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Introduction 24 

Listeria monocytogenes is a Gram-positive, facultative anaerobic, opportunistic bacterial pathogen. It 25 

is the causative agent of listeriosis, a disease which predominantly affects immunocompromised 26 

people including the elderly, immunosuppressed and pregnant women together with their unborn or 27 

new-born babies. Contaminated foodstuffs are the main cause of infection and there have been 28 

several well-documented, high-profile outbreaks from this source over recent years (Garner and 29 

Kathariou 2016). Because of the risk of infection from food, safety authorities impose limits on the 30 

number of L. monocytogenes cells that can contaminate food products. Guidelines in the USA advise 31 

that L. monocytogenes should not be present (<1 CFU 25g-1) in ready to eat (RTE) foods that support 32 

the growth of L. monocytogenes and should not be equal to or above 100 CFU g-1 for foods that do not 33 

support the growth of L. monocytogenes (Center for Food Safety and Applied Nutrition 2017). 34 

Legislation on L. monocytogenes contamination of RTE foods in the EU requires that L. monocytogenes 35 

number remains less than 100 CFU g-1 for the shelf life of the product unless it has been demonstrated 36 

that L. monocytogenes has the potential to exceed this number (European Commission 2005). In such 37 

cases the food producer must demonstrate L. monocytogenes absence in raw materials and the 38 

production environment (i.e. there is no potential for contamination of the final product). Limits are 39 

set on the number of L. monocytogenes allowed in RTE food due to the risk of L. monocytogenes 40 

infection in highly susceptible individuals coupled with the bacterium’s ability to grow in a range of 41 

food substrates (Leong et al. 2013; Jami et al. 2014). Although incidence of listeriosis is relatively low 42 

compared to other foodborne bacteria, the disease outcome if often more serious, making it a priority 43 

pathogen for many countries. Furthermore, L. monocytogenes can grow at refrigeration temperatures 44 

(Chan and Wiedmann 2009), meaning it presents an added danger to consumers over other food 45 

pathogens such as Salmonella and E. coli. 46 

Foods which have been previously implicated in L. monocytogenes infections include milk, soft 47 

cheeses, deli or sandwich meats and fresh produce, which encompasses both fresh fruit and 48 

vegetables (Cartwright et al. 2013). Several reports have demonstrated L. monocytogenes presence in 49 
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a wide variety of fresh produce samples (Zhu et al. 2017) and other minimally processed foods. Other 50 

than a potentially tragic loss of life, the economic consequences of a L. monocytogenes outbreak are 51 

significant due to a loss of consumer confidence and subsequent drop in product sales and related 52 

value (McCollum et al. 2013). This review focuses on L. monocytogenes contamination of fresh leafy 53 

produce lines, such as salad ingredients (lettuces, wild rocket etc.) and leafy brassicas (kale, spinach 54 

etc.), which account for a significant proportion of the UK market and are “high-risk” in terms of 55 

bacterial contamination because of their leaf structures and proximity to the ground. The fresh leafy 56 

produce supply chain (FLPSC), from farm to fork, is complex and contains a diverse range of 57 

environments where L. monocytogenes can be detected during routine sampling of fresh leafy 58 

produce throughout the supply chain. For example, in soil, recently harvested crops, the processing 59 

environment and in the final the product itself, although detection tends to be sporadic. 60 

 L. monocytogenes is more likely to be detected in environments where soil contamination is present 61 

due to its ubiquity in the environment and presence in soil. Owing to this ubiquitous nature, 62 

companies that operate in the supply chain have difficulty determining the source of contaminating 63 

L. monocytogenes on fresh leafy produce. For source tracking, an increasing array of tools are 64 

becoming available with the gold-standard being whole genome sequencing (WGS). However, use of 65 

these tools on a day to day basis in the FLPSC is not yet feasible due to their cost, complexity of 66 

analysis, and expertise required to interpret data. In contrast, during outbreaks of disease, the advent 67 

of subtyping techniques has enabled source tracking of L. monocytogenes after an outbreak has been 68 

identified (Pichler et al. 2011; Gaul et al. 2013). Once a contamination source is located or indicated, 69 

regulatory bodies and companies that operate in the supply chain take appropriate precautionary 70 

measures to avoid further contamination (e.g. increased sanitation regimes or avoidance of the 71 

contaminated area). Subtyping can also indicate the potential risk of L. monocytogenes isolates. The 72 

species can be split into four evolutionary lineages (I, II, III, IV), where most of human clinical cases are 73 

caused by lineages I & II (Orsi et al. 2011). Despite the added benefits that subtyping provides in terms 74 
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of potential risk assessment, routine sampling in the FLPSC often only characterises isolates down to 75 

the species level as currently, all L. monocytogenes are treated equally for regulatory purposes. 76 

Owing to the potential risk of foodborne illness from this bacterium, source tracking, risk assessment 77 

and understanding the ability of L. monocytogenes to survive in the FLPSC should be considered key 78 

factors in tackling L. monocytogenes contamination of fresh leafy produce and reducing risk to the 79 

consumer. In this review, possible sources of L. monocytogenes contamination in the FLPSC and the 80 

mechanisms behind L. monocytogenes survival in this environment are discussed and the benefits of 81 

subtyping L. monocytogenes isolates found in the FLPSC in the context of source tracking and risk 82 

evaluation are outlined. 83 

The Structure of the Fresh Leafy Produce Supply Chain  84 

Fresh leafy produce types include but are not limited to, baby spinach (Spinacia oleracea), lettuce 85 

(Lactuca sativa), rocket (Eruca sativa), kale (Brassica oleracea) and herbs such as coriander 86 

(Coriandrum sativum). These crops are distributed to the consumer through a variety of end products 87 

such as whole head crops, mixed bagged salads and sandwich ingredients. The FLPSC has been 88 

summarised (see Monaghan and Beacham, 2017), but it is useful to provide a brief overview.  The 89 

chain starts in the field where a crop typically takes between 3-24 weeks to grow before being 90 

harvested mechanically or by hand. After harvest, a crop may be packaged in field (as is the case with 91 

whole head lettuce) where the product is cooled and transported to the retailer, or subjected to 92 

further processing such as washing, cutting and packaging in a dedicated facility (Figure 1). 93 

Protocols have been developed and applied to the growing process to reduce the risks of microbial 94 

contamination of fresh produce supplied to retail outlets. These include preventing farmers from 95 

growing crops on land that has been amended with raw manure and not irrigating crops in the 96 

immediate period before harvest to reduce the risk of contamination from irrigation water. 97 

Microbiological testing for L. monocytogenes throughout the FLPSC is obligatory through regulation 98 

and/or customer specifications. The presence of L. monocytogenes or those of the Listeria genus in 99 
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sampled product or surrounding areas results in 1) an increase in the scope and frequency of testing 100 

and 2) a review of the risk assessment with emphasis on possible sources of the bacteria (Monaghan 101 

and Hutchinson 2015). Despite these measures, L. monocytogenes continues to sporadically 102 

contaminate fresh leafy produce. A detailed review of L. monocytogenes outbreaks and prevalence 103 

associated with fresh produce is provided by Zhu, Gooneratne and Hussain, (2017). 104 

Potential Sources of L. monocytogenes Contamination in the Fresh Leafy Produce 105 

Supply Chain 106 

L. monocytogenes has been isolated from soil, waterways and vegetation where it exists as a 107 

saprophyte (Welshimer 1968; Locatelli et al. 2013a) from domestic and wild animals where it is 108 

harboured in the intestine and shed in faeces (Hellström et al. 2008; Hellström 2011) and from food 109 

contact surfaces in processing facilities (Leong et al. 2014). Such environments are significantly 110 

associated with production and processing of leafy produce and the pathogen can potentially be 111 

transferred to the product surface through several transmission routes (Table 1). Survival of L. 112 

monocytogenes in these environments is key to its transmission to foodstuffs. For example, L. 113 

monocytogenes can persist in a food processing facility for months and re-contaminate product 114 

passing through that facility (Leong et al. 2017).  115 

L. monocytogenes: An Organism Adapted to Survive in the Fresh Leafy Produce 116 

Supply Chain  117 

To survive in the FLPSC L. monocytogenes must withstand various environmental pressures such as, 118 

competition with other microbes, cleaning, desiccation, nutrient starvation and fluctuation in 119 

temperatures. L. monocytogenes can grow between temperatures of 0 - 45°C and a pH of 4.1 to 9.6 120 

