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6 Study on the thermal performance of the building envelope 

6.1 Chapter overview 

This chapter presents the experimental work carried out in the outdoor environment to 

test the thermal response of three wall samples to naturally-varying weather conditions 

during summertime. 

SECTION 6.2 illustrates the scope and aims of the experiments and the thermo-physical 

properties of the wall samples tested.  

SECTION 6.3 documents the method followed, the configuration of the testing apparatus 

and the main criteria whereby the large dataset obtained from the field observations 

has been statistically analysed. 

SECTION 6.4 presents the results of the experiments. In particular, SECTION 6.4.1 discusses 

the values of the main thermal-inertia parameters of the walling systems tested (i.e., 

time lag and decrement factor) and thus answers research question ④.  SECTION 6.4.2, 

instead, answers research question ⑤, by exploring the correlation between the inertia 

parameters and some climatological and constructional variables.  This correlation 

analysis permits a deeper insight into the thermal mechanisms that lead three wall 

systems to respond differently to the same thermal inputs. 

Finally, SECTION 6.5 offers a brief summary of the findings detailed in SECTION 6.4. 
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6.2 Scope, aim and objectives of the investigation 

Thermal tests have been undertaken on wall samples constructed with different 

techniques, towards the optimisation of the building envelope.   

The main aims of the tests are: 

 to assess the thermal behaviour of the different wall panels, in terms of the 

instantaneous and time-dependent response during summertime. The study 

focuses on time lag and decrement factor, which define the influence of thermal 

mass on thermal behaviour; 

 to identify the best-performing wall solution for the Scottish climate; 

 to identify the aspects of the Scottish climate and of the construction methods and 

materials employed that most affect the time lag and decrement factor; 

 to provide designers, researchers and construction companies with 

recommendations for the selection and use of the most appropriate methods of 

construction from a thermal point of view. 

Wall systems under study 

The thermal tests have been conducted on three different types of walls: 

 wall B1, a closed-panel timber frame wall. This has heavy-weight cladding 

(concrete blocks). On the internal side of the wall is a service void.  

 wall D1, a cross-laminated-timber wall. Internally, a service void is attached to 

the CLT panel, while the insulation layer is fixed on the external side of the panel 

itself. Acrylic render is the external finish and is supported by gypsum board. 

 wall F, a masonry wall. This is a double-leaf lay-up. The internal leaf has a 

structural role, whereas the external leaf has a cladding function. 

See SECTION 6.3 for further information and APPENDIX F for detailed drawings. 

The colour of the external, acrylic render was light grey, corresponding to RAL colour 

code 7035, and with solar absorptivity circa 0.35. 
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The wall samples had the same theoretical, overall thermal transmittance (or “U-

value”), which is below the maximum value allowed by Scottish Building Regulations for 

external walls in domestic buildings. The U-value was set at 0.21 ± 0.005 W/(m2·K). 

Due to the different lay-up of the walls, each of them has different thermal properties 

(other than the U-value). Total thermal mass is one of the varying parameters. The 

highest thermal mass is contained in wall F (load-bearing masonry). Both the total 

thermal mass and the “effective” thermal mass (i.e., the thermal mass of the layers 

within 100 mm of the internal surface of the walls) have been evaluated. 

The different distribution of various intensive properties across the thickness of each 

wall is shown in FIGURES 6.2 – 6.4. 

 

TABLE 6.1  Thermo-physical properties of the building materials employed for the construction of the three 

walls under investigation. 

 

 

thermal 

conductivity 

density mass-specific 

heat capacity

volume-

specific heat 

capacity  

thermal 

diffusivity 

(W/(K·m)) (kg/m3)  (J/(kg·K)) (J/(m3·K)) (m2/s)

gypsum plasterboard 0.25 927 1000 927000 2.70E-07   

MD concrete blocks 0.45 1450 1050 1522500 2.96E-07  

HD concrete blocks 1.15 1950 1200 2340000 4.91E-07 

gypsum render carrier 0.26 955 1030 983650 2.64E-07 

mineral wool 0.04 45 1030 46350 7.55E-07 

softwood 0.10 390 1700 663000 1.51E-07  

OSB 0.13 650 1700 1105000 1.18E-07 

CLT 0.13 390 1600 624000 2.08E-07 

PUR 0.02 31 800 24800 7.26E-07  

acrylic render 0.20 800 1000 800000 2.50E-07   

vented cavity (50mm) 0.27 1 1008 1008 2.68E-04  

ventilated cavity 0.40 1 1008 1008 3.97E-04 

unventilated cavity (25mm) 0.14 1 1008 1008 1.38E-04  

plastics

air cavities

B1 D1 Fcategory material type

wood-based

Use in wallsDerived intensive 

properties

Fundamental intensive propertiesMaterials

minerals
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FIGURE 6.1  Total, exterior and interior heat capacities (per unit area) of each wall tested. 

 

 
FIGURE 6.2  Distribution of thermal conductivity (left) and density (right) across the thickness of each wall. 

 

 

  
FIGURE 6.3  Distribution of mass-specific heat capacity (left) and volume-specific heat capacity (right) across 

the thickness of each wall. 
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FIGURE 6.4  Distribution of thermal diffusivity (left) and thermal effusivity (right) across the thickness of each 

wall. 
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6.3 Experiment methodology 

The experiments were conducted following the same procedure as that of similar tests 

described in the literature and using an analogous apparatus (in particular, the field 

experiments by Ng (2011), Kaška et al. (2009) and Buratti and Moretti (2005)). 

The tests were carried out in the summer of 2015, for four consecutive months: June to 

September. 

6.3.1 Experimental apparatus 

The tests were conducted in the outdoor environment, in the open space of a testing 

facility1 located in Edinburgh. 

The three wall samples were inserted in an ad-hoc enclosure, specifically-built for this 

purpose, which was divided into three cells. The envelope of the enclosure and the 

internal walls separating the cells were highly thermally insulated (i.e., walls, roof and 

floor offered a surface-to-surface thermal resistance of 4.41 m2∙K/W, equivalent to an 

overall surface-to-surface thermal transmittance of 0.23 W/(m2∙K)). The whole 

enclosure was water- and air-tight.  

The samples to be tested were constructed as small portions of full-scale walls, with real 

thicknesses, and with elevational area equal to circa 2.2 m2, all East-facing. There were 

no obstructions or objects in front of the wall samples or any other side of the enclosure, 

so this was fully exposed to the local weather conditions and solar radiation (i.e., no 

shade). The enclosure was elevated from the ground floor by approximately 400 mm, in 

order to protect the wall samples and the floor construction from any rainwater run-off 

on the ground surface. 

Each cell was accessible by means of doors having the same thermal insulation as the 

enclosure walls and good air-tightness. Each door contained an adjustable ventilator, 

which could be completely closed and, if needed, also insulated on the inside. The 

                                                      

1  Unit 10, Baileyfield Industrial Estate, Baileyfield Crescent, Portobello area, Edinburgh, EH15 1YU. 
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ventilators were protected externally with small overhangs, to prevent wind-driven 

rainwater penetration. 

FIGURES 6.5-6.10 show the configuration of the apparatus.  

Wall samples B1 and D1 were partially prefabricated in a Glasgow-based factory and 

completed on the testing site (with the addition of internal and external linings), 

according to the specifications provided to the construction company. The present 

author supervised the correct assembly of the samples on site and checked that the 

components utilised (their materials, sizes and positions) corresponded to the given 

specifications. Workmanship, both offsite and onsite, was of a good standard. 

Wall F was completely built on site. 

The cell housing wall sample D1 was delimited by the South-facing wall of the enclosure 

(see FIGURE 6.10). In order to prevent lateral heat gains for wall D1 through the Southern 

side of the apparatus, this side was protected by means of a synthetic-fabric sun-blind, 

detached from the outer surface of the wall itself, so as to avoid direct exposure of this 

wall to solar radiation.1  This precautionary measure was taken in order to ensure that 

wall sample D1 (and its cell) would operate under the same conditions as the other two 

walls (and respective cells). 

The apparatus was thermally monitored by means of several sensors. Thermocouples 

(TCs) were installed in appropriate locations to measure: 

 the interior- and exterior-surface temperature of the wall samples; 

 the interior-surface temperature of the other walls of the enclosure; 

 the air temperature outside (in the shade); 

 the air temperature inside each cell. 

The TCs installed inside the enclosure cells were also fixed in their position with adhesive 

tape (at a height of approximately 1.4 m from the finished floor of the enclosure). 

                                                      

1 This configuration did not affect the U-value of the Southern wall; it just provided the desired level of protection 
from sunlight. 
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The 16 TCs were connected to a datalogger placed on a table inside the middle cell. The 

central position of the datalogger allowed a symmetrical configuration and helped 

minimise the length of the TC wires connected to it. The datalogger was connected to 

the mains power supply, but also had a long-lasting battery, which would automatically 

be used in case of black-out, thus guaranteeing continuous electricity supply and 

uninterrupted monitoring and recording of the temperatures. The datalogger produced 

very little heat and therefore should not be regarded as an internal heat source for the 

middle cell. 

 

FIGURE 6.5  Aerial view of the site where the tests have been conducted. Image source: Google Maps, 

ca.2017. 

 

location of 
tested wall 
samples 
(facing East)  

testing facility: 
office & 
workshop 
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FIGURE 6.6  Plan view of apparatus showing location of thermal sensors. (TC:  thermocouple; THM: 

thermohygrometer). 

 

 
FIGURE 6.7  Cross-section (A-A) of the apparatus. 
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FIGURE 6.8  Longitudinal section of the apparatus (B-B). 

 

 

FIGURE 6.9  Photographic views of the apparatus: East-facing side with sample walls (a & c), rear (b) and 

internal cells (d). 

(a) (b) 

(c) (d) 
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FIGURE 6.10  Front view of the apparatus, showing the location of the thermocouples (TCs) placed on the 

outside of the wall samples. 
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6.3.2 Specification and calibration of testing equipment 

TABLE 6.2 offers a description of the instruments used for these experiments. 

TABLE 6.2  Inventory of the instruments used for the thermal tests. 

Quan-
tity 

Device type Product 
name 

Manufacturer’s 
details 

Technical properties 

2 datalogger “Squirrel 
2020-1F8” 

Grant Instruments 
(Cambridge) Ltd 
29 Station Rd 
Shepreth 
Cambridgeshire 
SG8 6GB, UK 
 

16 sensor channels;  
logging speed: 20 readings / sec on 1 
channel only 
int. memory: 128Mb (up to 14 
million readings)   
USB 1.1 & 2.0 compatible 
working environm.: -30 to 65°C, RH 
up to 95% (non-condensing) 
dimensions: 235 mm x 175 mm x 55 
mm  
weight: 1.2 kg 
enclosure material: ABS 
resolution: to 6 significant digits 

16 thermo-
couples  

K-type 
thermo-
couples 

Grant Instruments 
(Cambridge) Ltd 
(same address as 
above) 

one wire made of nickel-manganese-
aluminium alloy 
one wire made of nickel-chromium 
alloy 

1 datalogging 
software 

“Squirrelview” Amber Instruments 
Ltd 
Dunston House, 
Dunston Rd 
Chesterfield, 
Derbyshire,  
S41 9QD, UK 

displays up to 16 channels in real 
time 
data downloader application  
customisable data export for Excel™, 
Lotus™ or other applications 
logger diagnostic 

4 thermo-
hygrometers 

“EasyLog” 
series, “EL-
USB-2” model 

Lascar Electronics 
Ltd 
Module House 
Salisbury 
Wiltshire SP5 2SJ, 
UK 

temperature: 
measurement range: -35°C to 80°C (-
31°F to 176°F) 
internal resolution: 0.5°C (1°F) 
accuracy (overall error): 0.55°C 
(1.04°F) typical (5 to 60°C) 
long term stability: <0.02°C (0.04°F) / 
year 
relative humidity: 
measurement range 
0 to 100% RH 
internal resolution: 0.5% RH 
accuracy (overall error): 2.25% RH 
typical (20 to 80%RH) 
long term stability: <0.25% RH / year 
logging rate: 10 seconds to 12 hours 
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6.3.2.1 Thermocouples 

Thermocouples consist of two thin, metal wires of different chemical composition, 

which are joined at the ends (or “junctions”). Due to the Seebeck effect (occurring when 

two different metals are joined), an electromotive force is generated within a TC, whose 

magnitude depends upon the temperature gradient between its ends (Long, 1999). By 

virtue of this phenomenon, TCs do not need external supply of electricity. 

The TCs utilised were of type “K”, that is, one of the wires was made of a nickel-

chromium alloy2 and the other of a nickel-manganese-aluminium3 alloy. 

The TCs had been individually tested and calibrated in one of the University’s 

laboratories before the apparatus was set up, for a temperature range4 between 0°C 

and +60°C. The calibration process led to the determination of a corrective coefficient 

for each TC, which allowed correct translation of the electrical outputs recorded into 

physical temperatures.  

The calibration was conducted by submerging the TCs into a basin of distilled water of 

known temperature (thanks to the use of a reference, calibrated thermometer). This 

operation was repeated multiple times, so as to avoid systematic errors. During each 

iteration, the temperature of the water containing the reference thermometer was 

measured and the voltage readings from the TCs were recorded.  

For each TC, a linear, parametric voltage-temperature equation was studied, which 

defined the mathematical relationship between the voltage measured by the TC itself 

and the known temperature. Thus, the corrective parameter could be identified for each 

TC, through a least-squares fit of voltage versus temperature. Finally, all of these 

corrective coefficients were uploaded onto, and saved in, the datalogger, ensuring a 

correct conversion from each voltage output to its corresponding temperature. 

                                                      

2  This alloy is referred to as “chromel” (a registered trademark of Concept Alloys Inc.);  its composition is 
approximately 90% nickel and 10% chromium. 

3 Alloy known as “alumel” (another registered trademark of Concept Alloys Inc.); its composition is circa 95% nickel, 
2% manganese, 2% aluminium and 1% silicon. 

4 Temperatures outside this interval would be very unlikely to occur during these experiments. 
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The linear temperature-voltage relationship mentioned above is expressed by the 

following equation: 

𝑇ℎ𝑜𝑡 = 𝑎 ∙ 𝑉𝑂𝐿 

where Thot is the temperature of the “hot junction”5 of the TC (°C), “a” is the corrective 

coefficient (°C/V) found from calibration and VOL is the voltage output (V). 

Since the temperature interval for which the calibration was conducted was relative 

small, a linear relationship between voltage and temperature proved to be of sufficient 

accuracy and a higher-order relationship (e.g., a quadratic polynomial) was unnecessary. 

Two TCs were installed on the outer surface of each wall sample, due to their exposure 

to the elements and susceptibility to being removed by strong winds. These TCs were 

inserted into shallow holes (5mm deep, circa 1.5mm in diameter) drilled into the render 

finish of the wall. This measure allowed protecting the metal ends from direct solar 

radiation (which could have altered the recordings) and keeping them in place more 

safely. Weather-resistant adhesive tape, suitable for outdoor conditions, was used to fix 

the TCs to the render surface. 

The external parts of the TC wires were inserted into flexible, corrugated conduits made 

of plastic, in order to avoid direct contact with sun radiation and consequent 

susceptibility to “lateral” thermal heating. 

6.3.2.2 Datalogger 

A datalogger with 16 channels was used (one channel for each thermocouple), supplied 

by Grant Instruments Ltd. 

                                                      

5 The so-called “hot junction” of a TC is the end that measures the desired temperature. 
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FIGURE 6.11  “Squirrel F-18” datalogger, by Grant Instruments Ltd. Image source: Grant Instruments, 

ca.2017.  

 

6.3.2.3 Thermohygrometers 

Thermohygrometers (THGs) were also installed inside each cell and outside the 

enclosure (in the shade), to provide a further means of monitoring. The internal THGs 

were located at the same height as the TCs. 

The TCs were set to record temperatures every 5 minutes (i.e., 12 times per hour, 288 

times per day), as this was deemed to be the necessary level of accuracy for the 

purposes of the experiments.  

The THGs were set to record temperatures every 10 minutes (i.e., 6 times per hour, 144 

times per day). 

 

 
FIGURE 6.12  “EL-USB-2” thermohygrometer, by Lascar Electronics Ltd. Image source: Lascar Electronics, 

ca.2017. 
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6.3.3 Assessment of errors and uncertainties  

6.3.3.1 Measurement errors 

For the duration of the tests, the experimental apparatus was attentively monitored 

through frequent inspections and maintenance work (where needed), so as to ensure 

that it was functional and operating as intended. 

TABLE 6.3  Description of the error types relevant to these tests. 

Error definition Error characteristics Gravity Uncer-
tainty 

Com-
ments 

Randomness Source 
Random Systema-

tic 
Instrumenta-
tion 

Procedure 

inaccuracy of 
datalogger 

    low ± 0.1°C  

inaccuracy of TCs     low ± 0.5°C  

miscalibration of TCs     low   

decalibration of TCs     n/a 0 decalibration is 
unlikely at the 
operational 
temperatures 
occurred  
during these 
tests 

displacement of TCs 
(by wind) 

    high 0 observations 
when TCs had 
been displaced 
are excluded 
from analysis 

misplacement / 
wrong embedding of 
TCs 

    medium   

data readings     n/a 0  

 
Abbreviations 

TC(s) thermocouple(s) 

 

Due to occasional, very strong winds, some days’ worth of testing was lost, since the 

external TCs were removed from the outer surface of the wall samples. However, the 

days lost were just a small proportion of the overall duration of the tests. The recordings 

from these days were excluded from the statistical analysis of the observation dataset.  

The intensity of solar radiation was not measured during the tests (since it was not 

strictly necessary for the experiments). However, for completeness, this parameter was 

sourced from the Met Office’s database (i.e., measurements taken from its nearest 

observation site, located in Edinburgh Gogarbank). 
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Measurement errors can fall within two main categories: errors arising from the 

inherent properties of the instruments deployed and errors arising from operational 

mistakes: both types are dealt with in the following sections. 

 

Equipment-related errors 

During the calibration process, the uncertainty in TC measurement was determined to 

be 0.5C of reading values. An additional uncertainty of 0.1C of reading values was 

considered, to account for errors in datalogger conversion (due to its resolution). 

 

 
FIGURE 6.13  Mean recording differences between pairs of TCs on the exterior side of each wall, by climatic 

category. 

  

-0.20

-0.10

0.00

0.10

0.20

wall B1  (timber frame) wall D1 (CLT) wall F (load-bearing masonry)M
e

an
 r

e
co

rd
in

g 
d

if
fe

re
n

ce
  (

°C
)

Wall types

RECORDING DIFFERENCE (external thermo-couples)

a b c d ALL (a+b+c+d)



Study on the thermal performance of the building envelope 

18 
 

Operation-related errors 

All equipment pieces were installed and used by rigorously following the manufacturer’s 

instructions and the recommendation found in the literature, from similar experimental 

studies. 

In particular, great care was taken towards the correct positioning and embedding of 

the TCs: 

 in the external TCs: 

o the ends were located inside ad-hoc holes in the wall finish, to avoid 

direct exposure to solar radiation; 

o the ends were only in contact with the wall render and were detached 

from the tape and silicone used to fix the wires to the walls; 

o the external portions of the wires were protected by flexible, plastic 

tubes (to prevent exposure to sunlight);  

o the drilled holes accommodating the TC metal ends were kept dry (i.e., 

no dew or water droplets) and clean from dust or dirt; 

 for the internal TCs, an appropriate type of plastic adhesive tape was used; 

 for all TCs (internal and external), the central position of the datalogger (i.e., 

inside the middle cell) allowed the avoidance of long wires (for both internal and 

external TCs). Short wires are indeed preferred, as they contribute towards more 

reliable and accurate measurements. 

 

6.3.3.2 Uncertainties arising from the test set-up 

As regards the use of the datalogger: 

 measured data was downloaded frequently, in order to prevent the logger from 

stopping new recordings or overriding previous ones; 

 it was often checked that its internal batteries were fully charged, so that they 

would be able to supply electricity in case of mains failure. 

 

 



Study on the thermal performance of the building envelope 

19 
 

In order for the three cells to operate in the most similar conditions as possible: 

 the walls separating the middle cell from the lateral ones were highly insulated; 

 the Southern wall of the enclosure (belonging to cell D1) was sheltered by means 

of an ad-hoc sunblind, to avoid cell D1 from being exposed to extra solar 

radiation in comparison with the two other cells; 

 measurements of the internal-surface temperatures of all cells (except for the 

ones on the inside of the tested wall samples) were attentively monitored, so as 

to guarantee consistency and comparability of testing conditions across the 

three cells. All such differences in temperature were minimal and thus 

considered negligible for the purposes of these tests. In other words, the 

different orientation of the cells did not affect their interior conditions and the 

sun-blind located on the Southern side of the enclosure was successful in 

protecting the cell of wall D1 (CLT) from overheating. 

 

6.3.4 Structure of data analysis   

The data measured was statistically analysed. Due to the variability of the Scottish 

weather, widely differing weather conditions occurred throughout the duration of the 

tests. Cold, rainy days (more typical of spring weather and not very representative of 

typical summertime conditions) were discarded from the analysis. Days that were 

considered typical of summertime, instead, were grouped into four different categories, 

named “a” to “d”, defined in terms of solar energy received by the walls in the morning 

(until 12:30 PM), EAM. 

The climatic categories are as follows: 

 category "a",  EAM ≥ 8 MJ/m2; 

 category "b",   6 MJ/m2 ≤ EAM < 8 MJ/m2; 

 category "c",  4 MJ/m2 ≤ EAM < 6 MJ/m2; 

 category "d",  EAM < 4 MJ/m2. 
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Daily cycles were measured from 07:00 (AM) each day to 06:55 (AM) of the following 

day. The times at which the outer and inner surfaces of the wall samples reached their 

maximum and minimum daily temperatures were used to calculate the time lag (TL): 

𝑇𝐿 =  𝑡𝑇.𝑖𝑛𝑡,𝑚𝑎𝑥 − 𝑡𝑇.𝑒𝑥𝑡,𝑚𝑎𝑥             (ℎ𝑜𝑢𝑟𝑠) 

EQUATION 6.1 

where  tT.ext, max  and  tT.int,max  are the times at which the maximum temperatures 

occurred on the wall’s exterior surface and interior surface, respectively. 

The maximum and minimum temperatures recorded both on the internal and external 

wall surfaces were used to determine the decrement factor (DF), which is dimensionless: 

𝐷𝐹 =
𝐴𝑖𝑛𝑡

𝐴𝑒𝑥𝑡
=

𝑇𝑖𝑛𝑡,𝑚𝑎𝑥 − 𝑇𝑖𝑛𝑡,𝑚𝑖𝑛

𝑇𝑒𝑥𝑡,𝑚𝑎𝑥 − 𝑇𝑒𝑥𝑡,𝑚𝑖𝑛
            (/) 

EQUATION 6.2 

where Aint and Aext are the amplitudes of the daily temperature oscillations on the 

interior and exterior surfaces of the wall, respectively; Tint,max and Tint,min are the 

maximum and minimum temperatures, respectively, on the interior side of the wall; and 

Text,max and Text,min are the maximum and minimum temperatures, respectively, on the 

exterior surface. 
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6.4 Results and discussion 

6.4.1 Quantification of inertia parameters 

For each of the climatic categories, the TL and DF values have been determined and then 

statistically analysed and averaged. The results can be seen in graphic form in FIGURES 

6.14 and 6.15. 

