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Abstract: In recent years, the rapid development of big data technology has also been 

favored by more and more scholars. Massive data storage and calculation problems have 

also been solved. At the same time, outlier detection problems in mass data have also 

come along with it. Therefore, more research work has been devoted to the problem of 

outlier detection in big data. However, the existing available methods have high 

computation time, the improved algorithm of outlier detection is presented, which has 

higher performance to detect outlier. In this paper, an improved algorithm is proposed. 

The SMK-means is a fusion algorithm which is achieved by Mini Batch K-means based 

on simulated annealing algorithm for anomalous detection of massive household 

electricity data, which can give the number of clusters and reduce the number of 

iterations and improve the accuracy of clustering. In this paper, several experiments are 

performed to compare and analyze multiple performances of the algorithm. Through 

analysis, we know that the proposed algorithm is superior to the existing algorithms. 

 

Keywords: Big data, outlier detection, SMK-means, Mini Batch K-means, simulated 

annealing. 

1. Introduction 

Nowadays, electric energy has become the main part of energy utilization. With the rapid 

growth of China's economy, social electricity consumption has also increased year by 

year, but the supply of power energy still cannot fully meet the needs of economic 

development. How to improve the efficiency of power energy utilization and explore the 

potential of power energy utilization is the most important part of the data mining in the 

power energy. In our country, because of many reasons, such as the obsolescence of 

public electricity or household electric equipment, and the weak consciousness of energy 
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saving of consumers, the power energy has not been fully utilized. In addition, according 

to the statistics of the State Grid, it has been found that the theft of electricity in recent 

years has resulted in the loss of tens of millions of dollars, and the way of stealing 

electricity from the original barbaric violent electricity theft has developed into a more 

specialized means, more covert behavior and a large-scale through the use of intelligent 

equipment. The way of implementation of these abnormal power consumption will bring 

a lot of economic losses to business users and family users [Gurusamy and Subramaniam 

(2015)]. 

Therefore, in or der to use the power energy more effectively and protect the rights and 

interests of the consumers of the power users, the abnormal analysis of the household 

electricity data will be effectively realized, and the corresponding measures are taken to 

reduce the waste of the energy consumption according to the identified anomalies, and 

the abnormal recognition operation of the electrical data for the family users is carried out. 

The application of data mining to the abnormal recognition of household electricity 

consumption will save a lot of unnecessary losses, and it will also play a role in 

promoting the management of the State Grid. With the increasing amount of electricity 

used by home users, a large number of data are produced. The cloud platform provides a 

distributed storage system for storing massive data. By mining and analyzing the data, we 

detect the anomalies of the data set, and then identify the abnormality in the process of 

the user's electricity use. 

Cloud computing and data mining have received extensive attention at home and abroad. 

Because of the increase in the demand for electricity and the consumption of electricity, 

the power data also increases rapidly. Therefore, the excavation of power data will also 

consume more computing resources [Shanmugam (2017); Yildiz (2015)]. Many 

distributed computing frameworks in cloud computing, such as Hadoop MapReduce, 

Apache Spark, Apache Flink etc., have obvious advantages for the calculation of real 

time or offline massive data, and the cloud computing is fault tolerant, and is based on the 

high YARN cluster management. Availability is to prevent the node from downtime. 

Therefore, cloud computing has a huge role in the excavation of power data in [Chen 

(2017); Gurusamy (2015)]. 

With the rapid development of computer technology and Internet technology, cloud 

computing technology has also emerged. With the powerful computing power brought by 

its distributed platform, cloud computing has ushered in a completely new computing 

experience for the processing of massive data. Data mining will release more potential 

under the cloud environment. This combination not only provides us with distributed 

storage and sharing of distributed file system (Hadoop Distributed File System, HDFS) 

files, but also provides fast distributed computing. Efficient data processing [Kumari, 

Kapoor and Singh (2016)]. In addition, there are many distributed computing frameworks 

for processing massive data, such as Hadoop MapReduce, Spark, Strom, Flink, etc. For 

processing in distributed computing, a job is divided into many tasks, each task consists 

of one or multiple computer nodes perform calculations, which are highly efficient for the 

processing and calculation of offline mass and real time data. Distributed computing has 

the advantages of resource sharing and load balancing, which can not only reduce the 

computing burden of the server, but also reduce the burden on the server. MapReduce 
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uses "Map" and "Reduce" to handle the distributed processing of large data sets. 

