysis aspects of Trickle [27][28][29][30]. Table I summarizes

the Trickle’s different solutions.

In this paper, a new algorithm for maintaining the network

topology in LLNs is introduced to address Trickle limitations,

namely, Drizzle algorithm. This is an extended version of our

previous work in [31] in which we evaluated Drizzle under

restricted scenarios (i.e. we compared only to Trickle and under

uniform distributions). In this extended version, three more

Trickle’s extensions [10][22][23] have been implemented,

analyzed and compared to Drizzle highlighting the major

differences and similarities among the compared protocols and

under both random and uniform distribution with lossless and

lossy links.

III. THE PROPOSED DRIZZLE ALGORITHM

Compared to Trickle, Drizzle has many distinguishing features

and different policies that endorse its superiority as a promising

solution for routing maintenance in LLNs. Drizzle differs in two

major ways. First, the suppression mechanism in Drizzle is

adaptive so that the nodes have the capacity to adjust their

transmission probability according to their transmission history.

This, in one hand, relieves the network administrator from the

concern of configuring the redundancy coefficient. On the other

hand, it will ensure the fairness of the algorithm, as the nodes that

have transmitted more in the previous intervals would have less

probability to send in the current interval. The fairness of the

algorithm has been further supported by assigning each node a

transmission slot within each interval also depending on their

transmission history. Second, Drizzle eliminates the listen-only

period presented in Trickle intervals so that each node can

schedule its transmission at any point throughout the interval

rather than the second half only. This would enable the nodes to

contend in a wider window reducing the collision probability.

Another advantage of this primitive is that any change in the

network state will have the chance to be propagated more rapidly

than in other techniques such as in Trickle algorithm. In this

regards, Drizzle uses the same number of parameters used by

Trickle and seven maintaining-state variables. In what follows,

we define the parameters used by Drizzle to configure its timeline.

Definition 1: The minimum interval length (Imin): This is the

fastest transmission rate in time units when a significant change

in the network has been discovered (inconsistency).

Definition 2: The maximum interval length (Imax): This is the

slowest transmission rate in time units of a node in the steady

state.

Definition 3: The redundancy factor (k): represents the number

for received consistent messages that a node should receive

during a specific period before suppressing its own transmission.

In addition, Table I outlines the seven variables used by Drizzle

to maintain its current state.
Table II: Drizzle Variables

Variable Meaning

s This represents the number of DIO transmissions by a
specific node until that node resets Drizzle to its minimum

interval (i.e. a counter to count number of transmitted DIO
that is reset to zero when entering the minimum interval).

n This counter keeps a track of the number of intervals between

two resets to the minimum interval.

rFlag This is a flag that is set to 0 or 1 according to the case that

produced the inconsistency state.

ck This variable represents the current value of the redundancy
coefficient as the node increases or decreases it.

I Length of the current interval in time units (e.g. seconds).

t This is the time slot selected by a node within the current

interval, at which that node may transmit its scheduled DIO.

c Message counter to keep a track of number of received

consistent messages within the current interval.

The following steps illustrates in details the operations of

Drizzle algorithm whereas the algorithm pseudo-code is

presented in Algorithm 1:

1. Drizzle starts its operation by setting its first interval to

Imin, and the redundancy value, ck, to the initial value of

the redundancy coefficient, k . It also set the broadcasted

messages number, s, and the consistency counter, c, to

zero. Finally, it sets the rFlag and the number of intervals,

n, to one.

2. On the beginning of each interval Drizzle assigns a

randomly selected value in the interval to the variable, t,

taken from the range:

 [𝑠 ∗
𝐼

𝑛
, (𝑠 + 1) ∗

𝐼

𝑛
] (1)

3. Upon receiving a consistent message, Drizzle increments

its consistency counter by one.

4. When a node running Drizzle detects inconsistency state,

Drizzle resets its timer by setting I to Imin, if it was not

already set, resets the interval counter, and the message

counter to zero while it resets the value of interval counter

to one. It also sets the value of the rFlag to either one or

zero according to the case that produced the

inconsistency. We limit the cases in which the rFlag is

set to one to only three cases: (a) when the root establishes

the construction of the DODAG, (b) when the root

initiates a global repair, and (c) when a node firstly joins

the DODAG.