Among the climatic categories defined above, “a” is particularly significant for this study, 

because it includes a wide number of observations and represents the weather 

conditions during which the risk of overheating inside a dwelling is highest. Thus, in the 

following sections, category “a” is considered with particular attention. 

 

6.4.1.1 Climatic category “a” 

In category “a”, wall B1 (timber frame) exhibits a TL of 9.14 hours: this means that the 

highest temperature on the interior side of this wall occurs 9.14 hours after the peak 

temperature has been reached on its outer surface, due to the external inputs 

(convective heat transfer with the surrounding air and, especially, radiative heat transfer 

due to sunlight). This TL-value also means that, if the maximum temperature on the 

outside of the envelope is reached on average at around 09:30 hours on a summer day, 

the interior peak occurs at about 18:30, when the outdoor conditions are about to 

become milder (with the sun being about to set and temperature about to decrease). 

The mean decrement factor of this wall, still within category “a”, is 0.25, which means 

that the amplitude of temperature oscillation on the inner surface is one quarter of the 

amplitude on the outer surface.  

Wall D1 (CLT) shows an average TL of 8.30 hours, meaning that it takes this length of 

time for the temperature wave to pass from the outside to the inside of this 

construction. Wall D1’s decrement factor is 0.15: this indicates that the temperature 

oscillation on the interior finish of the wall is 15% of the oscillation measured on the 

rendered surface outside. 

Wall F (load-bearing masonry) exhibits a mean time lag of 8.00 hours and a decrement 

factor of 0.11. The latter parameter means that (within the outdoor conditions of 
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category “a”) the temperature swing on the inside corresponds to the outer swing 

reduced by as much as 90% circa. This occurs thanks to the wall’s high thermal mass, 

concentrated in the outer leaf (medium-density concrete blocks) and especially the 

inner leaf (high-density concrete blocks, which possess not just increased density, but 

also increased heat capacity in comparison with the medium-density equivalents). 

 

 
FIGURE 6.14  Mean time-lags for each wall and climatic category. Error bars show ± 1σ (i.e., ± one standard 

deviation) around the mean. 
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FIGURE 6.15  Mean decrement factors for each wall and climatic category. Error bars show ± 1σ (i.e., ± one 

standard deviation) around the mean. 

 

In category “a”, all three walls show a TL ranging between 8.00 and 9.14 hours (see 

FIGURE 6.14): a rather narrow interval. However, if the TLs of the two timber walls are 

compared with that of the masonry alternative, it can be seen that, surprisingly, the TL 

is shorter in the latter. While wall D1 (CLT) only shows a marginal change6 of +4% in TL 

(equivalent to +0.31 hours) relative to wall F; wall B1 (timber frame) exhibits a more 

substantial increase of +14% (corresponding to +1.14 hours) with respect to F. This is 

particularly interesting, considering that B1 and F share roughly the outer half7  of their 

build-ups: both of them, indeed, have medium-weight cladding (i.e., rendered 

blockwork). This means that the inner part of the wall composition is the decisive 

parameter leading to the mentioned difference in TL: in other words, the timber-frame 

panel, combined with the interior service void, has greater capacity to slow down the 

                                                      

6 Relative differences in TL, between B1 and F, are calculated as  (TLB1-TLF)/TLF  and expressed in percentage terms.  

Relative differences in DF are calculated as (DFB1-DFF)/DFF.  Analogous formulas have been applied for relative 
differences between D1 and F. 

7 Walls B1 and F also share the innermost layer: 15mm-thick plasterboard. 
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propagation of the heat wave than the combination of rigid insulation and heavy-weight 

blocks on the inside of wall F.  

When the decrement factors are compared, the situation seems to reverse. In regard to 

this parameter, indeed, the best-performing wall is, by far, wall F (masonry) with a 

decrement factor as low as 0.11. The two timber walls offer less reduction in 

temperature-swing amplitude: wall B1’s decrement factor is +139% greater than that of 

wall F (a change corresponding to +0.15), whereas wall D1 shows a change of +41% 

(equivalent to +0.04) relative to wall F. 

Therefore, as far as the DF is concerned, CLT compares much more favourably with the 

masonry alternative than does timber frame, even though timber frame and masonry 

have a more similar wall build-up and, as discussed above, the comparison of TLs 

showed a better result for timber frame than it did for CLT. 

The reason for this type of behaviour might lie in the fact that wall D1, in comparison 

with B1, has a very different mutual position of components with high thermal mass 

and components with high thermal resistance. In wall D1, indeed, the insulating layer is 

much closer to the outer surface than is thermal mass (the latter being provided by the 

solid-timber panels). In the timber-frame wall, instead, the temperature wave finds the 

thermal-mass layer first (blockwork) and then the thermal-resistance layer (mineral 

wool in between the studs). This difference in lay-up between B1 and D1 seems to have 

such important repercussions on the ability of the walls to reduce the magnitude of the 

temperature swings on their inner surfaces.   

These results also seem to agree with those obtained in previous theoretical and/or 

experimental studies (such as Zhou et al., 2008 and Ozel and Pihtili, 2007). These 

researchers have indeed concluded that placing most of the insulation on (or near) the 

outside of the envelope results in a decrease in DF. However, as was discussed in SECTION 

3.3, there is no scientific consensus on this matter, to the extent that other authors (e.g., 

Al Sanea and Zedan, 2001; Al Sanea et al., 2012), have reached opposite conclusions and 

argue that placing the insulation layer on the inside of external walls yields lower, thus 

preferable, DFs. 
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It is also worth noticing that the innermost layers of both B1 and D1 are exactly the 

same: a service void finished with plasterboard, while wall F has no such void (since 

domestic services can easily be run inside ad-hoc chases created within the thickness of 

the concrete blocks). 

 
FIGURE 6.16  Comparison of walls B1 and D1 with reference wall F, in terms of time lag (percentage relative 

differences), for climatic categories “a” to “d”. 

 

 
FIGURE 6.17  Comparison of walls B1 and D1 with reference wall F, in terms of decrement factor (percentage 

relative differences), for climatic categories “a” to “d”. 
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6.4.1.2 Climatic categories “b”, “c” and “d” 

If both the TL and DF results of each wall are compared across climatic categories, it 

becomes evident that moving from category “a” to “d” entails a gradual reduction in 

time lag and an increase in decrement factor. This is because the dynamic response of 

the walls varies as a function of the climatic conditions to which they are exposed. This 

aspect will be discussed in more detail in SECTION 6.4.2. 

With regard to wall B1 and categories “b”, “c” and “d”, the TL assumes decreasing values 

of 7.13, 5.37 and 3.24 hours, respectively; whereas the DF takes values of 0.26, 0.29 and 

0.37, respectively.  

A very similar trend can be observed for wall D1, whose TL varies from 8.30 to 2.49 

hours corresponding to categories “a” and “d” respectively; while its DF varies from 0.15 

(“a”) to 0.25 (“d”). 

Finally, the parameters of wall F assume TL values ranging between 8.00 and 1.27 hours 

and DF values between 0.11 and 0.17, from “a” to “d”, respectively.  

If the TL range intervals (from category “a” to “d”) of the different walls are compared, 

it can be noted that walls B1 and D1 exhibit a similar range width8 (ca. 6.0 hours), 

whereas wall F shows a wider TL interval (almost 7.0 hours). As regards DF intervals, 

these are again similar for walls B1 and D1, but shorter for wall F. Thus, wall F exhibits 

greater variance for TL and smaller variance for DF – across the climatic categories – 

than the other two walls. 

By comparing the results obtained under different climatic conditions, it can then be 

concluded that the DF is much less sensitive to changes in such conditions than is the TL. 

This also indicates that the magnitude of the DF is mostly a function of the inherent 

properties of the envelope’s construction: changes in outdoor conditions can affect this 

parameter but not as much as observed for the TL.  These conclusions are confirmed by 

the more accurate correlation analysis carried out in SECTION 6.4.2 and are in agreement 

                                                      

8 Even though the upper and lower limits of these intervals differ, especially for the DF. 
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with the findings of other authors, such as Sun et al. (2013), Ozel (2013) and Kaşka et al. 

(2009).  

6.4.1.3 Optimisation of time lag and decrement factor 

The data analysis reported in the previous two sections suggests that the dynamic 

interaction between layers with very good thermal resistance and others with very high 

thermal mass leads to a situation in which the TL and the DF are not optimised 

simultaneously within the same construction method. This evidence supports the 

findings from previous studies9 according to which a wall that offers the best TL does 

not necessarily offer the best DF too (as is often believed in the construction industry, 

when transient heat conduction is overly simplified and schematised).  

However, since the wall samples tested in these experiments show only modest 

variation in TL and more marked disparity in DF, it can be said that, in this specific 

instance, the parameter that better expresses the differences in the inertia-related 

response is the DF. 

 

6.4.2 Correlation between inertia parameters and other variables 

This section aims at answering research question ⑤ by presenting the analysis that has 

been carried out to understand the variables and the thermal mechanism that, for the 

walls tested, have led to the results shown in SECTION 6.4.1.  

Specifically, the analysis aims at understanding: 

 which layers/materials inside the build-ups could be changed or specified 

differently to improve the thermal response of the walls; 

 which climatological values, in the Scottish climate, are particularly significant 

and should be factored in when predicting the thermal behaviour of walls related 

to their thermal inertia. 

                                                      

9 Kontoleon et al., 2013; Kontoleon and Bikas, 2007; Al Sanea and Zedan, 2001; Al Sanea et al., 2012. 
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The correlation has been assessed between TL and DF values and other parameters, 

namely: 

 correlation with amount of global solar energy received per unit area, EAM; 

 correlation with thermal capacity of the walls, and, in particular: 

o correlation with total thermal capacity of the walls (i.e., including the 

whole build-ups of the walls);  

o correlation with so-called “effective” thermal capacity of the walls (i.e., 

relating to the components within 100 mm of the inner surface) 

o correlation with external thermal capacity of the walls (i.e., relating to 

the components within 100 mm of the outer surface). 

6.4.2.1 Correlation with solar energy 

Correlation between TL and solar energy 

The functional relationship between TL and solar energy has been investigated by 

performing regression analysis through the least-squares method. This involved defining 

a linear regression model for each wall, and checking its “goodness of fit”. 

The model equation has been tested by various means: 

 checking the correlation coefficient, r; 

 checking the coefficient of determination, r2; 

 checking the adjusted coefficient of determination, r2
adj; 

 checking the standard error of the estimated values; 

 graphic methods, examining various types of plots of the values obtained 

through regression: 

o plots of the residuals (or errors) against the independent variable, EAM; 

o plots of the residuals against the estimated TL-values. 

APPENDIX Q provides the definitions and formulas used for the statistical and regression 

analyses conducted for this thermal study, while APPENDIX R offers a summary (in 

tabulated form) of the statistics of each regression analysis. 
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The regression analyses show that, for all three walls, the correlation coefficients are 

positive, as was expected, and are closer to 1 than they are to 0, which is an indication 

of strong linear relationships between TLs and solar energy.  

 

FIGURE 6.18 Regression-analysis plots for the time lag of wall B1: TL versus solar energy with regression line 

(a), residuals versus solar energy (b) and residuals versus estimated TL (c). 

 

The regression-analysis plots for wall B1 are shown in FIGURE 6.18, those for walls D1 

and F are provided in APPENDIX S. 
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The coefficients of determination are very high (about 0.95 for all walls). However, it has 

to be kept in mind that a high r2-value indicates a robust correlation, but not necessarily 

a very good fit of the model (Madsen et al., 2011, p. 114). Indeed, in the plots of TL 

versus EAM (e.g., FIGURE 6.18a for wall B1), it can be seen that not all points are extremely 

close to the regression lines. 

By analysis of the residual-versus-EAM plots for each wall (FIGURE 6.18b for B1), it can be 

appreciated that there is no particular pattern in the point distribution: the values are 

randomly scattered around the horizontal line y=0. Thus, the good functional 

relationship between TL and EAM is confirmed. 

Analysis of the other plots (i.e., residuals against estimated TL-values) for the three walls 

leads to similar considerations (FIGURE 6.18c for B1); hence, it can be concluded that 

these graphic verification confirms the strength of the correlation between TL and EAM. 

EQUATIONS 6.3, 6.4 and 6.5 represent the regression models for B1, D1 and F, 

respectively: 

𝑇𝐿𝐵1 = 0.95 ∙ 𝐸𝐴𝑀 

EQUATION 6.3 

 

𝑇𝐿𝐷1 = 0.87 ∙ 𝐸𝐴𝑀 

EQUATION 6.4 

 

𝑇𝐿𝐹 = 0.80 ∙ 𝐸𝐴𝑀 

EQUATION 6.5 

 

Correlation between DF and solar energy 

An analogous procedure to the one described above was followed to investigate the 

relationship between DF and EAM. 
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EQUATIONS 6.6, 6.7 and 6.8 express the regression models for B1, D1 and F, respectively: 

𝐷𝐹𝐵1 = −0.012 ∙ 𝐸𝐴𝑀 + 0.37 

EQUATION 6.6 

 

𝐷𝐹𝐷1 = −0.012 ∙ 𝐸𝐴𝑀 + 0.27 

EQUATION 6.7 

 

𝐷𝐹𝐹 = −0.008 ∙ 𝐸𝐴𝑀 + 0.19 

EQUATION 6.8 

The equations for B1 and D1 are very similar, whereas the equation for F signals the 

fact that the regression line for this wall is more horizontal. 



Study on the thermal performance of the building envelope 

32 
 

 

FIGURE 6.19  Regression-analysis plots for the decrement factor of wall B1: DF versus solar energy with 

regression line (a), residuals versus solar energy (b) and residuals versus estimated DF (c). 

 

FIGURE 6.19 shows plots of the DF-values against solar energy and the regression line for 

wall B1; for buildings D1 and F, see analogous graphs in APPENDIX S. 

The quality and significance of the models obtained for the DF has been assessed by 

using the same analytical and graphic diagnostic tools as for the TL. 

For the DF, the strength of the functional correlation with solar energy is weaker in all 

walls than it is for the TL.  
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The correlation coefficients for the three walls take values around -0.5, thus showing a 

negative correlation that is not very strong. Accordingly, the coefficients of 

determination are rather low for all walls. The plots of the data from the regression 

procedure, however, are good and do not reveal any significant problem with the fitted 

model (FIGURES 6.19b and 6.19c for wall B1): the plotted points, indeed, do not follow 

any particular pattern and are randomly distributed about the x-axis. 

It can be thus concluded that there is a functional relationship between solar energy 

(EAM) and both the TL and DF, but this reaches a higher level of statistical significance for 

the TL. These conclusions seem to confirm some findings from previous research 

(especially the work conducted by Sun et al. (2013), Ozel (2013) and Kaşka et al. (2009)), 

as also mentioned above. 

It is worth keeping in mind that solar energy was not measured at the experiment site, 

but at the closest weather station; therefore, there is some “noise” in the values used 

for this study. It seems then reasonable to assume that, if the actual values of solar-

energy received at the testing facility had been available, they would have probably 

shown a stronger relationship with the TL and DF in these regression analyses. 

6.4.2.2 Correlation with thermal capacity 

The correlation between the overall thermal capacities of the three walls with the 

inertia parameters appears very weak for both TL and DF. The same can be said of the 

correlation with the thermal capacity of the outermost layers (100 mm). 

The strongest correlation identified is, by far, that between TL/DF and the thermal 

capacity of the interior layers of the walls: the walls with higher concentration of 

thermal mass on the inside exhibit a greater capability to attenuate the amplitude of the 

heat wave crossing them. FIGURE 6.20 illustrates this finding. 

The comparison between walls B1 and D1 becomes particularly significant and 

illustrative of how thermal mass works. Wall D1 has approx. half the total thermal 

capacity of B1,10  but exhibits much better decrement factors. This is the result of a 

                                                      

10 The total heat capacities (per unit area) are 210 and 104 kJ/(m2·K) for B1 and D1, respectively. See FIGURE 6.1 in 

SECTION 6.2. 
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concentration of thermally-heavy materials towards the inside of D1’s build-up, which 

leads to about double interior thermal capacity11 (FIGURE 6.20). In other words, although 

D1 is a light-weight wall, with much lower overall heat capacity than B1, its (modest) 

thermal mass is concentrated where it is most effective to achieve a better reduction in 

temperature swing on the inside; thus, D1 outperforms heavier B1, in terms of DF.  

However, it was shown that – despite the differences in the distribution of thermo-

physical properties across walls thicknesses – wall B1 achieves a better time lag than 

D1, though by a small margin. If B1 and D1 did not have an equally-detailed service void 

on the inside, their interior heat capacities would differ more widely;12  therefore, it 

seems reasonable to envisage that D1 would achieve an even-better DF than B1.  

When D1 and F are compared, one can see that their interior heat capacities differ 

drastically: there is a 4:1 ratio between the capacities of F and D1. However, this is not 

fully reflected in the DF results, where the differential is much narrower (with ca. a 2:3 

ratio between the values of F and D1).  

 

 
FIGURE 6.20  Average DF-values of each wall, plotted against the heat capacity (per unit area) of its inner 

layers (i.e., innermost 100 mm). 

                                                      

11 The interior heat capacities (per unit area) are 25 and 51 kJ/(m2·K) for B1 and D1, respectively.  

12 D1 would have an even-greater inner thermal capacity than B1, thanks to its massive wood panel. 
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6.4.2.3 Correlation between TL and DF 

For all the walls, the values of TL and DF calculated for each observation (i.e., for the 

same daily cycle) have been plotted against each other: see FIGURES 6.21 to 6.23. These 

plots show the presence of several outliers, but also confirm that TL and DF have a 

negative correlation, such that, when one increases, the other decreases. 

 

 
FIGURE 6.21  Plot of DF-values against TL-values of wall B1, for each observation of the experiments, with 

trend line. 

 

 

 
FIGURE 6.22  Plot of DF-values against TL-values of wall D1, for each observation of the experiments, with 

trend line. 
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FIGURE 6.23  Plot of DF-values against TL-values of wall F, for each observation of the experiments, with 

trend line. 

 

6.4.3 Further reflections on findings and thermal optimisation of timber 

walls 

In SECTION 2.2, it was mentioned that the general public in Scotland – as well as in the 

rest of the UK – has a marked preference for heavy-weight types of exterior wall 

cladding. These can be easily achieved through blockwork, as in the case of the samples 

tested, or brickwork. Such a preference leads to the frequent construction of walls that 

have a higher overall thermal capacity than their light-weight counterparts, but these 

experiments have shown that the amount of thermal mass located on the outside of the 

walls does not significantly affect the magnitude of the inertia parameters (either time 

lag or decrement factor). Thus, such an increase in weight of the construction does not 

lead to enhanced thermal performance (at least within the aspects embraced in this 

study) or increased adaptability of domestic buildings to climate change and the 

overheating risk associated with it.  

This aspect of construction becomes problematic from a thermal viewpoint, in that a 

very close thermal performance would still be obtained with less consumption of 

building materials.  

Furthermore, it could be argued that, if the materials providing thermal capacity were 

placed in a different location within the wall’s build-up, they could bring added value in 

terms of response to climate change. It is possible, indeed, to construct timber-frame 
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walls in which the types and quantities of materials employed are very similar to those 

of B1, but the inner leaf and outer leaf are in a reverse position. In other words, the 

timber-frame panels maintain their load-bearing  function, but are placed on the outside 

of the wall; whilst the masonry leaf is placed on the inside, where its elevated thermal-

storage capacity offers benefits in terms of thermal inertia and consequent attenuation 

of outdoor temperature fluctuations. Such a novel type of construction13  has been 

studied by Page et al. (2011), who have characterised it thermally under Australian 

weather conditions, in summertime. The experimental campaign conducted by these 

authors has demonstrated the effectiveness, in terms of thermal behaviour, of this 

unconventional method of construction, thanks to the presence of internal thermal 

mass. It would then be useful to test the benefits of such a walling system in the British 

climate. 

It has to be said that this  building technique, as a variation of timber-frame construction, 

would probably be more complex in terms of physical realisation, due to practicalities 

such as the foreseeable difficulty of the heavy leaf being on the inside of the envelope 

and the need for building operatives with adequate training.  

In consideration of the LCA burdens14 generated by the use of plastic membranes (to 

protect the wood-based inner leaf and insulation layer, where applicable, so as to avoid 

interstitial condensation from the water vapour produced inside a dwelling), the 

inversion of the two wall skins would probably be beneficial in this respect, too. The 

presence of a masonry layer on the inside of external walls, would indeed remove the 

need for any vapour-control layers. This could, in turn, lower the impacts of the walls in 

terms of acidification, eutrophication and photochemical creation of ozone. 

At a more general level, it is noteworthy that the presence of a masonry layer (be it on 

the outside or inside of the wall) coupled with a timber-frame panel inevitably reduces 

the overall level of offsite construction that can be achieved (at least with mainstream 

equipment or building capacity). This results in loosing some of the benefits from offsite 

                                                      

13 In the cited study, this wall system is referred to as “insulated reverse brick-veneer wall”. It consits of (from the 
outside in): acrylic render, fibro-cement board, timber frame, brick skin, render. It is not described as one of 
Australia’s standard construction systems. 

14 See discussion in SECTION 5.6.3. 
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methods,  due to transportation of heavy materials, resorting to “wet” techniques and 

wet trades, longer duration of onsite operations, potential losses in the quality of the 

working environment for the operatives, in the quality of the build, and so forth. 

  



Study on the thermal performance of the building envelope 

39 
 

6.5 Summary of findings 

Three walling systems (closed-panel timber frame, B1; cross-laminated-timber panels, 

D1; and load-bearing masonry, F) have been thermally monitored during summertime, 

in Edinburgh.  Statistical analysis of the data collected during the experiments has led to 

the following findings and considerations: 

a) when the outdoor weather conditions are more exacting (and cause higher risk 

of overheating of the interior spaces), the time lags of the three walls are all 

rather good (that is, high) and while they do differ from one another, they do so 

within a relatively narrow range (i.e., 1.14 hours maximum difference); 

b) the best-performing construction in terms of TL is closed-panel timber frame 

(wall B1), with a time shift of 9.14 hours. This means that the temperature wave 

propagates from the outer to the inner surface in slightly over 9 hours, which is 

a satisfying result for an East-facing wall, since the peak temperature on the 

interior side of the wall occurs when the thermal conditions outdoors start to 

become milder, as the evening approaches; 

c) the best-performing build-up in terms of DF is that of wall F (load-bearing 

masonry), thanks to its high thermal mass, both on the inside and outside of its 

configuration (due to the double block skins, with a central cavity). The DF of wall 

F is 0.11, meaning that the amplitude of the temperature swing on the interior 

surface of this wall is 11% of the amplitude on the outer surface; 

d) the differences in DF between the three walls are much more pronounced than 

the differences in TL (within the same climatic categories); 

e) in the comparison between different walling systems, TL and DF might not 

achieve their best value simultaneously, that is, for the same wall. This is 

contrary to the simplifying assumption, frequently made by professionals in the 

construction industry, that the two inertia parameters are necessarily (or easily) 

optimised within the same system included in the comparative judgement. This 

concept is in accordance with findings from other researchers (Kontoleon et al., 

2013; Kontoleon and Bikas, 2007; Al Sanea and Zedan, 2001; and Al Sanea et al., 

2012). 
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f) the positioning of thermal mass on the inside and thermal insulation on the 

outside of a wall’s make-up tends to improve the DF (as is the case, within this 

study, for CLT in comparison with timber frame). Thus, the present study seems 

to confirm the thesis presented by other authors (Zhou et al., 2008; and Ozel and 

Pihtili, 2007) that, when a single layer of insulation is incorporated in a wall (as 

opposed to multiple layers), the best performance is achieved if the insulation is 

placed on the outside (for a similar amount of thermal insulation and thermal 

mass, as in walls B1 and D1 in this study). However, in other investigations (Al 

Sanea and Zedan, 2001, and Al Sanea et al., 2012), opposite conclusions have 

been drawn. 

g) the DF appears to depend less on climatological conditions than the TL, as also 

argued by some other researchers (Sun et al., 2013; Ozel, 2013 and Kaşka et al., 

2009). The DF, indeed, seems to depend more on the physical properties of the 

envelope’s build-up than on the climatological profile of the site. 

h) there is a rather strong, linear positive correlation between the TL of a wall and 

the thermal input that it receives (especially solar energy). Therefore, in 

transient conditions, the dynamic response of a wall is commensurate with the 

energy input it has received in the previous hours. 

i) the DF of a wall shows a robust correlation with the amount of thermal mass 

positioned in its inner layers (interior thermal capacity). The thermal capacity of 

the whole thickness of a wall and the capacity of its outer layers seem to have a 

limited effect on the time lag and decrement factor. 