The Mini Batch K-means algorithm has an impact on the clustering effect. SMK-means is 

proposed, which is an optimization of the Mini Batch K-means algorithm. It is not only 

suitable for processing massive data, but also improves clustering. The effect is to avoid 

the algorithm being trapped in a local optimal solution. SMK-means algorithm is mainly 

divided into the following steps, the first step is to bring about the simulated annealing 

algorithm for reducing the number of iterations and the second step is to utilize 

parallelization Mini Batch K-means algorithm on Hadoop and the third step is to 

calculate outlier scores by distance function. 

In this paper, the contribution of the improved algorithm is shown as follows:  

• A novel algorithm is proposed for anomaly detection. 

• The improved algorithm combines the probability based algorithm and clustering 

algorithm. That is, the Mini Batch K-means algorithm based on simulated annealing 

algorithm. 

• Based on cloud platform, an improved anomaly detection algorithm is implemented, 

and SMK-means algorithm is parallelized and distributed. 

The rest of this paper is structured as follows: Section II summarizes Research status of 

outlier detection. The presented method in this paper is introduced in details in Section III. 

In Section IV, experimental environment, algorithm implementation and related 

performance analysis and comparison, the experimental studies and evaluation of 

methods are reported, while conclusion and future work are covered in Section V. 

2. Related Work 

With the advent of the third scientific and technological revolution, electronic 

technologies, atomic energy technologies, and bioengineering technologies have also 

continued to develop. As a result, the demand for electrical energy has become 

increasingly strong. To date, electrical energy is still an indispensable energy source in 

human life. At the same time, domestic and foreign research on electric energy has 

generated a great deal of interest. Whether it is industrial electricity, domestic electricity, 

or biological electricity, there are many research outputs [Yan (2015); Li (2013)]. In this 

section，we describe the research status of household electricity outlier detection and 

introduced relevant research work and introduce the research of clustering algorithm for 

outlier detection mainly, the already proposed algorithm may have more high 

computational complexity or less computation time, but these methods do not have better 

performance for high dimensional dataset and cannot reduce calculation time while 

ensuring accuracy. 

To avoid anomalies such as California's power crisis of 2000 and 2001, the authors 

attempted to predict abnormalities using advanced machine learning algorithms, 

particularly the Electricity Price Change Point Detection (CPD) algorithm during the 

California power crisis. In order to solve the expensive calculation of a large amount of 

data at the time of application, the one-dimensional time series data Gaussian process 
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(GP) is accelerated. This algorithm effectively makes it possible to use the hourly price 

data to calculate change points during the California power crisis [Gu, Choi, Gu et al. 

(2013)]. 

A novel self-adaptive data shifting based method for one-class SVM (OCSVM) hyper-

parameter selection, is proposed to generate a controllable number of high-quality pseudo 

outlier data around target data by efficient edge pattern detection and a “negative 

shifting” mechanism, which can effectively regulate the OCSVM decision boundary for 

an accurate target data description. 

A large scale network traffic monitoring and analysis system based on Hadoop in 2014 

was proposed, which is an open source distributed computing platform for commodity 

hardware big data processing. The system has been deployed in the core network of a 

large cellular network and has been widely evaluated. The results show that the system 

can effectively handle 4.2 TB of data from the 123 Gb/s link each day with high 

performance and low cost [Liu, Liu and Ansari (2014)].  

A new incremental and distributed classification based on the popular nearest neighbor 

algorithm was proposed. This method is implemented in Apache Spark and includes 

distributed metric space ordering to perform faster searches. In addition, an efficient 

incremental data instance selection method has been proposed for continuous update of 

large scale data streams and the elimination of outdated examples from case libraries. 

This alleviates the high computational requirements of the original classifier, making it 

suitable for the problem under consideration. Experimental studies conducted on a set of 

real mass data streams demonstrate the effectiveness of the proposed solution [Ramírez-

Gallego, Krawczyk, García et al. (2017)]. 

In [Song, Rochas, Beze et al. (2016)], the authors compare the different algorithms with 

the KNN algorithm based on MapReduce, and evaluate them through the combination of 

theory and time. To be able to compare solutions, we identified three general steps for 

KNN computation on MapReduce: data preprocessing, data partitioning, and calculations. 

