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Abstract— Smart Spaces currently benefits from Internet of 
Things (IoT) infrastructures in order to realise its objectives. In 
many cases, it demonstrates this through certain automated 
applications that relies on sensor streams that comes with some 
uncertainties in measurements. However, these sensor data tend 
to be uncertain or fault-prone due to the faults of the sensor 
either themselves or the wireless sensor networks. Sometimes, the 
extreme operating condition of the sensor can be a contributing 
factor to the uncertainty. The proposed approach provides a 
software framework that aims at homogenising, annotating and 
reasoning over these data. The framework consists of four layers 
that utilizes the semantic process involving a domain ontology 
and reasoning process to deliver improved quality data streams 
to applications. This will allow for early detection of missing data 
points and enhancing the accuracy of decisions and actions in 
such spaces. 
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I. INTRODUCTION  
Smart Spaces are- a part of the smart cities ecosystem, 

consisting of a number of connected sensor operated devices 
that are responsible for continuous gathering and exchange of 
large volume of data in real time. These data provides valuable 
insights concerning a given phenomenon within the monitored 
space. A significant issues is that the poor quality of these data 
has a tendency of influencing the type of outcomes of 
intelligent applications and decision support systems [1]. 

Data quality is considered to be fitness for use  of a 
particular data/dataset within a context of interest[2]. Often, 
the transition of these data from physical quantities (e.g. 
temperature readings) to digital space (such as software 
systems) is done with little consideration of poor quality of 
data resulting from various uncertainties. Existing approaches 
to addressing this issue places more emphasis on the adoption 
of statistical techniques and the method of any of the point 
calibrations [3] built with the sensors by the manufacturer. 
However, such calibration levels are not adequate in dealing 
with quality issues relating to data inconsistency, 
untrustworthiness and missing value/data point [4] of data 
streams in  spatiospatial-temporal setting. 

The approach proposed by this work introduces a software 
solution through an architectural framework to resolve the 
uncertainties that results from sensor failure and other 
inconsistencies in readings. The principal element of this 
approach is semantic technology. It considers a specific 
domain ontology for smart spaces, which adapts from previous 
sensor ontologies while emphasizing on the sensor 
measurements. In addition, a non-monotonic reasoning system 
[5] is included to take advantage of the processing window of 
the sensor data stream. The contribution of this approach is to 
improve the accuracy of automated systems and other 
intelligent applications that heavily relies on sensor readings to 
form an insight or make certain decisions about such data. It 
also takes the advantage of improving the discoverability of 
the sensor measurements or reading during certain automated 
processing.  

The remainder of the paper is as follows: section 2 
provides the major objectives for Smart Spaces. Section 3 
detailed description and taxonomy of the data quality 
problems within the smart spaces. List of quality requirements 
is in section 4 and section 5 contains the description of the 
proposed framework for the solution of the quality problem. 
Section 6 presents an overview of the related work. Section 7 
concludes and presents the future direction of the work.   

 

II. SMART SPACE OBJECTIVES 
Smart Space represents an open pervasive environment 

that forms one of the major sources of big data as well as 
member of the smart cities ecosystem. It promotes the 
availability of essential services through data and knowledge 
acquisition concerning an environment while improving user 
experience and decisions [6]. One of the aim of smart space is 
to achieve a ubiquitous environment with embedded sensors 
and computers to enhance human activities and decision-
making process through strong collaboration of pervasive 
digital devices and Internet services. Smart space is also 
required in the development of service construction for end-
user applications and computing environments of Internet of 
Things(IoT) [7]. It is however important to consider the data 



quality as part of the essential requirement that will guarantee 
the defined objectives of Smart Spaces.  

Furthermore, as smart space is a form of service-oriented 
system that delivers user’s need through service construction, it

requires to be semantic driven. In essence it provides the 
description of the resources in the space with their semantics, 

 