5. At the randomly selected time, if the consistency counter

is less than the redundancy coefficient, Drizzle transmits

its scheduled message; otherwise, the message is

suppressed. At this time, Drizzle also resets the

consistency counter to zero.

6. If the scheduled message has been transmitted, Drizzle

increases the broadcasted messages number by one. It

also decrements the redundancy coefficient current value

by one. If the value of redundancy coefficient would be

less than zero, Drizzle sets it to zero.

7. If the scheduled message has been suppressed, Drizzle

increments the redundancy coefficient current value by

one. If its value would exceed the initial value of the

redundancy coefficient, k , Drizzle sets it to k .

8. Once the interval I expires, Drizzle decreases its

transmission rate through doubling the length of the

interval providing that the rFlag value is one. If the value

of the rFlag is equal to zero, Drizzle decreases its

transmission rate through entering directly the slowest

transmission rate. In all cases, if the size of the new

interval would exceed the Imax. Drizzle sets the interval

size I to Imax and re-executes the steps from step 2. The

interval counter, then, is increased by one.

IV. PERFORMANCE EVALUATION AND DISCUSSION

In this section, we present an analytical analysis for the

proposed algorithm highlighting its main advantages over the

standardized algorithm for LLNs.

A. Rapid Propagation

One of the observable issues presented in the standardized

algorithm (i.e. Trickle) for routing maintenance in LLNs is

introducing the listen-only period in the first half of each interval

with the goal to solve the so-called short-listen problem in

asynchronous networks. The short-listen problem may turn down

the suppression mechanism of Trickle resulting in significant

redundant transmissions and, thus, limiting the algorithm

scalability [8]. This short-listen problem is illustrated in Fig.

1with three nodes (N1, N2, N3) operating Trickle without the

listen-only period and k=2. You can notice that none of the three

nodes has managed to suppress any DIO due to the short-listen

problem as each node begins transmitting directly after starting

its new interval and resetting its redundancy counter to zero.

Trickle introduces the idea of listen-only period in which a node

must select, t, from the second half of the interval to avoid the

short-listen problem. However, introducing the listen-only period

comes with its own shortcomings. First, the listen-only period will

impose a delay of at least I/2 (i.e. half of the interval) before trying

to propagate the new information. In m-hop network, the inherited

delay will be progressively accumulated at each hop resulting in

an overall delay proportional to the number of hops. Indeed, we

found that turning down of suppression mechanism is not mainly

caused by the absence of listen-only period especially in the

subsequent intervals. Instead, this problem mainly occurs because

the node ignores all the received control messages from the

randomly selected time in the previous interval to the end of that

interval [32].

Algorithm 1 : Drizzle Algorithm

1: procedure Initialization

2: I ← Imin , ck ← k

3: s ← 0, c ← 0

4: n ← 1, rFlag ← 1

5: end procedure

6: Procedure New Interval

7: Start t_Timer as in

[𝑠 ∗
𝐼

𝑛
,(𝑠 + 1) ∗

𝐼

𝑛
]

8: if ConsistentTransmissionReceived then

9: c ← c + 1

10: end if

11: if InconsistencyDetected then

12: I ← Imin , c ← 0

13: n ← 1, s ← 0

14: if InitDODAG , JoinDODAG , or GRepair then

15: rFlag ← 1

16: else

17: rFlag ← 0

18: end if

19: end if

20: end procedure

21: Procedure t_Timer Expired

22: if c < ck then

23: Transmit Scheduled Message

24: s ← s + 1

25: ck ← ck - 1

26: if ck < 0 then

27: ck = 0

28: end if

29: else

30: ck ← ck +1

31: if c > ck then

32: ck ← k

33: end if

34: end if

35: c = 0

36: end procedure

37: procedure Interval Expired

38: if rFlag = 1 then

39: I ← 2 * I

40: if I > Imax then

41: I ← Imax

42: end if

43: else

44: I ← Imax

45: end if

46: n ← n +1

47: end procedure

In Drizzle, the listen-only period is removed in order to

facilitate faster propagation of the new information as each node

would schedule its transmission from the range

[𝑠 ∗
𝐼

𝑛
, (𝑠 + 1) ∗

𝐼

𝑛
] rather than [I/2, I.]. In order to mitigate the

effect of the short-listen problem, Drizzle maintains track of all

the received messages until the next scheduled time slot rather

than the beginning of the next interval. Hence, instead of resetting

the redundancy coefficient at the beginning of each interval,

Drizzle resets it only at the beginning of the minimum interval

and at the randomly selected time, t. The operations of this

behavior is illustrated in Fig. 2. In Fig.2, you can observe that the

three nodes have started their first interval at different times (i.e.

