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250 word structured summary 

Background: Healthcare-associated infection (HAI) affects millions of patients worldwide. 

HAI is associated with increased healthcare costs, owing primarily to increased hospital 

length of stay (LOS) but calculating these costs is complicated due to time-dependent bias. 

Accurate estimation of excess LOS due to HAI is essential to ensure we invest in cost-

effective infection prevention and control (IPC) measures. 

Aim: To identify and review the main statistical methods that have been employed to 

estimate differential LOS between patients with, and without, HAI; to highlight and discuss 

potential biases of all statistical approaches. 

Methods: A systematic review from 1997 to April 2017 was conducted in PUBMED, CINAHL, 

PROQUEST and ECONLIT databases. Studies were quality assessed using an adapted 

Newcastle-Ottawa Scale (NOS). Methods were categorised into time-fixed or time-varying 

with the former exhibiting time-dependent bias. We use two examples of meta-analysis to 

illustrate how estimates of excess LOS differ between different studies. 

Findings: Ninety-two studies with estimates on excess LOS were identified. The majority of 

articles employed time-fixed methods (75%). Studies using time-varying methods are of 

higher quality according to NOS. Studies using time-fixed methods overestimate additional 

LOS attributable to HAI. Undertaking meta-analysis is challenging due to a variety of study 

designs and reporting styles. Study differences are further magnified by heterogeneous 

populations, case definitions, causative organisms and susceptibilities. 

Conclusions: Methodologies have evolved over the last 20 years but there is still a 

significant body of evidence reliant upon time-fixed methods. Robust estimates are required 

to inform investment in cost-effective IPC interventions. 
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Introduction 

 

Healthcare-Associated Infection (HAI) is a major issue for health providers, patients and 

public authorities worldwide.[1] The total annual number of patients with an HAI in 

European acute care hospitals was recently estimated at 3.2 million.[2] HAI has been 

associated with a significant impact on morbidity and mortality and can create substantial 

excess costs for health provision by prolonging hospital stay.[3] Accurate measurement of 

HAI costs is essential for developing cost-effective Infection Prevention and Control (IPC) 

measures. A major component of these costs can be captured by measuring the additional 

Length of Stay (LOS) due to HAI.[4, 5] This is complicated due to the fact that infection 

increases the duration of hospital stay but, at the same time, the risk of infection increases 

with duration of stay.[6] In addition, patients with longer LOS tend to be more at risk of HAI 

due to various characteristics and co-morbidities. HAI should be treated as a time-

dependent event that is not present on admission otherwise estimates of excess LOS are 

biased.[3, 6-8]  

 

A number of literature reviews have focused on LOS and economic burden due to HAI. 

Shulgen et al reviewed two studies to illustrate the concept of time-dependent bias. [9] 

Mitchell et al published an integrative review on statistical methods used to examine LOS 

due to C. difficile infections with a focus on time-dependent bias.[10] Gandra et al examined 

antimicrobial resistance and discuss time-dependent bias when estimating cost.[11] De 

Angelis et al made the case for focusing on LOS when estimating HAI economic burden, 

reviewed methods to estimate LOS and criticised time-fixed methods that treat HAI as 

artificially present on admission.[12] Seven studies were reviewed by Nelson et al who 

highlighted the issue of time-dependent bias by comparing methods that treat HAI exposure 

as time fixed versus a time varying event.[13] Fukuda et al reviewed analytical 

methodologies for estimating additional healthcare cost of HAI.[14] They highlight the 

importance of adjusting for LOS and employing good statistical methods. Stone et al 

reviewed economic analyses of HAI and recommended use of guidelines and appropriate 

methods.[15] Variability in methods estimating the economic cost of HAI arises for a 

number of reasons; these include differences in case definitions, patient populations and 
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whether the study design is prospective or retrospective.[11] It has been suggested that 

meaningful comparisons can only be made if uniform definitions of rates are adopted along 

with standardised methods of data collection.[16] More recently Perencevich et al stated 

that stringent research standards are required to make the case for investing in IPC 

interventions, with a blueprint on how to achieve this.[17]  It is uncertain whether these 

recommendations have been fully adopted. In the UK the main findings from the seminal 

Plowman study are still referenced but we should recognise the methodological 

limitations.[18] 

 

In this paper we present a systematic review with two aims. First, to identify and review 

which statistical methods have been used to estimate differential LOS between patients 

with, and without, HAI and second, to assess the quality of studies and illustrate differences 

between the statistical methodologies with a particular focus on time-dependent bias. This 

is a unique review of studies with excess LOS estimates across all HAI types during the last 

twenty years. The review examines the current standard of research, identifies methods to 

estimate excess LOS due to HAI and proposes recommendations for the future.  
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Methods 

 

This systematic review is PROSPERO registered (registration number: CRD42016050094); it 

adheres to recommendations in the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) statement and guidance from the Campbell and Cochrane 

Economics Methods Group on incorporating economic evidence into systematic 

reviews.[19, 20] 

 

The literature was reviewed from 1st January 1997 to 30th April 2017 to identify relevant 

English language articles published in PUBMED, CINAHL, PROQUEST and ECONLIT databases. 

The search strategy combined the general “Cross Infection” MeSH heading with various 

nosocomial infection terms, major HAI types and economic or LOS terms (Supplementary 

Material 2). HAI types were categorised based on European Centre for Disease Prevention 

and Control (ECDC) definitions.[21] Given the changing nature of acute hospital care, a 20 

year period was chosen in order to include as many studies as possible while retaining 

studies that are still relevant today.  

 

Selection criteria 

All studies were assessed for eligibility by applying the PICOS (population, intervention, 

comparison, outcomes and setting) question format.[19] Publications identified in the 

search were combined and duplicates removed. A two-step review process was undertaken. 

The first step consisted of a title-abstract review and the second step of a full article review. 

Two authors (SM, SS) independently examined the titles and abstracts identified by the 

search strategy to select articles. Studies that were identified by only one author (SM) were 

discussed by a third (AM) to determine if they met the eligibility criteria for inclusion in the 

Review. Disagreements were resolved by discussion between the three authors (SM, SS, 

AM). 

The PICOS inclusion and exclusion criteria applied were: 
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• Population We included studies with adult inpatients that had a documented HAI in 

a health facility. Studies were excluded if they did not clearly distinguish between 

colonisation, community onset infections or HAI. Studies without a non-HAI 

comparison group were excluded. 

• Intervention We included observational studies; interventions were not considered 

when including or excluding papers.  

• Control/design We included case controlled and cohort studies. Case controlled 

studies allocated patients according to their HAI status. Commentaries and reviews 

were excluded.  

• Outcome Studies were included if they attempted to measure and report LOS using 

any statistical method. Studies which did not report LOS data were excluded. Studies 

were required to report total LOS from admission to discharge. Studies measuring 

partial LOS were excluded (e.g. only reporting duration of stay in a single specialty). 

• Setting We included studies in any health care setting with populations typical of 

acute care inpatient wards and critical care units. We excluded studies with selected 

populations; inpatients and outpatients or patients in residential care.  

 

Data extraction  

An initial scoping review was undertaken for the selected papers with a set of classifications 

developed for analysis types.  Six statistical methods were identified and divided into two 

high level groups. The first group treats HAI as present on admission or as time fixed and the 

second treats HAI as a time-dependent event or as time varying. Studies that did not match 

on the timing of infection will be referred to as Matching (Simple) and studies that matched 

on the timing to infection are referred to as Matching (Time).  Group comparison, Matching 

(Simple) and regression techniques that do not take the timing of events into account are 

referred to as time-fixed. Matching (Time), Survival Analysis and Multistate Modelling 

control for the time-dependence of HAI are referred to as time-varying.[13] Survival analysis 

can also be a time-fixed approach but the identified survival analysis studies treated HAI as 

time-varying and therefore survival analysis was placed in the second group. A more 

detailed description of these methodologies is described within Supplementary material 5. 
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Extraction of data was performed by one investigator (SM). Two authors (SS, AM) checked 

10% of this work for consistency. Any disagreements were resolved by consensus of these 

three authors. Data extraction was recorded on a Microsoft Excel template with the 

following columns: authors, year of publication, HAI type, organism (if reported), study 

design, statistical method, excess LOS due to HAI, confidence interval, sample size, year of 

data collection, journal title, country, country income classification, hospital setting, 

information on antibiotics (Yes/No) and discussion of time-dependent bias (Yes/No). 