Points a) to e) answer research question ④ (formulated in CHAPTER 1); points f) to i), 

research question ⑤. 
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7 Conclusions and future work 

7.1 Chapter overview 

This chapter provides final considerations on the findings of this research and their 

implications1 for the housing and timber-construction sectors. In particular, SECTION 7.2 

identifies important linkages between the key findings relating to mitigation of climate 

change and adaptation to it, which derive from the two strands of work on LCA and 

thermal characterisation, respectively. 

SECTION 7.3 reflects on how the framework, methodology and methods of this 

investigation have allowed answering the research questions and tackling the 

methodological problems and criticalities identified through the literature2 review. Such 

criticalities include, inter alia, issues of potential comparison of the findings of this 

research with past or future studies by other authors and the adequacy of their 

generalisation to other building types. The advantages of carrying out a multi-impact 

LCA are also discussed, as opposed to studies that solely focus on one or two impacts 

(e.g., “carbon footprints”). 

SECTION 7.4 embraces the wider context of this research, by discussing the implications 

of the findings for various aspects and actors of the construction industry: from the 

manufacturing of timber-based constructional systems, to housing-design practice and 

the legislative framework at the level of building control. 

Finally, SECTION 7.5 outlines some research pathways that could be followed to take this 

investigation forward, overcome some of its intrinsic limitations, and augment its 

contribution to knowledge by building upon its findings and continuing to use, where 

appropriate, the research framework illustrated in this thesis.  Such suggestions aim at 

                                                      

1 See SECTION 5.8 for a complete summary of the findings that answer the research questions on LCA, i.e., ①, ② and 

③ as articulated in CHAPTER 1, and SECTION 6.5 for the findings that answer the research questions relating to thermal 
inertia, i.e., ④ and ⑤. 

2 See SECTION 3.2. 
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capitalising on the experience of this research project and on the efforts and resources 

that were put into it. 

 

7.2 Response to climate change: mitigation and adaptation 

The fact that, within this research, both an LCA and thermal experiments have been 

carried out on three external walls (B1, D1 and F) has allowed evaluating them from 

two complementary points of view: their contributions to mitigation of, and adaptation 

to, climate change.  

In terms of mitigation to climate change (measured in GWPexcl.seq.) in the cradle-to-gate 

stage, it has been seen3 that the best-performing system is the timber-frame wall (B1), 

thanks to its lowest carbon emissions, followed by the masonry wall (F). When it comes 

to adaptation to climate change, instead, the situation is almost reversed: the three wall 

systems have shown relatively-similar time lags, but much greater variation in 

decrement factors. Thus, it is deemed sensible, in this specific context, to consider the 

results obtained in terms of decrement factors as those that best represent the 

difference in overall thermal response of the walls. 

Therefore, it can be inferred that the masonry wall contributes more strongly than the 

other two walls to adaptation to a warming climate (followed by the CLT wall, D1), by 

virtue of its capacity to buffer the oscillation of internal temperatures and thus provide 

thermal comfort to occupants.  

In addition, it should be noticed that a wall technique that allows direct benefits towards 

adaptation to increasingly-warmer summers also offers indirect beneficial effects 

towards mitigation. Indeed, by providing inhabitants with increased thermal comfort, a 

masonry wall such as F reduces the probability that they will resort to air-conditioning 

systems during the summer. Less reliance on mechanical systems, in turn, will entail 

significant energy savings and reduction in the carbon emissions arising from the 

                                                      

3 See SECTION 5.6.2. 



Conclusions and future work 

 

43 
 

production of electricity. Ultimately, these savings in carbon would constitute further 

mitigation of climate change. 

In other words, an effective passive cooling system for the building envelope with 

elevated thermal mass and inertia can, in summertime, contribute directly to adaptation 

to climate change and, indirectly, to its mitigation. 

In addition, the avoided use of an air-conditioning system reduces reliance upon the 

electricity mix and, consequently, dependence on monetary fluctuations and foreign 

countries. 

The considerations above also point out the complementarity and the multiple linkages 

that can be revealed by carrying out LCAs and thermal evaluations of the building 

envelope simultaneously and indicate that the research framework devised for this 

study enables to capture, at least partially, the complexity of the interaction between 

climate change and housing.  

Furthermore, since the environmental impacts during the occupation phases of a 

building are mostly related to space heating and/or cooling, it becomes vital to have an 

experimental component in such studies. LCAs that solely rely on numerical simulations, 

with no comparison with, or validation against, measured data, are prone to under- or 

over-estimation of the building envelope’s performance. Such an error would inevitably 

compromise the calculation of consumed electric energy and associated polluting 

emissions. The experimental component of this investigation aims at responding to the 

issue – repeatedly raised by researchers – of frequent, wide gaps between design 

performance and measured performance of buildings’ thermal envelopes. 

The experimental evidence gathered through this study could potentially lay the 

foundations for a future study on cooling-related energy use in housing (see SECTION 7.5 

on future work), that is, an LCA of the operational phase of the building. This would allow 

an expansion of the boundaries of the work conducted so far. 
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7.3 Reflections on the methodology used 

7.3.1 Implications of using a multi-impact LCA methodology 

The consideration of a wide range of environmental aspects has allowed identifying 

some trade-offs (or “shifts”) of environmental burdens which are often overlooked in 

the existing literature. For instance, the fact that in timber buildings the wooden 

components must be carefully protected from moisture (both in the form of water and 

vapour) entails a need for a larger amount of plastic than is generally the case in a 

masonry building. Therefore, timber techniques are more inclined to cause higher 

burdens associated with the manufacturing of plastic products, such as acidification, 

eutrophication and photochemical creation of ozone.  This type of findings and insight 

into the environmental repercussions of timber techniques would not have been 

achieved if the CML methodology4 recommended by the European standards had not 

been adopted and a much more common approach had been taken instead, with focus 

on just one or two impact categories (e.g., energy consumption and/or carbon 

emissions). In other words, a single- or double-impact assessment would have probably 

allowed reaching clear-cut conclusions and making bold statements on the 

environmental pre-eminence of one technique over the others, but within a very partial 

and misleading approach.  

The above-mentioned trade-off problems arising from plastic consumption might be 

partially alleviated by employing modified-wood products, such as acetylated timber, 

which are less susceptible to insect attack and fungal decay and also provide timber with 

increased dimensional stability. Since acetylated timber tends to be brittle, its suitability 

for structural members, within, for instance, open- or closed-panel systems, would be a 

worthy area of enquiry. 

The set of contribution analyses5 devised for this research and systematically performed 

throughout it has played an important role in the study of burden trade-offs, because 

                                                      

4 On the CML methodology, see SECTION 2.6.4 and the glossary in APPENDIX B. 

5 Three contribution analyses: by structural role (structural/non-structural components), by location inside or outside 
the envelope (envelope/non-envelope) and by material type. 
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they have allowed identifying the major contributors to the impacts studied and thus 

revealing the reasons behind the trade-offs themselves.  

7.3.2 LCA results and advancements in building-material production  

The findings of this research have shown that unexpected impact results might be 

obtained when comparing light-weight and heavy-weight cladding systems. Indeed, a 

light-weight system might not provide as high an environmental benefit as one might 

initially expect, especially if it makes use of cement-based render-carrier boards, which 

have elevated embodied impacts. In a case like this, then, the advantage of having 

smaller foundations is negated by the burden from the materials used for the light-

weight cladding. These findings are noteworthy, because they show that both 

researchers and designers should be more cautious in their assumptions regarding light-

weight and heavy-weight systems, since the former are not necessarily “greener” than 

the latter, as is often assumed a priori. 

It can also be concluded from this study that designers and stakeholders should have no 

prejudice towards wall solutions such as blockwork, since improvements in the 

manufacturing of mineral-based products make them more sustainable than one might 

think. Therefore, comparison between timber-based and masonry-based buildings 

requires a high level of caution and attention to detail. 

For the reasons above, when masonry techniques are considered for the design of a 

building, it is key to appreciate the differences between the environmental burdens 

arising from blockwork and those arising from brickwork, since the latter are likely to be 

much more substantial.  

In consideration of all the recent industry advancements in building-product 

manufacturing, it becomes imperative for LCA practitioners to use up-to-date input 

data, which truly reflects the environmental loads currently associated with the cradle-

to-gate phases. 

The breadth of scope of this investigation (with numerous timber techniques analysed 

within the same comparative framework) has permitted achieving unanticipated 

findings, which could hardly have been predicted from analysis of the extant literature. 
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For instance, this comparative study has shown that many impact results obtained for 

the timber-frame variations (i.e., houses A, B1 and B2) do not apply to massive timber 

techniques (D1, D2, E1 and E2) and not even to the more similar SIPs buildings (C1 and 

C2). There is indeed high variation among the impacts of timber-based buildings, and 

this is sometimes greater than the variation between some timber-based solutions and 

the masonry system.   

7.3.3 Result comparability with other LCAs in housing  

It is noteworthy that this investigation lends itself to comparison with similar studies 

that might be conducted in future on housing. The evaluation of the thermal response 

of the envelope is independent of building type and size, and is thus intrinsically 

generalizable. The results of the LCA carried out have been normalised per unit floor 

area, in order to facilitate potential comparisons with future research by other authors 

and also to be more easily, and meaningfully, transferred or applied to other building 

types. The chosen layout of the semi-detached house, indeed, could be considered as 

an intermediate solution between the two other main types of houses: detached and 

terraced. Thus, it can be expected that the impact results (per unit floor area) for the 

house used in this study would be, quantitatively speaking, of the same order of 

magnitude as those of a detached or terraced dwelling with two or three floors above 

ground. 

Besides facilitating comparisons, the framework devised for this LCA could also be 

applied to, and become the starting point for, future LCAs, if similar research questions 

were to be answered with regard to other low-rise dwellings. Then, the scope of this 

project could be extended so as to generate new contributions6 to knowledge.  

7.3.4 Data sources and reliability of results 

The quality of input data and the consequent reliability of this LCA’s results have been 

studied through an uncertainty analysis. Thanks to this, it has been possible to tackle 

input-data variability, which is a recurrent, inherent problem of the LCA discipline and 

                                                      

6 See also SECTION 1.5. 
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constitutes one of its main methodological limitations. The uncertainty analysis has 

shown that the vast majority of absolute and comparative environmental results 

presented in this study are reliable and possess a high probability of being accurate. This 

is because adequate input sources (i.e., relevant and recent EPDs) have been found and 

used for most of the inputs needed to study the ten notional buildings. Where less good 

sources had to be used, instead, these had negligible influence over the impact results. 

Having chosen an analytical method (as opposed to a stochastic one) to carry out the 

uncertainty evaluation has proved beneficial, in that it has allowed “tracking” how the 

uncertainty of the inputs propagated to the uncertainty of the outputs. 

Moreover, the framework used in this research would easily permit updating this study 

(and its outputs) when necessary, by keeping the results and the input data current and 

relevant, following the evolution of the manufacturing processes for building materials 

and the developments of construction methods. In this way, the framework devised can 

help overcome the limitations arising from input data.  

7.3.5 Understanding and characterising thermal inertia 

The thermal study undertaken indicates that great caution should be taken when 

making assumptions on the thermal inertia of masonry buildings and especially when 

comparing them with timber systems (with either light- or heavy-weight cladding, and 

either deploying framed or massive panels). 

The experiments have indeed shown that when timber and masonry walls with the same 

level of thermal resistance are compared, the two main inertia parameters (i.e., time lag 

and decrement factor) do not necessarily reach their best values in the same build-up.  

Thus, due to the complex interaction between the materials offering thermal resistance 

and those providing heat capacity, the wall with the greatest ability to delay inward 

propagation of heat waves from the outside might not be the best at decreasing the 

amplitude of such waves. This aspect should be taken into account when making 

informed decisions about the build-ups of external walls, along with factors such as the 

climatic conditions in which the walls will be operating; the type of room enclosed by 

the walls (e.g., bedroom or living area); the orientation of the walls and the possibility 



Conclusions and future work 

 

48 
 

to cross-ventilate interior spaces, particularly at night, so as to cool them during 

summertime. 

These experiments have demonstrated that timber walls employing framed or solid 

panellised systems can exhibit slightly-longer time lags than their masonry counterpart; 

but the latter shows a much-improved (i.e., lower) decrement factor.  

 

7.4 Implications and recommendations for the construction industry 

7.4.1 Offsite manufacturing of panelised systems 

The constructional process whereby timber elements (such as walls or roofs) are 

manufactured and erected plays a fundamental role in the magnitude of the 

environmental burdens associated with them. When the zero-wastage scenario (which 

only considers the quantities of materials incorporated in the completed building) is 

compared with a low-wastage and a high-wastage scenario (characterised by a high level 

and a low level, respectively, of offsite construction), all impacts tend to show an 

increase. More specifically, the majority of impacts rise by circa 5-7% from the baseline 

in the low-wastage scenario, and by 8-10% in the high-wastage scenario. 

In particular, the study has shown that the way in which openings for doors, windows 

and rooflights are realised within wall or roof panels has noticeable repercussions on 

the overall quantity of materials used and their associated environmental costs. An 

additional complication lies in the fact that the portions of massive panels that have 

been removed to create openings are generally difficult to re-purpose. This leads to the 

conclusion that, in offsite timber techniques, a significant proportion of environmental 

impacts could be avoided by improving the operations inside the factory, while focus is 

often placed on the final operations carried out onsite, when the prefabricated panels 

are assembled and completed with their finishes. It is also worth mentioning that, since 

companies that produce timber-based panels generally capitalise on the ecological 

benefits associated with their products, improvements in the manufacturing processes 

would further enhance their environmental credentials. 
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For the reasons above, in terms of LCA practice, this study has highlighted the 

importance of accounting for the characteristics and dynamics of the manufacturing 

process when compiling the bill of quantities that constitutes the base for an LCA at the 

building level (as opposed to the level of an individual material or component). SECTION 

7.3 includes some suggestions for future work relating to these aspects. 

7.4.2 Prediction of thermal performance at the design stage 

Evidence obtained from the tests performed supports the concept that both time-lag 

and decrement factor vary as a function of weather conditions, especially the thermal 

radiation received by the walls during daytime. In particular, the time lag appears to be 

more strongly correlated with solar radiation than the decrement factor. Such findings 

are remarkable in this area of research, since scholars have not reached a consensus on 

these issues and have drawn diverging conclusions from their investigations.  

This has repercussions on building-design practice and construction quality, as it is 

important that designers gain awareness that a wall will perform differently under 

different weather conditions, in order that they can specify materials and produce 

constructional details that can effectively provide end-users with thermal comfort inside 

a dwelling.  

On the one hand, designers tend to interpret and predict the thermal behaviour of roofs 

and external walls by making various simplifying assumptions; on the other, they often 

utilise thermal-simulation software that also employs simplified algorithms, which are 

unable to factor in all the key parameters at play. Besides, today’s simulation programs 

have become apparently straightforward7 and within everybody’s grasp, and are often 

adopted by designers who, lacking specialist knowledge, are unable to operate them in 

a critical fashion and to exert sufficient control over the calculation methods used and 

the results obtained. These circumstances together are likely to result in erroneous 

modelling of complex thermal phenomena and, ultimately, in flawed prediction of the 

                                                      

7 Thanks to their “user-friendly” interfaces. 
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building envelope’s thermal performance that will not match the real performance of 

the erected building. 

As an example, commercial software Cymap,8  which is used among architects and other 

designers, determines values for thermal lags and decrement factors of walls as a mere 

function of the build-up indicated by the user, but irrespective of important factors such 

as the colour of the exterior finish (and correlated thermal absorptivity) and the solar-

energy intensity that the wall will typically receive (depending on orientation, climatic 

profile of the location, etc.)   

7.4.3 Building control in Scotland  

The substantial variations in thermal response of different walls identified through the 

tests and the influence of the climatic profile upon it seem to suggest that some changes 

should be made to the current regulatory framework in Scotland. At present, indeed, 

the Scottish Building regulations (last updated in 2016) do not take the effects of 

thermal-energy storage into consideration and do not set any requirements for the 

thermal mass incorporated in the building envelope. Thus, control of thermal 

performance is, by far, dominated by the level of insulation, expressed in terms of 

maximum overall thermal transmittance allowed (i.e., U-values). This problem is 

exacerbated by the fact that – as this research has shown – the differences in thermal 

response across wall systems that arise from thermal-mass levels become larger when 

weather conditions are more adverse (i.e., hotter days in summer). This also means that, 

in the context of a warming climate, such variance in thermal-inertia parameters across 

wall build-ups is destined to become greater in the future, as Scottish summers gradually 

become warmer.  

Thus, it can be said that Scottish building regulations are strongly keeping their focus on 

mitigation of climate change through elevated levels of insulation and air-tightness, 

which permit conservation of energy in winter and consequent savings in carbon 

emissions from the burning of fuel. It would be beneficial for the regulations to take a 

different approach and devote more attention to problems such as performance in 

                                                      

8 Developed by Cadline Limited, version observed: 2015. 
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summertime, overheating risk and adaptation to a warming climate. Besides, one should 

keep in mind that thermal mass is also expected to offer advantages in thermal 

performance during winter. For these reasons, the regulations should probably include 

some form of prescription of minimal levels of thermal capacity9 within external walls, 

for the purposes of environmental protection and quality in housing. 

 

7.5 Suggestions for future work 

The study presented in this thesis could be developed in many directions to overcome 

its current limitations relating both to its scope and to methodological aspects. 

As regards the life-cycle assessment of constructional techniques, it would be useful to 

widen the system boundaries so as to include life-cycle stages beyond the cradle-to-gate 

phases. This strand of work would initially include the "construction" phase of the 

notional buildings (as defined by the international standards 10 ), which comprises 

transportation of the building materials from the factory gate to the construction site 

(module A4) and erection of the building 11  (module A5). In order to do this, a 

geographical area should be chosen for the building site. Within these broader 

boundaries, it would be very useful to assess the effect of producing timber components 

in Scotland (or in other regions of the UK), thus reducing the need for importation of 

processed timber materials. This would be particularly relevant in the light of the new 

manufacturing facilities for cross-laminated-timber systems that have opened in the last 

few years or are expected to open in the near future, as a result of large investments, 

both in Scotland and England. The opening of new manufacturing plants is also 

associated with the rising interest in using UK-grown resource for engineered timber. 

                                                      

9 Steps in this direction were recently taken, for instance, in England. In the English building regulations, a requirement 
for the thermal-mass parameter (TMP) has been introduced to regulate the minimum content of thermal mass to be 
contained in a building (Approved Document L1A, Conservation of energy and fuel in new dwellings, §5.4; 2013 edition 
with 2016 amendments). The TMP is defined qualitatively and quantitatively on p. 7 and p. 196, respectively, of the 
Government’s Standard Assessment Procedure for Energy Rating of Dwellings, 2012 edition (“SAP 2012”). 

10 Standard EN 15804 (BSI, 2014a), whose content has been discussed in SECTION 2.6.6. 

11 See FIGURE 2.24. 
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Another route for future work would be to carry out further sensitivity analysis, so as to 

understand how changing some modelling assumptions (such as choice of building 

materials) would affect the absolute and comparative impact results already obtained 

and presented in this thesis.  

In addition, the modelling of building-material wastage could be refined and developed 

further. This might include an update of the wastage rates used in the current model 

once new literature has been published on the subject and rates that are more precise 

are provided by other researchers. As an alternative, a more in-depth research could be 

directly carried out into the issue of wastage, in order to use new, primary data as input 

parameters when re-assessing scenarios 2 and 3. 

With regard to the study on thermal performance of the envelope, the work done so far 

could be advanced by estimating the response of the other notional external walls (not 

included in the experiment) by means of ad-hoc mathematical models, potentially based 

on the finite-difference method. Such parametric models could be – at least partially, or 

indirectly – validated by creating a model for each of the three walls which have already 

been assessed experimentally (i.e., B1, D1 and F). This procedure would allow verifying 

how accurately the model could replicate the data obtained experimentally. 

In a subsequent stage, the simulation study could be further developed, in order to 

estimate the operational energy that would be needed for space heating and cooling in 

the notional semi-detached house, to guarantee interior hygro-thermal comfort 

throughout the year. This could be achieved by implementing a dynamic thermal model 

of the houses and modelling the external walls according to the build-ups of the three 

walls tested in the current research. Such a study would lead to a better understanding 

of how the measured thermal-inertia properties of the envelope correlate with the in-

use energy requirements for Scottish (or more in general, British) housing, either in the 

current climate or in future climate scenarios (based upon the projections available in 

the literature). Once energy demand is determined, the environmental impacts 

associated with it could also be predicted through an LCA approach. The findings of this 

research, in turn, would cast more light into the relationship between passive systems 

based on thermal mass and their environmental credentials, including their 

effectiveness as a measure of climate-change adaptation and mitigation.  
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B Glossary of life-cycle assessment 

 

Commonly-used terms relating to LCA studies are presented in this appendix.  

Acidification: “deposition of airborne acids on lakes, (bare) soil, trees (leaves, roots, etc.) 

and other vegetation” (Klöpffer and Grahl, 2014, p. 73). 

Allocation: “partitioning the input or output flows of a process or a product system 

between the product system under study and one or more other product systems” (BSI, 

2006a, § 3.17). 

Attributional LCA: “attributional  modelling  depicts  the  system  as  it can  be 

observed/measured,  linking  the  single processes within the technosphere along the 

flow of matter, energy, and services” (JRC and IES, 2010, p. 158). 

Burden shift: see Trade-off. 

Carbon sequestration: natural process whereby wood-based products are considered 

to contain a storage of CO2. 

Characterisation: “the calculation of indicator results”, which “involves the conversion 

of LCI results to common units and the aggregation of the converted results within the 

same impact category” (BSI, 2006b, § 4.4.2.4). 

