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1 INTRODUCTION 

1.1 Fragmentation in nature 

The fragmentation phenomena in nature are described by a power law distribution. The size 
distribution of fragments: 

)(
~)(

n
ddN


  (1)  

where N is the number of particles that have diameters  below the size d. 

The fractal distribution law is independent of the material properties, the energy input and the relevant 
length scales. Value of negative exponent is called as ‘fractal dimension’ and is between 2 to 3  for 3 
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ÖSSZEFOGLALÁS: A kutatás során egy mozsaras törési kísérlet került kialakításra, amellyel a kőze-

tek törési sebessége a szemeloszlási entrópia segítségével minősíthető. A szemeloszlás-változás pályája 

az entrópia diagramban a különböző homokok esetén azonos volt, csak a sebesség tért el.  A törés se-

bességét egy entrópia koordináta, az átlagos logaritmikus szemcseméret adott terhelésre eső változásá-

nak mérőszáma adhatja meg. A kutatás mellék-termékeként az is kimutatható volt, hogy a belső stabili-

tás és a törési/degradációs folyamat kapcsolatban áll egymással. Ha a törés kezdetén megjelenik 

néhány kisebb frakció, a normalizált entrópia pályán felépő szakadás révén a pálya kikerül az entrópia 

diagram instabil részéről. Ezt követően a pálya eléri a normalizált entrópia diagram felső határvonalát, 

majd ezen halad, ahol minden szemeloszlás fraktál. Az entrópia elv alapján magyarázható, hogy a ter-

mészetben található szemeloszlások fraktál dimenziója általában 3-nál kisebb. 
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ABSTRACT: A new method was elaborated to characterize the breakage properties of rocks. A 
crushing test was suggested and parallel tests were performed on sand-pairs with different parent 
rocks, using identical initial gradings. The data were analysed using the grading entropy theory, the 
grading curve variation was represented in the entropy diagram (with a coordinate uniquely related to 
the mean log diameter). The results with various rocks with the same conditions indicated the same en-
tropy path, only the speed was different. Based on this, a new testing method can be suggested. As a 
by-product of the result, it is shown that the breakage path and the internal stability of soils seem to be 
linked. The discontinuity of the normalised entropy path at the appearance of some finer fractions 
drifts out the normalised entropy path from the unstable part of the diagram.  A second consequence is 
the explanation why fractal distribution with fractal dimension n<3 is so frequent in nature. 
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dimensional objects (Kun (2017)). Fractal distributions are naturally occurring in granular materials, 
such as meteorites, gouge material, avalanches, mines and in laboratory tests, like compression tests  
and shear tests (Hartmann (1969), Bridgwater et al (2013), Sammis et al (1987), Airey and Kelly 
(2008), Imre et al (2010)). In space mechanics, fractal dimension ~3 is encountered for small particles 
at the planetary rings, ~6 for large ones with size ~ 0.1-1 km (Brillantov (2015)). The monotonic 
laboratory tests present a range of fractal dimension, between 2.20 and 2.91 (McDowell et al (1996), 
Luzzani and Coop (2002), Palmer and Sanderson (1991), Steacy and Sammis (1991), Roberts and de 
Souza (1958), Hagerty et al (1991), Pál et al (2016), Coop et al (2004)).  

1.2 Aim of the paper  

The aim of the research is to study the breakage and degradation process and, to elaborate a new 
method to characterize the rock material properties in terms of degradation or fragmentation. For this 
aim, a crushing test is combined with the grading entropy theory to describe the path and the rate of 
breakage in terms of grading curve. 
 
In this paper at first the grading entropy theory, the concept of the entropy coordinates, the optimal or 
fractal grading curves, the (discontinuity of the) breakage path and the grading entropy based internal 
stability criterion are presented. Then the result of some breakage tests elaborated in this research are 
presented in the entropy diagram. In addition, the entropy path of a degradation (opet pit mine) case 
study and, some tests entailing breakage, performed all in relation to this research are reanalysed. 
 
It is found, that the path may contain an initial discontinuity, a linear part and, a curved part where all 
distributions are fractal with increasing fractal dimensions until 3. Similar paths and fractal dimensions 
occur in the nature as in the laboratory tests. The breakage path is independent of the rock material, its 
rate is dependent on the material only. The linear part of path being completed by a theoretically 
computed starting point is proved to be onre possible way for breakage rate characterization.  
 

2 GRADING ENTROPY 

2.1 The space of the grading curves  

The grading curve is the distribution of the log diameter of the grains d by dry weight. In the grading 
curve measurement the sieve hole diameters, and as a result, the fraction limits are doubled.  An 
abstract fraction system is defined as follows. The diameter range for fraction j (j =1, 2...j see Table 1, 
Lőrincz (1986)) are defined by using the integer powers of the number 2 (Imre et al., 2009).  

 

,22 0
1-j

0
j ddd   (2)  

 

where d0 is the smallest diameter which may be equal to the height of the SiO4 tetrahedron (2
-22

 mm). 