Countries were grouped into high and middle income based on the World Bank country 

income classification.[22]   

 

HAI type was defined based on the way papers reported their results. When papers 

reported outcomes for different HAI types we extracted these separately. We defined a HAI 

group where papers reported results for multiple types of HAI in a single measure. For 

example, a paper that reported the cost of HAI overall without distinguishing between the 

different subtypes would go into this group. Excess LOS due to HAI was not always available 

as a separate estimate since some studies reported LOS outcomes separately for an HAI and 

a non-HAI group. There were notable differences in the way studies reported their 

estimates and therefore we only report LOS outcomes in the studies selected for meta-

analysis. Most studies reported standard deviations or confidence intervals but only 

standard errors or p-values were provided in some papers. Studies using regression 

methods or multistate modelling reported estimates of impact on LOS in excess days with a 

95% confidence interval. When more than one method was used we extracted the main 

method and associated estimate. For example, when group comparison estimates were 

present along with estimates from another method we only extracted the latter. For 

bloodstream infection studies, we extracted multiple estimates for a single HAI (see section 

2.4). We followed recommendations by the Cochrane collaboration for calculating 

confidence intervals in studies where this information was not provided.[19] 
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Quality Assessment 

Quality assessment was carried out using Newcastle Ottawa Scale (NOS).[23, 24] NOS is a 

quality assessment tool for use on nonrandomized studies included in systematic reviews, 

specifically cohort and case-control studies. A star rating system is used to indicate the 

quality of a study, with a maximum assessment of nine stars.[24] Each criterion receives 

zero, one or two stars with more stars indicating higher compliance. As suggested by the 

Cochrane collaboration we modified NOS to represent issues specific to studies estimating 

excess LOS due to HAI.[19] Our version of NOS assesses study design, HAI case definitions 

and application of appropriate statistical methods. The main changes from the original NOS 

are defining the exposure as HAI, the outcome as LOS, wording to reflect application of case 

definitions and allocation of one star to studies employing a time-varying statistical method. 

The rest of the criteria are the same as the original NOS. The only items where it was 

possible to receive two stars was for applying internationally recognised case definitions to 

records, e.g. CDC and ECDC, and for employing appropriate sampling strategies either as 

cohort or case control studies. The maximum number of stars possible was eight. One 

author (SM) assessed all included articles and two authors (SS, AM) checked 10% of this 

work for consistency. Any disagreements were resolved by consensus of the three authors. 

Supplementary material 3 details the version of NOS applied to the articles included in this 

review. Quality assessment was done for each LOS estimate separately. See supplementary 

materials 1 and 4 for the total number of stars awarded to each LOS estimate and a detailed 

breakdown of quality assessment. 

 

Statistical Analysis 

Stata statistical software was used to conduct all statistical analyses.[25] A Wilcoxon-Mann-

Whitney (WMW) test on the equality of means was performed to test if statistical 

methodology has an impact on article quality. When applying this test we excluded the NOS 

item on statistical methods since only time-varying methods could be allocated a star there. 

Meta-analysis: As discussed earlier the study designs showed a large amount of 

heterogeneity. In order to minimise differences in populations and potential impact on 

excess LOS, we focused on high income countries and chose two commonly occurring HAI 

types. The first meta-analysis focuses on estimates of impact of Bloodstream Infection (BSI) 
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(17 studies) on LOS and the second on Gastrointestinal Infection (GI) (19 studies) caused by 

Clostridium difficile (CDI). Bloodstream infections are known to increase LOS and cause 

significant impact on patient morbidity and mortality.[26] HAI CDI was selected as it is a 

single causative organism associated with diarrheal disease and would provide an important 

difference on statistical methodology in the CDI meta-analysis. CDI HAI obviates the 

variation due to different causative organisms present in the BSI infections. The 

heterogeneity among studies was estimated by the I
2
 statistic.[27] We used a random-

effects estimator to calculate pooled estimates of excess LOS due to HAI.[27, 28] The Stata 

metan routine was used to display meta-analysis results graphically in forest plots.[25, 29] 

For meta-analysis we extracted excess LOS estimates in days and calculated standard errors 

as recommended by the Cochrane collaboration. In cases where LOS of cases and controls 

was available separately, we extracted LOS for both of these groups and calculated the 

difference. Where different estimates for susceptible and resistant organisms were reported 

we extracted excess LOS for both. In the BSI group we extracted 31 excess LOS estimates 

from 17 studies where more than one method was used or information on more than one 

organism or different antibiotic susceptibilities were reported. In the CDI group we 

extracted one estimate from each study, 19 estimates in total.     
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Results 

 

The main characteristics of the studies included and the statistical methods identified are 

shown on Table I. There were: 23 studies[26, 30-51] with an estimate of impact of BSI on 

LOS; 22 studies[50, 52-72] with estimates from the impact of GI; 27 studies[37, 42, 43, 47, 

50, 73-94] with estimates from surgical site infection (SSI); 26 studies [4, 43, 47, 50, 79, 80, 

85, 95-113] with an average estimate from all types of HAI; ten studies[35, 37, 42, 43, 45, 

47, 50, 80, 114, 115] with estimates from urinary tract infection (UTI); eight studies[35, 37, 

42, 47, 114, 116-118] with estimates from pneumonia; four studies[43, 50, 80, 99] with 

estimates from lower respiratory tract infection (other than pneumonia); and one 

study[119] of bone and joint infection. In total we extracted 121 LOS estimates shown in 

supplementary material 1 from 92 studies. 

 

See supplementary material 1 for a summary of the characteristics of the published studies. 

Some authors reported more than one infection type and therefore appear in multiple HAI 

groups. Studies employed data collected in multiple years and there was some overlap 

between selected studies. Table I shows the types of infections, statistical methodologies 

used to estimate excess LOS, country study design and year. As described earlier statistical 

methods were categorised in time-fixed and time-varying according to their treatment of 

the timing of HAI.[13]  

 

There were 81 studies[4, 26, 31-39, 41-43, 46-71, 73-77, 79-95, 97, 99-102, 104-107, 109-

117, 119]from high income countries, of which 40% took place in the US and 22% in the UK, 

Spain and Australia, and eleven studies[30, 40, 44, 45, 72, 78, 96, 98, 103, 108, 118] from 

middle income countries. The majority (80%) of studies were cohort studies and we 

included 18 studies with a case-control design. The case-control design applies to the 

sampling strategy where one or more controls were chosen for each HAI case. These type of 

studies are also known as case-control with follow up[120]. The majority of the studies 

collected data during the period 2005 to 2012. The most frequent statistical method 
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employed in the included articles is simple matching (31 studies, 34%) followed by 

regression (24 studies, 26%), group comparison (14 studies, 15%), matching on time (12 

studies, 13%), multistate modelling (9 studies, 10% and survival analysis (2 studies, 2%). 

There were 12 studies that investigated more than one HAI types and from these we 

extracted more than one estimates, one for each HAI.[35, 37, 42, 43, 45, 47, 50, 79, 80, 85, 

99, 114]  

 

Figure 2 shows trends in statistical techniques in published articles over the last two 

decades. Time-fixed methods are the largest proportion (73%) of statistical techniques used 

to estimate excess LOS. In our sample studies using time-varying methods appear in 2006 

and 59% of these used matching on time to infection techniques.[85]  Group comparison 

studies are still being published and 12% of articles have used this method since 2006. 

Overall, only 32% of studies published since 2006 have used time-varying methods.  

 

Figure 3 shows that time-fixed methods have been used in the majority of articles in every 

year except 2008. Time-fixed methods continue to be the most common methodology used 

in HAI studies. This review included two survival analysis studies and nine multistate 

modelling studies (Table I). Nine articles from middle income countries used either a group 

comparison [72, 96, 98, 108, 118] approach or a simple matching method.[40, 44, 78, 103] 

One article from the middle income country group used a regression model[45] and one 

article used matching on the time to infection.[30]  

 

Quality assessment NOS scores of seven or eight were considered as high-quality, five or six 

as moderate quality and low quality for less than five. Approximately 57% of estimates were 

of high quality receiving seven or eight stars. Articles using time-varying methods are of 

higher quality than articles with time-fixed methods. Figure 4 summarises the results of the 

quality assessment by type of statistical method. NOS allocates seven stars out of eight to 

study design. Articles using time-varying methods scored significantly (z=3.172, P<.002) 

higher in the quality assessment. When performing the WMW test we excluded the NOS 
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item that is related to methods since only time-varying methodologies could be awarded a 

star and we wanted to compare quality as captured by the NOS items on study design. One 

reason that time-fixed methods were assessed to be of lower quality is that only 55% of 

these applied case definitions to identify cases. 23% of the time-fixed studies scored zero 

stars in the relevant NOS item as they used retrospective case ascertainment using 

(International Classification of Disease) ICD codes or treatment.[121] 

 

Meta-analyses  

For the BSI meta-analysis two studies reported results for more than one organism.[26, 32] 

Five studies reported results for susceptible and resistant organisms separately.[26, 33, 36, 

46, 49] Three studies reported results using more than one statistical method.[33, 47, 51] 

Time-fixed methods consistently produce higher estimates of HAI impact on LOS with larger 

confidence intervals. In the BSI meta-analysis the focus is on within-study differences and 

we found that the causative organism and susceptibility have a big impact on excess LOS 

due to HAI; these should always be taken into account when calculating the economic 

impact of BSI in different settings. 