Characterisation factor: “factor derived from a characterization model which is applied 

to convert an assigned life cycle inventory analysis result to the common unit of the 

category indicator” (BSI, 2006a, § 3.37). 

Classification: “assignment of LCI results to the selected impact categories” (BSI, 2006b, 

§ 4.4.2.3). 

Climate change: “climate change  is  defined  here  as  the  impact  of  human  emissions  

on  the  radiative  forcing (i.e., heat radiation absorption) of the atmosphere” (Guinée, 

2002, p. 59) 
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CML method: impact assessment tool from the University of Leiden’s Institute of 

Environmental Science (Centrum voor Milieuwetenschappen or CML). This is the 

preferred method for EPDs. 

Consequential LCA: “the ‘consequential’  LCI  modelling  framework aims  at  identifying  

the  consequences  of  a decision  in  the  foreground  system  on  other  processes  and 

systems  of  the  economy  and builds the to-be-analysed system around these 

consequences” (JRC and IES, 2010, p. 164). 

Cradle-to-gate EPD:  EPD that only covers the product stage (information modules A1-

A3), until a product is ready to leave a factory (BSI, 2014a). 

Cradle-to-site EPD: EPD that covers the product and the transport to the construction 

site (information modules A1-A4), (BSI, 2014a). 

Cradle-to-grave EPD: “EPD covering all life-cycle stages” (BSI, 2014a, § 6.2.1). 

Declared unit: “quantity of a construction product for use as a reference unit in an EPD 

for an environmental declaration based on one or more information modules” (BSI, 

2014a, § 3.8). 

Endpoint impact category: “attribute or aspect of natural environment, human health, 

or resources, identifying an environmental issue giving cause for concern” (BSI, 2006a, 

§ 3.36). 

Eutrophication: “excessively-high  environmental  levels  of macronutrients,  the most 

important of  which  are  nitrogen  (N)  and  phosphorus  (P)” (Guinée, 2002, p. 66). 

Eutrophication potential (EP): “eutrophying emission to air, water and soil (in kg PO4 

equivalents/kg emission)” (Guinée, 2002, p. 66). 

Global-warming potential (GWP), see also Climate change: “global-warming  potential  

for  a  100-year  time  horizon  (GWP100) for  each  greenhouse  gas  emission  to  the  air  

(in  kg  carbon dioxide equivalent/kg emission” (Guinée, 2002, p. 60). 

Goal: “the goal of an LCA states the intended application, the reasons for carrying out 

the study, the intended audience, i.e., to whom the results of the study are intended to 
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be communicated, and whether the results are intended to be used in comparative 

assertions intended to be disclosed to the public” (BSI, 2006a, § 5.2.1.1). 

Grouping: “assignment of impact categories into one or more sets as predefined in the 

goal and scope definition”, which “may involve sorting and/or ranking” (BSI, 2006b, § 

4.4.3.3). 

 

Environmental product declaration (EPD), also known as type-III environmental 

declaration: “environmental declaration providing quantified environmental data using 

predetermined parameters and, where relevant, additional environmental information” 

(BSI, 2014a, § 3.32). 

Functional unit: “quantified performance of a product system for use as a reference 

unit” (BSI, 2006a, § 3.20). 

Impact category: “class representing environmental issues of concern to which life cycle 

inventory analysis results may be assigned” (BSI, 2006a, § 3.39). 

Information module: “compilation of data to be used as a basis for a Type-III 

environmental declaration covering a unit process or a combination of unit processes 

that are part of the life cycle of a product” (BSI, 2014a, § 3.8). 

Interpretation: “phase of life cycle assessment in which the findings of either the 

inventory analysis or the impact assessment, or both, are evaluated in relation to the 

defined goal and scope in order to reach conclusions and recommendations” (BSI, 

2006a, § 3.5). 

Life-cycle assessment (LCA): “compilation and evaluation of the inputs, outputs and the 

potential environmental impacts of a product system throughout its life cycle” (BSI, 

2006a, § 3.2). 

Life-cycle impact assessment (LCIA): “phase of life cycle assessment aimed at 

understanding and evaluating the magnitude and significance of the potential 

environmental impacts for a product system throughout the life cycle of the product” 

(BSI, 2006a, § 3.4). 



Appendix B 
 

82 
 

Life-cycle inventory (LCI): “phase of life cycle assessment involving the compilation and 

quantification of inputs and outputs for a product throughout its life cycle” (BSI, 2006a, 

§ 3.3). 

Normalization: “the calculation of the magnitude of the category indicator results 

relative to some reference information” (BSI, 2006b, § 4.4.3.2.1). 

Ozone depletion: “thinning of the stratospheric ozone layer as a result of anthropogenic 

emissions” (Guinée, 2002, p. 60). 

Ozone-depletion potential (ODP): “ozone depletion potential in the steady state (ODP 

steady state) for   each   emission   to   the   air  (in   kg   CFC-11   equivalent/kg emission)” 

(Guinée, 2002, p. 60). 

Photochemical ozone creation: “formation of reactive chemical compounds such as 

ozone by the action of sunlight on certain primary air pollutants” (Guinée, 2002, p. 65). 

Photochemical-ozone-creation potential (POCP): potential of photochemical creation 

of ozone in the troposphere,   “for   each emission of VOC or CO to the air (in kg ethylene 

equivalents/kg emission” (Guinée, 2002, p. 66). 

Product system: “collection of unit processes with elementary and product flows, 

performing one or more defined functions”, “which models the life cycle of a product” 

(BSI, 2006a, § 3.28). 

Product category rules (PCR): “set of specific rules, requirements and guidelines for 

developing Type-III environmental declarations for one or more product categories” 

(BSI, 2014a, § 3.20). 

Programme operator: “body or bodies that conduct a Type-III environmental 

declaration programme” (BSI, 2014a, § 3.22). 

Scope: aspect of an LCA that “includes the following items: the product system to be 

studied; the functions of the product system or, in the case of comparative studies, the 

systems; the functional unit; the system boundary; allocation procedures; impact 

categories selected and methodology of impact assessment, and subsequent 
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interpretation to be used; data requirements;  assumptions; limitations; initial data 

quality requirements; type of critical review, if any; type and format of the report 

required for the study” (BSI, 2006a, § 5.2.1.2). 

Sensitivity analysis: “systematic procedures for estimating the effects of the choices 

made regarding methods and data on the outcome of a study” (BSI, 2006a, § 3.31). 

System boundary: “set of criteria specifying which unit processes are part of a product 

system” (BSI, 2006a, § 3.32). 

Time horizon: “period of validity of the calculation [of emissions]” (Klöpffer and Grahl, 

2014, p. 236). 

Trade-off: situation in which the results of an LCA suggest that the product system 

analysed offers disadvantages in terms of contribution to an environmental impact that 

are offset by some benefits (e.g., in terms of other environmental aspects). 

Type-III environmental label: see Environmental product declaration (EPD). 

Uncertainty analysis: “systematic procedure to quantify the uncertainty introduced in 

the results of a life-cycle inventory analysis due to the cumulative effects of model 

imprecision, input uncertainty and data variability” (BSI, 2006a, § 3.33). 

Weighting: “the process of converting indicator results of different impact categories by 

using numerical factors based on value-choices” (BSI, 2006b, § 4.4.3.4.1). 
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C Environmental improvements for concrete- and timber-based 

building products  

The following figures give a schematic representation of new developments and 

strategies to improve the environmental performance of concrete and timber-based 

materials. These improvements are discussed in CHAPTER 3.  

 

Figure C.1  Strategies that can be adopted to improve the environmental impacts associated with the 
manufacture of concrete products. 
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FIGURE C.2  Strategies that can be adopted to improve the environmental impacts associated with the 

manufacture of timber products. 
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D Maximum U-values allowed (Scottish Building Regulations) 

 

The following tables offer a summary of Scottish Building Regulations in relation to U-

values. These regulations have informed the design of the notional buildings, as 

discussed in CHAPTER 4. 

TABLE D.1  Maximum U-values allowed by the Scottish Building Regulations 2013. Source: Table 6.3 of the Technical 

Handbook – Domestic, version 2013. 

 

TABLE D.2  Maximum U-values allowed by the Scottish Building Regulations 2016. Source: Table 6.3 of the 

Technical Handbook – Domestic, version 2016. 
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E Pre-sizing of foundations (notional buildings) 

 

Example of a table used to pre-size the foundations of the notional buildings, in order to 

estimate the quantity of the concrete constituents to be considered in the LCA.  

 

TABLE E.1  Determination of the uniformly-distributed load (UDL) acting on Building A’s foundation footing. 

 

 

 

 

 

 

 

 

LOAD 

VARIATION IN 

TIME

LOAD 

CLASSIFICATION

LOAD TYPE LOAD 

MAGNITUDE

UNIT WIDTH/LENGTH 

of INFLUENCE 

AREA  (m)

COMMENTS RESULTING  LOAD UNIT  

permanent construction 

works

roof weight 0.69 kN/m
2 2.23 1.54 kN/m

permanent construction 

works

interm. floor 

weight

0.33 kN/m2 1.43 0.47 kN/m

permanent construction 

works

ext. wall weight 12.73 kN/m n.a. 12.73 kN/m

permanent construction 

works

ground floor 

weight

0.35 kN/m2 1.43 0.50 kN/m

permanent construction 

works

foundation wall 5.55 kN/m n.a. 5.55 kN/m

variable imposed loads load on ground 

floor

2.00 kN/m2 1.43 2.85 kN/m

variable imposed loads load on iterm. 

floor

2.00 kN/m2 1.43 2.85 kN/m

variable imposed loads load on roof 1.00 kN/m2 1.43 1.43 kN/m

variable snow load snow load on 

roof

0.50 kN/m2 1.43 neglected (not 

combined with 

load on roof)

0.00 kN/m

27.91 kN/mtotal load on footing
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F Constructional details (notional buildings) 

 

Constructional details of the buildings analysed under the LCA study  (the description of 

the notional buildings can be found in CHAPTER 4 and the results of the LCA study can be 

found in CHAPTER 5). 

F.1 Foundations 

 

 

FIGURE F.1  Foundation A (heavy-weight external cladding), vertical section. 



Appendix F 
 

89 
 

 

FIGURE F.2  Foundation D1 (strip foundations and ground-supported floor), vertical section. 

 

 

FIGURE F.3  Foundation D2 (strip foundations and suspended floor), vertical section. 
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FIGURE F.4  Foundation E (strip foundations and suspended floor), vertical section. 
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F.2 Walls 

F.2.1 External walls 

 

FIGURE F.5  Wall A (traditional, open-panel timber frame), horizontal section. 
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FIGURE F.6  Wall B1 (closed-panel timber frame, external solution: render on blockwork), horizontal section. 
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FIGURE F.7  Wall B2 (closed-panel timber frame, external solution: render on boards), horizontal section. 
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FIGURE F.8  Wall C1 (structural insulated panels (SIPs), external solution: render on blockwork), horizontal 

section. 
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FIGURE F.9  Wall C2 (structural insulated panels (SIPs), external solution: render on boards), horizontal 

section. 
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FIGURE F.10  Wall D1 (cross-laminated timber (CLT), external solution: render on boards), horizontal section. 
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FIGURE F.11  Wall D2 (cross-laminated timber (CLT), external solution: timber cladding), horizontal section. 
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FIGURE F.12  Wall E1 (nail-laminated timber (NLT), external solution: render on boards), horizontal section. 
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FIGURE F.13  Wall E2 (nail-laminated timber (NLT), external solution: timber cladding), horizontal section. 
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FIGURE F.14  Wall F (load-bearing masonry), horizontal section. 
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F.2.2 Internal walls 

F.2.2.1 Party walls 

 

FIGURE F.15  Party wall A (traditional, open-panel timber frame), horizontal section. 
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FIGURE F.16  Party wall B (closed-panel timber frame), horizontal section. 
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FIGURE F.17  Party wall C (structural insulated panels (SIPs)), horizontal section. 
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FIGURE F.18  Party wall D (cross-laminated timber (CLT)), horizontal section. 
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F.2.2.2 Partition walls 

 

FIGURE F.19  Partition wall E (nail-laminated timber), horizontal section. 
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FIGURE F.20  Partition wall F (load-bearing masonry), horizontal section. 
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F.3 Floors 

F.3.1 Ground floors 

 

FIGURE F.21  Ground floor TF (timbre frame), cross-section. 

 

FIGURE F.22  Ground floor B (timber frame, cassetted floor), cross-section. 
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FIGURE F.23  Ground floor D1 (ground-supported concrete floor), cross-section. 

 

FIGURE F.24  Ground floor D2 (suspended, cross-laminated timber (CLT) floor), cross-section. 
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FIGURE F.25  Ground floor E (suspended, nail-laminated timber (NLT) floor), cross-section. 

 

F.3.2 Intermediate floors 

 

FIGURE F.26  Intermediate floor TF (timber frame, constructed in situ), cross-section. 
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FIGURE F.27  Intermediate floor B (timber frame, cassetted floor), cross-section. 

 

FIGURE F.28 Intermediate floor D1 (cross-laminated timber (CLT) with cement screed), cross-section. 
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FIGURE F.29  Intermediate floor D2 (cross-laminated timber (CLT) without cement screed), cross-section. 

 

FIGURE F.30  Intermediate floor E  (nail-laminated timber), cross-section. 
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F.4 Roofs 

 

FIGURE F.31  Roof TF (trussed rafters), cross-section. 

 

FIGURE F.32  Roof B (pre-fabricated and pre-insulated cassettes), cross-section. 
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FIGURE F.33  Roof C (structural insulated panels (SIPs)), cross-section. 

 

FIGURE F.34  Roof D (cross-laminated timber(CLT)), cross-section. 
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FIGURE F.35  Roof E (nail-laminated timber (NLT)), cross-section. 
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G Inventory of building components (notional buildings) 

The following tables provide details of the components used for the notional buildings, 

based on information gathered from the Environmental Product Declarations (EPDs) 

used in the LCA study (CHAPTER 5). 

TABLE G.1  Inventory of building components. 
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TABLE G.2  Inventory of building components. 
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TABLE G.3  Inventory of building components. 
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TABLE G.4  Inventory of building components. 
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TABLE G.5  Inventory of building components. 
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TABLE G.6  Inventory of building components. 
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TABLE G.7  Inventory of building components. 
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TABLE G.8  Inventory of building components. 
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H Bills of quantities (notional buildings) 

 

The bills of quantities for the notional buildings (except for building A, whose bill of 

quantities is presented in CHAPTER 4) are offered below. The quantities of building 

materials per m2
GFA (the functional unit for the LCA study) form the basis for the 

calculation of the environmental scores, as discussed in CHAPTER 5. 

TABLE H.1  Bill of quantities for building B1. 

 

  

absolute 

value

relative 

difference 

[a]

absolute 

value

relative 

difference 

[a]

absolute 

value

relative 

difference 

[a]

absolute 

value

relative 

difference 

[b]

absolute 

value

relative 

difference 

[b]

absolute 

value

relative 

difference 

[b]

kg /m2
GFA kg /m2

GFA
% kg /m2

GFA
% kg /m2

GFA
% kg /m2

GFA
% kg /m2

GFA
% kg /m2

GFA
%

softwood components (excl. 

cladding)
51.37 52.07 1% 52.39 2% 52.70 3% 52.07 1% 52.39 2% 52.70 3%

softwood cladding / / / / / / / / / / / / /

CLT panels / / / / / / / / / / / / /

OSB-3 sheathing 38.35 39.11 2% 39.30 2% 39.50 3% 39.11 2% 39.30 2% 39.50 3%

chipboard decking 14.85 15.14 2% 15.22 3% 15.29 3% 15.96 8% 16.33 10% 16.70 13%

wood-fibre thermal insul. / / / / / / / / / / / / /

cement & lime blocklaying or 

screed mortar 
27.02 28.78 6% 29.05 8% 29.32 9% 28.93 7% 29.05 8% 29.32 9%

cement & lime rendering 

mortar 
30.48 32.46 7% 32.77 8% 33.07 9% 32.46 7% 32.77 8% 33.07 9%

cement board / / / / / / / / / / / / /

Portland cement (for 

concrete)
22.27 23.72 7% 23.94 8% 24.16 9% 23.45 5% 23.67 6% 23.90 7%

aggregrate 149.68 155.67 4% 157.16 5% 158.66 6% 155.67 4% 157.16 5% 158.66 6%

HD concrete blocks 156.52 162.78 4% 164.35 5% 165.91 6% 162.78 4% 164.35 5% 165.91 6%

MD concrete blocks 136.69 142.16 4% 143.53 5% 144.90 6% 142.16 4% 143.53 5% 144.90 6%

concrete roof tiles 24.00 25.92 8% 26.40 10% 26.88 12% 25.92 8% 26.40 10% 26.88 12%

ceramic wall/floor tiles 37.17 40.15 8% 40.89 10% 41.64 12% 40.15 8% 40.89 10% 41.64 12%

gypsum plasterboard 48.79 50.49 4% 51.23 5% 51.96 6% 50.49 4% 51.23 5% 51.96 6%

glass-fibre acoustic insul. 1.05 1.06 1% 1.07 1% 1.07 2% 1.06 1% 1.07 1% 1.15 9%

glass-fibre thermal insul. 8.76 8.85 1% 8.89 1% 8.93 2% 8.85 1% 8.89 1% 9.59 9%

metals galvanised steel 4.61 4.80 4% 4.84 5% 4.89 6% 4.80 4% 4.84 5% 4.89 6%

PP & HDPE breather 

membrane
0.22 0.23 4% 0.23 5% 0.24 6% 0.23 4% 0.23 5% 0.24 6%

LDPE vapour barrier 0.31 0.33 4% 0.33 5% 0.33 6% 0.33 4% 0.33 5% 0.33 6%

LDPE damp-proof course 0.28 0.30 7% 0.30 8% 0.31 10% 0.30 7% 0.30 8% 0.31 10%

LDPE damp-proof membrane 0.10 0.11 7% 0.11 8% 0.11 10% 0.11 7% 0.11 8% 0.11 10%

PVC flooring 1.49 1.55 4% 1.56 5% 1.58 6% 1.55 4% 1.56 5% 1.58 6%

PUR insulation / / / / / / / / / / / / /

undercoat paint 1.38 1.44 4% 1.45 5% 1.46 6% 1.44 4% 1.45 5% 1.46 6%

internal paint 0.99 1.03 4% 1.04 5% 1.05 6% 1.03 4% 1.07 9% 1.12 14%

external paint 0.42 0.44 4% 0.45 5% 0.45 6% 0.44 4% 0.45 5% 0.45 6%

carpet flooring 1.08 1.12 4% 1.14 5% 1.15 6% 1.12 4% 1.14 5% 1.15 6%

 Notes

difference relative to scenario 1 (baseline), calculated as:

difference relative to scenario 1 (baseline), calculated as:

 a

 b 

wood-

based

minerals

plastics

hybrid

building material scenario 1  
(baseline, zero 

wastage)

scenario 2   (low wastage) scenario 3  (high wastage)

category item lower bound middle value upper bound lower bound middle value upper bound
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TABLE H.2  Bill of quantities for building B2. 

 

  

absolute 

value

relative 

difference 

[a]

absolute 

value

relative 

difference 

[a]

absolute 

value

relative 

difference 

[a]

absolute 

value

relative 

difference 

[b]

absolute 

value

relative 

difference 

[b]

absolute 

value

relative 

difference 

[b]

kg /m2
GFA kg /m2

GFA
% kg /m2

GFA
% kg /m2

GFA
% kg /m2

GFA
% kg /m2

GFA
% kg /m2

GFA
%

softwood components (excl. 

cladding)
51.75 52.66 2% 53.04 2% 53.41 3% 52.66 2% 53.04 2% 53.41 3%

softwood cladding / / / / / / / / / / / / /

CLT panels / / / / / / / / / / / / /

OSB-3 sheathing 37.75 38.51 2% 38.70 2% 38.89 3% 38.51 2% 38.70 2% 38.89 3%

chipboard decking 14.85 15.96 8% 16.33 10% 16.70 13% 15.96 8% 16.33 10% 16.70 13%

wood-fibre thermal insul. / / / / / / / / / / / / /

cement & lime blocklaying or 

screed mortar 
9.68 10.31 6% 10.41 8% 10.50 9% 10.31 6% 10.41 8% 10.50 9%

cement & lime rendering 

mortar 
24.49 26.08 7% 26.33 7% 26.57 9% 26.08 7% 26.33 7% 26.57 9%

cement board 25.83 27.51 7% 27.77 8% 28.03 8% 27.51 7% 27.77 8% 28.03 8%

Portland cement (for 

concrete)
16.96 18.06 7% 18.23 8% 18.40 9% 18.06 7% 18.23 8% 18.40 9%

aggregrate 115.41 120.03 4% 121.19 5% 122.34 6% 120.03 4% 121.19 5% 122.34 6%

HD concrete blocks 125.22 130.23 4% 131.48 5% 132.73 6% 130.23 4% 131.48 5% 132.73 6%

MD concrete blocks / / / / / / / / / / / / /

concrete roof tiles 23.10 24.95 8% 25.41 10% 25.87 12% 24.95 8% 25.41 10% 25.87 12%

ceramic wall/floor tiles 37.10 40.07 8% 40.81 10% 41.55 12% 40.07 8% 40.81 10% 41.55 12%

gypsum plasterboard 48.37 50.07 4% 50.79 5% 51.52 6% 50.07 4% 50.79 5% 51.52 6%

glass-fibre acoustic insul. 1.05 1.06 1% 1.07 1% 1.07 2% 1.06 1% 1.07 1% 1.07 2%

glass-fibre thermal insul. 9.16 9.25 1% 9.30 2% 9.34 2% 9.25 1% 9.30 2% 9.34 2%

metals galvanised steel 3.92 4.08 4% 4.12 5% 4.15 6% 4.08 4% 4.12 5% 4.15 6%

PP & HDPE breather 

membrane
0.22 0.23 4% 0.23 5% 0.23 6% 0.23 4% 0.23 5% 0.23 6%

LDPE vapour barrier 0.31 0.32 4% 0.32 5% 0.33 6% 0.32 4% 0.32 5% 0.33 6%

LDPE damp-proof course 0.28 0.30 7% 0.30 8% 0.31 10% 0.30 7% 0.30 8% 0.31 10%

LDPE damp-proof membrane 0.10 0.11 7% 0.11 8% 0.11 10% 0.11 7% 0.11 8% 0.11 10%

PVC flooring 1.49 1.55 4% 1.56 5% 1.58 6% 1.55 4% 1.56 5% 1.58 6%

PUR insulation / / / / / / / / / / / / /

undercoat paint 1.36 1.42 4% 1.43 5% 1.45 6% 1.42 4% 1.43 5% 1.45 6%

internal paint 1.06 1.10 4% 1.11 5% 1.12 6% 1.10 4% 1.15 9% 1.21 14%

external paint 0.42 0.43 4% 0.44 5% 0.44 6% 0.43 4% 0.44 5% 0.44 6%

carpet flooring 1.08 1.12 4% 1.14 5% 1.15 6% 1.12 4% 1.14 5% 1.15 6%

 Notes

difference relative to scenario 1 (baseline), calculated as:

difference relative to scenario 1 (baseline), calculated as:

 a

 b 

plastics

hybrid

scenario 2   (low wastage) scenario 3  (high wastage)

category item lower bound middle value upper bound lower bound middle value upper bound

building material scenario 1  
(baseline, zero 

wastage)

wood-

based

minerals
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TABLE H.3  Bill of quantities for building C1. 
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TABLE H.4  Bill of quantities for building C2. 
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TABLE H.5  Bill of quantities for building D1. 
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TABLE H.6  Bill of quantities for building D2. 