(Liu 2008; Shabala et al. 2008). Liu et al. (2005) also showed that L. monocytogenes recovers well 121 

after treatment with a pH 12 solution and was resistant to saturated (40% v/v) NaCl for at least 20h. 122 
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This ability to withstand physiochemical stresses is a major factor in L. monocytogenes ability to 123 

contaminate chilled and minimally processed foods. 124 

Exposure to environmental stresses induces the L. monocytogenes stress response, mediated by the 125 

alternative sigma factor σB which regulates several stress, virulence and transporter associated 126 

genes (e.g. lmo2230, ltrC, ctc, inlA-E & opuC operon) and related proteins (Kazmierczak et al. 2003). 127 

Phenotypic investigations with strains lacking sigB demonstrate the important role that σB plays in 128 

protecting against osmotic, oxidative, acid and detergent stresses (Ferreira et al. 2001, 2003). PrfA, 129 

another important L. monocytogenes regulatory protein, plays a central role in the bacterium’s 130 

transition from soil to gut environments by activating and deactivating key virulence factors from a 131 

set of environmental cues (Heras et al. 2011). Cold-adaptation is especially important for L. 132 

monocytogenes survival in the FLPSC as low temperatures are readily encountered in the growing 133 

and processing environments and during storage of products. L. monocytogenes has an innate ability 134 

for cold adaptation, partly regulated by σB using a variety of mechanisms including the uptake of 135 

cryoprotective osmolytes and peptides and the maintenance of cell surface fluidity (Tasara and 136 

Stephan 2006). Biofilm production (Ferreira et al. 2014) and the ability to enter a protective, viable 137 

but non-culturable (VBNC) state (Oliver 2010; Ayrapetyan and Oliver 2016) may also facilitate L. 138 

monocytogenes survival in environments associated with the FLPSC. 139 

These mechanisms ensure that L. monocytogenes has a more robust cross-stress tolerance 140 

compared to other food-borne pathogens such as E. coli or S. enterica allowing it to survive in food 141 

and food associated environments. For this reason, L. monocytogenes should not be considered in 142 

the same way as other food-borne pathogens and comparatively stronger measures relating to 143 

contamination of food and food associated environments are employed to control its presence. 144 

L. monocytogenes Prevalence in Soil 145 

Fresh produce begins its journey through the FLPSC as a seed or transplant in the soil. Soil is a 146 

complex, nutritionally rich, heterogeneous environment which is in a state of ‘dynamic equilibrium’ 147 



7 
 

and contains an abundance of endogenous microbiota, mesofauna and macrofauna (Vivant et al. 148 

2013). Soil is an environmental niche for L. monocytogenes and the bacterium has been readily 149 

isolated from soil samples from different locations including meadows, mountainous regions and 150 

forests (Linke et al. 2014a). 151 

 Whilst L. monocytogenes is nearly always found in low numbers, needing selective enrichment to be 152 

detected (i.e. ISO 11290-1 for the presence/absence of L. monocytogenes in samples), the bacterium 153 

can be found in around 17% of soil samples (Locatelli et al. 2013a). Data on the occurrence of L. 154 

monocytogenes in soil from fresh leafy produce production fields indicate between 4% and 11% of 155 

soil samples harbour the bacterium (Weller et al. 2015). To survive in soil, L. monocytogenes must 156 

endure physiological stresses and competition from other soil dwelling microorganisms. 157 

Factors Affecting L. monocytogenes Survival in Soil 158 

Biotic factors have an important role in determining the size and growth characteristics of the L. 159 

monocytogenes population in soil. McLaughlin et al., (2011) showed an increase in the L. 160 

monocytogenes population of over one log in 4 days from an initial inoculum of 107 CFU g-1 soil in 161 

sterilised soil whilst the population decreased nearly two logs in the same time in unsterilised soil. 162 

The suppressive effect of endogenous soil microbiota on L. monocytogenes survival in soil has been 163 

demonstrated by many authors and reviewed expertly by Vivant, Garmyn and Piveteau, (2013). For 164 

example, using a pathogen death rate model, Moynihan et al., (2015) showed that the suppressive 165 

effect on L. monocytogenes survival by the native soil microbiota increases with an increasingly 166 

diverse population. Additionally, when a partial reconstruction of the soil microbiota is re-inoculated 167 

into soil after sterilisation, it has a significant suppressive effect on L. monocytogenes survival 168 

(McLaughlin et al. 2011). 169 

L. monocytogenes survival in soil is variable by soil type, ranging from rapid decline to long-term 170 

persistence, but generally, removing the bacterial population (sterilisation by autoclaving or other) 171 

enables L. monocytogenes to survive for longer compared to the identical unsterilised soils (Locatelli 172 
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et al. 2013b). This effect could be due to competition for nutrients and space combined with 173 

inhibitory bacteriocins which are produced by soil bacteria to kill or inhibit the growth of 174 

competitors (Bruce et al. 2017), meaning that a large inoculum is not sustainable in the soil. Survival 175 

has been shown to be dependent on soil type and abiotic factors such as soil texture (especially clay 176 

content), pH and basic cation saturation ratio (BCSR) appear to be significant drivers of L. 177 

monocytogenes survival in soil (Locatelli et al. 2013b). Owing to this variation in soil survival 178 

(dependant on soil type), there is a need to determine how L. monocytogenes survives in soils 179 

typically used in the intensive production of fresh leafy produce. This information will infer the risk 180 

these commercially important soils pose to fresh leafy produce in terms of L. monocytogenes 181 

contamination and may allow growers to consider alternative soils to reduce the likelihood of L. 182 

monocytogenes survival. 183 

Mechanisms of L. monocytogenes Survival in Soil 184 

L. monocytogenes survival in the soil has been shown to be significantly affected by the response 185 

regulator AgrA and corresponding genes; this regulator controls genes responsible for the transport 186 

and metabolism of amino acids and related molecules, genes responsible for motility & chemotaxis 187 

and genes that code for other regulators (Vivant et al. 2015).  Emphasis has also been placed on the 188 

role of transporters, which are upregulated by AgrA and allow L. monocytogenes to recruit an 189 

extensive range of substrates for energy production in the soil (Piveteau et al. 2011). Interestingly, 190 

agrA and agrD deletion mutants have altered ability to adhere to surfaces, suggesting the agr 191 

system’s involvement in the early stages of biofilm formation (Rieu et al. 2007). Biofilm production 192 

and  the ability of L. monocytogenes  to survive in soil appear to be intimately linked as mutants 193 

which lack Lmo0753 (a prfA like transcription factor gene) form poor biofilms and show poor survival 194 

in soil compared to wild-type strains (Salazar et al. 2013). Furthermore, Lmo0753 is highly conserved 195 

in lineage I & II strains, which are more commonly isolated from the soil than lineage III and IV 196 

strains (Locatelli et al. 2013a; Linke et al. 2014b). SigB too plays an important role in soil survival – it 197 
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regulates the stress response after L. monocytogenes entry to the soil allowing the bacteria to stop 198 

multiplying as a response to nutrient limitation, similar to entry to the stationary phase (Piveteau et 199 

al. 2011). Entry to the soil also causes prfA to be down-regulated, subsequently de-activating key 200 

virulence factors whilst genes involved with mobility, chemotaxis and the transport of carbohydrates 201 

are up-regulated (Vivant et al. 2017). 202 

Is the Viable but Non Culturable (VBNC) State as a Potential L. monocytogenes Strategy for Soil Survival? 203 

VBNC cells are metabolically active bacteria that have lost the ability to develop colonies on rich 204 

laboratory media and cannot therefore, be detected by conventional methods (i.e. direct plate 205 

count). This state is believed to be a survival strategy to minimise energy requirements (Li et al. 206 

2014). A variety of pathogenic bacteria including L. monocytogenes enter a protective VBNC state in 207 

response to nutrient starvation, incubation outside the normal temperature, increased or reduced 208 

osmotic concentrations and heavy metal exposure (Oliver 2010). Indeed, research has shown that a 209 

large fraction of the L. monocytogenes population becomes VBNC in microcosms containing pig 210 

manure and digestates from agricultural biogas plants (Desneux et al. 2016; Maynaud et al. 2016). 211 