 

Figure 5 presents the results of the meta-analysis in the BSI articles grouped by statistical 

method. There is considerable variability in the estimates with a range of 1.2 to 26.4 excess 

days due to HAI. Among studies that used more than one statistical method two studies 

show that estimated excess LOS can increase substantially if patient characteristics and 

comorbidities are ignored by using group comparison as opposed to regression or simple 

matching.[33, 47]  Vrijens et al show that ignoring BSI as a time-dependent event by using 

time-fixed methods more than doubles the estimated excess LOS.[51] Heterogeneity is very 

high in every group with the matching on time group having the lowest I
2
 of 82%. One 

reason for the high heterogeneity is that these studies examine a range of organisms 

associated with BSI. Studies that did not estimate impact of specific organism but had access 

to laboratory results reported that S. aureus was one of the most common causes of BSI in 

their samples.[32, 39, 46, 51] Stewardson et al estimate the impact of susceptible and 

resistant Enterobacteriaceae and S. aureus BSI using multistate modelling and find that the 
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estimated impact of the susceptible BSI infections on LOS approximately doubles when S. 

aureus is the causative agent.[26] The study by Barnett et al shows that BSI caused by Gram 

positive bacteria have a much greater impact on LOS than BSI caused by Gram negative 

bacteria.[32] Figure 5 shows that antimicrobial resistance (AMR) increases estimated LOS 

and there are noticeable differences between causative pathogens.[26, 32, 33, 49] The 

variability in the BSI studies contrasts to the second meta-analysis focusing on a single 

organism to isolate the impact of statistical method on the estimates.  

 

We extracted 19 estimates from 19 studies estimating excess LOS due to Healthcare 

Associated (HA) CDI in high income countries (Figure 6).[52-63, 65-71] The HA CDI studies 

focus on a single infection type caused by the same organism and estimates in each 

statistical group were homogenous as shown by the low I
2
 scores within each analysis group 

in Figure 6. The overall I
2
, which can be calculated by analysing studies as a single group, was 

very high (99.7%) and resembled I
2
 scores in the BSI studies. Figure 6 shows that the results 

should be analysed separately for each statistical methodology. The CDI results display a 

large variability in LOS estimates on the impact of CDI with a range of 1 to 16 excess days. 

Since CDI is a commonly occurring HAI even a small number of extra days can have a 

significant impact on cost estimates due to CDI.[122] Time-fixed methods produce 

consistently higher estimates of excess LOS due to CDI. This finding is particularly evident in 

studies using regression methods and simple matching studies, which show higher 

heterogeneity and much higher and uncertain estimates of LOS when compared to time-

varying methods. The impact of BSI and CDI on LOS is consistently overestimated when 

time-fixed methods are used.  
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Discussion 

 

This systematic review found that there are six main statistical techniques which have been 

used over the last 20 years to assess excess LOS due to HAI. These methods can be grouped 

in time-fixed and time-varying according to their treatment of time-dependence. We found 

a significant body of evidence that does not take into account the time-dependent nature of 

HAI due to the use of time-fixed methods. Even though time-varying methods appeared 

more than ten years ago the majority of articles in high income countries still use time-fixed 

methods to estimate excess LOS due to HAI. In middle income countries (where 

sophisticated data are not routinely collected due to funding constraints) we only identified 

one study that controls for time-dependence.[30]  

 

The ability to synthesise evidence from multiple studies is key if policymakers and 

researchers are willing to model the cost-effectiveness of IPC interventions. Despite a large 

number of publications on each type of infection it is challenging and sometimes 

inappropriate to synthesise evidence due to the fact researchers use different study designs, 

statistical methods and reporting styles. There are inherent difficulties in HAI literature due 

to the range of different infection types, settings, patient types, organisms and AMR. 

However, we found that papers often magnify these differences by using time-fixed 

methods. This limits our ability to synthesise evidence, even in cases where studies 

investigate a single HAI type or a single organism. When looking at a single infection (BSI) 

the meta-analysis has shown that causative organisms and antibiotic resistance have a large 

impact on the excess LOS estimates. Where synthesising evidence appeared possible (CDI) 

meta-analysis showed that the choice of statistical method can have a highly distortive 

effect on excess LOS estimates. The meta-analysis of the BSI studies suggests that defining a 

high level infection type (such as BSI) is not sufficient to perform synthesis when trying to 

estimate economic impact since this can hide substantial heterogeneity between studies. So 

other than choosing studies that account for time-dependence bias it is also important to be 

clear about organism identity, patient conditions and AMR in the studies of the meta-

analysis. The meta-analysis of CDI studies confirmed previous work which suggests time-

fixed methods overestimate the burden of HAI when compared to time-varying.[62] We 
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suggest that researchers take into account all the above when performing meta-analysis to 

estimate economic cost of HAI. 

 

IPC planning at international, national or local levels requires accurate cost estimates and 

therefore excess LOS precision. IPC measures aim to prevent HAI cases in order to improve 

clinical effectiveness and maximise health benefits.[13] Identifying which combination of 

HAI and patient characteristics causes the greatest economic burden should help focus 

investment in interventions that give the greatest return. The main cost attributable to HAI 

is the additional stay in the hospital.[5, 7, 77, 123] Preventing HAI can lead to released bed 

days, reduction in waiting times and the ability to treat more patients. Modelling studies 

that synthesise evidence from different sources can inform policy related to IPC 

measures.[124] Nevertheless, it is of the utmost importance that modelling studies are 

based on well-designed studies otherwise recommendations on cost-effectiveness of IPC 

interventions become unreliable.  

 

Our results agree with previous work, which suggests that estimates from time-varying 

methods that control for time-dependent bias should be adopted when making policy 

decisions.[7, 12, 13] Time-fixed methods suffer from time-dependent bias and studies 

employing such methods are of lower quality overall. Each study is conducted in inherently 

different circumstances with differences in characteristics of the study population and 

methodologies. There are also differences in the way LOS outcomes are reported 

complicating the process of synthesising results. Some studies were excluded from this 

review because it was not clear if cases were healthcare associated infection, colonisation, 

community acquired infection or a combination. Since IPC interventions are designed to 

target HAI and not community onset infection, only studies that clearly show that outcomes 

are HAI-specific should be used for planning policy.   

 

There is already an acknowledged requirement for structured reporting of observational 

studies with the STROBE statement and economic evaluation studies with the CHEERS 
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statement. Studies investigating HAI burden are observational studies which fall within the 

scope of STROBE.[125, 126] Analytical methodologies have evolved and reporting guidelines 

have not accounted for all these developments and should also be updated. Studies that 

fully meet the STROBE recommendations will not necessarily avoid time-dependent bias or 

measurement bias in their results. Our recommendation is that additional aspects of study 

design and reporting should be considered especially within studies reporting HAI and 

antimicrobial resistance.  

 

Overall recommendations are:  

1) Studies can have either a cohort or a case-control design but always ensure that the 

comparator group is clearly defined especially when reporting AMR outcomes.  

2) Studies should employ appropriate case definitions, ideally internationally 

recognised definitions applied to records and clearly distinguish between HAI and 

community-onset or colonisation.  

3) Studies should collect data on the timing of events and control for time-dependent 

bias by using a time varying analytical methodology 

4) Studies should report results from a multi-state model or if these are not available 

patient-days of HAI and non-HAI patients.  

5) Studies must clearly state if LOS was measured from admission to discharge or if LOS 

was partially measured e.g. LOS within ICU. 

 

This review indicates that excess LOS estimates based on statistical methods that treat HAI 

as a time-varying exposure show a shorter estimated extra stay. This means that HAI costs 

may have been overestimated.[5, 6, 10, 13, 68, 113, 127] Time-dependent bias and different 

statistical methods lead to highly variable estimates, which might lead to inefficient policies. 

Beyersmann et al show that time-dependant bias is large in methods such as regression 

methods and survival analysis that do not normally treat HAI as a time-varying 

exposure.[128] Common regression methods cannot control for the timing of events and 

caution should be exercised when applying or interpreting regression results.[129] 

Regression methods to estimate excess LOS should only be used for associations rather than 

causal inference.[41] Survival analysis is normally a time-fixed method but it can be 
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adapted; the two survival analysis studies included in this review treat HAI as time-

varying.[58, 85]    

 

Matching methods should match on time to infection requiring the control patient to have 

spent an equivalent time in hospital before the infection as the case.[36, 51] This will not 

completely eliminate time-dependent bias but it will significantly reduce it. Nelson et al 

compare three estimation strategies and show that matching on the time to infection can 

substantially reduce time-dependence bias.[113] Matching on time to infection should be 

ideally performed by using incidence density sampling. This produces similar estimates to 

multistate modelling although with less precision and wider confidence intervals.[3] A 

combination of these two methods was used by Barnett et al who applied multistate 

modelling to a sample that was matched using incidence density sampling.[32]  

 

The recommended approach to estimate excess LOS is multistate modelling.[4] Wolkewitz 

et al (2017) show that if information on event counts or patient days is available it is 

possible to perform basic multistate analysis.[130] However, a limitation of multistate 

models in the past was that they were not able to control for patient characteristics. 