they are not synchronized). Hence, as all nodes randomly selected

transmission slots at the beginning of each interval, N2 and N3

suffers from the short-listen problem and fail to suppress their

transmissions. However, this problem disappeared form the

second interval and subsequent intervals. Looking again at Fig. 2,

you can observe that N1 did not reset its redundancy counter, c,

at the end of the first interval, instead, N1 waited until after its

scheduled transmission slot to reset that counter. Thus, N1 has

suppressed its transmission in the second interval, as the value of

the redundancy counter is still greater than the redundancy

coefficient, k , at the time of taking the transmission decision. This

is not possible with Trickle as at the time of taking the

transmission decision, the redundancy counter would have been

reset to zero. Thanks to these new policies, Drizzle is able to

resolve inconsistencies and propagate the new information much

faster than other algorithms without even suffering from the short-

listen problem, except the first interval, endorsing its energy-

efficiency and scalability.

B. Load-Balancing

The distribution of the overhead evenly among nodes is one of

the primary goals of any routing primitive primarily for the sake

of avoiding disconnected regions in the network, which may lead

to some kind of service disruption. In fact, the uneven-load

distribution among nodes may lead to have some nodes drain their

power faster than other nodes and consequently shortening their

lifetime. For instance, 100 messages evenly disseminated by 100

nodes, does not incur a high cost. However, 100 messages

disseminated only by one node does incur high cost [8] and might

lead to an earlier death of this over-burdened node. This may

have a serious impact on the connectivity of the network as whole

2

2

1

D
 I O

D
 I O

D
 I O

D
 I O

D
 I O

D
 I O

0
1 2

0

0

D
 I O

D
 I O

D
 I O

0

0

0 0

0 0
1

1 2

2

1

1 2

1 2

1

N1

N2

N3

Interval length

Timeline

The redundancy counter,

it is reset to 0 at the start

of each interval
DIO transmission

1 1 2

D
 I O

D
 I O

D
 I O

D
 I O

D
 I O

D
 I O

0 0

0

D
 I O

D
 I O

D
 I O

0

0

0 0

0 0

1 1 2

1

2 1

2 1

2 1

2

2

0

The redundancy counter, it is reset

to zero only after transmitting or

suppressing a DIO.

The redundancy factor, it

is increased or decreased

each interval

Suppressed DIO

N1

N2

N3

Fig. 1. Trickle short-listen problem in three asynchronous nodes; no suppressed transmissions at the absence of listen-only period

Fig. 2. Drizzle operations in three asynchronous nodes; reinforce suppression mechanism even at the absence of listen-only period

especially if the nodes, which drain their power faster, are those

representing the only-route to the base station (bottleneck nodes).

The death of a bottleneck node means disconnecting that part of

the network that forwards its data through that node which affects,

in turn, the reliability of running applications and even denying

some of the network services. In this regard, Drizzle introduces

two mechanisms in order to guarantee efficient load-distribution

among network nodes. First, on the interval-level, a node is given

a broadcast transmission probability according to how many

transmissions it has sent. In other words, the higher the number

of broadcasted transmissions, the lower the probability that a node

would transmit in the current interval. This is has been realized

by introducing the parameters n and s that will allow nodes who

transmitted less messages to select an earlier t for the current

interval so to have more priority to transmit. For example, if the

length of the current interval, I , is 100 s, assuming that the

current interval is the 4th interval, and assuming that three nodes

A, B, and C have 0, 1, and 2 transmissions respectively in the

three previous intervals, (i.e. A has never transmitted any DIO

during the three intervals , B has only transmitted once, and C has

transmitted two DIOs). According to our algorithm the three

nodes should select their transmission slots, t, according to the

equation [s*I/n,(s+1)*I/n] as follows:

At = [0 * 100/4, 1 * 100/4] = [0, 25].

Bt = [1 * 100/4, 2 * 100/4] = [25, 50].

Ct = [2 * 100/4, 3 * 100/4] = [50, 75].

You can observe from the above ranges that A will have a

better chance to transmit in the current interval (i.e. 4th interval)

by selecting t from the range [0, 25].