Given that the soil environment may result in nutrient deprivation and other stresses known to 212 

induce VBNC, this may also cause L. monocytogenes to turn VBNC, but data on this characteristic of 213 

the bacterium in the soil environment is missing. Overall, there is evidence to suggest that the VBNC 214 

state of L. monocytogenes may be important for soil survival, but this whole area requires further 215 

study.  216 

The Risk Posed from Soil Contaminated with L. monocytogenes 217 

L. monocytogenes may be transferred from the soil to fresh produce through soil splash from 218 

rainfall/irrigation or general soil contamination from mechanical or human activity. In an experiment 219 

assessing the survival and transfer of the L. monocytogenes surrogate L. innocua, Girardin et al., 220 

(2005) demonstrated that transfer of this bacterium to the surface of parsley leaves occurred mostly 221 

through soil splash from rain and irrigation after the bacterium was inoculated into the soil. The 222 
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authors also showed rapid decline of L. innocua numbers in soil and noted that when leaf surfaces 223 

were contaminated with soil containing bacteria, the number of L. innocua was low.  224 

Whilst only 1 L. monocytogenes cell per 25g -1 of sample is required for detection of the bacteria on 225 

fresh leafy produce (based on ISO 11290-1 methodology), illness caused by L. monocytogenes is 226 

usually linked to consumption of food contaminated with a high number of the bacteria (European 227 

Commission 1999). Using a dose response model Farber, Ross and Harwig, (1996) determined that 228 

inoculum sizes of 105 and 107 L. monocytogenes cells would be required to cause listeriosis infection 229 

in 10% and 90% of a ‘high-risk’ population respectively. These inoculum sizes contrast with the low 230 

number of L. monocytogenes cells that survive in soil for extended periods and may suggest that 231 

contamination of fresh leafy produce by soil borne bacteria is not likely to be a high risk to 232 

consumers. However, recent evidence has shown that susceptible individuals can become ill after 233 

consuming low levels of the bacteria (Pouillot et al. 2016) and infection with L. monocytogenes is 234 

made more complicated due to the risk of repeated exposure and variation in susceptibility among 235 

immunocompromised individuals (Buchanan et al. 2017). Therefore, whilst infection from low levels 236 

of soil borne L. monocytogenes on leafy produce may not be high risk to consumers based on the 237 

level of bacteria transferred, it is not possible to rule out infection of susceptible individuals from 238 

this type of contamination. 239 

Soil spoilage of product is common when growing leafy fresh produce, yet L. monocytogenes 240 

outbreaks from this food type are rare, implying that soil is not a significant source of L. 241 

monocytogenes in the FLPSC. When contamination does occur, the amount of L. monocytogenes 242 

transferred to product is likely to be small/minimal based on previous data on the number of L. 243 

monocytogenes present in soil (Locatelli et al. 2013a). Conversely, L. monocytogenes can proliferate 244 

when in contact with a substrate such as cut produce (Salazar et al. 2017), but more research is 245 

needed to determine its growth behaviours specifically for fresh leafy produce. Additionally, more 246 
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investigation is required to determine the effect that this change of environments has on the 247 

culturability and infectiveness of this pathogen.  248 

L. monocytogenes Association with Pre-harvest Fresh Leafy Produce 249 

As discussed above, whilst growing in the field, fresh leafy produce may be subject to L. 250 

monocytogenes contamination through soil splash where the bacteria is transferred to the surface of 251 

the leaves. Opportunistic human pathogenic bacteria, including L. monocytogenes, can also interact 252 

with fresh leafy produce through the root portion of the plant. For example, E. coli O157:H7 253 

internalises to the root of lettuce and spinach plants (Wright et al. 2013). L. monocytogenes has 254 

been shown to internalise both into lettuce seedlings and mature plants – the former after 5 days of 255 

watering with contaminated water (105 CFU ml-1) and the latter when the plant is grown 256 

hydroponically with repeated exposure to the same level of L. monocytogenes contaminated water 257 

(Standing et al. 2013). These conditions are unlikely to be encountered in the normal growing 258 

environment and so the ability of L. monocytogenes to internalise into crop plants under field 259 

conditions remains an open question. Opportunistic human pathogenic bacteria such as E. coli 260 

O157:H7 and Salmonella enterica serovar Typhimurium have also been shown to be associated with 261 

the rhizosphere – the narrow zone of soil influenced by the plant root. L. monocytogenes has a 262 

supposed preference for the rhizosphere (Dowe et al. 1997), but research with L. monocytogenes in 263 

this area is scarce. Crop plants produce root exudates, improve aeration in the soil and serve as a 264 

source of nutrients to soil bacteria, thus improving soil microbial growth and activity. Based on 265 

previous evidence this increase in microbial activity could have an increased suppressive effect on L. 266 

monocytogenes survival. Overall, research is needed to determine how L. monocytogenes survives in 267 

the soil in the presence of crop plants and whether this bacterium associates with the plant 268 

rhizosphere like other opportunistic pathogens. 269 
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L. monocytogenes Presence in the Processing Environment 270 

After harvest, fresh produce may be cut, washed and packaged in a dedicated processing facility 271 

depending on customer requirements. The processing environment is kept clean through regular 272 

sanitation and hygiene barrier systems, such as the segregation of pre- and post-wash product, aim 273 

to prevent cross contamination. Despite these measures, L. monocytogenes enters the processing 274 

facility, unintentionally, through contaminated product and personnel. Cross-contamination of food 275 

from the processing environment does occur and research has highlighted that L. monocytogenes 276 

can persist in the food processing environment and contaminate food products passing through a 277 

food processing facility over time (Ferreira et al. 2014; Leong et al. 2017). 278 

The fresh leafy produce processing environment is in some respects, a stark contrast to the soil – 279 

nutritionally poor abiotic surfaces are abundant, detergent application is frequent and refrigeration 280 

temperatures are typical.  In spite of these different stresses, L. monocytogenes can be found in 281 

difficult to clean harbourage sites, such as drains, cracks in surfaces and crevices in machinery where 282 

disinfectants and sanitisers cannot properly reach (Jordan et al. 2015) and nutrients may be available 283 

to the bacteria through product debris and factory run off (i.e. water containing leaf juices and soil 284 

organic matter etc.). Evidence from factories suggests that L. monocytogenes can be introduced into 285 

the food processing environment easily, grows at operational temperatures and is resistant to 286 

several stresses which results in contamination of the processing environment. 287 

Detection rates for L. monocytogenes in food processing facilities changes depending on the type of 288 

food processing facility being sampled (Jordan et al. 2015). It is important to note that authors vary 289 

in their sampling approach in the food processing environment and so differences in sampling 290 

locations and detection methods may influence detection rates between studies. Interestingly, in 291 

the largest study of its kind which monitored L. monocytogenes prevalence in food and 292 

environmental samples across 54 small food businesses in Ireland, fish processing facilities returned 293 

the lowest incidence of L. monocytogenes positive environmental samples (1.6%), followed by dairy 294 
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and meat processing facilities (both 4.1%) and vegetable (including fresh leafy produce) processing 295 

facilities had the highest incidence of L. monocytogenes (9.5%) (Leong et al. 2017). Despite the 296 

obvious presence of L. monocytogenes in the fresh produce processing environment, data on the 297 

incidence of L. monocytogenes in processing facilities of this food group is scarce.  298 

Harbourage Sites and Persistent Strains in Food Processing Facilities 299 

Harbourage sites, also known as niches, reservoirs and hard to reach places, are areas in a 300 

processing facility which are difficult to clean and may harbour L. monocytogenes. Harbourage sites 301 

can arise from badly designed or worn equipment (e.g. hollow parts, cracks or crevices), and organic 302 

matter from soil and product can be transferred to these areas and persist if not cleaned properly. 303 

This process creates a supportive environment for bacterial growth and L. monocytogenes can be 304 

introduced to harbourage sites from product contaminated outside the processing facility, or from 305 

human carriers (Jordan et al. 2015). Low temperatures in processing facilities may inhibit the growth 306 

of competitors, essentially selecting for L. monocytogenes in these niches. Additionally, these 307 

harbourage sites may enable the selection of detergent resistant L. monocytogenes mutants through 308 

ineffective cleaning due to the diluted levels of detergent that the harbourage site is exposed to 309 