Stewardson et al demonstrate an approach to indirectly control for age and comorbidities 

using a multilevel model.[26] In most cases HAI patients have greater severity of illness and 

comorbidities when compared with non-HAI patients. Since severity of illness and 

comorbidities are also predictors of LOS it is important to control for these because such 

variables may distort the relationship between infection and LOS.[17]  

 

One reason for the lack of studies that control for time-dependent bias may be the data 

requirements for these methods, e.g. knowing the day the infection began during a patient’s 

hospital stay. Only if this information is available can researchers employ statistical methods 

that control for time-dependent bias. We identified US studies that frequently use the 

National Inpatient Sample (NIS).[31, 35, 56, 57, 65, 71, 115, 119]  These studies use ICD 

codes to identify cases but NIS data do not provide information on the timing of infection 
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forcing researchers to use time-fixed methods to estimate impact of HAI on LOS. These 

studies received the lowest scores in the quality assessment and estimates should be 

treated with caution. Barnett et al published a detailed description of how time-dependent 

data can be organised for use in statistical models.[129] An estimate of only a few days 

excess stay in hospital can have a large impact on total cost. For example, the cost of an 

excess bed-day in 2015-2016 has been estimated at £306 and there were 1,398 CDI cases in 

2016 in Scotland.[131, 132] Every extra day of estimated excess LOS due to CDI would 

appear to cost an additional £427,788 to the Scottish NHS. We recognise that for this 

calculation we have not used unit costs that fully reflect the opportunity cost of the bed-day 

and these would be expected to be lower than £306.[133] Even though the exact figure can 

be challenged on the basis of not being a pure opportunity cost we have seen that time-

fixed methods can overestimate this effect for CDI by up to seven times. Irrespective of the 

type of unit cost used excess LOS should be estimated using time-varying methods.   

 

We propose that methods that minimise time-dependent bias are used to inform models of 

cost-effectiveness because only after establishing estimates through appropriate research 

methods can we combine findings from multiple studies to inform policy decisions. 

Following the recommendations of this review would improve our ability to undertake both 

meta-analysis and modelling studies. This will help to develop more precise estimates of the 

effects of interventions by ensuring use of studies with as low bias as possible especially 

measurement and time-dependent bias. In general, more and better designed studies are 

needed in order to provide accurate data to support effective and efficient IPC 

interventions.[14]   

 

Conclusions 

 

Accurate quantification of additional costs of HAI is essential for developing cost-effective 

IPC measures. A range of statistical analyses have been used to address the question of 
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excess LOS as a result of HAI. Availability of specific data item and study design can dictate 

researchers’ ability to employ time-varying statistical techniques.   As with all research that 

requires data collection there is a balance to be struck in terms of resource intensive data 

collection and requirements for analysis. When measuring economic impact, a major 

component of HAI costs can be captured by measuring the additional LOS due to these 

infections. We recommend that studies collect accurate information on the timing of key 

events such as time of admission, time of infection and time of discharge. Combining this 

information with patient characteristics and co-morbidities with appropriate statistical 

methods such as survival analysis; multistate modelling; or matching on time to infection 

minimises bias when estimating impact on LOS. Better study design, analytical techniques 

and reporting are needed to improve the quality of evidence worldwide. Further research is 

needed to identify the impact of HAI, including in middle and low income countries where 

data availability is limited due to funding constraints.[134]  
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Tables 

Table I: Summary of characteristics of published studies that produced estimates of excess LOS due to HAI. Where 

studies reported more than one HAI type we extracted all LOS estimates.  

Study Characteristics  

  

HAI type(s) Reported: No of studies (%) of studies 

Bloodstream 23 (19%) 

Gastro-intestinal 22 (18%) 

Surgical site 27 (22%) 

HAI*  26 (22%) 

Urinary tract 10 (8%) 

Pneumonia 8 (7%) 

Lower respiratory tract  4 (3%) 

Bone and joint  1 (1%) 

 

Primary Statistical Methodology: 

Time-Fixed 

Group Comparison 14 (15%) 

Matching (Simple) 31 (34%) 

Regression 24 (26%) 

Time-varying 

Matching (Time) 12 (13%) 

Survival Analysis 2 (2%) 

Multistate Model 9 (10%) 

Total 92 (100%) 

 

Included Studies by Country and Income Classification: 

High Income 81 (88%) 

Middle Income 11 (12%) 

Study Design 

Case-Control 18 (20%) 

Cohort 74 (80%) 

   

Studies’ Year of Data Collection** 

1989-2000 38  

2001-2004 37  

2005-2008 54  

2009-2012 43  

2013-2016 10  

* HAI refers to studies which estimated total impact on LOS across more than one type of HAI or multiple types of HAI due 

to a single organism (e.g. MRSA). 

**Counted if contain any data collected in these years (most studies used data collected in multiple years) 
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Figure 1: PRISMA Flow Diagram showing the relevant observational studies of the impact of HAI on LOS 
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Figure 2: Articles by year of publication and statistical method. Number of studies published in the corresponding year 

are shown below each bar. Group comparison, Matching (Simple) and Regression are time-fixed methods. Matching 

(Time), Survival Analysis and Multistate Modelling are time-varying methods.    
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Figure 3 Articles by year of publication and time-fixed vs time-varying methodologies.  
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Figure 4:  Quality assessment by type of statistical method. Papers quality assessed using the NOS assessment tool for 

case-control and cohort studies. Studies could get a maximum of 8 stars. 121 LOS estimates quality assessed in 92 

studies. Number of estimates assessed in each statistical method are shown on the bottom of each bar. Mean NOS stars 

by method are shown below each bar. There were three LOS estimates in the Survival Analysis group which were 

allocated a perfect score of 8 stars. Error bars calculated from standard deviations. Group comparison, Matching 

(Simple) and Regression are time-fixed methods. Matching (Time), Survival Analysis and Multistate Modelling are time-

varying methods.    
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Figure 5: Excess days and 95% CIs for the association of LOS and BSI. The triangles and horizontal lines correspond to the 

study-specific Excess Days estimates and 95% CIs. The diamonds represent the pooled Excess Days and 95% CIs of each 

subgroup. The vertical solid line shows Excess Days of zero. Mixed: Range of organisms included, not separated by 

antimicrobial resistance. VRE: Vancomycin-resistant enterococci. VSE: Vancomycin-susceptible enterococci. CNS: 

Coagulase-negative staphylococci. MRSA: Methicillin-resistant Staphylococcus aureus. MSSA: Methicillin-susceptible 

Staphylococcus aureus. Gram+: Gram-positive bacteria. Gram-: Gram-negative bacteria. ESBL+:  Extended-Spectrum β-

Lactamase–Producing Enterobacteriaceae positive. ESBL-:  Extended-Spectrum β-Lactamase–Producing 

Enterobacteriaceae negative. 3GCRE: Third-generation cephalosporin resistant Enterobacteriaceae. 3GCSE: Third-

generation cephalosporin susceptible Enterobacteriaceae. Enterococci: Susceptible and resistant enterococcal BSI. 

Acinetobacter: Susceptible and resistant Acinetobacter BSI. Group comparison, Matching (Simple) and Regression are 

time-fixed methods. Matching (Time), Survival Analysis and Multistate Modelling are time-varying methods.     
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Figure 6: Excess days and 95% CIs for the association of LOS and CDI. The triangles and horizontal lines correspond to the 

study-specific Excess Days estimates and 95% CIs. The diamonds represent the pooled Excess Days and 95% CIs of each 

subgroup and overall population. The vertical solid line shows Excess Days of zero. Group comparison, Matching 

(Simple) and Regression are time-fixed methods. Matching (Time), Survival Analysis and Multistate Modelling are time-

varying methods.    
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Figure Legends 

Figure 1: PRISMA Flow Diagram showing the relevant observational studies of the impact of HAI on LOS 

Figure 2: Articles by year of publication and statistical method. Number of studies published in the corresponding year 

are shown below each bar. Group comparison, Matching (Simple) and Regression are time-fixed methods. Matching 

(Time), Survival Analysis and Multistate Modelling are time-varying methods.    

Figure 3 Articles by year of publication and time-fixed vs time-varying methodologies.  