 

  

absolute 

value

relative 

difference 

[a]

absolute 

value

relative 

difference 

[a]

absolute 

value

relative 

difference 

[a]

absolute 

value

relative 

difference 

[b]

absolute 

value

relative 

difference 

[b]

absolute 

value

relative 

difference 

[b]

kg /m2
GFA kg /m2

GFA
% kg /m2

GFA
% kg /m2

GFA
% kg /m2

GFA
% kg /m2

GFA
% kg /m2

GFA
%

softwood components (excl. 

cladding)
12.31 12.43 1% 12.49 2% 12.56 2% 13.23 7% 13.54 10% 13.85 13%

softwood cladding 8.51 8.60 1% 8.64 1% 8.68 2% 9.15 7% 9.36 10% 9.58 13%

CLT panels 184.80 185.72 1% 186.65 1% 187.57 2% 198.20 7% 199.19 8% 200.18 8%

OSB-3 sheathing 3.61 3.68 2% 3.70 3% 3.72 3% 3.88 8% 3.97 10% 4.06 13%

chipboard decking 14.85 15.14 2% 15.22 3% 15.29 3% 15.96 8% 16.33 10% 16.70 13%

wood-fibre thermal insul. / / / / / / / / / / / / /

cement & lime blocklaying or 

screed mortar 
9.68 10.31 6% 10.41 8% 10.50 9% 10.31 6% 10.41 8% 10.50 9%

cement & lime rendering 

mortar 
/ / / / / / / / / / / / /

cement board / / / / / / / / / / / / /

Portland cement (for 

concrete)
16.28 17.34 6% 17.50 8% 17.67 9% 17.34 6% 17.50 8% 17.67 9%

aggregrate 111.03 115.47 4% 116.58 5% 117.69 6% 115.47 4% 116.58 5% 117.69 6%

HD concrete blocks 125.22 130.23 4% 131.48 5% 132.73 6% 130.23 4% 131.48 5% 132.73 6%

MD concrete blocks / / / / / / / / / / / / /

concrete roof tiles 23.08 24.93 8% 25.39 10% 25.85 12% 24.93 8% 25.39 10% 25.85 12%

ceramic wall/floor tiles 36.93 39.88 8% 40.62 10% 41.36 12% 39.88 8% 40.62 10% 41.36 12%

gypsum plasterboard 51.68 53.49 4% 54.26 5% 55.04 6% 53.49 4% 54.26 5% 55.04 6%

glass-fibre acoustic insul. 0.85 0.91 7% 0.93 9% 0.95 12% 0.91 7% 0.93 9% 0.95 12%

glass-fibre thermal insul. / / / / / / / / / / / / /

metals galvanised steel 3.18 3.30 4% 3.34 5% 3.37 6% 3.30 4% 3.34 5% 3.37 6%

PP & HDPE breather 

membrane
0.21 0.23 7% 0.23 8% 0.23 10% 0.23 7% 0.23 8% 0.23 10%

LDPE vapour barrier 0.21 0.23 7% 0.23 8% 0.23 10% 0.23 7% 0.23 8% 0.23 10%

LDPE damp-proof course 0.28 0.30 7% 0.30 8% 0.31 10% 0.30 7% 0.30 8% 0.31 10%

LDPE damp-proof membrane 0.10 0.11 7% 0.11 8% 0.11 10% 0.11 7% 0.11 8% 0.11 10%

PVC flooring 1.49 1.55 4% 1.56 5% 1.58 6% 1.55 4% 1.56 5% 1.58 6%

PUR insulation 5.11 5.45 7% 5.49 8% 5.53 8% 5.88 15% 6.13 20% 6.39 25%

undercoat paint 1.34 1.39 4% 1.41 5% 1.42 6% 1.39 4% 1.41 5% 1.42 6%

internal paint 1.05 1.09 4% 1.10 5% 1.11 6% 1.09 4% 1.14 9% 1.19 14%

external paint 0.40 0.41 4% 0.42 5% 0.42 6% 0.41 4% 0.42 5% 0.42 6%

carpet flooring 1.08 1.12 4% 1.14 5% 1.15 6% 1.12 4% 1.14 5% 1.15 6%

 Notes

difference relative to scenario 1 (baseline), calculated as:

difference relative to scenario 1 (baseline), calculated as:

 a

 b 

wood-

based

minerals

plastics

hybrid

building material scenario 1  
(baseline, zero 

wastage)

scenario 2   (low wastage) scenario 3  (high wastage)

category item lower bound middle value upper bound lower bound middle value upper bound
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TABLE H.7  Bill of quantities for building E1. 
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TABLE H.8  Bill of quantities for building E2. 
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TABLE H.9  Bill of quantities for building F. 
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I List of EPD programmes 

 

This appendix provides a list and a description of all the programmes-holders whose 

EPDs have been used as a source of information for the LCA study. The inventory codes 

refer to the inventory presented in APPENDIX G.  

TABLE I.1  List of EPD programmes used in this study. 

PROGRAMME 
NAME 

COUNTRY ADDRESS WEBSITE INVENTORY  
CODE 

COMMENTS 

BRE UK Bucknalls Lane 
Watford  
WD25 9XX 

Homepage: 
www.bre.co.uk 
 
EPD database: 
www.greenbooklive.com 

107, 931  

EPD Danmark Denmark Teknologiparken  
Kongsvang  
Allé 29 
DK-8000 
Aarhus C 

Homepage: 
www.epddanmark.dk 
 
EPD database: 
www.epddanmark.dk/site/
download_eng.html 

452  

EPD 
Norge 

Norway P.O. Box 5250 
Majorstuen 
N-0303  
Oslo  

Homepage: 
epd-norge.no 
 
EPD database: 
epd-norge.no/epder/ 
 

551, 651, 652  

Institut Bauen 
und Unwelt e.V. 

Germany Panoramastraße 1 
10178  
Berlin 

Homepage: 
ibu-epd.com 
 
EPD database: 
ibu-epd.com/en/epd-
program/published-epds 

106, 152, 203, 
441, 501, 531, 
561, 571, 851, 
861, 932, 935, 
990 

 

Intermational 
EPD® system 

Sweden EPD International 
AB 
Box 210 60  
SE-100 31 
Stockholm 
 

Homepage: 
www.environdec.com 
 
EPD database: 
www.environdec.com/en/
EPD-Search 

251, 402, 403, 
601 

 

Plastics Europe Belgium Avenue 
E. Van 
Nieuwenhuyse 4/3 
1160 Brussels 
Belgium 

Homepage: 
http://www.plasticseurop
e.org 

800, 995, 996 EPDs carried 
out before  
BS EN 15804 

Thinkstep  
(PE International) 

UK 
International 

Euston Tower - 
Level 33, 
286 Euston Road,  
London  
NW1 3DP 

Homepage: 
www.thinkstep.com 
 
 
‘Wood for good’ EPD 
database: 
woodforgood.com/lifecycl
e-database/ 

103, 381 
 
 

formerly 
known as PE 
international 
 
used for EPDs 
for Wood for 
Good and 
EURIMA 

 

http://www.bre.co.uk/
http://www.greenbooklive.com/
http://www.epddanmark.dk/
http://www.environdec.com/
http://www.thinkstep.com/


Appendix J 
 

133 
 

J Overview of life-cycle impact assessment (LCIA)  methodologies 

 

The main principles of different LCIA methodologies are laid out in the tables below. As 

explained in CHAPTERS 2 and 4, CML is the method required by LCA standards; however, 

this overview reveals the theoretical debate between endpoint and midpoint 

approaches to life-cycle studies.  

TABLE J.1 Eco-indicator 99 overview.  

Eco-indicator 99 

contact person(s) 
(affiliation) 

characteristics impact categories included 

M. Goedkoop and 
R. Spriensma 
(PRé) 

endpoint and 
midpoint approach 
 
spatial reference 
global and regional  
(Europe) 
 
time horizon 
short (c. 100 year) 
for individualist 
perspective, 
long/indefinite for 
other perspectives 

midpoint 
climate change (38)  
ozone layer depletion (24) 
acidification/eutrophication (combined) (3) 
carcinogenic (61)  
respiratory organic (11)  
respiratory inorganic (121)  
ionizing radiation (48)  
ecotoxicity (52)  
land-use (12)  
mineral resources (12)  
fossil resources (9) 
 
impact categories 
human health 
ecosystem quality 
resource depletion 
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TABLE J.2  EDIP 2003 overview. 

EDIP 2003 
 

contact person(s) 
(affiliation) 

characteristics impact categories included 

Michael 
Hauschild 
(DTU, Technical 
University of 
Denmark) 

midpoint approach 
 
spatial reference 
global and regional 
(Europe) 
 
time horizon 
infinity 

global warming 
ozone depletion 
acidification 
terrestrial eutrophication 
aquatic eutrophication 
aquatic eutrophication  
ozone formation (human) 
human toxicity (exposure route via air) 
human toxicity (exposure route via water) 
human toxicity (exposure route via soil) 
ecotoxicity (water acute) 
ecotoxicity (water chronic) 
ecotoxicity (soil chronic) 
hazardous waste 
slags/ashes 
bulk waste 
radioactive waste 
resources 

 

TABLE J.3 EPS 2000 overview. 

EPS 2000 

contact person(s) 
(affiliation) 

characteristics impact categories included 

Bengt Steen 
(Chalmers 
University of 
Technology) 

endpoint approach 
 
spatial reference 
global and local 
(Sweden) 
 
time horizon 
present time 

human health [pers.yr] 
life expectancy 
 severe morbidity and suffering 
morbidity 
severe nuisance 
nuisance natural environment [kg] 
crop production capacity  
wood production capacity 
fish and meat production capacity 
base cation capacity [h+] 
production capacity for water (drinking water) 
share of species extinction [nex]  
natural resources [kg] 
depletion of element reserves (element)  
depletion of fossil reserves (gas) 
depletion of fossil reserves (oil)  
depletion of fossil reserves (coal)  
depletion of mineral reserves (ore) 
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TABLE J.4 IMPACT 2002+ overview. 

IMPACT 2002+ 

contact person(s) 
(affiliation) 

characteristics impact categories included 

Olivier Jolliet 
(University of 
Michigan) 

midpoint and 
endpoint approach 
 
spatial reference 
regional (Europe) 
 
time horizon 
infinity 

midpoint 
human toxicity  
respiratory effects  
ionizing radiation  
ozone depletion  
photochemical oxidant formation  
aquatic ecotoxicity  
terrestrial ecotoxicity  
aquatic eutrophication  
terrestrial eutrophication and acidification  
land occupation  
global warming  
non-renewable energy  
mineral extraction 
 
endpoint 
human health 
ecosystem quality 
climate change (as life supporting function) 
resources 
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TABLE J.5 ReCiPe overview. 

ReCiPe 

contact person(s) 
(affiliation) 

characteristics impact categories included 

M. Goedkoop 
(PRé) 
M. Huijbregts 
(Rabdoud 
University) 
R.Heijungs 
(University of 
Leiden),  
J. Struijs (RIVM) 

midpoint and 
endpoint approach 
 
spatial reference 
global and regional 
(Europe) 
 
time horizon 
20 years, 100 years 
or indefinite, 
depending on the 
cultural 
perspective 
 

midpoint 
climate change 
ozone depletion 
terrestrial acidification 
freshwater eutrophication 
marine eutrophication 
human toxicity 
photochemical oxidant formation 
particulate matter formation 
terrestrial ecotoxicity 
freshwater ecotoxicity 
marine ecotoxicity 
ionising radiation 
agricultural land occupation 
urban land occupation 
natural land transformation 
depletion of fossil fuel resources 
depletion of mineral resources 
depletion of freshwater resources 
endpoint 
human health 
ecosystem quality  
resources (surplus cost) 
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TABLE J.6  MEEuP overview. 

MEEuP 

contact person(s) 
(affiliation) 

characteristics impact categories included 

René Kemna 

(VHK) 

midpoint approach 
 
spatial reference 
global and regional 
(EU) 
 
time horizon 
20 years, 100 years 
or indefinite,  

 

energy  
total gross energy requirement 
primary electricity 
water  
process water  
cooling water  
waste  
hazardous solid waste  
non-hazardous waste 
emissions to air  
global warming  
global warming potential for a time horizon of 100 
years  
stratospheric ozone depletion 
depletion potential 
acidification potential 
pop. persistent organic pollutants, in this case 
only dioxins and furans 
volatile organic compounds 
heavy metals 
emissions to water: 

 eutrophication potential 

 heavy metals 
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K Pedigree matrices for LCA uncertainty analysis  

 

Below are the details of the scores used for the uncertainty analysis within the LCA 

study, as described in CHAPTER 5. 

TABLE K.1  Pedigree matrix applied to the data sources of wood-based products used for the LCA. 
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TABLE K.2  Pedigree matrix applied to the data sources of mineral products used for the LCA. 
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TABLE K.3  Pedigree matrix applied to the data sources of metal and plastic products used for the LCA. 

 

 

 

o
ve

ra
ll 

va
r.

Q
.I

.
d

es
cr

ip
ti

o
n

U
re

l
Q

.I
.

d
es

cr
ip

ti
o

n
U

co
m

Q
.I

.
d

es
cr

ip
ti

o
n

U
te

m
Q

.I
.

d
es

cr
ip

ti
o

n
U

ge
o

Q
.I

.
d

es
cr

ip
ti

o
n

U
te

c
Q

.I
.

d
es

cr
ip

ti
o

n
U

sa
m

G
SD

2

3
8

1
ga

lv
an

is
e

d
 s

te
e

l
2

ve
ri

fi
ed

 d
at

a 
p

ar
ti

al
ly

 

b
as

ed
 o

n
 a

ss
u

m
p

ti
o

n
s 

o
r 

n
o

n
-v

er
if

ie
d

 d
at

a 

b
as

ed
 o

n
 

m
ea

su
re

m
en

ts

1
.0

5
2

re
p

re
se

n
ta

ti
ve

 d
at

a 
fr

o
m

 >
5

0
%

 o
f 

th
e 

si
te

s 
re

le
va

n
t 

fo
r 

th
e

 m
ar

ke
t 

co
n

si
d

e
re

d
, o

ve
r 

an
 a

d
e

q
u

at
e 

p
e

ri
o

d
 t

o
 e

ve
n

 o
u

t 
n

o
rm

al
 

fl
u

ct
u

at
io

n
s

1
.0

2
3

le
ss

 t
h

an
 1

0
 y

ea
rs

 o
f 

d
if

fe
re

n
ce

 t
o

 t
h

e 
ti

m
e 

p
e

ri
o

d
 o

f 
th

e 
d

at
a 

se
t

1
.1

0
1

d
at

a 
fr

o
m

 a
re

a 

u
n

d
e

r 
st

u
d

y
1

.0
0

2
d

at
a 

fr
o

m
 p

ro
ce

ss
e

s 
an

d
 

m
at

er
ia

ls
 u

n
d

e
r 

st
u

d
y 

(i
.e

. 

id
e

n
ti

ca
l t

ec
h

n
o

lo
gy

),
 b

u
t 

fr
o

m
 d

if
fe

re
n

t 
en

tr
ep

ri
se

s

1
.1

0
2

>2
0

1
.0

2
1

.1
7

8
5

1
P

P
 &

 H
D

P
E 

b
re

at
h

e
r 

m
e

m
b

ra
n

e
1

ve
ri

fi
ed

 d
at

a 
b

as
e

d
 o

n
 

m
ea

su
re

m
en

ts
1

.0
0

3
re

p
re

se
n

ta
ti

ve
 d

at
a 

fr
o

m
 o

n
ly

 

so
m

e 
si

te
s 

 (
<5

0
%

) 
re

le
va

n
t 

fo
r 

th
e 

m
ar

ke
t 

co
n

si
d

er
ed

 o
r 

fr
o

m
 

>5
0

%
 o

f 
si

te
s,

 b
u

t 
fr

o
m

 s
h

o
rt

er
 

p
e

ri
o

d
s

1
.0

5
3

le
ss

 t
h

an
 1

5
 y

ea
rs

 o
f 

d
if

fe
re

n
ce

 t
o

 t
h

e 
ti

m
e 

p
e

ri
o

d
 o

f 
th

e 
d

at
a 

se
t

1
.1

0
3

d
at

a 
fr

o
m

 a
re

a 
w

it
h

 

si
m

ila
r 

p
ro

d
u

ct
io

n
 

co
n

d
it

io
n

s

1
.0

2
3

d
at

a 
fr

o
m

 p
ro

ce
ss

e
s 

an
d

 

m
at

er
ia

ls
 u

n
d

e
r 

st
u

d
y,

 b
u

t 

fr
o

m
 d

if
fe

re
n

t 
te

ch
n

o
lo

gy

1
.2

0
3

>1
0

1
.0

5
1

.2
5

8
0

0
LD

P
E 

va
p

o
u

r 
b

ar
ri

e
r

2
ve

ri
fi

ed
 d

at
a 

p
ar

ti
al

ly
 

b
as

ed
 o

n
 a

ss
u

m
p

ti
o

n
s 

o
r 

n
o

n
-v

er
if

ie
d

 d
at

a 

b
as

ed
 o

n
 

m
ea

su
re

m
en

ts

1
.0

5
2

re
p

re
se

n
ta

ti
ve

 d
at

a 
fr

o
m

 >
5

0
%

 o
f 

th
e 

si
te

s 
re

le
va

n
t 

fo
r 

th
e

 m
ar

ke
t 

co
n

si
d

e
re

d
, o

ve
r 

an
 a

d
e

q
u

at
e 

p
e

ri
o

d
 t

o
 e

ve
n

 o
u

t 
n

o
rm

al
 

fl
u

ct
u

at
io

n
s

1
.0

2
4

le
ss

 t
h

an
 1

5
 y

ea
rs

 o
f 

d
if

fe
re

n
ce

 t
o

 t
h

e 
ti

m
e 

p
e

ri
o

d
 o

f 
th

e 
d

at
a 

se
t

1
.2

0
2

av
e

ra
ge

 d
at

a 
fr

o
m

 

la
rg

er
 a

re
a 

in
 w

h
ic

h
 

th
e 

ar
ea

 u
n

d
er

 

st
u

d
y 

is
 in

cl
u

d
ed

1
.0

1
3

d
at

a 
fr

o
m

 p
ro

ce
ss

e
s 

an
d

 

m
at

er
ia

ls
 u

n
d

e
r 

st
u

d
y,

 b
u

t 

fr
o

m
 d

if
fe

re
n

t 
te

ch
n

o
lo

gy

1
.2

0
3

>1
0

1
.0

5
1

.3
1

9
9

6
LD

P
E 

d
am

p
-p

ro
o

f 
co

u
rs

e
2

ve
ri

fi
ed

 d
at

a 
p

ar
ti

al
ly

 

b
as

ed
 o

n
 a

ss
u

m
p

ti
o

n
s 

o
r 

n
o

n
-v

er
if

ie
d

 d
at

a 

b
as

ed
 o

n
 

m
ea

su
re

m
en

ts

1
.0

5
2

re
p

re
se

n
ta

ti
ve

 d
at

a 
fr

o
m

 >
5

0
%

 o
f 

th
e 

si
te

s 
re

le
va

n
t 

fo
r 

th
e

 m
ar

ke
t 

co
n

si
d

e
re

d
, o

ve
r 

an
 a

d
e

q
u

at
e 

p
e

ri
o

d
 t

o
 e

ve
n

 o
u

t 
n

o
rm

al
 

fl
u

ct
u

at
io

n
s

1
.0

2
4

le
ss

 t
h

an
 1

5
 y

ea
rs

 o
f 

d
if

fe
re

n
ce

 t
o

 t
h

e 
ti

m
e 

p
e

ri
o

d
 o

f 
th

e 
d

at
a 

se
t

1
.2

0
2

av
e

ra
ge

 d
at

a 
fr

o
m

 

la
rg

er
 a

re
a 

in
 w

h
ic

h
 

th
e 

ar
ea

 u
n

d
er

 

st
u

d
y 

is
 in

cl
u

d
ed

1
.0

1
3

d
at

a 
fr

o
m

 p
ro

ce
ss

e
s 

an
d

 

m
at

er
ia

ls
 u

n
d

e
r 

st
u

d
y,

 b
u

t 

fr
o

m
 d

if
fe

re
n

t 
te

ch
n

o
lo

gy

1
.2

0
3

>1
0

1
.0

5
1

.3
1

9
9

5
LD

P
E 

d
am

p
-p

ro
o

f 
m

e
m

b
ra

n
e

2
ve

ri
fi

ed
 d

at
a 

p
ar

ti
al

ly
 

b
as

ed
 o

n
 a

ss
u

m
p

ti
o

n
s 

o
r 

n
o

n
-v

er
if

ie
d

 d
at

a 

b
as

ed
 o

n
 

m
ea

su
re

m
en

ts

1
.0

5
2

re
p

re
se

n
ta

ti
ve

 d
at

a 
fr

o
m

 >
5

0
%

 o
f 

th
e 

si
te

s 
re

le
va

n
t 

fo
r 

th
e

 m
ar

ke
t 

co
n

si
d

e
re

d
, o

ve
r 

an
 a

d
e

q
u

at
e 

p
e

ri
o

d
 t

o
 e

ve
n

 o
u

t 
n

o
rm

al
 

fl
u

ct
u

at
io

n
s

1
.0

2
4

1
.2

0
2

av
e

ra
ge

 d
at

a 
fr

o
m

 

la
rg

er
 a

re
a 

in
 w

h
ic

h
 

th
e 

ar
ea

 u
n

d
er

 

st
u

d
y 

is
 in

cl
u

d
ed

1
.0

1
3

d
at

a 
fr

o
m

 p
ro

ce
ss

e
s 

an
d

 

m
at

er
ia

ls
 u

n
d

e
r 

st
u

d
y,

 b
u

t 

fr
o

m
 d

if
fe

re
n

t 
te

ch
n

o
lo

gy

1
.2

0
3

>1
0

1
.0

5
1

.3
1

9
9

0
P

V
C

 f
lo

o
ri

n
g

1
ve

ri
fi

ed
 d

at
a 

b
as

e
d

 o
n

 

m
ea

su
re

m
en

ts
1

.0
0

2
re

p
re

se
n

ta
ti

ve
 d

at
a 

fr
o

m
 >

5
0

%
 o

f 

th
e 

si
te

s 
re

le
va

n
t 

fo
r 

th
e

 m
ar

ke
t 

co
n

si
d

e
re

d
, o

ve
r 

an
 a

d
e

q
u

at
e 

p
e

ri
o

d
 t

o
 e

ve
n

 o
u

t 
n

o
rm

al
 

fl
u

ct
u

at
io

n
s

1
.0

2
3

le
ss

 t
h

an
 1

0
 y

ea
rs

 o
f 

d
if

fe
re

n
ce

 t
o

 t
h

e 
ti

m
e 

p
e

ri
o

d
 o

f 
th

e 
d

at
a 

se
t

1
.1

0
2

av
e

ra
ge

 d
at

a 
fr

o
m

 

la
rg

er
 a

re
a 

in
 w

h
ic

h
 

th
e 

ar
ea

 u
n

d
er

 

st
u

d
y 

is
 in

cl
u

d
ed

1
.0

1
2

d
at

a 
fr

o
m

 p
ro

ce
ss

e
s 

an
d

 

m
at

er
ia

ls
 u

n
d

e
r 

st
u

d
y 

(i
.e

. 