(Carpentier and Cerf 2011). 310 

L. monocytogenes is known to persist in the processing environment and harbourage sites are 311 

thought to play an important role in persistence of the bacterium in processing facilities. In addition, 312 

inappropriate cleaning and sanitation can add to the spreading L. monocytogenes in a processing 313 

facility through the creation of aerosols. A persistent strain can be defined as repeated isolation of 314 

an identical L. monocytogenes subtype (as determined by molecular subtyping) from a single 315 

processing facility over 6 months. Persistent strains in the food processing environment have been 316 

identified by several authors (Sauders et al. 2009; Stasiewicz et al. 2015; Fagerlund et al. 2016) 317 

because identifying and subsequently eliminating persistent strains in the processing environment is 318 

a key step in reducing consumer risk from L. monocytogenes contamination. Leong et al., (2017) 319 
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determined that out of 4 food groups tested, vegetable processing facilities had the highest number 320 

of persistent strains and the highest diversity of pulsotypes which may reflect L. monocytogenes 321 

presence and distribution in the growing environment for fruit and vegetables.  322 

Potential Survival Mechanisms of L. monocytogenes in the Food Processing Environment  323 

Persistent strains have been shown to exist in the processing environment, but studies which have 324 

tried to explain the physiological characteristics which contribute to L. monocytogenes persistence 325 

vary in their findings. For example, it has been reported that persistent strains show enhanced 326 

adherence to food contact surfaces after short contact times (Lundén et al. 2000) with some studies 327 

suggesting that persistent strains form better biofilms than sporadic strains (Nowak et al. 2017) 328 

whereas others showing no difference in biofilm formation between persistent and sporadic strains 329 

(Magalhães et al. 2017).  Persistent strains have also been shown to be more resistant to detergent 330 

stresses, although this attribute may be due to the characteristics of biofilms rather than intrinsic 331 

resistance of the bacterial cell (Pan et al. 2006). Cheng et al., (2015) determined that persistent 332 

strains showed increased adherence and biofilm formation, but no difference was noted in sanitiser 333 

resistance between persistent and transient strains, demonstrating the lack of consensus in the 334 

literature. Whether persistent strains confer a physiological advantage compared to their non-335 

persistent counterparts remains an open question as so far, research has generated mixed results 336 

which do not explain how persistent strains seem to be able to survive more readily in the 337 

processing environment.  338 

In L. monocytogenes, σB, the major transcriptional regulator of stress response genes, plays an 339 

important role in resistance to detergent stresses at lethal levels (Ryan et al. 2008). In addition, SigB 340 

has been shown to be activated in biofilms and appears to be an essential gene for the formation of 341 

biofilms with increased resistance to disinfectants in L. monocytogenes (Van Der Veen and Abee 342 

2010). L. monocytogenes biofilms contribute to persistence in the food processing environment as 343 

biofilms can be formed on many different surfaces and serve as a source of subsequent 344 
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contamination (Colagiorgi et al. 2017). Another aspect of L. monocytogenes physiology which may 345 

contribute to persistence in the food processing environment is the ability of the bacteria to enter 346 

the VBNC state. The VBNC state may be triggered in response to numerous physiological cues as 347 

mentioned previously. Importantly, in the context of the food processing environment, the 348 

sanitation procedure (cleaning and disinfection) leads to a loss in culturability of L. monocytogenes 349 

and appearance of VBNC populations (Overney et al. 2017). By entering a protective, VBNC state, L. 350 

monocytogenes may be able to further resist environmental stresses in the food processing 351 

environment (Ayrapetyan and Oliver 2016). Upon entry into a suitable environment (e.g. a 352 

harbourage site) VBNC L. monocytogenes can subsequently regain culturability and begin to 353 

proliferate. Further evidence outlining the potential importance of VBNC L. monocytogenes in the 354 

food processing environment is demonstrated  by work indicating that chlorine stress induces the 355 

VBNC state in  L. monocytogenes  and that these VBNC cells remain infectious in a Caenorhabditis 356 

elegans model (Highmore et al. 2018).  357 

Recent evidence has shown that L. monocytogenes ST121, a sequence type commonly associated 358 

with food and food environments, carries a stress survival islet (SSI-2) that confers increased survival 359 

under oxidative and alkaline stresses which are common in the food processing environment (Harter 360 

et al. 2017). Overall, L. monocytogenes is well suited to surviving the various stresses presented by 361 

the fresh produce processing environment and may have a competitive advantage over other 362 

contaminating bacteria, facilitated through harbourage sites. Moreover, due to its ubiquitous nature 363 

in the growing environment, recontamination of a processing environment in the FLPSC after 364 

cleaning and disinfection is possible, meaning that regular sanitation regimes must be undertaken to 365 

combat its continuing presence.  366 

L. monocytogenes Survival on the Product Surface: Post-harvest 367 

It has been shown that L. monocytogenes survives and grows on a range of fresh products including 368 

lettuce (Beuchat and Brackett 1990), mixed vegetable salads (García-Gimeno et al. 1996), green and 369 
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red peppers and avocado pulp (Salazar et al. 2017). Studies such as these have outlined the 370 

importance of keeping produce at refrigeration temperatures to slow growth of L. monocytogenes 371 

populations, but have also demonstrated that post-harvest, L. monocytogenes can survive on the 372 

surface of fresh produce for extended periods. For example, L. monocytogenes can survive on the 373 

surface of an apple for up to 12 weeks from an initial inoculum of 3.5 log CFU ml-1 (Sheng et al. 374 

2017). 375 

Contamination events with relatively high levels of L. monocytogenes may be rare in the FLPSC, 376 

however, a small bacterial contamination on an injured leaf may lead to growth and colonisation 377 

similar to Salmonella and pathogenic E. coli (Koukkidis et al. 2016) increasing the risk to consumers. 378 

Of concern to the companies operating within the FLPSC is that any L. monocytogenes 379 

contamination (1 L. monocytogenes per 25g product as determined by ISO 11290-1) of the leaf 380 

surface can ultimately lead to a positive detection during routine sampling creating an expensive 381 

logistical issue and potential health threat. 382 

Mechanisms of Survival on the Product Surface: Post-harvest 383 

There is good awareness of the L. monocytogenes (plus other pathogens) contamination risk to fresh 384 

produce and fresh leafy produce is subject to a wash/decontamination step before packaging (ready 385 

to eat prepared products) or customers are advised to wash before use (non-prepared, whole head 386 

products).  The specific requirements for product processing and consumer labelling are controlled 387 

by legislation with additional customer-specific demands. The wash step is intended to reduce 388 

foreign bodes, dirt and microbial load on the product surface and process wash water contains 389 

sanitisers to maintain the water quality during processing. The effectiveness of the wash step in 390 

reducing bacterial loads on lettuce leaves that have recently been contaminated with L. 391 

monocytogenes depends on the amount of time post contamination.  Ölmez and Temur, (2010) 392 

showed a 99.9% reduction in L. monocytogenes when green leaf lettuce was subject to sanitiser 393 

treatments 6h after a contamination event. This efficacy was reduced to 90% after applying the 394 
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sanitiser treatments 48h post-contamination due to the formation of L. monocytogenes biofilms on 395 

the leaf surface. Biofilms also facilitate resistance to desiccation, an environmental stress readily 396 

encountered on the product surface. L. monocytogenes strains which are resistant to desiccation 397 

stress may present an increased contamination risk to the consumer due to their ability to survive on 398 

the leaf surface. Desiccation resistance has been shown to be influenced by serotype, origin, 399 

genotype and virulence with strains of serotype 1/2b being more resistant to desiccation stress than 400 

other serotypes (Zoz et al. 2017). A further contributing factor to L. monocytogenes contamination 401 

of post-harvest product is the bacterium’s ability to adhere to and persist on abiotic surfaces in the 402 

processing environment such as stainless steel and polystyrene (Lee et al. 2017). L. monocytogenes 403 

forms biofilm on a range of abiotic surfaces and it is hypothesised that this characteristic of the 404 

bacterium aids in its persistence and subsequent recontamination of post-harvest produce.  405 

Source Tracking L. monocytogenes in the Fresh Leafy Produce Supply Chain 406 

Using Subtyping to Source Track L. monocytogenes Through the Supply Chain and Identify 407 