Second Drizzle allows each node to have its own value for the

Suppression Coefficient, k, referred to as ck. Each node changes

the value of its initial, k , autonomously according to how many

transmissions have been suppressed or sent during the previous

intervals. This is different from that of the standard Trickle

algorithm where a node is given the same broadcast probability

every interval, even though, it might never have had a chance to

transmit. The unequal broadcast probability gives the opportunity

for each node to broadcast its routing information as soon as

possible enabling more efficient discovering of all possible paths

and, distribute load evenly among respective nodes.

C. Simulation Experiments

In this subsection, we compare the proposed scheme with the

standardized Trickle algorithm as well as three Trickle variances

in the literature namely, opt-Trickle [22], Trickle-F [10], and the

adaptive-k (Trickle-Ad) [23] in terms of control-plane overhead,

convergence time, power consumption and Packet Delivery Ratio

(PDR). The compared algorithms have been implemented in

Contiki, a lightweight and open-source operating system designed

specifically for the low-power resource-constrained IoT

devices[33]. Contiki features a highly optimized networking stack

including several IoT standards such as CoAP, UDP, 6LoWPAN

and IPv6. It also features implementations for the RPL standard

fundamental mechanisms including the routing maintenance

mechanism (Trickle) within a library called ContikiRPL[34],

which was used as a ground for our implementation. We used

Cooja, java-based cross-level simulator for the Contiki operating

system, to carry out the simulation experiments. One advantage

of using Cooja with Contiki is that it allows us to emulate the

exact binary code that run on a real mote hardware[35]. Cooja

incorporates an internal hardware emulator called MSPsim [36],

which is used in our simulations to emulate accurately (i.e.

impose hardware constraints) the Tmote Sky platform, an

MSP430-based board with an ultra-low power IEEE 802.15.4

compliant CC2420 radio chip. The Unit Disk Graph Radio

Medium (UDGM) with different loss rates was used in order to

simulate the radio propagation in lossless and lossy networks. At

the MAC layer, we used The CSMA/CA protocol while the

ContikiMac was used at the radio duty cycling (RDC) layer. The

Minimum Rank with Hysteresis Objective Function (MRHOF)

with ETX metric is selected for calculating the ranks of nodes and

building the DODAG due to its efficiency characterizing the

quality of links. At the application layer, we simulate a periodic

data collection application where each node send to the sink one

packet every 60 seconds (the time of sending is randomly chosen

within the 60 seconds period). We have considered in our

simulations uniform and random topologies where nodes are

spread in a square area of 200 x 200m dimensions. The border

router (sink) is placed in the middle of the network. For each

scenario, ten simulation experiments with different seeds are run

in order to get statistically solid results . The graphs show the

average (mean) values of the results and the error bars at the 95%

confidence interval of the mean. The simulation time is selected

to be 20 virtual minutes for each experiment. For brevity, other

simulation parameters are provided in Table II.

TABLE II. SIMULATION PARAMETERS

Parameter Name Values

Number of nodes 100

Redundancy Factor (k) 1,3,5,7,10

Imin (ms) / Imax (ms) 210/220

Simulation time 20 minutes

Data Packet Rate 60 s

Mac/Adaptation Layer ContikiMac/6LoWPAN

Radio Medium Unit Disk Graph Medium (UDGM)

Loss model Distance loss

Loss Ratio 0,10,30,50

Range 30 m

Interference Range 35 m

In the first set of experiments, we compare the five algorithms

in lossy networks under the distance loss model varying the

physical link loss rate between 0% and 50%. The 0% loss rate

means that the network is lossless and as result does not

experience any loss due to signal fading. However, the loss may

still occur due to other factors such as hidden terminals and

collisions. Figs. 3, 4, and 5 show the compared protocols

performance in terms of control-plane overhead, which is defined

here as the number of control messages, power consumption, and

the PDR respectively.

As can be observed from Fig. 3, the compared algorithms

increase their control traffic overhead as the loss rate increases.

However, Trickle’ variances suffer heavily in terms of scalability

in comparison with Drizzle especially when the network is

characterized by higher loss rates. In the worst-case scenario

(50% loss rate), Drizzle registers an overhead rate of

approximately seven times less than that of Trickle while it

registers also an overhead of approximately three times less than

that of Trickle-adaptive. In fact, Trickle-adaptive uses a density-

based mechanism to control the value of the redundancy factor.