Figure 4:  Quality assessment by type of statistical method. Papers quality assessed using the NOS assessment tool for 

case-control and cohort studies. Studies could get a maximum of 8 stars. 121 LOS estimates quality assessed in 92 

studies. Number of estimates assessed in each statistical method are shown on the bottom of each bar. Mean NOS stars 

by method are shown below each bar. There were three LOS estimates in the Survival Analysis group which were 

allocated a perfect score of 8 stars. Error bars calculated from standard deviations. Group comparison, Matching 

(Simple) and Regression are time-fixed methods. Matching (Time), Survival Analysis and Multistate Modelling are time-

varying methods.    

Figure 5: Excess days and 95% CIs for the association of LOS and BSI. The triangles and horizontal lines correspond to the 

study-specific Excess Days estimates and 95% CIs. The diamonds represent the pooled Excess Days and 95% CIs of each 

subgroup. The vertical solid line shows Excess Days of zero. Mixed: Range of organisms included, not separated by 

antimicrobial resistance. VRE: Vancomycin-resistant enterococci. VSE: Vancomycin-susceptible enterococci. CNS: 

Coagulase-negative staphylococci. MRSA: Methicillin-resistant Staphylococcus aureus. MSSA: Methicillin-susceptible 

Staphylococcus aureus. Gram+: Gram-positive bacteria. Gram-: Gram-negative bacteria. ESBL+:  Extended-Spectrum β-

Lactamase–Producing Enterobacteriaceae positive. ESBL-:  Extended-Spectrum β-Lactamase–Producing 

Enterobacteriaceae negative. 3GCRE: Third-generation cephalosporin resistant Enterobacteriaceae. 3GCSE: Third-

generation cephalosporin susceptible Enterobacteriaceae. Enterococci: Susceptible and resistant enterococcal BSI. 

Acinetobacter: Susceptible and resistant Acinetobacter BSI. Group comparison, Matching (Simple) and Regression are 

time-fixed methods. Matching (Time), Survival Analysis and Multistate Modelling are time-varying methods.     

Figure 6: Excess days and 95% CIs for the association of LOS and CDI. The triangles and horizontal lines correspond to the 

study-specific Excess Days estimates and 95% CIs. The diamonds represent the pooled Excess Days and 95% CIs of each 

subgroup and overall population. The vertical solid line shows Excess Days of zero. Group comparison, Matching 

(Simple) and Regression are time-fixed methods. Matching (Time), Survival Analysis and Multistate Modelling are time-

varying methods.    
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Supplementary Material 1 

Studies eligible for data extraction and analysis by HAI type. Note that some studies appear in more than one HAI type. 
 

Authors Study Design 
Primary Statistical 

Methodology 
Country QA Stars 

Bloodstream Infection 

Riu et al (2016)[46] Retrospective cohort Group comparison Spain 6 

Al-Rawajfah et al (2012)[31] Retrospective case-control Matching (Simple) USA 4 

Caballero-Granado et al 

(2001)[34] 
Prospective case-control Matching (Simple) Spain 6 

Kothari et al (2009)[40] Retrospective case-control Matching (Simple) India 7 

Molina et al (2013)[41] Prospective case-control Matching (Simple) Spain 7 

Peng et al (2006)[42] Retrospective cohort Matching (Simple) USA 7 

Primo et al (2012)[44] Retrospective case-control Matching (Simple) Brazil 5 

Song et al (2003)[48] Retrospective cohort Matching (Simple) USA 6 

Butler et al (2010)[33] Retrospective cohort Regression USA 6 

Dasenbrock et al (2016)[35] Retrospective cohort Regression USA 5 

Plowman et al (2001)[43] Prospective cohort Regression UK 6 

Rattanaumpawan et al (2017)[45] Retrospective cohort Regression Thailand 7 

Roberts et al (2010)[47] Retrospective cohort Regression USA 7 

Al-Rawajfah et al (2013)[30] Retrospective case-control Matching (Time) Jordan 7 

de Kraker et al (2011)[36] Prospective cohort Matching (Time) Europe 7 

Glied et al (2016)[37] Retrospective cohort Matching (Time) USA 8 

Grupper et al (2007)[38] Retrospective cohort Matching (Time) Israel 6 

Kaye et al (2014)[39] Retrospective cohort Matching (Time) USA 8 

Vrijens et al (2010)[51] Retrospective cohort Matching (Time) Belgium 8 

Vrijens et al (2012)[50] Retrospective cohort Matching (Time) Belgium 8 

Barnett et al (2013)[32] Retrospective case-control Multistate Modelling Australia 7 

Stewardson et al (2013)[49] Retrospective cohort Multistate Modelling Switzerland 8 

Stewardson et al (2016)[26] Retrospective cohort Multistate Modelling Europe 7 

Gastrointestinal Infection 

Abdelsattar et al (2015)[52] Prospective cohort Group comparison USA 5 

Skovrlj et al (2014)[65] Retrospective cohort Group comparison USA 3 

Zhang et al (2016)[72] Prospective cohort Group comparison China 5 
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Bond et al (2017)[53] Prospective case-control Matching (Simple) Australia 7 

Egorova et al (2015)[56] Retrospective cohort Matching (Simple) USA 5 

Flagg et al (2014)[57] Retrospective cohort Matching (Simple) USA 5 

Keshavamurthy et al (2014)[60] Prospective cohort Matching (Simple) USA 7 

Pakyz et al (2011)[63] Retrospective case-control Matching (Simple) USA 4 

Chen et al (2017)[54] Retrospective cohort Regression Australia 6 

Eckmann et al (2013)[55] Retrospective cohort Regression UK 7 

Lipp et al (2012)[61] Retrospective cohort Regression USA 5 

Yasunaga et al (2012)[70] Retrospective cohort Regression Japan 5 

Zerey et al (2007)[71] Retrospective cohort Regression USA 5 

Jacob et al (2017)[59] Retrospective cohort Matching (Time) USA 8 

Ryan et al (2017)[64] Retrospective cohort Matching (Time) Ireland 7 

Tabak et al (2013)[67] Retrospective cohort Matching (Time) USA 8 

Vonberg et al (2008)[69] Prospective case-control Matching (Time) Germany 7 

Vrijens et al (2012)[50] Retrospective cohort Matching (Time) Belgium 8 

Foster et al (2012)[58] Retrospective cohort Survival Analysis Canada 8 

Mitchell et al (2014)[62] Retrospective cohort Multistate Modelling Australia 6 

Stevens et al (2015)[66] Retrospective cohort Multistate Modelling USA 8 

van Kleef et al (2014)[68] Prospective cohort Multistate Modelling UK 8 

Surgical Site Infection 

Kuy et al (2014)[88] Retrospective cohort Group comparison USA 5 

Lamarsalle et al (2013)[89] Retrospective cohort Group comparison France 4 

Anderson et al (2009)[73] Prospective case-control Matching (Simple) USA 7 

Apisarnthanarak et al (2003)[74] Prospective case-control Matching (Simple) USA 7 

Atkinson et al (2017)[76] Prospective cohort Matching (Simple) UK 6 

Coskun et al (2005)[78] Prospective cohort Matching (Simple) Turkey 6 

Delgado-Rodriguez et al 

(1997)[80] 
Prospective cohort Matching (Simple) Spain 7 

Gaine et al (2000)[82] Prospective case-control Matching (Simple) UK 6 

Gonzalez-Velez et al (2016)[84] Prospective case-control Matching (Simple) Spain 7 

Jenks et al (2014)[86] Retrospective cohort Matching (Simple) UK 7 

Kusachi et al (2012)[87] Prospective case-control Matching (Simple) Japan 7 

Merle et al (2000)[91] Prospective cohort Matching (Simple) France 7 

Monge Jodra et al (2006)[92] Prospective case-control Matching (Simple) Spain 7 

Olsen et al (2010)[93] Retrospective cohort Matching (Simple) USA 5 

Peng et al (2006)[42] Retrospective cohort Matching (Simple) USA 7 
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Pollard et al (2006)[94] Retrospective cohort Matching (Simple) UK 5 

Asensio and Torres (1999)[75] Retrospective cohort Regression Spain 7 

Boltz et al (2011)[77] Prospective cohort Regression USA 7 

Fukuda et al (2012)[81] Retrospective cohort Regression Japan 7 

Geubbels et al (2000)[83] Prospective cohort Regression Netherlands 6 

McGarry et al (2004)[90] Prospective cohort Regression USA 7 

Plowman et al (2001)[43] Prospective cohort Regression UK 7 

Roberts et al (2010)[47] Retrospective cohort Regression USA 7 

Glied et al (2016)[37] Retrospective cohort Matching (Time) USA 8 

Vrijens et al (2012)[50] Retrospective cohort Matching (Time) Belgium 8 

Herwaldt et al (2006)[85] Prospective cohort Survival Analysis USA 8 

De Angelis et al (2011)[79] Prospective cohort Multistate Modelling Switzerland 8 