Data Uncertainty

Data 
Ambuiguity

Data 
Inconsistency

Data 
Incompleteness

Plausibility

Imprecision

Data loss

Unbounded data 

Data Conflict

Noisy data

Untrustworthiness about 
measurements

Lack of clarity in data, 
inaccurate measurement

Out of range in sensor readings or 
observation

Different readings for a single 
observed phenomena within same 

domain of measurements

Missing data as result of signal loss

Presence of outliers  in data 
streams

Categorisation Sub-
Categorisation Possible Forms

 
Fig. 1: Taxonomy of Data Uncertainty 

III. DATA QUALITY ISSUES 
The desire to improve the service construction of smart 

spaces continues to grow as the cost of sensors continues to 
remain relatively cheap with assurance of achieving an 
efficient ubiquitous computing environment. The high 
volume data produced in this environment is mainly 
generated from the sensor readings. These sensor readings 
have inherent uncertainties. A measure of these uncertainties 
is considered transitive in our proposed taxonomy of data 
quality problems within smart spaces. In this project, a 
taxonomy of the uncertain data in smart space is defined as 
shown in Fig. 1. The taxonomy shows data uncertainty 
along the dimension of vagueness, inconsistency and 
incompleteness of sensor measurements. Inconsistency and 
incompleteness in data is consider to occur at the lower 
layer of the sensor readings while Vagueness is a quality 
problem often experienced at the higher contextual level of 
smart space applications. Earlier study [8] associate quality 
problems relating to imprecision, inconsistency and noise to 
random errors. This type of errors exists distinctively in the 
smart spaces. For example, inconsistency can arise when 
two sensors of the same type deployed within same space 
gives different readings. We define this case of problem as 
Data Conflict in our proposed taxonomy. In a similar 

perspective, investigation by [9] suggest incompleteness in 
sensor reading is mostly  caused by sensor  failure and data 
loss. The accuracy and reliability of sensor measurement is 
dependent on the technique for managing the  plausibility in 
sensor reading  to improve smart city and smart space 
experience [8]. However, going by these rising concerns in 
terms of quality of sensor measurements, the semantic 
approach promises a holistic solution towards addressing the 
problems.  
 

IV. DATA QUALITY REQUIREMENTS FOR 
SMART SPACES 

Data remains an essential ingredient for some category 
of automated systems such as the decision support systems 
and critical systems that heavily depends on sensor readings 
in delivering the services. It is therefore important to note 
that there are some data quality requirements to be satisfied 
in order to deliver a good quality services. These automated 
systems must then ensure data meet one or more of the 
following quality requirements, defined based on review of 
literatures. It is also considered to be essential as part of the 
smart space components. 

 
Accessibility refers to the availability and ease of data 
retrieval within the space despite the heterogeneous or 



multimodal characteristics of devices and data. The current 
deployment of sensors in smart space only allows individual 
sensors to generate theirits own data format unilaterally 
without a common access to all multimodal data. It will be 
necessary to provide an infrastructure for common retrieval 
of homogeneous sensor data and independent of individual 
protocol. 

Accuracy is the degree at to which sensor reading actually 
represents the measured phenomena and the extent to which 
values v from sensor readings belongs to a closed interval of 
−β ≤ v ≤ β, for the absolute systematic error β. It tells how 
closely the output or sensor reading from an instrument or 
device corresponds to its ‘true’ value. For example, a sensor 
calibrated at < ± 0.1% of measurement will mean the actual 
reading will be applied to ± 0.010 units of measurement or 
less. This means that any variation between the ‘true’ values 
is referred to as ‘error’  

Completeness is the extent to which the sensor readings is 
not missing and is sufficient in the ratio of the breadth and 
depth of the data within a particular stream window. For 
example, an active sensor may suffer from intermittent 
signal failure thereby registering wrong values for this data 
point. It is therefore imperative to ensure the missing data 
points are not delivered as part of complete realistic 
measurements 

Consistency refers to the extent to which data produced by 
different sensor is available in the same format without 
undue repetitions for subsequent collaborative or intelligent 
processing. As an illustration, a multiple number of sensors 
of the same type and measuring the same phenomena can be 
placed in the same domain while providing the individual 
readings to a specific application. It important for each 
instance of measurement to be uniquely identified prior its 
consumption by application 

Interpretability refers to the degree of the appropriateness 
and clarity of data in terms of meaning and format. It is 
noticed not all sensor interprets reading in understandable 
forms e.g. some sensor interprets measurements as “0” and 
“1” while interpret using integer and real number values. In 
addition, it will make more sense if the meaning of this 
measurement is part of the processing. 

Plausibility is the extent to which a given sensor reading is 
consider true and acceptable or credible for a given 
measurement. For instance, it may be important to ascertain 
that a sensor such as temperature sensor is actually giving 
the reading of the space and not the temperature of human 
body within the space. 

Timeliness represents the difference in the present 
timestamp of sensor reading and the registering timestamp 
during measurement. The interval of time between when 
sensor measures the real- life event and is available for use 
by other smart space components should be minimal. 
 