Analyze each step from the aspects of load balancing, accuracy, and complexity. Various 

data sets were used in the experiment. The influences of data volume, data dimension and 

k value were analyzed from multiple angles of time and space complexity and precision. 

The experimental part brings new advantages and disadvantages to each algorithm. 

In this paper, we employ SMK-means algorithm, which combines this algorithm with the 

simulated annealing algorithm. Meanwhile, SMK-means optimize the objective function, 

not only reduces the calculation time but also improves the accuracy of the algorithm. 

3. The Proposed Method 

In this section, we mainly introduce the method proposed in this paper. The first part 

introduces data preprocessing and feature engineering. The related concepts elaborated 

are described in details in second part. The SMK-means algorithm is explained in detail 

in third part.  

3.1. Data Preprocessing 
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Feature engineering：When the data preprocessing is completed, it is necessary to 

select a meaningful feature input to the selected model for training modeling [Panigrahy, 

Santra and Chattopadhyay (2017)]. In general, select features from two perspectives: 

• Whether the characteristic is divergence: If a characteristic is not divergent, for 

example, the variance is close to 0, that is, the sample is basically not different in this 

feature, which is not useful for the discrimination of the sample. 

• Relevance of features and objectives: This is more obvious, and features that are highly 

relevant to the target should be preferred 

A preliminary introduction has been made to whether or not the existing features are 

selected. Next, because the data features are limited and cluster related algorithms require 

more data features, it is suitable for clustering data sets. Therefore, before modeling the 

data, according to the characteristics of the model, the characteristics of the time 

characteristics are constructed according to the time characteristics of the data set. This is 

also the discretization of the data. For example, whether or not weekends, workdays, 

seasons, time periods, and the like are related to the power consumption of home users. 

Built up data features such as Tab. 1. 

Table 1: Data characteristics table 

Field Name Represents 

Id Data number 

Date Date 

Time Time 

Sub_metering_1 Sub-meter1 

Sub_metering_2 Sub-meter2 

Sub_metering_3 Sub-meter3 

apparent_power Power 

Weekend_No Current time is not weekend 

Weekend_Yes Current time is the weekend 

Season_0 Spring 

Season_1 Summer 

Season_2 Autumn 

Season_3 Winter 

Tfd_0 0-4 hour 

Tfd_1 4-8 hour 

Tfd_2 8-12 hour 

Tfd_3 12-16 hour 

Tfd_4 16-20 hour 

Tfd_5 20-24 hour 

Data Preprocessing：Due to the difference of data indexes and data magnitudes of 
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different attributes, a plurality of data indexes or multiple data levels appear in one data 

set, so it is necessary to standardize the operation of the data set. The main way to 

achieve this is to scale the data according to a certain proportion of the EU, so that it falls 

into a range of characteristics. Especially when comparing or evaluating indicators, the 

unit attributes of the data need to be weakened to convert the data into dimensionless 

pure data values. In order to compare and weight the data indicators of different units or 

different orders of magnitude. We handle original dataset to accommodate our proposed 

method before we apply it. By intercepting partial sample data from original data set, 

removing the noise and employing normalized processing of sample data set. In this 

paper, we use standard deviation to process sample data. Standard deviation, the 

processed data is in accord with the standard normal distribution. Standardized data set as 

shown in Fig. 1. 

 
 

Figure 1: Standardized data set 

3.2. Basic clustering algorithm 

The idea of the basic K-Means algorithm is simple. The constant k is determined in 

advance. The constant k means the number of the final clusters. The initial point is 

randomly selected as the centroid and the similarity between each sample and the 

centroid is calculated (Euclidean distance), the sample points are assigned to the most 

similar class, and then the centroid of each class is recalculated (the class center). This 

process is repeated until the centroid is not changed, and finally each sample is 

determined. The category they belong to and the centroid of each class. Since the 

similarity between all samples and each centroid is calculated every time, the 

convergence speed of K-Means algorithm is slow on large scale data sets [Yang (2017); 

Joshi (2017)]. 