Healthcare Associated Infection 

Dulworth and Pyenson (2004)[97] Retrospective cohort Group comparison USA 4 

Grandini and Caramelli (2006)[98] Retrospective cohort Group comparison Brazil 6 

Kollef et al (1997)[104] Prospective cohort Group comparison USA 5 

Nosrati et al (2010)[108] Prospective cohort Group comparison Iran 6 

Chacko et al (2017)[96] Prospective cohort Group comparison India 4 

O'Keefe et al (2017)[109] Retrospective cohort Group comparison Canada 5 

Delgado-Rodriguez et al 

(1997)[80] 
Prospective cohort Matching (Simple) Spain 7 

Khan and Celik (2001)[103] Prospective cohort Matching (Simple) Turkey 6 

Resch et al (2009)[110] Retrospective cohort Matching (Simple) Germany 5 

Karagozian et al (2010)[102] Retrospective cohort Matching (Simple) USA 7 

Wu et al (2008)[112] Retrospective cohort Matching (Simple) USA 5 

Campbell et al (2015)[95] Retrospective cohort Regression USA 6 

Graves et al (2007)[99] Prospective cohort Regression Australia 7 

Hassan et al (2010)[100] Retrospective cohort Regression USA 5 

Hoogervorst-Schilp et al 

(2015)[101] 
Retrospective cohort Regression Netherlands 6 

Lee et al (2011)[105] Retrospective cohort Regression Japan 5 

Lloyd-Smith et al (2013)[106] Retrospective case-control Regression Canada 5 

Plowman et al (2001)[43] Prospective cohort Regression UK 6 

Roberts et al (2010)[47] Retrospective cohort Regression USA 7 

Trybou et al (2013)[111] Retrospective cohort Regression Belgium 7 

Nelson et al (2015)[113]  Retrospective cohort Matching (Time) USA 8 

Vrijens et al (2012)[50] Retrospective cohort Matching (Time) Belgium 8 
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Herwaldt et al (2006)[85] Prospective cohort Survival Analysis USA 8 

Arefian et al (2016)[4] Prospective cohort Multistate Modelling Germany 7 

De Angelis et al (2011)[79] Prospective cohort Multistate Modelling Switzerland 8 

Macedo-Viñas et al (2013)[107] Retrospective cohort Multistate Modelling Switzerland 7 

Urinary Tract Infection 

Delgado-Rodriguez et al 

(1997)[80] 
Prospective cohort Matching (Simple) Spain 7 

Peng et al (2006)[42] Retrospective cohort Matching (Simple) USA 7 

Dasenbrock et al (2016)[35] Retrospective cohort Regression USA 5 

Ingeman et al (2011)[114] Retrospective cohort Regression Denmark 5 

Nosova et al (2013)[115] Retrospective cohort Regression USA 5 

Plowman et al (2001)[43] Prospective cohort Regression UK 7 

Rattanaumpawan et al (2017)[45] Retrospective cohort Regression Thailand 7 

Roberts et al (2010)[47] Retrospective cohort Regression USA 7 

Glied et al (2016)[37] Retrospective cohort Matching (Time) USA 8 

Vrijens et al (2012)[50] Retrospective cohort Matching (Time) Belgium 8 

Pneumonia 

Zhang and Duan (2015)[118] Prospective cohort Group comparison China 4 

Micek et al (2016)[116] Retrospective case-control Matching (Simple) USA 6 

Peng et al (2006)[42] Retrospective cohort Matching (Simple) USA 7 

Restrepo et al (2010)[117] Retrospective cohort Matching (Simple) USA 6 

Dasenbrock et al (2016)[35] Retrospective cohort Regression USA 5 

Ingeman et al (2011)[114] Retrospective cohort Regression Denmark 5 

Roberts et al (2010)[47] Retrospective cohort Regression USA 7 

Glied et al (2016)[37] Retrospective cohort Matching (Time) USA 8 

Lower Respiratory Tract Infection (other than pneumonia) 

Delgado-Rodriguez et al 

(1997)[80] 
Prospective cohort Matching (Simple) Spain 7 

Graves et al (2007)[99] Prospective cohort Regression Australia 7 

Plowman et al (2001)[43] Prospective cohort Regression UK 7 

Vrijens et al (2012)[50] Retrospective cohort Matching (Time) Belgium 8 

Bone and Joint Infection 

Padegimas et al (2015)[119] Retrospective cohort Group comparison USA 4 
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Supplementary Material 2 

The PubMed search strategy is presented in three parts. The first part has cross-infection 

keywords and Mesh terms. The second part has HAI related keywords and Mesh terms. The 

third part has economic and length of stay keywords and Mesh terms.  

Cross Infection 

 ((“Cross Infection”[Mesh] OR (cross infection*[tiab]) OR (healthcare associated infection*[tiab]) OR (health 

care associated infection*[tiab]) OR (hospital acquired infection*[tiab]) OR (hospital-acquired 

infection*[tiab]) OR (hospital associated infection*[tiab]) OR (healthcare-associated infection*[tiab]) OR 

(healthcare acquired infection*[tiab]) OR (health care acquired infection*[tiab]) OR (nosocomia*[tiab]) OR 

“Disease Transmission, Infectious”[Mesh] OR (cross transmission[tiab]) OR (infectious disease 

transmission[tiab]))  

Healthcare Associated Infections 

(“Catheter-Related Infections”[Mesh] OR (catheter related infection*[tiab]) OR (catheter acquired 

infection*[tiab]) OR (catheter associated infection*[tiab]) OR (CAUTI[tiab]) OR (device related 

infection*[tiab]) OR (device acquired infection*[tiab]) OR (device associated infection*[tiab]) OR (central 

line related bloodstream infection*[tiab]) OR (central line acquired bloodstream infection*[tiab]) OR 

(central line associated bloodstream infection*[tiab]) OR (CLABSI[tiab]) OR(CRBSI[tiab]) OR 

“bacteraemia”[Mesh] OR (bacteraemia[tiab]) OR “Methicillin-Resistant Staphylococcus aureus”[Mesh] OR 

"Clostridium difficile"[Mesh] OR "Clostridium Infections"[Mesh] OR "Enterocolitis, 

Pseudomembranous"[Mesh] OR (Clostridium difficile[tiab]) OR (c. diff*[tiab]) OR (CDI[tiab]) OR (CDAD[tiab]) 

OR (gastrointestinal infection*[tiab]) OR “norovirus”[Mesh] OR "Pneumonia, Ventilator-Associated"[Mesh] 

OR “Respiratory Tract Infections”[Mesh] OR (ventilator acquired pneumonia[tiab]) OR (nosocomial 

pneumonia[tiab]) OR (ventilator associated pneumonia[tiab]) OR “sepsis”[Mesh] OR "Urinary Tract 

Infections"[Mesh] OR "Urinary Catheterization"[Mesh] OR (urinary catheter*[tiab]) OR "Surgical Wound 

Infection"[Mesh] OR (surgical site infection*[tiab]) OR (postoperative infection*[tiab]) OR (postsurgical 

infection*[tiab]) OR (wound infection*[tiab]) OR (sternal wound infection*[tiab]) OR (postoperative[tiab]) 

OR (post-surgical[tiab]) OR “Cardiovascular Infections”[Mesh] OR “endocarditis, bacterial”[Mesh] OR 

(cardiovascular infection*[tiab]) OR (endocarditis[tiab]) OR (pericarditis[tiab]) OR “Staphylococcal Skin 

Infections”[Mesh] OR (skin infection*[tiab]) OR (soft tissue infection*[tiab]) OR “Osteomyelitis”[Mesh] OR 

(bone infection*[tiab]) OR (joint infection*[tiab]) OR “central nervous system infections”[Mesh] OR “eye 

infections”[Mesh] OR (eye infection*[tiab]) OR “otitis”[Mesh] OR ear infection*[tiab] OR “Sinusitis”[Mesh] 

OR (mouth infection*[tiab]) OR “reproductive tract infections”[Mesh] OR (reproductive tract 

infection*[tiab])))  

Economics and length of stay 

("Costs and Cost Analysis"[Mesh] OR "Health Care Costs"[Mesh] OR "Health Expenditures"[Mesh] OR 

"Direct Service Costs"[Mesh] OR "Hospital Costs"[Mesh] OR "Employer Health Costs"[Mesh] OR "Drug 

Costs"[Mesh] OR "Cost of Illness"[Mesh] OR "Economics"[Mesh] OR "Length of Stay"[Mesh] OR (length of 

stay[tiab]) OR (length of hospitalization[tiab]) OR (hospitalization length[tiab]) OR (duration of stay[tiab]))  
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Supplementary Material 3 

Newcastle-Ottawa quality assessment tool 

This scale has been adapted from the Newcastle-Ottawa Quality Assessment Scale to 

perform quality assessment (QA) in the systematic review. In this version of NOS we define 

the exposure as HAI and the outcome as discharge or total duration of hospital stay.  