Persistent Strains 408 

An important step in tackling L. monocytogenes contamination in the FLPSC is to identify the source 409 

of contaminating bacteria and persistent strains in environments where they may be subsequently 410 

eradicated. To do this in food associated environments, subtyping methods such as pulsed gel field 411 

electrophoresis (PGFE) and whole genome sequencing (WGS) must be employed. Once common 412 

subtypes have been identified, investigators can begin to link separate contamination events and 413 

search for commonality (source) between these events (e.g. a single processing facility, farm or deli 414 

counter). Subtyping of L. monocytogenes during outbreak investigations has successfully revealed 415 

sources of contamination including a celery processing environment (Gaul et al. 2013) and a 416 

cantaloupe processing environment (McCollum et al. 2013). Importantly, in the cantaloupe example, 417 

the authors did not find any evidence of L. monocytogenes in the raw material, establishing the 418 
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processing environment as the main source of contamination.  These examples indicate the 419 

contamination risk from L. monocytogenes presence in ‘bottle-neck’ areas of food supply chains. 420 

The same rationale can be applied to contamination events in the FLPSC through regular sampling of 421 

fresh produce and surrounding environments. Leong et al., (2017) used PGFE to subtype isolates 422 

from a variety of food processing facilities and were able to identify persistent strains in vegetable 423 

processing facilities which subsequently contaminated produce, but also recognise that elucidation 424 

of the specific source of contamination in a processing facility requires sampling over a longer time. 425 

Nastasijevic et al., (2017) applied single nucleotide polymorphism (SNP) analysis to WGS data to 426 

determine the genetic relatedness of strains and trace contamination through a meat production 427 

facility to a single line (slaughter line) demonstrating that the use of subtyping techniques enables 428 

source tracking through a food processing environment. Identification of persistent strains and 429 

contamination sources would enable companies who operate in the FLPSC to employ a “seek and 430 

destroy” strategy (Stasiewicz et al. 2015) to eradicate the contaminating bacteria from contaminated 431 

environments. However, routine commercial sampling of fresh produce and surrounding 432 

environments is often infrequent and currently only identifies L. monocytogenes down to the species 433 

level. Even with the advent of subtyping techniques, source tracking in a processing environment 434 

remains difficult due to the risk of recontamination, i.e. if an indistinguishable strain is found in a 435 

processing environment and on a raw material it doesn’t prove that the contamination came from 436 

the raw material or vice versa. To elucidate the specific source of L. monocytogenes in this context, 437 

companies in the FLPSC would have to embark on a regular sampling regime of both the processing 438 

environment and raw/processed product combined with molecular subtyping which may currently 439 

be beyond the scope (in terms of time and financial investment) of companies operating in this 440 

sector. Source tracking with WGS relies on well-designed sampling plans as the difficulties in 441 

distinguishing persistent and genetically similar, repeatedly reintroduced L. monocytogenes strains 442 

in a given environment have been noted (Stasiewicz et al. 2015). 443 
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As the cost of WGS reduces year on year however, this molecular subtyping method becomes more 444 

attractive. In terms of source tracking, WGS data gives a higher resolution (i.e. more distinction 445 

between genetically similar isolates) than PGFE, making it a more powerful and reliable tool (Moura 446 

et al. 2017). Implementation of WGS in the commercial microbiology laboratories which service the 447 

FLPSC by testing produce for pathogens produce is limited by expertise in the field, data 448 

interpretation and lack of infrastructure (Kwong et al. 2015). Implementation is also limited by cost, 449 

and whilst the cost per sample is reducing it still remains a significant cost which is prohibitive for 450 

such routine use in the FLPSC.  451 

Subtyping L. monocytogenes by WGS Can Infer the Potential Risk of Isolates 452 

In addition to being used as a source tracking tool, WGS can infer the risk posed by isolates found in 453 

the FLPSC by allowing genome-wide mapping and phylogenetic analysis. WGS can be used to group 454 

L. monocytogenes isolates based on their phylogenetic lineage. Other sequencing tools such as multi 455 

locus sequence typing (MLST) also provide this advantage but unlike MLST, WGS also provides data 456 

on the presence and intactness of specific and essential virulence associated genes in L. 457 

monocytogenes such as internalins (InlA, InlB, InlC & InlJ) essential for host cell internalisation, 458 

listeriolysin O (hly) essential for L. monocytogenes escape from phagosomes into the cytosol and 459 

listeriolysin S (llsX), essential for modifying host gut microbiota during infection (Wu et al. 2016; 460 

Quereda et al. 2017). Determining the presence and functioning of these genes could indicate the 461 

potential risk that L. monocytogenes isolates found in the FLPSC pose to the consumer, although it 462 

should be said that missing or non-functioning genes do not necessarily confer reduced virulence or 463 

avirulence in an isolate and more research is needed in this area. 464 

Thus, when applied to L. monocytogenes isolates in the FLPSC, WGS is only able to give an indication 465 

of risk. However, implementation of this technique combined with a L. monocytogenes surveillance 466 

programme in the supply chain would give insight into the relatedness of the L. monocytogenes 467 

population that exists in the FLPSC, outlining the frequency with which strains are isolated (thus 468 

whether a strain is sporadic or persistent) and their source. WGS also provides phylogenetic 469 
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information on isolates and could therefore outline the potential risk they pose to the consumer. 470 

This information may be valuable to the companies that operate in the FLPSC by informing risk 471 

assessments associated with L. monocytogenes contamination, ultimately reducing the risk to the 472 

consumer.   473 

Conclusion 474 

Several molecular and physiological mechanisms contribute to L. monocytogenes survival in the 475 

FLPSC. There are many potential contamination routes in the growing environment of fresh leafy 476 

produce that may be difficult or impossible to prevent (e.g. transfer from wild animal faeces) and we 477 

suggest that whilst contamination from the soil is possible, it is of low risk to consumers due to the 478 

small number of bacteria transferred. L. monocytogenes can persist in a processing facility, 479 

facilitated by harbourage sites and recontaminate product passing through that facility, making this 480 

environment a high priority for the elimination of the bacteria. Although currently expensive, WGS 481 

should be used to identify persistent L. monocytogenes due to the additional valuable data it 482 

provides compared to other subtyping methods. As the cost of WGS reduces, L. monocytogenes 483 

isolates from the FLPSC should be characterised by this method to determine their source, 484 

relatedness and evaluate the risk they pose to the consumer. The authors recommend that future L. 485 

monocytogenes research should focus on; L. monocytogenes survival in soil, transfer to the product 486 

surface and subsequent survival on the product surface of fresh leafy produce, L. monocytogenes 487 

association with the product in the growing environment (i.e. in the soil), the VBNC state of L. 488 

monocytogenes in the context of survival in the food supply chain, how L. monocytogenes biofilms 489 

can be mitigated and removed and finally robust methods for determining sources of L. 490 

monocytogenes in the FLPSC.  491 

Conflict of Interest Statement 492 

The authors declare that no conflict of interest exists. 493 



21 
 

References 494 

Allende, A., Monaghan, J. (2015) Irrigation water quality for leafy crops: A perspective of risks and 495 

potential solutions. Int J Environ Res Public Health 12:7457–7477. doi: 10.3390/ijerph120707457 496 

Ayrapetyan, M., Oliver, J.D. (2016) The viable but non-culturable state and its relevance in food 497 

safety. Curr Opin Food Sci 8:127–133. doi: 10.1016/j.cofs.2016.04.010 498 

Beuchat, L.R., Brackett, R.E. (1990) Survival and Growth of Listeria monocytogenes on Lettuce as 499 

Influenced by Shredding, Chlorine Treatment, Modified Atmosphere Packaging and Temperature. J 500 

Food Sci 55:755–758. doi: 10.1111/j.1365-2621.1990.tb05222.x 501 

Bruce, J.B., West, S.A., Griffin, A.S. (2017) Bacteriocins and the assembly of natural Pseudomonas 502 

fluorescens populations. J Evol Biol 30:352–360. doi: 10.1111/jeb.13010 503 

Buchanan, R.L., Gorris, L.G.M., Hayman, M.M., et al. (2017) A review of Listeria monocytogenes: An 504 

update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 75:1–505 

13. doi: 10.1016/j.foodcont.2016.12.016 506 

Carpentier, B., Cerf, O. (2011) Review - Persistence of Listeria monocytogenes in food industry 507 

equipment and premises. Int J Food Microbiol 145:1–8. doi: 10.1016/j.ijfoodmicro.2011.01.005 508 