 

V. THE PROPOSED FRAMEWORK 

To achieve improved intelligent applications such as 
decision support systems, we present a four-layer software 
architectural framework depicted in Figure 2. The 
framework is designed with the vision of integrating 
heterogeneous data and IoT compatibility in mind. The 
framework considers the smart space as an instance of 
adaptive system capable of gathering and integrating data 
from different sensors (Mostly embedded in heterogeneous 
devices) to enrich sensor measurements, make sense of the 
data and, support decision making systems.  

In specific detail, the data abstraction layer consists a 
number of heterogeneous sensors that produce real time data 
representing different phenomena of interest such as space 
temperature, dew point, humidity, pressure etc. These data 
are processed in conjunction with the modeling and 
integration layer to generate an enhanced data stream in 
form of quadruples. The resulting stream need to be 
aggregated, filtered and reasoned over at the reasoning layer 
to produce a reliable data stream. The intention to provide 
support for producing new knowledge about data as well as 
making more sense of the data to improve quality of 
decisions and actions by applications.     

 
Data Abstraction Layer consists of the aggregator and the 
anomaly detection engine. The aggregator collects raw data 
stream from physical and virtual sensors in the space using 
the Global Sensor Network (GSN) middleware [11]. The 
anomaly detection engine takes it from this point using the 
static knowledge base to perform preliminary data stream 
filtering on data points with quality related problems. 
 
The Modelling and Integration Layer provides a platform 
for the interoperability and integration of heterogeneous data 
and devices in the smart space. It achieves this by 
implementing a domain ontology, which adapts classes from 
Semantic Sensor Network (SSN) ontology [12] and 
Observation and Measurement Schema[13]. The resulting 
ontology is the Smart Space Uncertainty Model 
(SmartSUM).  Our model also includes specific devices and 
components common to smart space environment. Further 
objective of this layer is to provide semantically enriched 
annotated quadruples such as the one in [14], which is a data 
stream format enhanced with individual timestamps. This 
layer also make provision for ontology reuse, which 
represent one of the objective of the Semantic Web. This 
data format contains additional property that represent the 
individual timestamps of each data stream.  The layer also 
provides conceptual knowledge about data streams to the 
immediate upper layer to enhance the reasoning process. 
 
Reasoning Layer is the other essential component of the 
framework that performs the non-monotonic reasoning task 
as required for qualitative automated applications. The idea 
of the non-monotonic in reasoning is the ability of the 
system to automatically retract from previous conclusion 
when the premise changes.  It relies on the domain expert 



knowledge with predefined rules and the semantic annotated 
data streams from the previous layer. The reasoning engine 
takes the advantage of the Continuous SPARQL query 
language [15] to capture the processing window of the 
semantic streams. This is further processed using Jena rule 
Language based on domain expert knowledge about 
identified real life events common to the smart space 
environment. This layer is capable of performing the 
complete reasoning functionalities on various aspect of 
uncertainties as defined in the taxonomy.   
 
The Application Layer contains intelligent or automated 
application programs that rely on sensor generated data 
streams in defining certain actions or events within the 

space. Such tasks are common to applications like the 
decision support systems, critical systems and other data 
sensitive applications. These applications will rely on the 
services provided by the immediate lower layer, which will 
be available through a common Application Programming 
Interface (API).    
        

VI. RELATED WORK 

There has been a risen interest in providing a common 
accessibility to sensor data and its observation. This has 
provided the platform for a large number of applications in 
various  
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Fig. 2: The Proposed Framework for tackling sensor Data Uncertainty with Semantic Modelling and Reasoning 
 
 
domains including the Smart Spaces, Geographical 
Information Systems, Smart health and smart cities as a 
whole. The Open Geospatial Consortium (OGC) provide a 
standard for modelling sensor data through the introduction 
of Sensor Model Language (SensorML) [16], Observation 
and Measurement Schema [13] and Sensor Web Enablement 
(SWE) [17]. These approaches to data modelling are built 
on Extended Mark-up Language (XML). The major 
limitation of the approach is its inability to support 

interoperability and provide semantics to the heterogeneous 
data and devices. It is also considered not suitable for 
providing support for reasoning task in a knowledge driven 
application. To achieve the vision of the new pervasive 
computing and smart applications, the use of semantic 
technologies is seen to be gaining relevance towards the 
realization of this vision.  