COHORT STUDIES 

Selection: (Maximum 5 stars) 

1) Representativeness of the sample: 

a) Truly representative of the average in the target population (e.g. inpatient hospital 

specialty)**    

b) Somewhat representative of the average in the target population*  

c) Selected group of users. 

d) No description of the sampling strategy. 

 

2) Sample size: 

              a) Adequate sample size to be able to draw conclusions about impact* 

              b) Very small sample size. 

 

3) Ascertainment of the exposure: 

a) Case definitions applied to records (e.g. electronic medical records, microbiology 

results)** 

b) Nurses, doctors or laboratory tests only to identifying exposure*  

c) Exposure assumed retrospectively purely due to treatment (i.e. antibiotics) or with ICD 

codes 

d) written, self-reported or self-assessed  

e) no description 

 

continues next page 
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Comparability: (Maximum 1 stars) 

 

1) The subjects in different outcome groups are comparable, based on the study design or analysis. 

Confounding factors are controlled. 

                a) The study controls for additional factors (such as age, comorbidities, device use/not an 

exhaustive list of factors)* 

                b) The study does not control for additional factors.  

 

 

Outcome: (Maximum 2 stars) 

1) Assessment of the outcome: 

                a) Clearly reported total duration of hospitalisation* 

                b) Duration of hospitalisation is reported but unclear if it refers to total. 

 

2) HAI treated as a time-dependent exposure: 

                a) The statistical methods used to analyse the data control for bias that can occur if baseline 

immeasurable time-dependent factors that cannot be recorded at baseline and 

change value after patient observation starts are analysed as if they were known and 

available at baseline.* 

                b) The statistical methods do not treat HAI as a time-dependent exposure.  

 

 

 

For case-control studies use items on next page 
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CASE-CONTROL STUDIES 

Adapted from the Newcastle-Ottawa Quality Assessment Scale. Cases refer to HAI patients 

and control patients refer to non-HAI patients.  

Selection: (Maximum 5 stars) 

1) Is the case definition adequate? 

a) Case definitions applied to records (e.g. electronic medical records, microbiology results)** 

b) Nurses, doctors or laboratory tests only to identifying exposure*  

c) Exposure assumed retrospectively purely due to treatment (i.e. antibiotics) or with ICD codes 

d) written, self-reported or self-assessed  

e) no description 

 

2) Representativeness of the cases 

a) consecutive or obviously representative series of cases*   

b) potential for selection biases or not stated 

3) Selection of Controls 

a) controls from same target population chosen prospectively** 

b) controls from diverse population chosen retrospectively*   

c) no description 

 

Comparability (Maximum 1 stars) 

1) Comparability of cases and controls on the basis of the design or analysis 

 a) The study controls for additional factors.* 

 b) The study does not control for additional factors. 

 

 

Outcome (Maximum 2 stars) 

 

1) Assessment of the outcome: 

                a) Clearly reported total duration of hospitalisation* 

                b) Duration of hospitalisation is reported but unclear if it refers to total. 

 

2)   HAI treated as a time-dependent exposure: 

                a) The statistical methods used to analyse the data control for bias that can occur if baseline 

immeasurable time-dependent factors that cannot be recorded at baseline and 

change value after patient observation starts are analysed as if they were known and 

available at baseline.* 

                b) The statistical methods do not treat HAI as a time-dependent exposure. 
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Supplementary Material 4 

Table shows quality assessment breakdown for each study. Quality assessment was performed with the Newcastle-Ottawa Scale (NOS). 

Headings on table are named after items in the cohort/case control versions of NOS where applicable.  Each study could be awarded a 

maximum of 8 stars.  

Authors 

Sample 

representative/Case 

definitions adequate 

Sample 

size/Representativeness 

of cases 

Ascertainment of 

exposure/Selection 

controls 

Study controls for 

additional factors 

Assessment of 

outcome 

HAI treated as a time 

varying exposure 
Total 

Bloodstream Infection 

Riu et al (2016)[46] 2 1 2 0 1 0 6 

Al-Rawajfah et al (2012)[31] 0 1 1 1 1 0 4 

Caballero-Granado et al (2001)[34] 2 1 2 0 1 0 6 

Kothari et al (2009)[40] 2 1 2 1 1 0 7 

Molina et al (2013)[41] 2 1 2 1 1 0 7 

Peng et al (2006)[42] 2 1 2 1 1 0 7 

Primo et al (2012)[44] 2 1 1 0 1 0 5 

Song et al (2003)[48] 2 1 2 0 1 0 6 

Butler et al (2010)[33] 2 1 1 1 1 0 6 

Dasenbrock et al (2016)[35] 2 1 0 1 1 0 5 

Plowman et al (2001)[43] 2 0 2 1 1 0 6 

Rattanaumpawan et al (2017)[45] 2 1 2 1 1 0 7 

Roberts et al (2010)[47] 2 1 2 1 1 0 7 

Al-Rawajfah et al (2013)[30] 2 1 1 1 1 1 7 
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de Kraker et al (2011)[36] 2 1 1 1 1 1 7 

Glied et al (2016)[37] 2 1 2 1 1 1 8 

Grupper et al (2007)[38] 2 0 1 1 1 1 6 

Kaye et al (2014)[39] 2 1 2 1 1 1 8 

Vrijens et al (2010)[51] 2 1 2 1 1 1 8 

Vrijens et al (2012)[50] 2 1 2 1 1 1 8 

Barnett et al (2013)[32] 2 1 1 1 1 1 7 

Stewardson et al (2013)[49] 2 1 2 1 1 1 8 

Stewardson et al (2016)[26] 2 1 1 1 1 1 7 

Gastrointestinal Infection 

Abdelsattar et al (2015)[52] 2 1 1 0 1 0 5 

Skovrlj et al (2014)[65] 2 1 0 0 0 0 3 

Zhang et al (2016)[72] 2 1 1 0 1 0 5 

Bond et al (2017)[53] 2 1 2 1 1 0 7 

Egorova et al (2015)[56] 2 1 0 1 1 0 5 

Flagg et al (2014)[57] 2 1 0 1 1 0 5 

Keshavamurthy et al (2014)[60] 2 1 2 1 1 0 7 

Pakyz et al (2011)[63] 0 1 1 1 1 0 4 

Chen et al (2017)[54] 2 1 1 1 1 0 6 

Eckmann et al (2013)[55] 2 1 2 1 1 0 7 

Lipp et al (2012)[61] 2 1 0 1 1 0 5 

Yasunaga et al (2012)[70] 2 1 0 1 1 0 5 
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Zerey et al (2007)[71] 2 1 0 1 1 0 5 

Jacob et al (2017)[59] 2 1 2 1 1 1 8 

Ryan et al (2017)[64] 2 1 1 1 1 1 7 

Tabak et al (2013)[67] 2 1 2 1 1 1 8 

Vonberg et al (2008)[69] 1 1 2 1 1 1 7 

Vrijens et al (2012)[50] 2 1 2 1 1 1 8 

Foster et al (2012)[58] 2 1 2 1 1 1 8 

Mitchell et al (2014)[62] 2 1 1 0 1 1 6 

Stevens et al (2015)[66] 2 1 2 1 1 1 8 

van Kleef et al (2014)[68] 2 1 2 1 1 1 8 

Surgical Site Infection 

Kuy et al (2014)[88] 2 0 2 0 1 0 5 

Lamarsalle et al (2013)[89] 2 1 0 0 1 0 4 

Anderson et al (2009)[73] 2 1 2 1 1 0 7 

Apisarnthanarak et al (2003)[74] 2 1 2 1 1 0 7 

Atkinson et al (2017)[76] 2 0 2 1 1 0 6 

Coskun et al (2005)[78] 2 0 2 1 1 0 6 

Delgado-Rodriguez et al (1997)[80] 2 1 2 1 1 0 7 

Gaine et al (2000)[82] 1 1 2 1 1 0 6 

Gonzalez-Velez et al (2016)[84] 2 1 2 1 1 0 7 

Jenks et al (2014)[86] 2 1 2 1 1 0 7 

Kusachi et al (2012)[87] 2 1 2 1 1 0 7 
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Merle et al (2000)[91] 2 1 2 1 1 0 7 