Cartwright, E.J., Jackson, K.A., Johnson, S.D., et al. (2013) Listeriosis outbreaks and associated food 509 

vehicles, United States, 1998-2008. Emerg Infect Dis 19:1–9. doi: 10.3201/eid1901.120393 510 

Center for Food Safety and Applied Nutrition. (2017) Control of Listeria monocytogenes in Ready-To-511 

Eat Foods: Guidance for Industry Draft Guidance. Int J Pharm Biol Arch 3:1–49 512 

Chan, Y.C., Wiedmann, M. (2009) Physiology and genetics of Listeria monocytogenes survival and 513 

growth at cold temperatures. Crit Rev Food Sci Nutr 49:237–253. doi: 10.1080/10408390701856272 514 

Cheng, C., Yang, Y., Dong, Z., et al. (2015) Listeria monocytogenes varies among strains to maintain 515 

intracellular pH homeostasis under stresses by different acids as analyzed by a high-throughput 516 



22 
 

microplate-based fluorometry MATERIALS AND METHODS. 6:1–10. doi: 10.3389/fmicb.2015.00015 517 

Colagiorgi, A., Bruini, I., Di Ciccio, P.A., et al. (2017) Listeria monocytogenes Biofilms in the 518 

Wonderland of Food Industry. Pathogens 6:41. doi: 10.3390/pathogens6030041 519 

Desneux, J., Biscuit, A., Picard, S., Pourcher, A.M. (2016) Fate of viable but non-culturable Listeria 520 

monocytogenes in pig manure microcosms. Front Microbiol 7:1–13. doi: 10.3389/fmicb.2016.00245 521 

Dowe, M., Jackson, E., Mori, J., Colin, B. (1997) Listeria monocytogenes Survival in Soil and Incidence 522 

in Agricultural Soils. J Food Prot 10:1158–1286. doi: 10.4315/0362-028X-60.10.1201 523 

European Commission. (2005) Guidance Document on Listeria monocytogenes shelf-life studies for 524 

ready-to-eat foods, under Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological 525 

criteria for foodstuffs 526 

European Commission. (1999) Opinion of the Scientific Committee on Veterinary Measures Relating 527 

to Public Health on Listeria monocytogenes. Foodborne Pathog Dis 1–47. doi: 528 

10.1089/fpd.2011.0830 529 

Fagerlund, A., Langsrud, S., Schirmer, B.C.T., et al. (2016) Genome analysis of Listeria monocytogenes 530 

sequence type 8 strains persisting in salmon and poultry processing environments and comparison 531 

with related strains. PLoS One 11:1–22. doi: 10.1371/journal.pone.0151117 532 

Farber, J.M., Ross, W.H., Harwig, J. (1996) Health risk assessment of Listeria monocytogenes in 533 

Canada. Int J Food Microbiol 30:145–156. doi: 10.1016/0168-1605(96)01107-5 534 

Fenlon, D.R. (1985) Wild birds and silage as reservoirs of Listeria in the agricultural environment. J 535 

Appl Bacteriol 59:537–543. doi: 10.1111/j.1365-2672.1985.tb03357.x 536 

Ferreira, A., O’Byrne, C.P., Boor, K.J. (2001) Role of sigma(B) in heat, ethanol, acid, and oxidative 537 

stress resistance and during carbon starvation in Listeria monocytogenes. Appl Environ Microbiol 538 

67:4454–4457. doi: 10.1128/AEM.67.10.4454 539 



23 
 

Ferreira, A., Sue, D., O’Byrne, C.P., Boor, K.J. (2003) Role of Listeria monocytogenes sigma(B) in 540 

survival of lethal acidic conditions and in the acquired acid tolerance response. Appl Env Microbiol 541 

69:2692–2698. doi: 10.1128/AEM.69.5.2692 542 

Ferreira, V., Wiedmann, M., Teixeira, P., Stasiewicz, M.J. (2014) Listeria monocytogenes Persistence 543 

in Food-Associated Environments: Epidemiology, Strain Characteristics, and Implications for Public 544 

Health. J Food Prot 77:150–70. doi: 10.4315/0362-028X.JFP-13-150 545 

García-Gimeno, R.M., Zurera-Cosano, G., Amaro-Lopez, M. (1996) Incidence, survival and growth of 546 

Listeria monocytogenes in ready-to- use mixed vegetable salads in Spain. J Food Saf 16:75–86 547 

Garner, D., Kathariou, S. (2016) Fresh Produce–Associated Listeriosis Outbreaks, Sources of Concern, 548 

Teachable Moments, and Insights. J Food Prot 79:337–344. doi: 10.4315/0362-028X.JFP-15-387 549 

Gaul, L.K., Farag, N.H., Shim, T., et al. (2013) Hospital-acquired listeriosis outbreak caused by 550 

contaminated diced celery-texas, 2010. Clin Infect Dis 56:20–26. doi: 10.1093/cid/cis817 551 

Girardin, H., Morris, C.E., Albagnac, C., et al. (2005) Behaviour of the pathogen surrogates Listeria 552 

innocua and Clostridium sporogenes during production of parsley in fields fertilized with 553 

contaminated amendments. FEMS Microbiol Ecol 54:287–295. doi: 10.1016/j.femsec.2005.04.003 554 

Haase, J.K., Didelot, X., Lecuit, M., et al. (2014) The ubiquitous nature of Listeria monocytogenes 555 

clones: A large-scale Multilocus Sequence Typing study. Environ Microbiol 16:405–416. doi: 556 

10.1111/1462-2920.12342 557 

Harter, E., Wagner, E.M., Zaiser, A., et al. (2017) Stress survival islet 2, predominantly present in 558 

Listeria monocytogenes strains of sequence type 121, is involved in the alkaline and oxidative stress 559 

responses. Appl Environ Microbiol 83:. doi: 10.1128/AEM.00827-17 560 

Heaton, J.C., Jones, K. (2008) Microbial contamination of fruit and vegetables and the behaviour of 561 

enteropathogens in the phyllosphere: A review. J Appl Microbiol 104:613–626. doi: 10.1111/j.1365-562 

2672.2007.03587.x 563 



24 
 

Hellström, S. (2011) Contamination routes and control of Listeria monocytogenes in food production. 564 

University of Helsinki 565 

Hellström, S., Kiviniemi, K., Autio, T., Korkeala, H. (2008) Listeria monocytogenes is common in wild 566 

birds in Helsinki region and genotypes are frequently similar with those found along the food chain. J 567 

Appl Microbiol 104:883–888. doi: 10.1111/j.1365-2672.2007.03604.x 568 

Heras, A. De., Cain, R.J., Bielecka, M.K. (2011) Regulation of Listeria virulence : PrfA master and 569 

commander. Curr Opin Microbiol 118–127. doi: 10.1016/j.mib.2011.01.005 570 

Highmore, C.J., Warner, J.C., Rothwell, S.D., et al. (2018) Viable-but-Nonculturable Listeria 571 

monocytogenes and Salmonella enterica Serovar Thompson Induced by Chlorine Stress Remain 572 

Infectious. MBio 9:1–12. doi: 10.1128/mBio.00540-18 573 

Inoue, S., Tanikawa, T., Kawaguchi, J., et al. (1992) Prevalence of Listeria (spp.) in Wild Rats Captured 574 

in the Kanto Area of Japan. J Vetinary Med Sci 54:461–463 575 

Jami, M., Ghanbari, M., Zunabovic, M., et al. (2014) Listeria monocytogenes in aquatic food 576 

products-A review. Compr Rev Food Sci Food Saf 13:798–813. doi: 10.1111/1541-4337.12092 577 

Jordan, K., Leong, D., Alvarez-Ordonez, A. (2015) Listeria monocytogenes in the Food Processing 578 

Environment 579 

Kazmierczak, M.J., Mithoe, S.C., Boor, K.J., Wiedmann, M. (2003) Listeria monocytogenes σ B 580 

Regulates Stress Response and Virulence Functions. J Bacteriol 185:5722–34. doi: 581 