Although Trickle-adaptive has managed to reduce the control-

plane overhead compared to other Trickle variances, it is not as

efficient as Drizzle. Trickle-adaptive uses the number of DIO

messages received by a specific node to estimate indirectly the

network density at that node. Although this method might give

approximately accurate estimation for the node degree when the

network is characterized by synchronized intervals among its

nodes, it may suffer from inaccurate estimation in asynchronized

networks. For instance, in asynchronized network, the frequency

of transmission may differ significantly from a node currently in

its minimal interval to another node currently in its maximum

interval. Hence, the node in its minimum interval would transmit

more frequently giving the receiver node an impression that it has

more neighbors than it actually has affecting negatively the

accuracy of the network density estimation at that node. On the

other hand, the superiority of Drizzle can be attributed to its

adaptive suppression mechanism that allows a node to decrease

autonomously its own transmission probability in the current

interval according to how many control messages it has sent

previously. In other words, the higher the control messages a node

has sent, the lower its probability to transmit in the current

interval and, therefore, bringing down the number of redundant

control messages. Another reason behind the lower control-plane

overhead of Drizzle is that it does not gradually double the current

interval each time it receives inconsistent control message. In

several cases, according to the value of the rFlag, Drizzle moves

directly, and not gradually, to the lowest transmission rate

skipping the intermediate intervals and by that suppressing many

redundant transmissions.

The decline in the number of transmitted control messages has

resulted in lower power consumption of Drizzle in comparison

with other algorithms as depicted in Fig. 4. However, it is not with

the same rate of that of control-plane overhead. This is because

the main factor contributing to energy consumption is the

underlying layers’ algorithms and not the number of control

packets. With respect to packet delivery ratio, Drizzle slightly

performs better than all Trickle variances as shown in Fig. 5.

However, it is very important to point that this PDR rate of

Trickle’s variances is obtained through generating more control

packets than that of Drizzle and consuming more power. This

indicates that Drizzle is able to discover optimal paths slightly

more efficient than any Trickle variance, however, with much less

control messages. Fig. 6 compares the algorithms in terms of

convergence time. The convergence time here refers to the time

at which the node has joined the network. Hence, the average

convergence time is the convergence time of all nodes divided by

the number of the nodes in the network. This is different from the

works in [22] [29], where they define the convergence time as the

time at which the last node has joined the network.

Fig. 3. Control overhead under different loss rates (uniform)

Fig. 4. Average power consumption with various loss rates (uniform)

Fig. 5. PDR under different loss rates (uniform)

As can be observed from in Fig. 6, a network running Drizzle

has the fastest convergence time compared to Trickle, Trickle-F

and Trickle-adaptive even when the network suffers from higher

loss rates. The case is somewhat different when considering opt-

Trickle. Drizzle slightly outperforms opt-Trickle in terms of

convergence time. The superiority of Drizzle in terms

convergence time stems mainly from eliminating the listen-only

period that allows the node to schedule its transmission as early

as possible without even experiencing short-listen problem. The

slight degradation of opt-Trickle in lossy network stems from the

fact that it only permits removing the listen-only from the first

interval. In a lossless medium this might not be a problematic as

the probability of DIOs being lost in the first interval is very

small. Thus, having listen-only period in the other intervals

would have no effect on the convergence time. Conversely, the

probability of DIO loss increases in lossy medium. Hence, a DIO

message, not delivered in the first interval, would have to go

through a listen-only period in the subsequent intervals probably

delaying the joining of other nodes. The fact that Drizzle does not

experience the short-listen problem can be confirmed by

observing that Drizzle achieved faster convergence time,

however, with generating much less control messages as

illustrated in Fig. 3. It could be also observed from the results that

the higher the value of loss rate, the slower the convergence time

in all algorithms. This is could be explained by the fact that the

higher the loss rate, the higher the probability that the control

packet would be lost delaying the joining process until the next

successfully received packet.

Fig. 6 Average convergence time under various loss rates (uniform)

Figs. 7, 8, 9, and 10 presents a comparison among the five

algorithms in a random topology with various loss rates in terms

of control overhead, power consumption, PDR and convergence

time respectively. Similarly, the results illustrate that Drizzle has

the least amount of overhead under the various loss rates(e.g.

drizzle has an overhead of approximately four times less than

Trickle under loss rate of 50%). Drizzle has also the least amount

of power consumption, and along with opt-Trickle, it has the

fastest convergence time while featuring relatively a higher

packet delivery ratio.