Monge Jodra et al (2006)[92] 2 1 2 1 1 0 7 

Olsen et al (2010)[93] 2 1 0 1 1 0 5 

Peng et al (2006)[42] 2 1 2 1 1 0 7 

Pollard et al (2006)[94] 2 0 1 1 1 0 5 

Asensio and Torres (1999)[75] 2 1 2 1 1 0 7 

Boltz et al (2011)[77] 2 1 2 1 1 0 7 

Fukuda et al (2012)[81] 2 1 2 1 1 0 7 

Geubbels et al (2000)[83] 2 1 1 1 1 0 6 

McGarry et al (2004)[90] 2 1 2 1 1 0 7 

Plowman et al (2001)[43] 2 1 2 1 1 0 7 

Roberts et al (2010)[47] 2 1 2 1 1 0 7 

Glied et al (2016)[37] 2 1 2 1 1 1 8 

Vrijens et al (2012)[50] 2 1 2 1 1 1 8 

Herwaldt et al (2006)[85] 2 1 2 1 1 1 8 

De Angelis et al (2011)[79] 2 1 2 1 1 1 8 

Healthcare Associated Infection 

Dulworth and Pyenson (2004)[97] 2 1 0 0 1 0 4 

Grandini and Caramelli (2006)[98] 2 1 2 0 1 0 6 

Kollef et al (1997)[104] 2 0 2 0 1 0 5 

Nosrati et al (2010)[108] 2 1 2 0 1 0 6 

Chacko et al (2017)[96] 2 0 1 0 1 0 4 
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O'Keefe et al (2017)[109] 2 1 1 0 1 0 5 

Delgado-Rodriguez et al (1997)[80] 2 1 2 1 1 0 7 

Khan and Celik (2001)[103] 2 1 1 1 1 0 6 

Resch et al (2009)[110] 2 1 0 1 1 0 5 

Karagozian et al (2010)[102] 2 1 2 1 1 0 7 

Wu et al (2008)[112] 2 1 0 1 1 0 5 

Campbell et al (2015)[95] 2 1 1 1 1 0 6 

Graves et al (2007)[99] 2 1 2 1 1 0 7 

Hassan et al (2010)[100] 2 1 0 1 1 0 5 

Hoogervorst-Schilp et al 

(2015)[101] 
2 1 1 1 1 0 6 

Lee et al (2011)[105] 2 1 0 1 1 0 5 

Lloyd-Smith et al (2013)[106] 1 1 1 1 1 0 5 

Plowman et al (2001)[43] 2 1 1 1 1 0 6 

Roberts et al (2010)[47] 2 1 2 1 1 0 7 

Trybou et al (2013)[111] 2 1 2 1 1 0 7 

Nelson et al (2015)[113]  2 1 2 1 1 1 8 

Vrijens et al (2012)[50] 2 1 2 1 1 1 8 

Herwaldt et al (2006)[85] 2 1 2 1 1 1 8 

Arefian et al (2016)[4] 2 1 2 0 1 1 7 

De Angelis et al (2011)[79] 2 1 2 1 1 1 8 

Macedo-Viñas et al (2013)[107] 2 1 1 1 1 1 7 

Urinary Tract Infection 
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Delgado-Rodriguez et al (1997)[80] 2 1 2 1 1 0 7 

Peng et al (2006)[42] 2 1 2 1 1 0 7 

Dasenbrock et al (2016)[35] 2 1 0 1 1 0 5 

Ingeman et al (2011)[114] 2 1 0 1 1 0 5 

Nosova et al (2013)[115] 2 1 0 1 1 0 5 

Plowman et al (2001)[43] 2 1 2 1 1 0 7 

Rattanaumpawan et al (2017)[45] 2 1 2 1 1 0 7 

Roberts et al (2010)[47] 2 1 2 1 1 0 7 

Glied et al (2016)[37] 2 1 2 1 1 1 8 

Vrijens et al (2012)[50] 2 1 2 1 1 1 8 

Pneumonia 

Zhang and Duan (2015)[118] 2 0 1 0 1 0 4 

Micek et al (2016)[116] 2 1 1 1 1 0 6 

Peng et al (2006)[42] 2 1 2 1 1 0 7 

Restrepo et al (2010)[117] 2 1 1 1 1 0 6 

Dasenbrock et al (2016)[35] 2 1 0 1 1 0 5 

Ingeman et al (2011)[114] 2 1 0 1 1 0 5 

Roberts et al (2010)[47] 2 1 2 1 1 0 7 

Glied et al (2016)[37] 2 1 2 1 1 1 8 

Lower Respiratory Tract Other Infection 

Delgado-Rodriguez et al (1997)[80] 2 1 2 1 1 0 7 

Graves et al (2007)[99] 2 1 2 1 1 0 7 
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Plowman et al (2001)[43] 2 1 2 1 1 0 7 

Vrijens et al (2012)[50] 2 1 2 1 1 1 8 

Bone and Joint Infection 

Padegimas et al (2015)[119] 2 1 0 0 1 0 4 
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Supplementary Material 5 

Details of Statistical Methods in the Systematic Review 

Statistical Method Description  Advantages Disadvantages Studies 

Group Comparison Naive comparison of means 

between an infected and an 

uninfected group. Simple method 

of analysis that takes advantage 

of raw data. The groups may not 

be similar due to differing 

characteristics (e.g. age, 

comorbidities) of patients in the 

HAI group. 

Easy to use and only requires very 

basic data such as the presence of 

HAI or not which is possible from 

routine data and may not require 

data collection. 

 

Leads to biased estimates 

because patients in the infected 

group tend to be sicker and 

ignores time-exposure. Suffers 

from selection and time-

dependent bias.  

[46, 52, 65, 

72, 88, 89, 

96-98, 104, 

108, 109, 

118, 119] 

Matching (Simple)  Matching methods are very 

popular and include one to one or 

to more than one matching and 

matching using propensity scores. 

Usually matching methods 

compare mean LOS between the 

two matched groups and “simple” 

here denotes matching on any 

characteristic other than the time 

a patient has stayed in hospital up 

to the point of infection (time to 

infection).  

Easy to use and there are many 

techniques available to match 

cases to controls. Usual matching 

factors include: Age, sex, 

comorbidities and ward or 

admission type. It is possible to 

use other statistical techniques on 

a matched sample. 

Simple matching when estimating 

the extra LOS due to infection 

gives biased estimates due to 

time-dependent bias. This bias 

occurs because the time before 

infection is used when estimating 

the extra LOS. There is also a 

trade-off between accuracy and 

maximising successful matches. 

[31, 34, 40-

42, 44, 48, 

53, 56, 57, 

60, 63, 73, 

74, 76, 78, 

80, 82, 84, 

86, 87, 91-

94, 102, 103, 

110, 112, 

116, 117] 

Regression  

 

These methods estimate LOS 

attributable to HAI by controlling 

for a range of patient 

characteristics and comorbidities 

using linear regression    

Fairly straightforward methods 

that can be used to estimate the 

impact of HAI on LOS. Ease of 

estimation and interpretation. 

Ease of controlling for 

comorbidities. 

Regression methods do not 

control for the timing of events so 

they suffer from time-dependent 

bias. 

[33, 35, 43, 

45, 47, 54, 

55, 61, 70, 

71, 75, 77, 

81, 83, 90, 

95, 99-101, 

105, 106, 

111, 114, 

115] 

Matching (Time) Methods that primarily match on 

the time to infection for 

controlling time-dependent HAI 

exposure. Controls are required to 

have spent as much time in 

hospital as the case at the time of 

infection. Other matching factors 

include age, sex, comorbidities.   

In addition to usual factors 

matching can include exposure 

time. Matching using incidence 

density sampling, which also 

matches on time to infection, has 

been suggested as the best way to 

mitigate time-dependent bias.  

 

Simply adding time to infection as 

a matching factor will not 

completely eliminate time-

dependent bias. Incidence density 

matching performs better but it is 

a complicated procedure which is 

second best to truly time-varying 

methods such as multistate 

modelling.  

[30, 36-39, 

50, 51, 59, 

64, 67, 69, 

113] 

Survival Analysis Cox survival models treating HAI 

as time-fixed covariate but can be 

adapted to control for time-

dependent bias.   

Survival methods can be adapted 

for time-dependent analysis using 

Cox models producing unbiased 

estimates. Can adjust for 

comorbidities.  

Survival methods require more in 

depth statistical knowledge and 

data manipulation to control for 

time dependence. Proportional 

hazards models use strong 

assumptions that are not always 

realistic.  

[58, 85] 

Multistate Modelling Patient data are modelled 

between a set of states over time 

such as HAI and discharge. A 

survival analysis is then run for 

every transition (a change from 

one state to the other such as 

hospital to HAI or discharged). 

This method treats HAI as a time-

dependent exposure therefore 

properly controlling for the 

occurrence of events over the 

course of time. Competing-risks 

can be analysed at the same time. 

Straightforward to perform basic 

multistate analysis if correct 

information available. 

Multistate modelling can be 

complicated and requires data 

preparation and specialised 

software to be able to control for 

other important covariates such 

as comorbidities. Even then 

controlling for characteristics can 

only be done indirectly.   

[4, 26, 32, 49, 

62, 66, 68, 

79, 107] 
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