10.1128/JB.185.19.5722 582 

Khan, I., Khan, J., Miskeen, S., et al. (2016) Prevalence and control of Listeria monocytogenes in the 583 

food industry – a review. Czech J Food Sci 34:469–487. doi: 10.17221/21/2016-CJFS 584 

Koukkidis, G., Haigh, R., Allcock, N., et al. (2016) Salad leaf juices enhance Salmonella growth, fresh 585 

produce colonisation and virulence. Appl Environ Microbiol AEM.02416-16. doi: 586 



25 
 

10.1128/AEM.02416-16 587 

Kwong, J.C., Mccallum, N., Sintchenko, V., Howden, B.P. (2015) Whole genome sequencing in clinical 588 

and public health microbiology. Pathology 47:199–210. doi: 10.1097/PAT.0000000000000235 589 

Lee, B., Hébraud, M., Bernardi, T., Lee, B. (2017) Increased Adhesion of Listeria monocytogenes 590 

Strains to Abiotic Surfaces under Cold Stress. Front Microbiol 8:1–10. doi: 10.3389/fmicb.2017.02221 591 

Leong, D., Alvarez-Ordóez, A., Guillas, F., Jordan, K. (2013) Determination of Listeria monocytogenes 592 

Growth during Mushroom Production and Distribution. Foods 2:544–553. doi: 593 

10.3390/foods2040544 594 

Leong, D., Alvarez-Ordonez, A., Jordan, K. (2014) Monitoring occurrence and persistence of Listeria 595 

monocytogenes in foods and food processing environments in the Republic of Ireland. Front 596 

Microbiol 5:1–8. doi: 10.3389/fmicb.2014.00436 597 

Leong, D., NicAogáin, K., Luque-Sastre, L., et al. (2017) A 3-year multi-food study of the presence and 598 

persistence of Listeria monocytogenes in 54 small food businesses in Ireland. Int J Food Microbiol 599 

249:18–26. doi: 10.1016/j.ijfoodmicro.2017.02.015 600 

Li, L., Mendis, N., Trigui, H., et al. (2014) The importance of the viable but non-culturable state in 601 

human bacterial pathogens. Front Microbiol 5:1–1. doi: 10.3389/fmicb.2014.00258 602 

Linke, K., Rockerl, I., Brugger, K., et al. (2014a) Reservoirs of Listeria species in three environmental 603 

ecosystems. Appl Environ Microbiol 80:5583–5592. doi: 10.1128/AEM.01018-14 604 

Linke, K., Rückerl, I., Brugger, K., et al. (2014b) Reservoirs of Listeria species in three environmental 605 

ecosystems. Appl Environ Microbiol 80:5583–5592. doi: 10.1128/AEM.01018-14 606 

Liu, D. (2008) Handbook of Listeria Monocytogenes 607 

Liu, D., Lawrence, M.L., Ainsworth, A.J., Austin, F.W. (2005) Comparative assessment of acid, alkali 608 

and salt tolerance in Listeria monocytogenes virulent and avirulent strains. FEMS Microbiol Lett 609 



26 
 

243:373–378. doi: 10.1016/j.femsle.2004.12.025 610 

Locatelli, A., Depret, G., Jolivet, C., et al. (2013a) Nation-wide study of the occurrence of Listeria 611 

monocytogenes in French soils using culture-based and molecular detection methods. J Microbiol 612 

Methods 93:242–250. doi: 10.1016/j.mimet.2013.03.017 613 

Locatelli, A., Spor, A., Jolivet, C., et al. (2013b) Biotic and Abiotic Soil Properties Influence Survival of 614 

Listeria monocytogenes in Soil. PLoS One 8:1–8. doi: 10.1371/journal.pone.0075969 615 

Lundén, J.M., Miettinen, M.K., Autio, T.J., Korkeala, H.J. (2000) Persistent Listeria monocytogenes 616 

strains show enhanced adherence to food contact surface after short contact times. J Food Prot 617 

63:1204–1207. doi: 10.4315/0362-028X-63.9.1204 618 

Magalhães, R., Ferreira, V., Biscottini, G., et al. (2017) Biofilm formation by persistent and non-619 

persistent Listeria monocytogenes strains on abiotic surfaces. Acta Aliment 46:43–50. doi: 620 

10.1556/066.2017.46.1.6 621 

Maynaud, G., Pourcher, A.M., Ziebal, C., et al. (2016) Persistence and potential viable but non-622 

culturable state of pathogenic bacteria during storage of digestates from agricultural biogas plants. 623 

Front Microbiol 7:. doi: 10.3389/fmicb.2016.01469 624 

McCollum, J.T., Cronquist, A.B., Silk, B.J., et al. (2013) Multistate outbreak of listeriosis associated 625 

with cantaloupe. N Engl J Med 369:944–53. doi: 10.1056/NEJMoa1215837 626 

McLaughlin, H.P., Casey, P.G., Cotter, J., et al. (2011) Factors affecting survival of Listeria 627 

monocytogenes and Listeria innocua in soil samples. Arch Microbiol 193:775–785. doi: 628 

10.1007/s00203-011-0716-7 629 

Monaghan, J.,  Hutchison, M. (2015) Monitoring microbial food safety of fresh produce. AHDB 630 

Horticulture. Factsheet 13/10, 1-16. 631 

Monaghan, J.M., Beacham, A.M. (2017) Salad Vegetable Crops. In Brian Thomas, Brian G Murray and 632 



27 
 

Denis J Murphy (Editors in Chief), Encyclopedia of Applied Plant  Sciences, Vol 3, Waltham, MA: 633 

Academic Press, pp. 262–267. 634 

Monaghan, J.M., Hutchison, M.L. (2012) Distribution and decline of human pathogenic bacteria in 635 

soil after application in irrigation water and the potential for soil-splash-mediated dispersal onto 636 

fresh produce. J Appl Microbiol 112:1007–1019. doi: 10.1111/j.1365-2672.2012.05269.x 637 

Moura, A., Tourdjman, M., Leclercq, A., et al. (2017) Real-Time Whole-Genome Sequencing for 638 

Surveillance of Listeria monocytogenes , France. Emerg Infect Dis 23:. doi: 10.3201/eid2309.170336 639 

Moynihan, E.L., Richards, K.G., Brennan, F.P., et al. (2015) Enteropathogen survival in soil from 640 

different land-uses is predominantly regulated by microbial community composition. Appl Soil Ecol 641 

89:76–84. doi: 10.1016/j.apsoil.2015.01.011 642 

Nastasijevic, I., Milanov, D., Velebit, B., et al. (2017) Tracking of Listeria monocytogenes in meat 643 

establishment using Whole Genome Sequencing as a food safety management tool: A proof of 644 

concept. Int J Food Microbiol 257:157–164. doi: 10.1016/j.ijfoodmicro.2017.06.015 645 

Nowak, J., Cruz, C.D., Tempelaars, M., et al. (2017) Persistent Listeria monocytogenes strains isolated 646 

from mussel production facilities form more biofilm but are not linked to specific genetic markers. 647 

Int J Food Microbiol 256:45–53. doi: 10.1016/j.ijfoodmicro.2017.05.024 648 

Oliveira, M., Usall, J., Villas, I., et al. (2011) Transfer of Listeria innocua from contaminated compost 649 

and irrigation water to lettuce leaves. Food Microbiol 28:590–596. doi: 10.1016/j.fm.2010.11.004 650 

Oliver, J.D. (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS 651 

Microbiol Rev 34:415–425. doi: 10.1111/j.1574-6976.2009.00200.x 652 

Ölmez, H., Temur, S.D. (2010) Effects of different sanitizing treatments on biofilms and attachment 653 

of Escherichia coli and Listeria monocytogenes on green leaf lettuce. LWT - Food Sci Technol 43:964–654 

970. doi: 10.1016/j.lwt.2010.02.005 655 



28 
 

Orsi, R.H., Bakker, H.C. den., Wiedmann, M. (2011) Listeria monocytogenes lineages: Genomics, 656 

evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 301:79–96. doi: 657 

10.1016/j.ijmm.2010.05.002 658 

Overney, A., Jacques-André-Coquin, J., Ng, P., et al. (2017) Impact of environmental factors on the 659 

culturability and viability of Listeria monocytogenes under conditions encountered in food 660 

processing plants. Int J Food Microbiol 244:74–81. doi: 10.1016/j.ijfoodmicro.2016.12.012 661 