Fig. 7 Control overhead under different loss rates (random)

Fig. 8 Average power consumption with various loss rates (random)

Fig. 9. PDR under different loss rates (random)

Fig. 10 Average convergence time under various loss rates (random)

In the second set of experiments, we have evaluated the impact

of the redundancy coefficient on network performance in two

variants of LLNs (lossless and lossy with 50% loss rate) in both

random and uniform distributions (showing only the results of

uniform distributions as the random has similar results). As

observed from Figs 11 and 12, it is clear that increasing the

redundancy factor result in higher traffic overhead for Drizzle,

Trickle, opt-Trickle and Trickle-F and in both kinds of networks

(lossy and lossless). A noticeable point here is the behavior of

TrickleAd under varies redundancy values. It seems that there is

no correlation between the initial value of the redundancy factor

and control plane overhead. This is interpreted by the fact that the

value of k is dynamically changed based on the node degree so

whatever is the initial value; it will be decreased or increased to

the extent that reflects the network density at that node. However,

Drizzle still shows the best results in terms of traffic overhead in

comparison with Trickle’s variances including Trickle-Ad under

different values of k cases. The positive correlation between the

value of k and traffic overhead in the compared algorithms

(except TrickleAd) can be explained easily by the fact that the

nodes tend to suppress less messages as the k increases. On the

other side, the superiority of Drizzle in terms of traffic overhead

again can be attributed to the adaptivity of Drizzle’s suppression

mechanism, which allows the nodes to change dynamically their

suppression coefficient according to their transmission history.

Regardless of the initial value of the redundancy coefficient, a

node running Drizzle is able to decrease its version each time it

sends a message reducing its priority to transmit in the next

interval, thus, bringing down the number of unnecessary

transmissions.

A key noticeable point here is the network performance in

terms of Packet Delivery Ratio. While all compared algorithms

achieve approximately similar results in the lossless scenario

whatever is the value of k as illustrated in Fig. 13, the case is

somewhat different when the network is experiencing losses and

low redundancy factor values. Fig. 14 shows that Drizzle

improves the PDR especially with lower values of k by up to 10%

compared to other algorithm. The slightly better performance of

Drizzle in terms of PDR in lossy networks indicates the capacity

of Drizzle in discovering more optimal routes with much less

traffic overhead. The main reason behind this efficiency lies in

the way Drizzle distributes the transmission of control messages

through the network. Drizzle’s adaptive suppression mechanism,

in addition to its slotting mechanism, ensures the fairness in the

distribution of transmitted control messages. The fair distribution

among nodes guarantees the optimal routes discovery for all the

nodes and, thus, improving the packet delivery ratio. It is also

clear from Fig. 15 and Fig. 16 that the superiority of Drizzle over

Trickle’s variances in terms of PDR has been achieved under low

power consumption rates in both networks types (i.e. lossy and

lossless) regardless of the value of the redundancy factor. This is

also can be attributed to the capacity of Drizzle to minimize the

overhead and discovering the optimal routes affecting positively

the power consumption. Pertaining to convergence time, Drizzle

also converges faster than Trickle’s variances under different

values of k , and whether the network is lossless or lossy as

illustrated in Fig. 17 and Fig. 18 respectively. This also is

attributed to the facts explained previously regarding removing

the listen-only period which contributes into enhancing the

convergence time.

Fig. 11. Control overhead under various k (lossy)

Fig. 12.Control overhead with various k (lossless)

Fig. 13. . PDR with various values of k (lossless)

Fig. 14. PDR with various values of k (lossy)

Fig. 15. Average power consumption with various k (lossy)

Fig. 16. Average power consumption with various k (lossless)

Fig. 17. Convergence time under various values of k (lossy)

Fig. 18. Convergence time under various values of k (lossless)

V. CONCLUSION AND FUTURE WORK

In this study, a new routing primitive for route maintenance

called Drizzle algorithm has been proposed for LLNs. Drizzle

relies on the transmission history of nodes to configure their

suppression mechanism. In addition, Drizzle introduces a new

policy for mitigating the negative effect of so-called short-listen

problem with the goal to limit transmission redundancy while

providing faster convergence time and further boost the fairness

in the network. A performance evaluation of the proposed

algorithm in comparison with the state-of-the-art routing

maintenance algorithms has been conducted. The results

highlighted the efficiency of Drizzle algorithm. In addition, we

demonstrated how Drizzle exhibits better load distribution and

scalability in comparison with the standard IETF Trickle

algorithm and its variances. Another direction for future work is

to validate the efficiency of the proposed algorithm in real

testbeds, and networks with different densities under a wide range

of operating conditions.