id
e

n
ti

ca
l t

ec
h

n
o

lo
gy

),
 b

u
t 

fr
o

m
 d

if
fe

re
n

t 
en

tr
ep

ri
se

s

1
.1

0
3

>1
0

1
.0

5
1

.1
7

1
0

6
P

U
R

 in
su

la
ti

o
n

1
ve

ri
fi

ed
 d

at
a 

b
as

e
d

 o
n

 

m
ea

su
re

m
en

ts
1

.0
0

2
re

p
re

se
n

ta
ti

ve
 d

at
a 

fr
o

m
 >

5
0

%
 o

f 

th
e 

si
te

s 
re

le
va

n
t 

fo
r 

th
e

 m
ar

ke
t 

co
n

si
d

e
re

d
, o

ve
r 

an
 a

d
e

q
u

at
e 

p
e

ri
o

d
 t

o
 e

ve
n

 o
u

t 
n

o
rm

al
 

fl
u

ct
u

at
io

n
s

1
.0

2
3

le
ss

 t
h

an
 1

0
 y

ea
rs

 o
f 

d
if

fe
re

n
ce

 t
o

 t
h

e 
ti

m
e 

p
e

ri
o

d
 o

f 
th

e 
d

at
a 

se
t

1
.1

0
2

av
e

ra
ge

 d
at

a 
fr

o
m

 

la
rg

er
 a

re
a 

in
 w

h
ic

h
 

th
e 

ar
ea

 u
n

d
er

 

st
u

d
y 

is
 in

cl
u

d
ed

1
.0

1
2

d
at

a 
fr

o
m

 p
ro

ce
ss

e
s 

an
d

 

m
at

er
ia

ls
 u

n
d

e
r 

st
u

d
y 

(i
.e

. 

id
e

n
ti

ca
l t

ec
h

n
o

lo
gy

),
 b

u
t 

fr
o

m
 d

if
fe

re
n

t 
en

tr
ep

ri
se

s 

1
.1

0
3

>1
0

1
.0

5
1

.1
7

 A
b

b
re

vi
a

ti
o

n
s

G
SD

ge
o

m
et

ri
c 

st
an

d
ar

d
 d

e
vi

at
io

n
U

u
n

ce
rt

ai
n

ty

in
v.

 
in

ve
n

to
ry

va
r.

va
ri

an
ce

Q
.I

.
q

u
al

it
y 

in
d

ic
at

o
r

 N
o

te
s

 a
so

u
rc

e 
fo

r 
ca

lc
u

la
ti

o
n

 e
xc

lu
d

in
g 

ca
rb

o
n

 s
e

q
u

es
tr

at
io

n

G
e

o
gr

ap
h

ic
al

 c
o

rr
e

la
ti

o
n

Fu
rt

h
e

r 
te

ch
n

o
lo

gi
ca

l c
o

rr
e

la
ti

o
n

Sa
m

p
le

 s
iz

e
In

v.
 c

o
d

e
it

e
m

 d
e

si
gn

at
io

n
R

e
lia

b
ili

ty
C

o
m

p
le

te
n

e
ss

Te
m

p
o

ra
l c

o
rr

e
la

ti
o

n

m
e

ta
ls

p
la

st
ic

s



Appendix K 
 

141 
 

TABLE K.4  Pedigree matrix applied to the data sources of hybrid products used for the LCA. 
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L LCA results: contribution analysis 

 

The graphs below accompany CHAPTER 5 and, in particular, SECTION 5.6.1. They illustrate, 

in a detailed manner, the results of the contribution analyses carried out for each 

building, in terms of environmental impacts caused, primary energy consumed and 

waste produced.  

For each building, the analysis consists of: 

 a bar chart showing the contributions by building element (with sub-totals for 

envelope and non-envelope) with  a further distinction in terms of material type; 

 a pie chart showing the contributions by structural role of the components (i.e.,  

structural versus non-structural components). Here, the “insulation” category 

refers to thermal insulation, the “finishes” category refers to products such as 

paint, tiles and flooring, and “hybrid” refers to other non-structural components. 

 

L.1 Building A 

 

 
FIGURE L.1  GWP (excluding sequestration) of building A: contribution analysis by building element and 

material (left) and by structural role (right). The absolute values in the pie chart are expressed in kg CO2-
eq./m2

GFA. 
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FIGURE L.2  ODP of building A: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg CFC 11-eq./m2
GFA). 

 

 

 
FIGURE L.3  AP of building A: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg SO2-eq./m2
GFA. 

 

 

 
FIGURE L.4  EP of building A: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg PO4-eq./m2
GFA.  
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FIGURE L.5  POCP of building A: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg ethene-eq./m2
GFA. 

 

 

 
FIGURE L.6  Renewable PE of building A: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 

  

 

 
FIGURE L.7  Non-renewable PE of building A: contribution analysis by building element and material (left) and 

by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 
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FIGURE L.8  Hazardous waste of building A: contribution analysis by building element and material (left) and 

by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 

 

 

 
FIGURE L.9  Non-hazardous waste of building A: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 

 

 

 
FIGURE L.10  Radioactive waste of building A: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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L.2 Building B1 

 

FIGURE L.11  GWP (excluding sequestration) of building B1: contribution analysis by building element and 

material (left) and by structural role (right). The absolute values in the pie chart are expressed in kg CO2-
eq./m2

GFA. 

 

 

 

FIGURE L.12  ODP of building B1: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg CFC 11-eq./m2
GFA). 

 

 

 

FIGURE L.13  AP of building B1: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg SO2-eq./m2
GFA. 
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FIGURE L.14  EP of building B1: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg PO4-eq./m2
GFA. 

 

 

 

FIGURE L.15  POCP of building B1: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg ethene-eq./m2
GFA. 

 

 

 

FIGURE L.16  Renewable PE of building B1: contribution analysis by building element and material (left) and 

by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 
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FIGURE L.17  Non-renewable PE of building B1: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 

 

 

 

FIGURE L.18  Hazardous waste of building B1: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 

 

 

 

FIGURE L.19  Non-hazardous waste of building B1: contribution analysis by building element and material 

(left) and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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FIGURE L.20  Radioactive waste of building B1: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 

  

9%
16%

3%

3%

8%

33%

19%

10%
1%

0%

10%

20%

30%

40%

50%

60%

ra
d

io
ac

ti
ve

 w
as

te
 c

o
n

tr
ib

u
ti

o
n

  (
%

)

Building elements

Relative contribution  of building elements
building B1, radioactive waste

wood-based metals plastics minerals hybrid

stuctural components
1.41E-02

48%

insulation
8.20E-05; 0%

finishes
9.74E-03; 34%

hybrid
5.28E-03; 18%

non-structural components  
1.51E-02

52%

radioactive waste contribution  (%)



Appendix L 
 

150 
 

L.3 Building B2 

 

FIGURE L.21  GWP (excluding sequestration) of building B2: contribution analysis by building element and 

material (left) and by structural role (right). The absolute values in the pie chart are expressed in kg CO2-
eq./m2

GFA. 

 

 

FIGURE L.22  ODP of building B2: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg CFC 11-eq./m2
GFA). 

 

 

 

FIGURE L.23  AP of building B2: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg SO2-eq./m2
GFA. 
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FIGURE L.24  EP of building B2: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg PO4-eq./m2
GFA. 

 

 

FIGURE L.25  POCP of building B2: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg ethene-eq./m2
GFA. 

 

 

 

FIGURE L.26  renewable PE of building B2: contribution analysis by building element and material (left) and 

by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 
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FIGURE L.27  Non-renewable PE of building B2: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 

 

 

 

FIGURE L.28  Hazardous waste of building B2: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 

 

 

 

FIGURE L.29  Non-hazardous waste of building B2: contribution analysis by building element and material 

(left) and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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FIGURE L.30  Radioactive waste of building B2: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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L.4 Building C1 

 

FIGURE L.31  GWP (excluding sequestration) of building C1: contribution analysis by building element and 

material (left) and by structural role (right). The absolute values in the pie chart are expressed in kg CO2-
eq./m2

GFA. 

 

 

FIGURE L.32  ODP of building C1: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg CFC 11-eq./m2
GFA). 

 

 

 

FIGURE L.33  AP of building C1: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg SO2-eq./m2
GFA. 
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FIGURE L.34  EP of building C1: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg PO4-eq./m2
GFA. 

 

 

 

FIGURE L.35  POCP of building C1: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg ethene-eq./m2
GFA. 

 

 

 

FIGURE L.36  Renewable PE of building C1: contribution analysis by building element and material (left) and 

by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 
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FIGURE L.37  Non-renewable PE of building C1: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 

 

 

 

FIGURE L.38  Hazardous waste of building C1: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 

 

 

 

FIGURE L.39  Non-hazardous waste of building C1: contribution analysis by building element and material 

(left) and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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FIGURE L.40 Radioactive waste of building C1: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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L.5 Building C2 

 
FIGURE L.41  GWP (excluding sequestration) of building C2: contribution analysis by building element and 

material (left) and by structural role (right). The absolute values in the pie chart are expressed in kg CO2-
eq./m2

GFA. 

 

 
FIGURE L.42  ODP of building C2: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg CFC 11-eq./m2
GFA). 

 

 
FIGURE L.43  AP of building C2: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg SO2-eq./m2
GFA. 
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FIGURE L.44  EP of building C2: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg PO4-eq./m2
GFA. 

 

 

 
FIGURE L.45  POCP of building C2: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg ethene-eq./m2
GFA. 

 

 
FIGURE L.46  Renewable PE of building C2: contribution analysis by building element and material (left) and 

by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 
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FIGURE L.47  Non-renewable PE of building C2: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 

 

 

 
FIGURE L.48  Hazardous waste of building C2: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 

 

 
FIGURE L.49  Non-hazardous waste of building C2: contribution analysis by building element and material 

(left) and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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FIGURE L.50  Radioactive waste of building C2: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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L.6 Building D1 

 
FIGURE L.51  GWP (excluding sequestration) of building D1: contribution analysis by building element and 

material (left) and by structural role (right). The absolute values in the pie chart are expressed in kg CO2-
eq./m2

GFA. 

 

 
FIGURE L.52  ODP of building D1: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg CFC 11-eq./m2
GFA). 

 

 
FIGURE L.53  AP of building D1: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg SO2-eq./m2
GFA. 
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FIGURE L.54  EP of building D1: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg PO4-eq./m2
GFA. 

 

 
FIGURE L.55  POCP of building D1: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg ethene-eq./m2
GFA. 

 

 

 
FIGURE L.56  Renewable PE of building D1: contribution analysis by building element and material (left) and 

by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 
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FIGURE L.57  Non-renewable PE of building D1: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 

 

 
FIGURE L.58  Hazardous waste of building D1: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 

 

 

 
FIGURE L.59  Non-hazardous waste of building D1: contribution analysis by building element and material 

(left) and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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FIGURE L.60  Radioactive waste of building D1: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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L.7 Building D2  

 
FIGURE L.61  GWP (excluding sequestration) of building D2: contribution analysis by building element and 

material (left) and by structural role (right). The absolute values in the pie chart are expressed in kg CO2-
eq./m2

GFA. 

 

 
FIGURE L.62  ODP of building D2: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg CFC 11-eq./m2
GFA). 

 

 
FIGURE L.63  AP of building D2: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg SO2-eq./m2
GFA. 
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FIGURE L.64  EP of building D2: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg PO4-eq./m2
GFA. 

 

 
FIGURE L.65  POCP of building D2: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg ethene-eq./m2
GFA. 

 

 

 
FIGURE L.66  Renewable PE of building D2: contribution analysis by building element and material (left) and 

by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 
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FIGURE L.67  Non-renewable PE of building D2: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 

 

 
FIGURE L.68  Hazardous waste of building D2: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 

 

 

 
FIGURE L.69  Non-hazardous waste of building D2: contribution analysis by building element and material 

(left) and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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FIGURE L.70  Radioactive waste of building D2: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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L.8 Building E1 

 

 
FIGURE L.71  GWP (excluding sequestration) of building E1: contribution analysis by building element and 

material (left) and by structural role (right). The absolute values in the pie chart are expressed in kg CO2-
eq./m2

GFA. 

 

 
FIGURE L.72  ODP of building E1: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg CFC 11-eq./m2
GFA). 

 

 
FIGURE L.73  AP of building E1: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg SO2-eq./m2
GFA. 
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FIGURE L.74  EP of building E1: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg PO4-eq./m2
GFA. 

 

 
FIGURE L.75  POCP of building E1: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg ethene-eq./m2
GFA. 

 

 
FIGURE L.76  Renewable PE of building E1: contribution analysis by building element and material (left) and 

by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 
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FIGURE L.77  Non-renewable PE of building E1: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 

 

 
FIGURE L.78  Hazardous waste of building E1: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 

 

 
FIGURE L.79  Non-hazardous waste of building E1: contribution analysis by building element and material 

(left) and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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FIGURE L.80  Radioactive waste of building E1: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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L.9 Building E2 

 

 
FIGURE L.81  GWP (excluding sequestration) of building E2: contribution analysis by building element and 

material (left) and by structural role (right). The absolute values in the pie chart are expressed in kg CO2-
eq./m2

GFA. 

 

 
FIGURE L.82  ODP of building E2: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg CFC 11-eq./m2
GFA). 

 

 
FIGURE L.83  AP of building E2: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg SO2-eq./m2
GFA. 
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FIGURE L.84  EP of building E2: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg PO4-eq./m2
GFA. 

 

 
FIGURE L.85  POCP of building E2: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg ethene-eq./m2
GFA. 

 

 
FIGURE L.86  Renewable PE of building E2: contribution analysis by building element and material (left) and 

by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 
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FIGURE L.87  Non-renewable PE of building E2: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 

 

 
FIGURE L.88  Hazardous waste of building E2: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 

 

 
FIGURE L.89  Non-hazardous waste of building E2: contribution analysis by building element and material 

(left) and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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FIGURE L.90  Radioactive waste of building E2: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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L.10 Building F 

 
FIGURE L.91  GWP (excluding sequestration) of building F: contribution analysis by building element and 

material (left) and by structural role (right). The absolute values in the pie chart are expressed in kg CO2-
eq./m2

GFA. 

 

 
FIGURE L.92  ODP of building F: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg CFC 11-eq./m2
GFA). 

 

 
FIGURE L.93  AP of building F: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg SO2-eq./m2
GFA. 
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FIGURE L.94  EP of building F: contribution analysis by building element and material (left) and by structural 

role (right). The absolute values in the pie chart are expressed in kg PO4-eq./m2
GFA. 

 

 

 
FIGURE L.95  POCP of building F: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in kg ethene-eq./m2
GFA. 

 

 
FIGURE L.96  Renewable PE of building F: contribution analysis by building element and material (left) and by 

structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 
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FIGURE L.97  Non-renewable PE of building F: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in MJ/m2
GFA. 

 

 

 
FIGURE L.98  Hazardous waste of building F: contribution analysis by building element and material (left) and 

by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 

 

 
FIGURE L.99  Non-hazardous waste of building F: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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FIGURE L.100  Radioactive waste of building F: contribution analysis by building element and material (left) 

and by structural role (right). The absolute values in the pie chart are expressed in kg/m2
GFA. 
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M LCA results: impact analysis (absolute values for each building) 

The following tables present the absolute results for environmental impacts, 

consumption of primary energy and production of waste, in tabulated and graphic form. 

These results have been discussed in CHAPTER 5. 

TABLE M.1  Impact results and associated uncertainties (in terms of GSD2) for all buildings. 
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TABLE M.2  Primary-energy consumption and associated uncertainties (in terms of GSD2) for all buildings. 

 

 

TABLE M.3  Waste production and associated uncertainties (in terms of GSD2) for all buildings. 

 

 

energy GSD
2 energy GSD

2

MJ / m2
GFA

(/) MJ / m2
GFA

(/)

A 1.51E+03 1.15 1.92E+03 1.06

B1 2.36E+03 1.17 2.07E+03 1.07

B2 2.46E+03 1.16 2.08E+03 1.07

C1 1.94E+03 1.17 2.69E+03 1.07

C2 2.06E+03 1.16 2.69E+03 1.07

D1 4.60E+03 1.28 2.39E+03 1.09

D2 5.39E+03 1.26 2.35E+03 1.10

E1 6.68E+03 1.21 2.30E+03 1.08

E2 6.75E+03 1.20 2.17E+03 1.08

F 1.04E+03 1.14 1.96E+03 1.05

 Abbreviations

 GFA gross (internal) floor area

 GSD geometric standard deviation

 Notes

 a

Building Renewable primary 

energy

Non-renewable 

primary energy

value not available for this impact (since negative emissions are not 

accounted for by method employed for uncertainty estimation)
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FIGURE M.1  Global-warming potentials, estimated including and excluding biogenic carbon sequestration: 

results by building.  

 

 
FIGURE M.2  Ozone-depletion potential: results by building  

 

 
FIGURE M.3  Acidification potential: results by building. 
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FIGURE M.4  Eutrophication potential: results by building. 

 

 
FIGURE M.5  Photochemical-ozone-creation potential: results by building 
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FIGURE M.6  Primary-energy consumption: results by building. 
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FIGURE M.7  Hazardous waste produced: results by building. 

 

 
FIGURE M.8  Non-hazardous waste produced: results by building. 

 

 

 
FIGURE M.9  Radioactive waste produced: results by building. 
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N LCA results: impact analysis (values normalised with respect to 

building F) 

 

The following tables present the absolute results for environmental impacts, 

consumption of primary energy and production of waste, in tabulated form. The same 

results have been provided in graphic form in CHAPTER 5. 

 

TABLE N.1  Primary-energy consumption normalised with respect to building F and measures of comparative 

uncertainty (GSD2 and probability) for buildings A-E2. 
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TABLE N.2  Impact results normalised with respect to building F and measures of comparative uncertainty 

(GSD2 and probability) for buildings A-E2. 
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TABLE N.3  Waste production with respect to building F and measures of comparative uncertainty (GSD2 and 

probability) for buildings A-E2. 
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O LCA results: uncertainty analysis  

O.1 Uncertainty analysis: absolute results 

The following graphs show the estimated absolute uncertainties (for each building and 

each environmental impact) that have been discussed in CHAPTER 5. The graphs for 

buildings A and B1 have been shown in SECTION 5.6.5. 

 

 
FIGURE O.1  Estimated absolute uncertainties relating to the impact results of building B2, expressed in terms 

of squared geometric standard deviations, GSD2 (i.e., variance). 

 

 

 
FIGURE O.2  Estimated absolute uncertainties relating to the impact results of building C1, expressed in terms 

of squared geometric standard deviations, GSD2 (i.e., variance). 
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FIGURE O.3  Estimated absolute uncertainties relating to the impact results of building C2, expressed in terms 

of squared geometric standard deviations, GSD2 (i.e., variance). 

 

 

 
FIGURE O.4  Estimated absolute uncertainties relating to the impact results of building D1, expressed in 

terms of squared geometric standard deviations, GSD2 (i.e., variance). 

 

 

 

 
FIGURE O.5  Estimated absolute uncertainties relating to the impact results of building D2, expressed in 

terms of squared geometric standard deviations, GSD2 (i.e., variance). 
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FIGURE O.6  Estimated absolute uncertainties relating to the impact results of building E1, expressed in terms 

of squared geometric standard deviations, GSD2 (i.e., variance). 

 

 

 
FIGURE O.7  Estimated absolute uncertainties relating to the impact results of building E2, expressed in terms 

of squared geometric standard deviations, GSD2 (i.e., variance). 

 

 

 

 
FIGURE O.8  Estimated absolute uncertainties relating to the impact results of building F, expressed in terms 

of squared geometric standard deviations, GSD2 (i.e., variance). 
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O.2 Uncertainty analysis: comparative results 

 

The following graphs accompany CHAPTER 5 and show the probability values and relative 

contributions to comparative uncertainty, for all buildings and for each environmental 

aspect. The graphs for three aspects (GWPexcl.seq., hazardous and radioactive waste) have 

been shown in SECTION 5.6.5.2. 

 
FIGURE O.9  Estimated uncertainties associated with the comparisons of timber buildings with reference 

building F, for ODP. Indication of probability (left) and relative contribution to uncertainty (right). 
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FIGURE O.10  Estimated uncertainties associated with the comparisons of timber buildings with reference 

building F, for AP. Indication of probability (left) and relative contribution to uncertainty (right). 

 

 

 
FIGURE O.11  Estimated uncertainties associated with the comparisons of timber buildings with reference 

building F, for EP. Indication of probability (left) and relative contribution to uncertainty (right). 
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FIGURE O.12  Estimated uncertainties associated with the comparisons of timber buildings with reference 

building F, for POCP. Indication of probability (left) and relative contribution to uncertainty (right). 

 

 

 
FIGURE O.13 Estimated uncertainties associated with the comparisons of timber buildings with reference 

building F, for renewable PE. Indication of probability (left) and relative contribution to uncertainty (right). 

0% 25% 50% 75% 100%

E2

E1

D2

D1

C2

C1

B2

B1

GWPA/GWPF

Probability

P(IX<IF) P(IX≥IF)

89.6%

90.1%

98.0%

98.7%

99.3%

99.6%

99.3%

1.4%

1.1%

1.5%

0.3%

1.3%

0.6%

0.5%

0.3%

0.6%

9.1%

8.8%

3.6%

0.9%

0.8%

0.7%

0.2%

0.2%

0.1%

0% 20% 40% 60% 80% 100%

Percentage contribution to uncertainty

plastics minerals metals wood-based other / hybrid

98.1%

91.2%

P(IX≥IF)P(IX<IF)

POCPA / POCPF

POCPB1 / POCPF

POCPB2 / POCPF

POCPC1 / POCPF

POCPC2 / POCPF

POCPD1 / POCPF

POCPD2 / POCPF

POCPE1 / POCP F

POCPE2 / POCP F

0% 25% 50% 75% 100%

E2

E1

D2

D1

C2

C1

B2

B1

GWPA/GWPF

Probability

P(EX<EF) P(EX≥EF)

0.1%

0.1%

0.3%

14.6%

14.3%

1.8%

1.6%

2.9%

1.3%

11.6%

7.8%

5.9%

85.3%

85.6%

98.2%

98.4%

97.0%

98.7%

88.3%

92.2%

93.8%

0% 20% 40% 60% 80% 100%

Percentage contribution to uncertainty

plastics minerals metals wood-based other / hybrid

ren. PEA / ren. PEF

ren. PEB1 / ren. PEF

ren. PEB2 / ren. PEF

ren. PEC1 / ren. PEF

ren. PEC2 / ren. PEF

ren. PED1 / ren. PEF

ren. PED2 / ren. PEF

ren. PEE1 / ren. PEF

ren. PEE2 / ren. PEF

P(PEX<PEF) P(PEX≥PEF)



Appendix O 
 

196 
 

 
FIGURE O.14  Estimated uncertainties associated with the comparisons of timber buildings with reference 

building F, for non-renewable PE. Indication of probability (left) and relative contribution to uncertainty 
(right). See also FIGURE O.15. 