Pan, Y., Breidt, F., Kathariou, S. (2006) Resistance of Listeria monocytogenes biofilms to sanitizing 662 

agents in a simulated food processing environment. Appl Environ Microbiol 72:7711–7717. doi: 663 

10.1128/AEM.01065-06 664 

Pichler, J.G., Appl, G., Pietzka,  a., Allerberger, F. (2011) Lessons to be Learned from an Outbreak of 665 

Foodborne Listeriosis, Austria 2009–2010. Food Prot Trends 31:268–273 666 

Piveteau, P., Depret, G., Pivato, B., et al. (2011) Changes in gene expression during adaptation of 667 

Listeria monocytogenes to the soil environment. PLoS One 6:. doi: 10.1371/journal.pone.0024881 668 

Pouillot, R., Klontz, K.C., Chen, Y., et al. (2016) Infectious Dose of Listeria monocytogenes in Outbreak 669 

Linked to Ice Cream, United States, 2015. Emerg Infect Dis 22:2113–2119. doi: 670 

10.3201/eid2212.160165 671 

Quereda, J.J., Meza-Torres, J., Cossart, P., Pizarro-Cerdá, J. (2017) Listeriolysin S: A bacteriocin from 672 

epidemic Listeria monocytogenes strains that targets the gut microbiota. Gut Microbes 8:1–8. doi: 673 

10.1080/19490976.2017.1290759 674 

Rieu, A., Weidmann, S., Garmyn, D., et al. (2007) agr system of Listeria monocytogenes EGD-e: Role 675 

in adherence and differential expression pattern. Appl Environ Microbiol 73:6125–6133. doi: 676 

10.1128/AEM.00608-07 677 

Ryan, E.M., Gahan, C.G.M., Hill, C. (2008) A significant role for Sigma B in the detergent stress 678 

response of Listeria monocytogenes. Lett Appl Microbiol 46:148–154. doi: 10.1111/j.1472-679 



29 
 

765X.2007.02280.x 680 

Salazar, J.K., Sahu, S.N., Hildebrandt, I.M., et al. (2017) Growth Kinetics of Listeria monocytogenes in 681 

Cut Produce. J Food Prot 80:1328–1336 682 

Salazar, J.K., Wu, Z., Yang, W., et al. (2013) Roles of a Novel Crp/Fnr Family Transcription Factor 683 

Lmo0753 in Soil Survival, Biofilm Production and Surface Attachment to Fresh Produce of Listeria 684 

monocytogenes. PLoS One 8:. doi: 10.1371/journal.pone.0075736 685 

Sauders, B.D., Sanchez, M.D., Rice, D.H., et al. (2009) Prevalence and molecular diversity of Listeria 686 

monocytogenes in retail establishments. J Food Prot 72:2337–49 687 

Shabala, L., Lee, S.H., Cannesson, P., Ross, T. (2008) Acid and NaCl Limits to Growth of Listeria 688 

monocytogenes and Influence of Sequence of Inimical Acid and NaCl Levels on Inactivation Kinetics. J 689 

Food Prot 71:1169–1177. doi: 10.4315/0362-028X-71.6.1169 690 

Sheng, L., Edwards, K., Tsai, H.C., et al. (2017) Fate of Listeria monocytogenes on fresh apples under 691 

different storage temperatures. Front Microbiol 8:1–8. doi: 10.3389/fmicb.2017.01396 692 

Standing, T.A., Du Plessis, E., Duvenage, S., Korsten, L. (2013) Internalisation potential of Escherichia 693 

coli O157:H7, Listeria monocytogenes, Salmonella enterica subsp. enterica serovar Typhimurium and 694 

Staphylococcus aureus in lettuce seedlings and mature plants. J Water Health 11:210–223. doi: 695 

10.2166/wh.2013.164 696 

Stasiewicz, M.J., Oliver, H.F., Wiedmann, M., den Bakker, H.C. (2015) Whole-genome sequencing 697 

allows for improved identification of persistent Listeria monocytogenes in food-associated 698 

environments. Appl Environ Microbiol 81:6024–6037. doi: 10.1128/AEM.01049-15 699 

Tasara, T., Stephan, R. (2006) Cold stress tolerance of Listeria monocytogenes: A review of molecular 700 

adaptive mechanisms and food safety implications. J Food Prot 69:1473–84. doi: 10.4315/0362-701 

028X-69.6.1473 702 



30 
 

Van Der Veen, S., Abee, T. (2010) Importance of SigB for Listeria monocytogenes static and 703 

continuous-flow biofilm formation and disinfectant resistance. Appl Environ Microbiol 76:7854–704 

7860. doi: 10.1128/AEM.01519-10 705 

Vivant, A.-L., Garmyn, D., Piveteau, P. (2013) Listeria monocytogenes, a down-to-earth pathogen. 706 

Front Cell Infect Microbiol 3:87. doi: 10.3389/fcimb.2013.00087 707 

Vivant, A., Desneux, J., Pourcher, A., Piveteau, P. (2017) Transcriptomic Analysis of the Adaptation of 708 

Listeria monocytogenes to Lagoon and Soil Matrices Associated with a Piggery Environment : 709 

Comparison of Expression Profiles. Front Microbiol 8:1–16. doi: 10.3389/fmicb.2017.01811 710 

Vivant, A.L., Garmyn, D., Gal, L., et al. (2015) Survival of Listeria monocytogenes in soil requires AgrA-711 

mediated regulation. Appl Environ Microbiol 81:5073–5084. doi: 10.1128/AEM.04134-14 712 

Weis, J., Seeliger, H.P. (1975) Incidence of Listeria monocytogenes in nature. Appl Microbiol 30:29–713 

32 714 

Weller, D., Wiedmann, M., Strawn, L.K. (2015) Spatial and temporal factors associated with an 715 

increased prevalence of Listeria monocytogenes in spinach fields in New York State. Appl Environ 716 

Microbiol 81:6059–6069. doi: 10.1128/AEM.01286-15 717 

Welshimer, H.J. (1968) Isolation of Listeria monocytogenes from vegetation. J Bacteriol 95:300–303 718 

Wright, K.M., Chapman, S., McGeachy, K., et al. (2013) The endophytic lifestyle of Escherichia coli 719 

O157:H7: quantification and internal localization in roots. Phytopathology 103:333–40. doi: 720 

10.1094/PHYTO-08-12-0209-FI 721 

Wu, S., Wu, Q., Zhang, J., et al. (2016) Analysis of multilocus sequence typing and virulence 722 

characterization of Listeria monocytogenes isolates from chinese retail ready-to-eat food. Front 723 

Microbiol 7:1–11. doi: 10.3389/fmicb.2016.00168 724 

Zhu, Q., Gooneratne, R., Hussain, M. (2017) Listeria monocytogenes in Fresh Produce: Outbreaks, 725 



31 
 

Prevalence and Contamination Levels. Foods 6:21. doi: 10.3390/foods6030021 726 

Zoz, F., Grandvalet, C., Lang, E., et al. (2017) Listeria monocytogenes ability to survive desiccation: 727 

Influence of serotype, origin, virulence, and genotype. Int J Food Microbiol 248:82–89. doi: 728 

10.1016/j.ijfoodmicro.2017.02.010 729 

 730 

Tables 731 

Table 1. Possible sources of L. monocytogenes on fresh leafy produce from the growing and 732 

processing environments 733 

Environment Source Reference 

Farm Soil splash (Monaghan and Hutchison 2012) 

Contaminated irrigation water (Heaton and Jones 2008; Hellström 

2011; Allende and Monaghan 2015; 

Weller et al. 2015) 

Application of natural 

fertilisers 

(Girardin et al. 2005; Oliveira et al. 

2011) 

Wild animal faecal 

contamination 

(Weis and Seeliger 1975; Fenlon 

1985; Inoue et al. 1992; Hellström et 

al. 2008; Haase et al. 2014) 

Processing Environment Cross contamination from 

human carriers 

(Buchanan et al. 2017) 

Cross-contamination from 

food surfaces 

(Khan et al. 2016; Buchanan et al. 

2017; Overney et al. 2017) 

Cross contamination from 

harbourage sites 

(Leong et al. 2017) 
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 Figure 1. Summary of the fresh produce supply chain 736 