REFERENCES

[1] J. W. Hui and D. E. Culler, “ Extending IP to low-power, wireless personal

area networks,” Internet Computing, IEEE, vol. 12, no. 4, pp. 37–45, 2008.

[2] T. Winter, P. Thubert, A. Brandt, T. Clausen, J. Hui, R. Kelsey, P. Levis, K.
Pister, R. Struik and J.Vasseur, ”RPL : IPv6 Routing Protocol for Low power
and Lossy Networks”, RFC 6550, IETF ROLL WG, 2012.

[3] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “ Collection
tree protocol,” in Proceedings of the 7th ACM conference on embedded
networked sensor systems, 2009, pp. 1–14.

[4] S. Dawson-Haggerty, A. Tavakoli, and D. Culler, “ Hydro: A hybrid routing
protocol for low-power and lossy networks,” in Smart Grid Communications
(SmartGridComm), 2010 First IEEE International Conference on, 2010, pp.
268–273.

[5] T. Clausen, A. C. de Verdiere, J. Yi, A. Niktash, Y. Igarashi, and U. Herberg,
“ The Lightweight On-demand Ad hoc Distance-vector Routing Protocol -
Next Generation (LOADng),” IETF, Draft, Oct 2012.

[6] L. Pradittasnee, Y.-C. Tian, and D. Jayalath, “ Efficient route update and
maintenance processes for multipath routing in large-scale industrial
wireless sensor networks,” in Telecommunication Networks and
Applications Conference (ATNAC), 2012 Australasian, 2012, pp. 1–6.

[7] H. Jiang and J. Garcia-Luna-Aceves, “ Performance comparison of three
routing protocols for ad hoc networks,” in Computer Communications and
Networks, 2001. Proc.. 10th Int. Conference on, 2001, pp. 547 –554.

[8] P. Levis, N. Patel, D. Culler, and S. Shenker, “ Trickle: a self-regulating
algorithm for code propagation and maintenance in wireless sensor
networks," in First USENIX/ ACM Symposium Networked Systems Design
Implementation (NSDI 2004), San Francisco, CA, Mar. 2004.

[9] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, “The Trickle algorithm,”
RFC 6206, Internet Engineering Task Force (IETF), 2011.

[10] C. Vallati and E. Mingozzi, “ Trickle-F: Fair broadcast suppression to

improve energy-efficient route formation with the RPL routing protocol,” in
Sustainable Internet and ICT for Sustainability (SustainIT), 2013, pp. 1–9.

[11] D. B. Johnson and D. A. Maltz, “ Dynamic source routing in ad hoc wireless

networks. In Imielinski and Korth, editors, Mobile Computing, vol 353, pp.
153–181. Kluwer Academic Publishers, 1996.

[12] D. A. Maltz and D. B. Johnson and Y. Hu. “ The dynamic source routing
protoco (DSR) for mobile ad hoc networks for IPv4”, IETF RFC 4728, Feb

2007.

[13] C. Perkins, E. Belding-Royer, and S. Das, “ Ad hoc On-Demand Distance
Vector (AODV) Routing,” IETF, RFC 3561, July 2003.

[14] T. Clausen (ed) and P. Jacquet (ed), “ Optimized link state routing protocol
(OLSR), “ IETF RFC 3626, Experimental, October 2003,.

[15] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum and L.

Viennot, "Optimized link state routing protocol for ad hoc networks,"

Proceedings. IEEE International Multi Topic Conference, 2001. IEEE
INMIC 2001. Technology for the 21st Century., 2001, pp. 62-68.

[16] J. Moy, “ Open Shortest Path First Routing Protocol (OSPF version 2),” RFC
2328, Standards Track, April 1998..

[17] https://datatracker.ietf.org/wg/roll/charter/

[18] I. Chakeres and C. Perkins, “ Dynamic MANET On-Demand (DYMO)
Routing,” IETF Internet-Draft, draft-ietf-manet-aodvv2-16, work in
progress , May. 2016.