 

 

 

FIGURE O.15  Comparative uncertainty: non-renewable primary energy. Probability-density functions 

representing the ratio between the non-renewable PE of each timber building (X) and that of the masonry 
building (F). The area of the shaded region (bounded by the curve for house A and vertical line x=1) 
represents the probability that the non-ren. PE needed for A is less than that needed for F. 
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FIGURE O.16  Estimated uncertainties associated with the comparisons of timber buildings with reference 

building F, for non-hazardous waste. Indication of probability (left) and relative contribution to uncertainty 
(right). 
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P LCA results: sensitivity analysis (wastage scenarios 2 and 3) 

 

TABLES P.1 to P.3 offer the results of wastage scenarios 1 (no wastage), 2 (low wastage) 

and 3 (high wastage) in tabulated form (these have been presented in graphic form in 

CHAPTER 5).  

 

TABLE P.1  Wastage scenarios: waste production for all buildings (including differences relative to the 

baseline, i.e., scenario 1). 

 

  

waste value relative diff. 

[a]

waste value relative diff. 

[a]

waste value relative diff. 

[a]

waste value relative diff. 

[b]

waste value relative diff. 

[b]

waste value relative diff. 

[b]

kg / m
2

GFA kg  / m
2

GFA
(%) kg / m

2
GFA

(%) kg  / m
2

GFA
(%) kg  / m

2
GFA

(%) kg / m
2

GFA
(%) kg / m

2
GFA

(%)

A 3.21E-01 3.33E-01 4% 3.37E-01 5% 3.42E-01 7% 3.36E-01 5% 3.42E-01 7% 3.48E-01 8%
B1 3.05E-01 3.17E-01 4% 3.21E-01 5% 3.25E-01 6% 3.17E-01 4% 3.21E-01 5% 3.30E-01 8%
B2 3.01E-01 3.13E-01 4% 3.17E-01 5% 3.21E-01 6% 3.13E-01 4% 3.17E-01 5% 3.21E-01 6%
C1 2.75E-01 2.87E-01 5% 2.92E-01 6% 2.96E-01 8% 2.87E-01 5% 2.92E-01 6% 2.96E-01 8%
C2 2.68E-01 2.80E-01 5% 2.85E-01 6% 2.89E-01 8% 2.80E-01 5% 2.85E-01 6% 2.89E-01 8%
D1 2.74E-01 2.85E-01 4% 2.89E-01 5% 2.93E-01 7% 2.89E-01 5% 2.92E-01 7% 2.96E-01 8%
D2 3.04E-01 3.15E-01 4% 3.19E-01 5% 3.23E-01 6% 3.19E-01 5% 3.24E-01 7% 3.28E-01 8%
E1 2.34E-01 2.44E-01 5% 2.48E-01 6% 2.52E-01 8% 2.45E-01 5% 2.48E-01 6% 2.52E-01 8%
E2 2.44E-01 2.55E-01 5% 2.59E-01 6% 2.63E-01 8% 2.55E-01 5% 2.59E-01 6% 2.63E-01 8%
F 2.44E-01 2.56E-01 5% 2.60E-01 6% 2.64E-01 8% 2.56E-01 5% 2.60E-01 7% 2.64E-01 8%
A 5.68E+01 5.77E+01 2% 5.80E+01 2% 5.84E+01 3% 6.04E+01 6% 6.17E+01 9% 6.30E+01 11%
B1 5.84E+01 5.93E+01 2% 5.96E+01 2% 6.00E+01 3% 5.93E+01 2% 6.15E+01 5% 6.38E+01 9%
B2 6.11E+01 6.21E+01 2% 6.24E+01 2% 6.28E+01 3% 6.21E+01 2% 6.25E+01 2% 6.28E+01 3%
C1 1.79E+01 1.89E+01 6% 1.93E+01 8% 1.96E+01 10% 1.89E+01 6% 1.93E+01 8% 1.97E+01 10%
C2 1.83E+01 1.93E+01 6% 1.97E+01 8% 2.00E+01 10% 1.93E+01 6% 1.97E+01 8% 2.01E+01 10%
D1 9.73E+01 9.82E+01 1% 9.88E+01 2% 9.93E+01 2% 1.05E+02 8% 1.05E+02 8% 1.06E+02 9%
D2 1.06E+02 1.07E+02 1% 1.07E+02 1% 1.08E+02 2% 1.13E+02 7% 1.14E+02 8% 1.15E+02 8%
E1 9.89E+00 1.03E+01 5% 1.05E+01 6% 1.06E+01 7% 1.03E+01 5% 1.05E+01 6% 1.06E+01 7%
E2 1.03E+01 1.08E+01 5% 1.10E+01 6% 1.11E+01 7% 1.08E+01 5% 1.10E+01 6% 1.12E+01 8%
F 2.33E+01 2.47E+01 6% 2.51E+01 8% 2.56E+01 10% 2.47E+01 6% 2.52E+01 8% 2.57E+01 10%
A 2.55E-02 2.67E-02 5% 2.70E-02 6% 2.73E-02 7% 2.69E-02 5% 2.73E-02 7% 2.76E-02 8%
B1 2.92E-02 3.04E-02 4% 3.07E-02 5% 3.10E-02 6% 3.05E-02 5% 3.08E-02 6% 3.12E-02 7%
B2 3.44E-02 3.62E-02 5% 3.66E-02 6% 3.70E-02 8% 3.62E-02 5% 3.66E-02 6% 3.70E-02 8%
C1 2.97E-02 3.17E-02 7% 3.20E-02 8% 3.24E-02 9% 3.17E-02 7% 3.20E-02 8% 3.24E-02 9%
C2 3.46E-02 3.70E-02 7% 3.74E-02 8% 3.78E-02 9% 3.70E-02 7% 3.74E-02 8% 3.78E-02 9%
D1 8.98E-02 9.17E-02 2% 9.23E-02 3% 9.29E-02 4% 9.63E-02 7% 9.70E-02 8% 9.77E-02 9%
D2 8.77E-02 8.90E-02 1% 8.96E-02 2% 9.01E-02 3% 9.38E-02 7% 9.44E-02 8% 9.51E-02 8%
E1 1.44E-01 1.53E-01 6% 1.54E-01 7% 1.55E-01 8% 1.62E-01 13% 1.68E-01 18% 1.74E-01 21%
E2 1.34E-01 1.42E-01 6% 1.43E-01 7% 1.45E-01 8% 1.51E-01 13% 1.57E-01 17% 1.63E-01 22%
F 3.22E-02 3.36E-02 4% 3.39E-02 5% 3.43E-02 6% 3.37E-02 5% 3.41E-02 6% 3.44E-02 7%

 Notes

difference relative to scenario 1 (baseline), calculated as : 

difference relative to scenario 1 (baseline), calculated as : 

 a     

 b     

Scenario 1 

(baseline, zero 

wastage)

Scenario 2   (low wastage) Scenario 3  (high wastage)

lower bound average upper bound lower bound average upper bound

h
az
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d

o
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s
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TABLE P.2  Wastage scenarios: impact results for all buildings (including differences relative to scenario 1). 

 

 

 

  

impact value relative diff. 

[a]

impact value relative diff. 

[a]

impact value relative diff. 

[a]

impact value relatiive diff. 

[b]

impact value relatiive diff. 

[b]

impact value relatiive diff. 

[b]

kg CO2-eq. / 

m
2

GFA

kg CO2-eq. / 

m
2

GFA

(%) kg CO2-eq. / 

m
2

GFA

(%) kg CO2-eq. / 

m
2

GFA

(%) kg CO2-eq. / 

m
2

GFA

(%) kg CO2-eq. / 

m
2

GFA

(%) kg CO2-eq. / 

m
2

GFA

(%)

A 1.54E+02 1.61E+02 4% 1.63E+02 6% 1.64E+02 7% 1.63E+02 6% 1.65E+02 7% 1.68E+02 9%
B1 1.66E+02 1.73E+02 4% 1.74E+02 5% 1.76E+02 6% 1.73E+02 4% 1.75E+02 6% 1.79E+02 8%
B2 1.58E+02 1.66E+02 5% 1.67E+02 6% 1.69E+02 7% 1.66E+02 5% 1.68E+02 6% 1.69E+02 7%
C1 1.84E+02 1.97E+02 7% 1.99E+02 8% 2.02E+02 9% 1.97E+02 7% 1.99E+02 8% 2.02E+02 9%
C2 1.76E+02 1.89E+02 7% 1.91E+02 8% 1.93E+02 10% 1.89E+02 7% 1.91E+02 8% 1.93E+02 10%
D1 2.89E+02 2.98E+02 3% 3.01E+02 4% 3.03E+02 5% 3.11E+02 8% 3.14E+02 9% 3.18E+02 10%
D2 2.76E+02 2.83E+02 2% 2.85E+02 3% 2.87E+02 4% 2.96E+02 7% 2.99E+02 9% 3.03E+02 10%
E1 2.16E+02 2.26E+02 5% 2.28E+02 6% 2.30E+02 7% 2.30E+02 7% 2.34E+02 9% 2.39E+02 11%
E2 1.95E+02 2.03E+02 4% 2.05E+02 5% 2.07E+02 6% 2.08E+02 7% 2.12E+02 9% 2.16E+02 11%
F 1.71E+02 1.80E+02 5% 1.83E+02 7% 1.85E+02 8% 1.81E+02 6% 1.84E+02 7% 1.87E+02 9%

kg CO2-eq. / 

m2
GFA

kg CO2-eq. / 

m2
GFA

(%) kg CO2-eq. / 

m
2

GFA

(%) kg CO2-eq. / 

m
2

GFA

(%) kg CO2-eq. / 

m
2

GFA

(%) kg CO2-eq. / 

m
2

GFA

(%) kg CO2-eq. / 

m2
GFA

(%)

A 3.85E+01 4.35E+01 13% 4.47E+01 16% 4.58E+01 19% 4.28E+01 11% 4.37E+01 14% 4.46E+01 16%
B1 -2.36E+01 -2.08E+01 12% -2.05E+01 13% -2.01E+01 15% -2.20E+01 7% -2.12E+01 10% -2.04E+01 13%
B2 -3.08E+01 -2.99E+01 3% -3.02E+01 2% -3.06E+01 1% -2.99E+01 3% -3.02E+01 2% -3.05E+01 1%
C1 4.10E+01 4.03E+01 -2% 4.05E+01 -1% 4.06E+01 -1% 4.03E+01 -2% 4.05E+01 -1% 4.07E+01 -1%
C2 3.17E+01 3.09E+01 -2% 3.09E+01 -2% 3.09E+01 -2% 3.09E+01 -2% 3.10E+01 -2% 3.10E+01 -2%
D1 -1.64E+02 -1.57E+02 4% -1.57E+02 4% -1.57E+02 4% -1.78E+02 -8% -1.77E+02 -8% -1.76E+02 -8%
D2 -2.76E+02 -2.73E+02 1% -2.74E+02 1% -2.74E+02 1% -2.96E+02 -7% -2.97E+02 -8% -2.98E+02 -8%
E1 -3.66E+02 -3.69E+02 -1% -3.71E+02 -1% -3.73E+02 -2% -3.75E+02 -2% -3.79E+02 -4% -3.83E+02 -5%
E2 -4.36E+02 -4.42E+02 -1% -4.44E+02 -2% -4.46E+02 -2% -4.47E+02 -3% -4.52E+02 -4% -4.57E+02 -5%
F 9.44E+01 1.02E+02 8% 1.04E+02 10% 1.06E+02 12% 1.01E+02 7% 1.02E+02 8% 1.03E+02 10%

kg CFC 11-eq. 

/ m2
GFA

kg CFC 11-

eq. / m2
GFA

(%) kg CFC 11-

eq. / m2
GFA

kg CFC 11-

eq. / m2
GFA

(%) kg CFC 11-

eq. / m2
GFA

(%) kg CFC 11-

eq. / m2
GFA

(%) kg CFC 11-

eq. / m2
GFA

(%)

A 1.10E-05 1.18E-05 7% 1.20E-05 9% 1.22E-05 11% 1.20E-05 9% 1.23E-05 12% 1.27E-05 15%
B1 1.31E-05 1.34E-05 2% 1.35E-05 3% 1.36E-05 4% 1.34E-05 2% 1.35E-05 3% 1.37E-05 5%
B2 1.20E-05 1.23E-05 2% 1.23E-05 3% 1.24E-05 4% 1.23E-05 2% 1.23E-05 3% 1.24E-05 4%
C1 7.01E-05 7.61E-05 8% 7.65E-05 9% 7.69E-05 10% 7.61E-05 8% 7.65E-05 9% 7.69E-05 10%
C2 7.01E-05 7.63E-05 9% 7.67E-05 9% 7.71E-05 10% 7.63E-05 9% 7.67E-05 9% 7.71E-05 10%
D1 3.24E-05 3.43E-05 6% 3.46E-05 7% 3.49E-05 8% 3.68E-05 14% 3.82E-05 18% 3.96E-05 22%
D2 3.29E-05 3.48E-05 6% 3.50E-05 7% 3.53E-05 7% 3.73E-05 13% 3.87E-05 18% 4.01E-05 22%
E1 7.59E-06 7.81E-06 3% 7.86E-06 4% 7.92E-06 4% 7.83E-06 3% 7.90E-06 4% 7.97E-06 5%
E2 8.24E-06 8.51E-06 3% 8.59E-06 4% 8.66E-06 5% 8.53E-06 3% 8.62E-06 5% 8.71E-06 6%
F 2.24E-05 2.51E-05 12% 2.60E-05 16% 2.69E-05 20% 2.51E-05 12% 2.60E-05 16% 2.69E-05 20%

kg SO2.-eq. / 

m2
GFA

kg SO2.-eq. 

/ m2
GFA

(%) kg SO2.-eq. 

/ m2
GFA

(%) kg SO2.-eq. 

/ m2
GFA

(%) kg SO2.-eq. 

/ m2
GFA

(%) kg SO2.-eq. 

/ m2
GFA

(%) kg SO2.-eq. 

/ m2
GFA

(%)

A 5.22E+00 5.55E+00 6% 5.62E+00 8% 5.70E+00 9% 5.55E+00 6% 5.63E+00 8% 5.71E+00 9%
B1 6.00E+00 6.32E+00 5% 6.39E+00 6% 6.47E+00 8% 6.32E+00 5% 6.39E+00 6% 6.48E+00 8%
B2 5.93E+00 6.25E+00 5% 6.32E+00 7% 6.40E+00 8% 6.25E+00 5% 6.32E+00 7% 6.40E+00 8%
C1 5.27E+00 5.61E+00 7% 5.69E+00 8% 5.77E+00 9% 5.61E+00 7% 5.69E+00 8% 5.77E+00 9%
C2 5.19E+00 5.53E+00 7% 5.61E+00 8% 5.69E+00 10% 5.53E+00 7% 5.61E+00 8% 5.69E+00 10%
D1 5.89E+00 6.26E+00 6% 6.35E+00 8% 6.43E+00 9% 6.28E+00 7% 6.37E+00 8% 6.45E+00 10%
D2 5.18E+00 5.50E+00 6% 5.57E+00 8% 5.65E+00 9% 5.52E+00 7% 5.59E+00 8% 5.67E+00 10%
E1 5.27E+00 5.60E+00 6% 5.67E+00 8% 5.75E+00 9% 5.61E+00 6% 5.69E+00 8% 5.77E+00 10%
E2 5.25E+00 5.58E+00 6% 5.66E+00 8% 5.73E+00 9% 5.59E+00 6% 5.67E+00 8% 5.75E+00 10%
F 4.42E+00 4.70E+00 6% 4.76E+00 8% 4.83E+00 9% 4.70E+00 6% 4.76E+00 8% 4.83E+00 9%

kg PO4.-eq. / 

m2
GFA

kg PO4.-eq. 

/ m2
GFA

(%) kg PO4.-eq. 

/ m2
GFA

(%) kg PO4.-eq. 

/ m
2

GFA

(%) kg PO4.-eq. 

/ m
2

GFA

(%) kg PO4.-eq. 

/ m
2

GFA

(%) kg PO4.-eq. 

/ m2
GFA

(%)

A 4.59E-01 4.85E-01 6% 4.91E-01 7% 4.97E-01 8% 4.86E-01 6% 4.93E-01 7% 4.99E-01 9%
B1 5.16E-01 5.41E-01 5% 5.47E-01 6% 5.53E-01 7% 5.41E-01 5% 5.47E-01 6% 5.55E-01 8%
B2 5.06E-01 5.31E-01 5% 5.37E-01 6% 5.43E-01 7% 5.31E-01 5% 5.37E-01 6% 5.43E-01 7%
C1 4.66E-01 4.94E-01 6% 5.01E-01 7% 5.07E-01 9% 4.94E-01 6% 5.01E-01 7% 5.07E-01 9%
C2 4.56E-01 4.84E-01 6% 4.90E-01 8% 4.96E-01 9% 4.84E-01 6% 4.90E-01 8% 4.96E-01 9%
D1 5.04E-01 5.33E-01 6% 5.40E-01 7% 5.47E-01 8% 5.35E-01 6% 5.43E-01 8% 5.50E-01 9%
D2 4.59E-01 4.84E-01 5% 4.90E-01 7% 4.96E-01 8% 4.87E-01 6% 4.94E-01 8% 5.01E-01 9%
E1 4.80E-01 5.07E-01 6% 5.13E-01 7% 5.20E-01 8% 5.09E-01 6% 5.17E-01 8% 5.24E-01 9%
E2 4.78E-01 5.05E-01 6% 5.11E-01 7% 5.17E-01 8% 5.07E-01 6% 5.14E-01 8% 5.21E-01 9%
F 4.15E-01 4.39E-01 6% 4.44E-01 7% 4.50E-01 8% 4.39E-01 6% 4.45E-01 7% 4.51E-01 9%

kg ethene-eq. 

/ m2
GFA

kg ethene-

eq. / m2
GFA

(%) kg ethene-

eq. / m2
GFA

(%) kg ethene-

eq. / m
2

GFA

(%) kg ethene-

eq. / m
2

GFA

(%) kg ethene-

eq. / m
2

GFA

(%) kg ethene-

eq. / m
2

GFA

(%)

A 7.86E-01 8.36E-01 6% 8.48E-01 8% 8.59E-01 9% 8.37E-01 6% 8.49E-01 8% 8.61E-01 9%
B1 9.06E-01 9.54E-01 5% 9.65E-01 7% 9.77E-01 8% 9.54E-01 5% 9.66E-01 7% 9.78E-01 8%
B2 8.96E-01 9.43E-01 5% 9.55E-01 7% 9.66E-01 8% 9.43E-01 5% 9.55E-01 7% 9.66E-01 8%
C1 8.21E-01 8.75E-01 7% 8.87E-01 8% 8.99E-01 9% 8.75E-01 7% 8.87E-01 8% 8.99E-01 9%
C2 8.11E-01 8.65E-01 7% 8.76E-01 8% 8.88E-01 10% 8.65E-01 7% 8.76E-01 8% 8.88E-01 10%
D1 9.27E-01 9.86E-01 6% 9.99E-01 8% 1.01E+00 9% 9.89E-01 7% 1.00E+00 8% 1.02E+00 10%
D2 7.89E-01 8.38E-01 6% 8.49E-01 8% 8.61E-01 9% 8.41E-01 7% 8.54E-01 8% 8.66E-01 10%
E1 8.29E-01 8.80E-01 6% 8.92E-01 8% 9.03E-01 9% 8.82E-01 6% 8.95E-01 8% 9.07E-01 9%
E2 8.19E-01 8.69E-01 6% 8.81E-01 8% 8.93E-01 9% 8.71E-01 6% 8.84E-01 8% 8.96E-01 9%
F 6.73E-01 7.17E-01 7% 7.27E-01 8% 7.37E-01 10% 7.17E-01 7% 7.27E-01 8% 7.38E-01 10%

 Notes
difference relative to scenario 1 (baseline), calculated as : 

difference relative to scenario 1 (baseline), calculated as : 

 a     

 b     

Scenario 2   (low wastage)

lower bound average upper bound

Scenario 3  (high wastage)

lower bound average upper bound

Impact

GWP 

(excl. 

seq.)

Building

GWP  

(incl. 

seq.)

ODP

AP

EP

POCP

Scenario 1 

(baseline, zero 

wastage)
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TABLE P.3  Wastage scenarios: primary-energy consumption for all buildings (including differences relative to 

scenario 1). 

 

 

 

 

primary 

energy value

relative diff. 

[a]

primary 

energy value

relative diff. 

[a]

primary 

energy value

relative diff. 

[a]

primary 

energy value

relative diff. 

[b]

primary 

energy value

relative diff. 

[b]

primary 

energy value

relative diff. 