Mini Batch K-Means algorithm is used as a variant of the standard K-Means clustering 
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algorithm [Cho (2014); Newling (2016); Feizollah (2015)]. Through the idea of “divide 

and conquer”, the data is logically divided into multiple small batch data subsets. In other 

words, the algorithm does not need to perform calculation on all data samples in the 

calculation process, but instead randomly extracts subsets of data each time the algorithm 

is trained. This can greatly reduce the computation time for data. At the same time, Mini 

Batch K-Means also tries to optimize the objective function. The objective function is as 

follows: 

2

1

(c , j)
m

K

i

i j C

SSE dis
 

              (1) 

k represents k clustering centers, ci represents the i center, j represents the sample points, 

and dist represents Euclidean distance. By calculating the Euclidean distance, the 

optimization function is calculated, which is the sum of squared errors (even if Sum of 

the Squared Error, SSE). We compare the principles of the above two algorithms as 

shown in Fig. 2. 

(a) (b)  

Figure 2: Two different clustering algorithm calculations: (a) K-means, (b) Mini Batch 

K-means 
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(a) (b)  

Figure 3: Two different clustering algorithms: (a) K-means algorithm; (b) Mini 

Batch K-means. 

Compared with other related algorithms, Mini Batch K-Means reduces the convergence 

time of K-means. The effect of this algorithm is slightly worse than the standard 

algorithm. However, the Mini Batch K-Means algorithm implements further clustering by 

performing corresponding mathematical statistics on small batches of data in advance. 

That is to say, the standard clustering algorithm is that the center point is updated in a 

single point. As shown in Fig. 3, the differences between the two algorithms are shown 

from the intuitive and calculation methods respectively, so that the knowledge of the 

Mini Batch K-Means ratio is obtained. Clustering algorithms have faster convergence 

speeds and are more suitable for processing massive data. 

Mini Batch K-means is mainly divided into the following steps: 

(1) divide data sets into multiple batches randomly, and regard small batch as a whole. 

(2) set the number of initial cluster clusters. 

(3) allocate small batch data to the nearest cluster center. 

(4) update the cluster center iteratively until the cluster center doesn't change any more. 

Compared with the K-means algorithm, the Mini Batch K-means algorithm is based on 

every small sample set instead of a single data point. The operation object is also a small 

batch of data, and for each small batch of data, the update clustering center is realized by 

calculating the average value, and the small batch of data is allocated to the new cluster 

center. With the gradual increase of the number of iterations, the cluster center is 

gradually stable, until the cluster center no longer changes. Then the calculation is 

stopped. 

Mini Batch K-means algorithm algorithm is simple, easy to understand and implement, 

the effect of clustering and the speed of the standard clustering algorithm are few, and the 

concept of batch type is introduced to speed up the data clustering speed, and the 

operation time can be reduced on the premise of maintaining the accuracy of the data. 

Because it is a batch processing data set, it does not need to calculate all the data samples 
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in the calculation process, and extracts some samples from different categories of data to 

calculate. The amount of data needed to be calculated is reduced much, so the running 

time will be reduced accordingly, so the performance will be shown when the data is 

large. It is superior to the standard clustering algorithm. 

3.3 SMK-means algorithm 

This section makes corresponding improvements to the shortcomings of the Mini Batch 

K-means algorithm. When referring to Mini Batch K-means, we must mention the K-

means algorithm. The Mini batch K-means itself is an optimization algorithm of the K-

means algorithm, which largely retains the advantages of the standard K-means algorithm. 

Improved the shortcomings of the long computation time of the K-means algorithm. 

Although the Mini Batch K-means is suitable for the calculation of massive data sets, the 

calculation time is greatly reduced, and the k-value convergence is accelerated. However, 

because this algorithm is a small-batch calculation, it reduces the accuracy of the 

algorithm. In order to improve the accuracy of the algorithm, it also improves the 

accuracy of detection of power anomalies for home users. The SMK-means algorithm 

draws on the idea of the simulated annealing algorithm. The simulated annealing 

algorithm is a stochastic algorithm and does not necessarily find the global optimal 

solution. It can quickly find the approximate optimal solution to the problem, combined 

with the Mini Batch K-means. The advantage of not only can improve the accuracy of 

clustering, but also greatly reduce the predicament trapped in the local optimum. In 

addition, the algorithm is deployed based on the cloud environment, so it is more 

advantageous for processing large amounts of data. Therefore, the SMK-means clustering 

algorithm is proposed. In order to better understand the core idea of the SMK-means 

algorithm, some detailed explanations will be given. 