Modelling sensor stream using semantic technologies 
involving the use of ontology has proven to be realistic in 



domains such as SSN ontology[12], CSIRO[18], 
SWAMO[19].  The leading standard among these 
innovations is the SSN ontology developed by the semantic 
working group. It contains detail description of sensor types 
and instruments. However, it does not provide the 
description of the sensor reading and void of reasoning 
support for high level IoT applications[20]. Our preliminary 
investigations shows that most ontology developed for 
sensor driven applications in the past only focused on 
specific aspects of domain without careful consideration for 
smart spaces and uncertainties in their data. Many of the 
ontologies [21][22][23] presently developed only considers 
accuracy as being independent of sensor measurement. The 
term accuracy here remains implicit in terms of data quality 
and uncertainty perspective. In addition, their perspective of 
accuracy is condition dependent, which is based on specific 
requirements of the domain being modelled. Although some 
of these ontologies are able to capture the real time 
measurements of the sensor readings, the quality of the data 
is not within the scope of the models. 

Furthermore, the use of SPARQL extensions in 
querying and reasoning over sensor data stream is one of the 
recent contributions to the field of semantic technologies 
[24],[15].  The aspects of reasoning contributed to semantic 
technology but many of the techniques implemented with 
this approach remains non-retractable.    The World Wide 
Web Consortium also contributed by introducing some rule 
languages such as the Semantic Web Rule Language 
(SWRL), Pellet reasoner, Fact++. Most of the reasoning 
systems developed only performs reasoning on ontologies 
but not the data. The initial attempt to address the limitation 
involve the use of a hybrid approach [25]. In principle, a 
hybrid approach will require layering ontologies with non-
DL rules such as Production rules, Complex Event 
Processing (CEP), Logic Programming, etc. This method 
always requires translating the base ontology into a 
corresponding formalism of the rule system. The effect of 
this approach is that it can cause loss of information as result 
of the rules and ontology being treated separately. It is also 
possible that inferences will not be possible based on the 
separation of the ontology and the rules.   The suggestion to 
consider the  combination of rule language with stream 
querying was initially put forward in [26]. An initial 
prototype to realize this vision  is called the StreamRule 
System [5] which specifically targets the Semantic Web. 
The system integrates Continuous Query Evaluation over 
Linked Stream (CQELS)[27] with Answer Set Programming 
(ASP) syntax to achieve the non-monotonic reasoning. The 
limitation of StreamRule is that the configuration of the 
system is specified in XML and fail to support the 
processing of historical data. Furthermore, the  attempt to 
combine the continuous SPARQL with the Semantic Web 
Rule Language (C-SWRL) [28] to enhance non-monotonic 
reasoning is currently subject to investigation under the 
Water Quality Management project. Though the reasoning 
system is yet to be validated against standard reasoning 
engine, it is apparently limited in capabilities to the domain 

of water quality management without consideration for 
uncertainty in the sensor measurement. It will still be 
necessary to consider an appropriate non-monotonic system 
for data quality management and smart spaces. To the best 
of our knowledge, combining the Jena Rule Language with 
C-SPARQL is yet to be subject to consideration.  
 

VII. CONCLUSION AND FUTURE WORK 

The framework described in the previous section of this 
paper can effectively contribute to the accuracy of smart 
space, considered part of the smart city ecosystem. The 
framework can leverage the real time sensor stream to 
deliver a very good quality measurement to associated 
systems such as the decision support system.  

In this paper, an identification of uncertainties attributed 
to sensor readings and measurements in relation to how it 
influences the quality of decision or actions is clearly 
established. It follows a transitive taxonomy of quality 
related problems that can result from the sensor 
measurements and the effects on applications that consumes 
the data. The framework presented is currently being 
developed with initial focus on the development and 
deployment of a generic ontology for smart spaces. The 
development is currently following an iterative method with 
the aim of validating it against a number of use cases.  

Semantic technology has recently provided new waves 
of breakthrough for smart city applications and IoT, which 
enables possible integration of devices and interoperability 
of data. In fact, IoT usage or deployment will require more 
automated systems. However, to enhance the feasibility and 
accuracy of those systems, a good and standardized 
framework as the one already illustrated in this work is 
essential. The future work will consider the introduction of a 
distributed non-monotonic reasoning engine into the 
framework. The validation of the reasoning components 
against previous stream reasoning systems that utilizes C-
SPARQL as part of the internal component will need to be 
established.      
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