[b]

MJ / m
2

GFA MJ / m
2

GFA
(%) MJ / m

2
GFA

(%) MJ / m
2

GFA
(%) MJ / m

2
GFA

(%) MJ / m
2

GFA
(%) MJ / m

2
GFA

(%)

A 2.95E+02 3.06E+02 4% 3.09E+02 5% 3.12E+02 6% 3.10E+02 5% 3.14E+02 7% 3.19E+02 8%
B1 3.73E+02 3.85E+02 3% 3.89E+02 4% 3.92E+02 5% 3.87E+02 4% 3.91E+02 5% 3.97E+02 6%
B2 4.70E+02 4.90E+02 4% 4.96E+02 5% 5.01E+02 7% 4.90E+02 4% 4.96E+02 5% 5.01E+02 7%
C1 3.32E+02 3.58E+02 8% 3.63E+02 9% 3.68E+02 11% 3.58E+02 8% 3.63E+02 9% 3.68E+02 11%
C2 4.27E+02 4.60E+02 8% 4.66E+02 9% 4.72E+02 10% 4.60E+02 8% 4.66E+02 9% 4.72E+02 10%
D1 3.11E+02 3.28E+02 5% 3.31E+02 7% 3.35E+02 8% 3.34E+02 8% 3.39E+02 9% 3.44E+02 11%
D2 2.98E+02 3.09E+02 4% 3.12E+02 5% 3.15E+02 6% 3.21E+02 8% 3.27E+02 10% 3.33E+02 12%
E1 1.26E+03 1.31E+03 4% 1.32E+03 5% 1.33E+03 5% 1.34E+03 6% 1.37E+03 8% 1.40E+03 10%
E2 1.20E+03 1.25E+03 4% 1.26E+03 5% 1.27E+03 5% 1.28E+03 6% 1.31E+03 8% 1.33E+03 11%
F 2.44E+02 2.57E+02 5% 2.61E+02 7% 2.64E+02 8% 2.59E+02 6% 2.64E+02 8% 2.68E+02 10%
A 9.90E+02 1.01E+03 2% 1.01E+03 2% 1.01E+03 2% 1.01E+03 2% 1.01E+03 2% 1.01E+03 2%
B1 1.78E+03 1.81E+03 2% 1.81E+03 2% 1.81E+03 2% 1.81E+03 2% 1.81E+03 2% 1.81E+03 2%
B2 1.79E+03 1.83E+03 2% 1.83E+03 2% 1.83E+03 2% 1.83E+03 2% 1.83E+03 2% 1.83E+03 2%
C1 1.38E+03 1.51E+03 10% 1.51E+03 10% 1.51E+03 10% 1.51E+03 10% 1.51E+03 10% 1.51E+03 10%
C2 1.40E+03 1.53E+03 10% 1.53E+03 10% 1.53E+03 10% 1.53E+03 10% 1.53E+03 10% 1.53E+03 10%
D1 4.11E+03 4.14E+03 1% 4.14E+03 1% 4.14E+03 1% 4.14E+03 1% 4.14E+03 1% 4.14E+03 1%
D2 4.88E+03 4.91E+03 1% 4.91E+03 1% 4.91E+03 1% 4.91E+03 1% 4.91E+03 1% 4.91E+03 1%
E1 5.22E+03 5.33E+03 2% 5.33E+03 2% 5.33E+03 2% 5.33E+03 2% 5.33E+03 2% 5.33E+03 2%
E2 5.36E+03 5.48E+03 2% 5.48E+03 2% 5.48E+03 2% 5.48E+03 2% 5.48E+03 2% 5.48E+03 2%
F 6.16E+02 6.32E+02 3% 6.32E+02 3% 6.32E+02 3% 6.32E+02 3% 6.32E+02 3% 6.32E+02 3%
A 1.51E+03 1.55E+03 2% 1.56E+03 3% 1.57E+03 4% 1.57E+03 4% 1.59E+03 5% 1.61E+03 7%
B1 2.36E+03 2.41E+03 2% 2.42E+03 3% 2.44E+03 4% 2.42E+03 3% 2.44E+03 3% 2.46E+03 4%
B2 2.46E+03 2.53E+03 3% 2.55E+03 4% 2.57E+03 5% 2.53E+03 3% 2.55E+03 4% 2.57E+03 5%
C1 1.94E+03 2.11E+03 9% 2.14E+03 10% 2.16E+03 11% 2.11E+03 9% 2.14E+03 10% 2.16E+03 11%
C2 2.06E+03 2.23E+03 9% 2.26E+03 10% 2.28E+03 11% 2.23E+03 9% 2.26E+03 10% 2.28E+03 11%
D1 4.60E+03 4.65E+03 1% 4.68E+03 2% 4.71E+03 2% 4.96E+03 8% 4.99E+03 8% 5.02E+03 9%
D2 5.39E+03 5.44E+03 1% 5.47E+03 1% 5.50E+03 2% 5.78E+03 7% 5.83E+03 8% 5.87E+03 9%
E1 6.68E+03 6.85E+03 3% 6.89E+03 3% 6.94E+03 4% 6.95E+03 4% 7.05E+03 6% 7.14E+03 7%
E2 6.75E+03 6.93E+03 3% 6.98E+03 3% 7.03E+03 4% 7.03E+03 4% 7.13E+03 6% 7.23E+03 7%
F 1.04E+03 1.08E+03 3% 1.09E+03 4% 1.10E+03 6% 1.09E+03 5% 1.11E+03 6% 1.12E+03 8%
A 1.75E+03 1.83E+03 5% 1.85E+03 6% 1.88E+03 7% 1.86E+03 6% 1.89E+03 8% 1.92E+03 10%
B1 1.90E+03 1.97E+03 4% 1.99E+03 5% 2.01E+03 6% 1.98E+03 4% 2.00E+03 5% 2.05E+03 8%
B2 1.89E+03 1.97E+03 4% 1.99E+03 5% 2.02E+03 7% 1.97E+03 4% 1.99E+03 5% 2.02E+03 7%
C1 2.24E+03 2.40E+03 7% 2.42E+03 8% 2.45E+03 9% 2.40E+03 7% 2.42E+03 8% 2.45E+03 9%
C2 2.22E+03 2.39E+03 7% 2.41E+03 9% 2.44E+03 10% 2.39E+03 7% 2.41E+03 9% 2.44E+03 10%
D1 1.47E+03 1.56E+03 6% 1.58E+03 8% 1.60E+03 9% 1.58E+03 8% 1.61E+03 10% 1.64E+03 12%
D2 1.34E+03 1.42E+03 6% 1.44E+03 7% 1.46E+03 8% 1.45E+03 8% 1.48E+03 10% 1.51E+03 13%
E1 2.08E+03 2.19E+03 5% 2.21E+03 6% 2.24E+03 8% 2.23E+03 7% 2.28E+03 10% 2.32E+03 12%
E2 1.96E+03 2.06E+03 5% 2.08E+03 6% 2.11E+03 8% 2.11E+03 8% 2.15E+03 10% 2.20E+03 12%
F 1.74E+03 1.85E+03 6% 1.88E+03 8% 1.91E+03 10% 1.85E+03 6% 1.88E+03 8% 1.92E+03 10%
A 1.18E+02 1.25E+02 6% 1.27E+02 8% 1.29E+02 9% 1.27E+02 8% 1.30E+02 10% 1.33E+02 12%
B1 1.28E+02 1.33E+02 4% 1.34E+02 5% 1.35E+02 5% 1.34E+02 5% 1.36E+02 6% 1.38E+02 7%
B2 1.38E+02 1.45E+02 5% 1.46E+02 6% 1.48E+02 7% 1.45E+02 5% 1.46E+02 6% 1.48E+02 7%
C1 4.02E+02 4.35E+02 8% 4.38E+02 9% 4.41E+02 10% 4.35E+02 8% 4.38E+02 9% 4.41E+02 10%
C2 4.17E+02 4.52E+02 8% 4.55E+02 9% 4.58E+02 10% 4.52E+02 8% 4.55E+02 9% 4.58E+02 10%
D1 7.51E+02 7.67E+02 2% 7.71E+02 3% 7.76E+02 3% 8.17E+02 9% 8.28E+02 10% 8.38E+02 12%
D2 8.13E+02 8.29E+02 2% 8.34E+02 3% 8.39E+02 3% 8.81E+02 8% 8.92E+02 10% 9.03E+02 11%
E1 1.75E+02 1.84E+02 5% 1.85E+02 6% 1.87E+02 7% 1.89E+02 8% 1.94E+02 11% 1.98E+02 13%
E2 1.66E+02 1.74E+02 5% 1.75E+02 6% 1.77E+02 7% 1.80E+02 8% 1.84E+02 11% 1.88E+02 14%
F 1.67E+02 1.83E+02 9% 1.87E+02 12% 1.92E+02 15% 1.84E+02 10% 1.89E+02 14% 1.95E+02 17%
A 1.92E+03 2.01E+03 5% 2.03E+03 6% 2.06E+03 7% 2.03E+03 6% 2.07E+03 8% 2.11E+03 10%
B1 2.07E+03 2.15E+03 4% 2.18E+03 5% 2.20E+03 6% 2.16E+03 4% 2.18E+03 5% 2.23E+03 8%
B2 2.08E+03 2.17E+03 4% 2.19E+03 5% 2.21E+03 7% 2.17E+03 4% 2.19E+03 6% 2.22E+03 7%
C1 2.69E+03 2.88E+03 7% 2.91E+03 8% 2.94E+03 9% 2.88E+03 7% 2.91E+03 8% 2.94E+03 9%
C2 2.69E+03 2.89E+03 7% 2.92E+03 9% 2.95E+03 10% 2.89E+03 7% 2.92E+03 9% 2.95E+03 10%
D1 2.39E+03 2.51E+03 5% 2.53E+03 6% 2.56E+03 7% 2.59E+03 8% 2.63E+03 10% 2.67E+03 12%
D2 2.35E+03 2.44E+03 4% 2.47E+03 5% 2.49E+03 6% 2.53E+03 8% 2.58E+03 10% 2.62E+03 12%
E1 2.30E+03 2.42E+03 5% 2.45E+03 6% 2.47E+03 8% 2.47E+03 7% 2.52E+03 10% 2.57E+03 12%
E2 2.17E+03 2.28E+03 5% 2.31E+03 6% 2.33E+03 8% 2.33E+03 8% 2.39E+03 10% 2.44E+03 12%
F 1.96E+03 2.08E+03 6% 2.12E+03 8% 2.15E+03 10% 2.09E+03 7% 2.12E+03 9% 2.16E+03 11%
A 3.43E+03 3.55E+03 4% 3.59E+03 5% 3.63E+03 6% 3.61E+03 5% 3.66E+03 7% 3.72E+03 8%
B1 4.43E+03 4.56E+03 3% 4.60E+03 4% 4.64E+03 5% 4.57E+03 3% 4.62E+03 4% 4.69E+03 6%
B2 4.54E+03 4.70E+03 4% 4.74E+03 5% 4.79E+03 6% 4.70E+03 4% 4.74E+03 5% 4.79E+03 6%
C1 4.63E+03 4.99E+03 8% 5.05E+03 9% 5.10E+03 10% 4.99E+03 8% 5.05E+03 9% 5.10E+03 10%
C2 4.74E+03 5.12E+03 8% 5.18E+03 9% 5.23E+03 10% 5.12E+03 8% 5.18E+03 9% 5.23E+03 10%
D1 7.00E+03 7.16E+03 2% 7.21E+03 3% 7.26E+03 4% 7.54E+03 8% 7.62E+03 9% 7.70E+03 10%
D2 7.74E+03 7.88E+03 2% 7.94E+03 3% 7.99E+03 3% 8.31E+03 7% 8.40E+03 9% 8.50E+03 10%
E1 8.98E+03 9.27E+03 3% 9.34E+03 4% 9.41E+03 5% 9.42E+03 5% 9.57E+03 7% 9.72E+03 8%
E2 8.92E+03 9.21E+03 3% 9.29E+03 4% 9.36E+03 5% 9.37E+03 5% 9.52E+03 7% 9.67E+03 8%
F 3.00E+03 3.16E+03 5% 3.20E+03 7% 3.25E+03 9% 3.18E+03 6% 3.23E+03 8% 3.29E+03 10%

 Notes

difference relative to scenario 1 (baseline), calculated as : 

difference relative to scenario 1 (baseline), calculated as :  b     

 a     
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Q Thermal study: mathematical definitions and formulas 

 

This appendix accompanies CHAPTER 6 and provides information on the formulas that 

have been used to carry out the statistical analysis of the experimental data and the 

regression analyses. 

TABLE Q.1  Formulas for statistical and regression analysis relating to thermal tests. Notes are located at the 

end of the table. 

Parameter 
type 

Parameter 
designation 

Symbol Unit of 
measurement 

Comments References 

for time 
lag 

for 
decrem. 
factor 

measure of 
location 

arithmetic mean �̅� h / calculated as: 

�̅� =  
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

 

Madsen, 
2011; 
Mills and 
Chang, 2004 
(p.26) 

measure of 
dispersion 

standard deviation 
of the arithmetic 
mean 

σ h / calculated as: 

𝜎 =  √
1

𝑁 − 1
∑[(𝑥𝑖 − �̅�)2]

𝑁

𝑖=1

 

 

Madsen, 
2011;  
Mills and 
Chang, 2004 
(p.26) 

relative standard 
deviation of the 
arithmetic mean (or 
coefficient of 
variation) 

σrel % % calculated as: 

𝜎𝑟𝑒𝑙 =  
𝜎

�̅�
∙ 100% 

 
 

Madsen, 
201; Faber, 
2012 (p.25) 

statistical  
uncertainty of the 
mean (shown by 
each error bar in 
graphs)  

U h / calculated as: 
𝑈 =  ± σ 
 
Error bars show upper and lower limits of the 
68.3% confidence interval for the mean: 

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = �̅� ± U = �̅�  ±  σ 

Madsen, 
2011 (p.51, 
144); Mills 
and Chang, 
2004 (p.25); 
Faber, 2012 
(p.65) 

regression 
parameters 

observed value of y yi h /   
predicted or fitted 
values of y 

�̂�𝑖 h / Calculated by method of least squares  

calculated (least-
square) estimate of 
the slope β. 
Regression 
coefficient. 

�̂� h/MJ / �̂�

=
𝑁 ∑ 𝑥𝑖𝑦𝑖 − (∑ 𝑥𝑖

𝑁
𝑖=1 )𝑁

𝑖=1 (∑ 𝑦𝑖
𝑁
𝑖=1 )

𝑁 ∑ 𝑥𝑖
2𝑁

𝑖=1 − (∑ 𝑥𝑖
𝑁
𝑖=1 )2

 

Dekking et 
al., 2005 
(p.331); 
Underwood, 
1997 (p.422) 

estimate of the y-
intercept θ 

𝜃 h / 𝜃 = �̅� − �̂��̅� Dekking et 
al., 2005 
(p.331); 
Kaltenbach, 
2012 (p.80) 

error (or residual) erri h / 𝑒𝑟𝑟𝑖 = 𝑦𝑖 − �̂�𝑖 
Montgome-
ry, 2013 
(p.453) 

error (or residual) 
sum of squares 

SSerr h2 / 

𝑆𝑆𝑒𝑟𝑟 = ∑ 𝑒𝑟𝑟𝑖
2

𝑁

𝑖=1

= ∑(𝑦𝑖 − �̂�𝑖)2

𝑁

𝑖=1

 

Montgome-
ry, 2013 
(p.453); 
Kaltenbach, 
2012 (p.87) 
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Parameter 
type 

Parameter 
designation 

Symbol Unit of 
measurement 

Comments References 

for time 
lag 

for 
decrem. 
factor 

regression 
parameters 

regression sum of 
squares (or model 
sum of squares) 

SSreg h2 / in terms of �̂�𝑖 and 𝑦𝑖: 

𝑆𝑆𝑟𝑒𝑔 = ∑ 𝑦𝑖
2

𝑁

𝑖=1

−
1

𝑁
(∑ 𝑦𝑖

𝑁

𝑖=1

)

2

− ∑(𝑦𝑖 − �̂�𝑖)2

𝑁

𝑖=1

 

 
or, in terms of �̂�𝑖 and  �̅�: 

𝑆𝑆𝑟𝑒𝑔 = ∑(�̂�𝑖 − �̅�)2

𝑁

𝑖=1

 

 
 

 
 
 
Montgome-
ry, 2013 
(p.463) 
 
 
 
 
 
 
 
Kaltenbach, 
2012 (p.86) 

total sum of 
squares 

SStot h2 / 𝑆𝑆𝑡𝑜𝑡 = 𝑆𝑆𝑟𝑒𝑔 + 𝑆𝑆𝑒𝑟𝑟 

           = ∑ 𝑦𝑖
2𝑁

𝑖=1 −
1

𝑁
(∑ 𝑦𝑖

𝑁
𝑖=1 )2 

 
or, in terms of  𝑦𝑖  and  �̅�: 

𝑆𝑆𝑡𝑜𝑡 = ∑(𝑦𝑖 − �̅�)2

𝑁

𝑖=1

 

 
 

Montgome-
ry, 2013 
(p.463) 
 
 
 
 
Kaltenbach, 
2012 (p.86) 

unbiased estimator 
of variance of the 

error σ2 

σ̂
2 h2 / 

σ̂
2 =

𝑆𝑆𝑒𝑟𝑟

𝑁 − 2
=

1

𝑁 − 2
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑁

𝑖=1

 

Montgome-
ry, 2013 
(p.453); 
Kaltenbach, 
2012 (p.80) 

estimator of 
standard error of y 

σ̂ h / 

σ̂ = √
1

𝑁 − 2
∑(𝑦𝑖 − 𝑦�̂�)2

𝑁

𝑖=1

 

Faber, 2012 
(p.101 & 
p.103) 

variance of x 
σ̂𝑋

2  MJ2 / 
σ̂𝑋

2 =
1

𝑁 − 1
∑(𝑥𝑖 − �̅�)2

𝑁

𝑖=1

 

Kaltenbach, 
2012 (p.81) 

variance of 

estimator �̂� 
Var̂(�̂�) h2/MJ

2 
/ 

Var̂(�̂�) =
σ̂

2

�̂�𝑋
2𝑁

 
Kaltenbach, 
2012 (p.81) 

standard error of 

estimator �̂� 
sê(�̂�) h/MJ / 

sê(�̂�) = √Var̂(�̂�) =
σ̂

σ̂𝑋√𝑁
 

Kaltenbach, 
2012 (p.81) 

variance of 

estimator 𝜃 
Var̂(𝜃) h2 / 

Var̂(𝜃) =
σ̂

2

�̂�𝑋
2𝑁2

∑ 𝑥𝑖
2

𝑁

𝑖=1

 

Kaltenbach, 
2012 (p.81) 
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Parameter 
type 

Parameter 
designation 

Symbol Unit of 
measurement 

Comments References 

for time 
lag 

for 
decrem. 
factor 

standard error of 

estimator 𝜃 
sê(𝜃) h / 

sê(𝜃) = √Var̂(𝜃)

=
σ̂

σ̂𝑋√𝑁
√

1

𝑁
∑ 𝑥𝑖

2

𝑁

𝑖=1

 

Kaltenbach, 
2012 (p.81) 

correlation 
coefficient 

r / / 
𝑟 =

∑ (𝑥𝑖 − �̅�)𝑁
𝑖=1 (𝑦𝑖 − �̅�)

√∑ (𝑥𝑖 − �̅�)2 ∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

𝑁
𝑖=1

 
Dekking et 
al., 2005 
(p.142) 

regression 
parameters 

coefficient of 
determination 

r2 / / 
𝑟2 =

𝑆𝑆𝑟𝑒𝑔

𝑆𝑆𝑡𝑜𝑡
= 1 −

𝑆𝑆𝑒𝑟𝑟

𝑆𝑆𝑡𝑜𝑡
 

Montgome-
ry, 2013 
(p.464) 

adjusted coefficient 
of determination 

r2
adj / / 

𝑟𝑎𝑑𝑗
2 = 1 −

𝑆𝑆𝑒𝑟𝑟 (𝑁 − 2)⁄

𝑆𝑆𝑡𝑜𝑡 (𝑁 − 1)⁄
= 

         = 1 − (
𝑁 − 1

𝑁 − 2
) (1 − 𝑟2) 

Montgome-
ry, 2013 
(p.464) 

Symbols (other than those defined above) 

N sample size (i.e.,, number of observations) 

xi value of x measured during the ith observation 
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R Thermal study: summaries of regression analyses 

 

This appendix contains a statistical summary of each regression analysis carried out for 

the thermal tests (CHAPTER 6). 

TABLE R.1  Summary of regression analysis, regarding the correlation between solar energy and time lag, for 

wall B1. 

 

 

  

parameter 

designation

symbol value

observations N 65

correlation 

coefficient

r

0.832

coefficient of 

determination
r2

0.958

adjusted 

coefficient of 

determination

r2
adj

0.957

standard error 

of y 1.55

designation symbol value standard 

error

slope 0.954 0.0259

y-intercept 0 n.a.

source of 

variation

degrees of 

freedom

sum of squares mean square F-ratio probability

regression 1 3247 3247 1427 0.19

residual 63 143 2

total variation 64 3391

Regression equation

Analysis of variance

Parameter description

Regression summary: statistics
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TABLE R.2  Summary of regression analysis, regarding the correlation between solar energy and decrement 

factor, for wall B1. 

 

 

 

  

parameter 

designation

symbol value

observations N 65

correlation 

coefficient

r

-0.362

coefficient of 

determination
r2

0.131

adjusted 

coefficient of 

determination

r2
adj

0.117

standard error 

of y 0.09

designation symbol value standard 

error

slope -0.012 0.0040

y-intercept 0.3687 0.0308

source of 

variation

degrees of 

freedom

sum of squares mean square F-ratio probability

regression 1 0 0 10 >>0.95

residual 63 0 0

total variation 64 1

Analysis of variance

Parameter description

Regression summary: statistics Regression equation
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TABLE R.3  Summary of regression analysis, regarding the correlation between solar energy and time lag, for 

wall D1. 

 

 

 

  

parameter 

designation

symbol value

observations N 65

correlation 

coefficient

r

0.853

coefficient of 

determination
r2

0.962

adjusted 

coefficient of 

determination

r2
adj

0.961

standard error 

of y 1.34

designation symbol value standard 

error

slope 0.870 0.0225

y-intercept 0 n.a.

source of 

variation

degrees of 

freedom

sum of squares mean square F-ratio probability

regression 1 2706 2706 1578 0.51

residual 63 108 2

total variation 64 2814

Analysis of variance

Parameter description

Regression summary: statistics Regression equation
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TABLE R.4  Summary of regression analysis, regarding the correlation between solar energy and decrement 

factor, for wall D1. 

 

 

 

  

parameter 

designation

symbol value

observations N 65

correlation 

coefficient

r

-0.541

coefficient of 

determination
r2

0.292

adjusted 

coefficient of 

determination

r2
adj

0.281

standard error 

of y 0.05

designation symbol value standard 

error

slope -0.012 0.0025

y-intercept 0.270 0.0025

source of 

variation

degrees of 

freedom

sum of squares mean square F-ratio probability

regression 1 0 0 26 >>0.95

residual 63 0 0

total variation 64 0

Analysis of variance

Parameter description

Regression summary: statistics Regression equation
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TABLE R.5  Summary of regression analysis, regarding the correlation between solar energy and time lag, for 

wall F. 

 

 

 

 

  

parameter 

designation

symbol value

observations N 65

correlation 

coefficient

r

0.875

coefficient of 

determination
r2

0.950

adjusted 

coefficient of 

determination

r2
adj

0.949

standard error 

of y 1.42

designation symbol value standard 

error

slope 0.798 0.0237

y-intercept 0 n.a.

source of 

variation

degrees of 

freedom

sum of squares mean square F-ratio probability

regression 1 2275 2275 1191 0.20

residual 63 120 2

total variation 64 2396

Analysis of variance

Parameter description

Regression summary: statistics Regression equation
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TABLE R.6  Summary of regression analysis, regarding the correlation between solar energy and decrement 

factor, for wall F. 

 

 

parameter 

designation

symbol value

observations N 65

correlation 

coefficient

r

-0.441

coefficient of 

determination
r2

0.195

adjusted 

coefficient of 

determination

r2
adj

0.182

standard error 

of y 0.05

designation symbol value standard 

error

slope -0.008 0.0022

y-intercept 0.187 0.0169

source of 

variation

degrees of 

freedom

sum of squares mean square F-ratio probability

regression 1 0 0 15 >>0.95

residual 63 0 0

total variation 64 0

Analysis of variance

Parameter description

Regression summary: statistics Regression equation
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S Thermal study: plots of regression analyses 

 

This appendix contains the regression-analysis plots regarding the functional 

relationships between TL and solar energy or DF and solar energy. These plots refer to 

walls D1 and F (the equivalent plots for wall B1 have been presented in SECTION 6.4.2).  

Each figure contains three parts: 

a) TL (or DF) values versus solar energy received in the morning, with regression 

line in red; 

b) TL (or DF) residuals versus solar energy received in the morning; 

c) TL (or DF) residuals versus estimated TL (or DF) values. 
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FIGURE S.1 Regression-analysis plots for the time lag of wall D1: TL versus solar energy and regression line 

(a), residuals versus solar energy (b) and residuals versus estimated TL (c). 
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FIGURE S.2 Regression-analysis plots for the time lag of wall F: TL versus solar energy and regression line (a), 

residuals versus solar energy (b) and residuals versus estimated TL (c). 
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FIGURE S.3 Regression-analysis plots for the decrement factor of wall D1: DF versus solar energy and 

regression line (a), residuals versus solar energy (b) and residuals versus estimated DF (c). 
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FIGURE S.4 Regression-analysis plots for the decrement factor of wall F: DF versus solar energy and 

regression line (a), residuals versus solar energy (b) and residuals versus estimated DF (c). 
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