[19] T. Clausen, C. Dearlove, P. Jacquet, and U. Herberg, “ The Optimized Link

State Routing Protocol version 2,” Internet Draft, draft-ietf-manetolsrv2- 19,
work in progress,March 2013.

[20] J. Yi and T. Clausen, “ Collection Tree Extension of Reactive Routing

Protocol for Low-Power and Lossy Networks,” International Journal of
Distributed Sensor Networks, vol. 2014, pp. 1–12, 2014.

[21] J. Chroboczek, “ The Babel Routing Protocol”, RFC 6126, April 2011.

[22] B. Djamaa and M. Richardson, “ Optimizing the Trickle Algorithm,” IEEE
Communications Letters, vol. 19, no. 5, pp. 819–822, May 2015.

[23] T. M. M. Meyfroyt, M. Stolikj and J. J. Lukkien, "Adaptive broadcast
suppression for Trickle-based protocols," The 16th IEEE International

Symposium on A World of Wireless, Mobile and Multimedia Networks
(WoWMoM), Boston, MA, , 2015, pp. 1-9.

[24] O. Gnawali and P. Levis, “ Recommendations for Efficient Implementation

of RPL,” Internet Draft, draft-gnawali-roll-rpl-recommendations-05,Mar.
2013.

[25] J. Hui and R. Kelsey, “ Multicast Protocol for Low-Power and Lossy
Networks (MPL),” RFC 7731, Feb. 2016.

[26] T. Coladon, M. Vučinić and B. Tourancheau, "Multiple redundancy
constants with trickle," The 26th IEEE Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong

Kong, , 2015, pp. 1951-1956.

[27] M. Becker, K. Kuladinithi, and C. Görg, “ Modelling and simulating the
Trickle algorithm,” in Mobile networks and management, Springer, pp. 135–
144,2012.

[28] H. Kermajani, C. Gomez, and M. H. Arshad, “ Modeling the Message Count
of the Trickle Algorithm in a Steady-State, Static Wireless Sensor Network,”
IEEE Communications Letters, vol. 16, no. 12, pp. 1960–1963, Dec. 2012.

[29] T. M. M. Meyfroyt, “ Modeling and analyzing the Trickle algorithm,”
Master’s Thesis, Eindhoven University of Technology, Eindhoven, The
Netherlands, 2013.

[30] Y.-W. Lin and P.-H. Wang, “ Performance Study of an Adaptive Trickle
Scheme for Wireless Sensor Networks,” in Ubiquitous Computing
Application and Wireless Sensor, vol. 331, J. J. Park, Y. Pan, H. -C. Chao,
and G. Yi, Eds. Dordrecht: Springer Netherlands, pp. 163–173, 2015.

[31] B. Ghaleb, A. Al-Dubai, I. Romdha, Y. Nasser and A. Boukerche, "Drizzle:
Adaptive and fair route maintenance algorithm for Low-power and Lossy
Networks in IoT," 2017 IEEE International Conference on Communications

(ICC), Paris, 2017, pp. 1-6.

[32] B. Ghaleb, A. Al-Dubai, E. Ekonomou, “ E-Trickle: Enhanced Trickle
Algorithm for Low- Power and Lossy Networks”, In: Proceedings of the
14th IEEE International Conference on Ubiquitous Computing and

Communications (IUCC). Liverpool, UK: IEEE Communication Society,
October 2015.

[33] Dunkels, B. Gronvall and T. Voigt, "Contiki - a lightweight and flexible

operating system for tiny networked sensors," 29th Annual IEEE
International Conference on Local Computer Networks, 2004, pp. 455-462.

[34] Contik O.S and cooja simulator” http://www.contiki-os.org/.

[35] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne and T. Voigt, "Cross-Level
Sensor Network Simulation with COOJA," Proceedings. 2006 31st IEEE
Conference on Local Computer Networks, Tampa, FL, 2006, pp. 641-648

[36] J. Eriksson, A. Dunkels, N. Finne, F. ̈ Osterlind, and T. Voigt, “ Mspsim an

extensible simulator for msp430-equipped sensor boards,” in Proceedings of
the European Conference on Wireless Sensor Networks (EWSN ’07), Delft,
The Netherlands, 2007.