The implementation of the algorithm based on the cloud environment, the computing 

framework adopted in this paper is MapReduce, which implements parallelization and 

distributed computing through MapReduce. In Hadoop, the MapReduce computing 

framework takes each task as a Job. Each Job is divided into two execution stages, the 

Map execution stage and the Reduce execution stage. The Map function interface 

implements data filtering and distribution. The Reduce function interface implements the 

consolidation of the results on the Map side. The Combine process is also nested in the 

middle. Combine links Map and Reduce. It is distributed in the Map and Reduce stages 

of MapReduce. Each Map generates a large amount of output. Combine The role is to 

first do a merge on the Map side output to reduce the amount of data transferred to 

Reduce, Combine the most basic function is to achieve the integration of the local key to 

reduce computation time. The output of Combine is the input of Reduce. In fact, 

Combine is also a special Reduce. MapReduce splits the data set stored on the HDFS 

distributed file system and splits it into the Map stage to map the split slice data set 

through Combine. Realize the initial merge function of data, and then enter the Reduce 

stage to complete the final merge of data. 

Fig. 4 shows the parallelization of the SMK-means algorithm. The two dashed lines in 

the figure are the two parallel parts of the SMK-means algorithm. The parallelization of 
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the simulated annealing algorithm implements the initial center point of the clustering. 

The selection also prevents clustering from falling into the local optimal solution; the 

Mini Batch K-means parallelization implementation is based on the simulated annealing 

algorithm, which eliminates the steps of iteratively finding cluster midpoints and the data 

batching, greatly improving the computation of the algorithm. 

模拟退火算法

The simulated 

annealing algorithm 

finds the initial cluster 

center effectively and 

accurately to prevent 

local optimization

Mini Batch K-means实现

Divide the data 

set into multiple 

batches 

according to the 

set batch size

The data objects in 

the batch dataset 

are merged into 

the corresponding 

cluster according 

to the distance

Data not in the 

cluster, the 

default is an 

exception

Simulated Annealing 

Algorithm
Mini Batch K-means Algorithm

 
Figure 4: Parallel implementation of SMK-means algorithm 

4. Experiments and Evaluation 

4.1. Experiments Analysis 

The implementation of the distributed SMK-means clustering algorithm based on cloud 

environment is mainly the design and implementation of the Map and Reduce functions. 

The SMK-means algorithm based on the MapReduce computing framework can be 

divided into multiple subtasks, namely selecting k-values and Mini Batch K-means 

algorithm. Choosing the k value is to combine the advantages of the simulated annealing 

algorithm to select the number of clusters in advance and effectively avoid falling into the 

local optimum solution. The main task of the Mini Batch K-means algorithm is to 

calculate the distance between the data object and the cluster center. The abnormal points 

can be selected by clustering and the outlier scores can be calculated for these abnormal 

points. These two parts are all realized through distributed parallel computing. Whether it 

is k-value or Mini Batch K-means algorithm, the distance calculation between data object 

and cluster center is independent and does not affect each other. Hadoop's MapReduce 

computing framework completes the functions of these two parts. The simulated 

annealing algorithm can predetermine the number of initial clusters. This is also a value 

needed by the Mini Batch K-means algorithm, so reducing the number of iterations of the 

algorithm. 

The experimental environment of this paper is implemented on Hadoop cluster with 9 

nodes, including one master node and 8 slave nodes. Fig. 5 describes the layout of the 

experimental environment in this paper. 
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Figure 5: Experimental environment layout 

The implementation of the MapReduce parallelization of the Mini Batch K-means 

algorithm is basically the same as that of the parallel algorithm of the standard algorithm. 

This paper is based on the simulated annealing algorithm to determine the cluster center 

in advance, reduce the number of iterations, and store it on the HDFS. The data is divided 

into multiple batches, and the batch is split to enter the Map stage. The preliminary data 

mapping is completed. The data is reduced locally through the Combiner process, and the 

Reduce process is finally completed. The resulting intermediate results are stored in the 

In HDFS, the MapReduce parallelization of the Mini Batch K-means algorithm is shown 

in Fig. 6. 

4.2 Performance Evaluation 

This section parallelizes the algorithm we propose. To test the accuracy and algorithm 

runtime of different algorithms, we use K-means algorithm, Mini Batch K-means 

algorithm, and SMK-means algorithms. The three algorithms perform parallel 

experiments. This experiment was performed on 9 Hadoop cluster. There are 1 master 

node and 8 slave nodes. 

• Comparison of the accuracy of the algorithm 

The contour coefficient is an evaluation index to measure the quality of the clustering 

algorithm. Assume that the data is clustered. For a sample point x in a cluster, the 

formula for calculating the contour factor is as follows: 

(i) a(i)
(x)

{m(i),a(i)}

m
S

Max


               (2) 
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Figure 6: MapReduce parallelization flow chart of SMK-means algorithm 

 

Where a(i) = average (the distance of sample x to all other points in the cluster it belongs 

to), find the average of the distance of sample x from all other points in the cluster; m(i) = 

min (sample x to all The average distance of the points other than the cluster in which it 

is located) finds the minimum value of the distance from the sample x to the non-cluster 

midpoint. It can be seen that the range of the contour coefficient is [-1, 1]. The closer the 

value is to 1, the higher the degree of cohesion in the cluster is, and the higher the degree 

of separation between clusters and clusters.  The comparison of the accuracy of the 

algorithm as shown in Fig. 7. 
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Figure 7: Comparison of the accuracy of the algorithm 

• Algorithm runtime comparison 

Three related algorithms are run for different amounts of data, statistics of their running 

time and drawing comparison are shown in Fig. 8. 

 

Figure 8: Algorithm runtime comparison 

From Fig. 8, it can be seen that when running the same amount of data, the K-means 

algorithm runs more time than the other two algorithms, and as the amount of data 

increases, the K-means algorithm runs The gap between time and the running time of the 

other two algorithms is also gradually widening; because the Mini Batch K-means 

algorithm is used to process data in batches, the computation time is also due to the K-

means algorithm, and the SMK-means algorithm is predetermined by the initial The 

number of cluster centers reduces the number of iterations and also reduces the 

computing time. 

• Algorithm accuracy comparison 
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The accuracy rate is aimed at the results. How many positive samples are found in the 

positive samples and two positive samples, one of which is positive sample (TP) and the 

other is a negative sample calculated as a positive sample (FP) and a formula for 

calculating the accuracy rate as shown in below: 

TP
precision

TP FP



             (3) 

By marking the same data set, we mark different outliers to compare the accuracy of the 

three algorithms. 

Table 2: Algorithm precision comparison 

The number of 

outlier 
K-means Mini Batch K-means SMK-means 

200 0.942 0.864 0.953 

400 0.917 0.873 0.932 

600 0.876 0.901 0.927 

800 0.903 0.881 0.907 

From Tab. 2, the precision rate comparison of the algorithm, the precision rate of the K-

means algorithm is still better, but the whole is not stable enough, but compared to the 

Mini Batch K-means algorithm, the K-means algorithm has many advantages. Compared 

with the other two algorithms, SMK-means is more stable in computing abnormal data, 

and the overall efficiency is better than that of K-means and Mini Batch K-means 

algorithm. 

Meanwhile, the complexity of algorithm is a yardstick for computing data and running 

speed, the proposed algorithm is not only based on the large data platform, but also uses a 

hierarchical down sampling data, so it supports the calculation of mass data. Therefore, 

the complexity of SMK-means algorithm is lower than that of the traditional clustering 

algorithm. 

5. Conclusion 

Based on the implementation of the parallel implementation of the algorithm SMK-

means based on Hadoop implementation, the pretreatment of the data set is first 

introduced, the processing of missing values, the construction of feature engineering, and 

the data standardization operations are performed. In the second part, the overall idea of 

the algorithm and the realization process of parallelization are introduced. The number of 

cluster centers is initialized based on the simulated annealing algorithm and it is realized 

by parallelization based on MapReduce. Then the parallelization of the Mini Batch K-

means algorithm is implemented. The parallelization of the two steps is accomplished by 

the Map operation and the Reduce operation. The implementation process of the Map 

function and the Reduce function is introduced in detail, and the corresponding pseudo 

code is provided. Finally, by comparing the SMK-means algorithm with the K-means and 

Mini Batch K-means algorithms for accuracy, precision, and runtime, a number of 

performance indicators are shown to analyze the SMK-means algorithm from accuracy. 

Better than other algorithms, SMK-means is more stable in terms of accuracy, and its 
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runtime is shorter. In summary, the SMK-means algorithm is not only suitable for the 

processing of massive data, but also can guarantee the accuracy of the algorithm. For the 

outlier detection of data, it also has a relatively stable precision. 
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