The 2 base log of the diameter limits are integers, called abstract diameters. The relative frequencies of 

the fractions xi (i = 1, 2, 3...N) for each grading curve fulfil the following equation: 

1,0,1
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where the integer variable N –  the number of the fractions between the finest and coarsest non-zero 

fractions – is used.  The relative frequencies xi can be identified with the barycentre coordinates of the 
points of an N -1 dimensional, closed simplex (which is the N -1 dimensional analogy of the triangle 
or tetrahedron, the 2 and 3 dimensional instances) and, the space of the grading curves with N 
fractions can be identified with the N -1 dimensional, closed simplex. The vertices of the simplex 
represent the fractions, and the 2 dimensional edges are related to the two-mixtures etc. The sub-
simplexes of a simplex are partly continuous, and partly gap-graded. The continuous sub-simplexes 
have a lattice structure, as is indicated in Fig 1. 

 
 

Table 1. Definition of fractions.(A j-dik frakció definíciója és saját entrópiája) 

j 1   ... 23 24 

Limits d0 to 2 d0   ... 2
22

 d0to 2
23

 d0 2
23

 d0 to 2
24

 d0 

S0j [-] 1   ... 23 24 
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2.2 Entropy parameters 

The grading entropy S is a statistical entropy, modified for the unequal cells (fractions are doubled, 

Lőrincz (1986)). It can be separated into the sum of two parts. The grading entropy S: 

SSS  0  (4)  

where S0 is called the base entropy and S the entropy increment. The base entropy: 

ixSxS iii   00  (5)  

where S0i is the grading entropy of the i-th fraction, being identical to the fraction serial number 
(Table 1). The normalized or relative base entropy A: 

minmax
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S S
A




  (6)  

where S0max and S0min are the entropies of the largest and the smallest fractions, respectively. The en-
tropy increment S is:  

.ln
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1

0
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  (7)  

 
which varies between 0 and lnN/ln2, depending on the fraction number N. The normalized entropy in-
crement B: 

N

S
B

ln


  (8)  

2.3 Entropy diagrams, optimal grading curves, and inverse image 

Any grading curve can be represented as a single point in terms of the entropy coordinates. Four 
maps can be defined between the N-1 dimensional, open simplex (fixed N) and the two dimensional 
real Euclidean space of the entropy coordinates, the non-normalized  [S0,S], normalized 
[A,B], partly normalized  [A,S] or [S0, B].  

The images – the entropy diagrams – are compact, like the simplex (Figs 1, 2) .  The inverse image 
of the regular values is similar to an N-3 dimensional sphere, “centered” to the optimal point (Fig 2).  
The inverse image of the maximum normalized entropy increment lines B is the optimal line (Fig 2).  
The value of dmin is indifferent for the normalizd diagram, eg., all fractions map into A =1.  

The optimal grading curve or simplex point with maximal B for a specified A is as follows. The en-
tropy increment B is strictly concave function, with a unique conditional maximum point for each A = 
const value. This single optimal point or unique optimal grading curve is defined as follows: The fol-
lowing - so-called optimal - grading curve or point of the simplex maps at fixed A on the maximum B: 
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(9)  

where parameter a is the root of the following equation :  
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j  (10)  

The single positive root a varies continuously between 0 and ∞ as A varies between 0 and 1, a=1 at 
the symmetry point (A=0.5) and a>1 on the A>0.5 side of the diagram [19].  The equation of finite frac-
tal distribution (Einav 2007): 
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where d is particle diameter, n is fractal dimension. Taking into account that in the grading entropy 

theory the fraction limits are defined by using the integer powers of the number 2, it can be derived 

that the relative frequencies of the fractions xi (i = 1, 2, 3...N)  are as follows:  
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It follows that the optimal grading curves have finite fractal distribution, the fractal dimension n 

varies between 3 and -  on the A>0.5 side as a varies between 1 and  , n varies between 3 and -  

on the A<0.5 side of the maximum normalized entropy increment line, as a varies between 1 and 0. 

The n depends on N except at the symmetry point of the diagram (A = 0.5, B = 1/ln2, n = 3, a =1). The 

global maximum of the grading entropy S is related to such an optimal point where n = 2, a = 2 (Table 

2, Fig 3). The optimal grading curve is concave if A<0.5, linear if A = 0.5, convex if A > 0.5  (Fig 4).  

2.4 Stability criterion and stable fractal dimensions 

Some domains and points of the entropy diagrams were successfully related to internal or grain 
structure stability on the basis of vertical water flow tests Lőrincz (1986).  On the basis of the 
suffosion test results, the three basic types of soil structures were related to three domains of the 
normalized entropy diagram (Fig 5). In Zone I (A < 2/3) no structure of the large grains is present, the 
coarse particles “float” in the matrix of the fines and become destabilized when the fines are removed 
by piping.  The physical content of criterion is that parameter A expresses the proportion of the large 
grains, which form structure if they are present in large enough quantity.In the zone II, the coarse 
particles start to form a stable skeleton and total erosion cannot occur. In Zone III, the structure of 
larger particles is inherently stable. The division curve between II and III connects the maximum en-
tropy points with fraction number less than N  (Figs 3,  5). 

 
Altough the fractal dimension n may vary from minus to plus infinity as the relative base entropy A 
(normalized mean log scale diameter) varies between 0 and 1, in the function of N, only a few of them 
are stable. The fractal distribution is unstable in terms of grading entropy criterion if A is less than 
A=0.66. The related n depends on N, it is 2,62 for N=7, it is 2,25 for N=3, it is 2.96 for N=30. The 
fractal distribution is stable if  n< 2 (indepently of N, A). The transitional stability zone is situated 
between the fractal dimension of to A=0.66 varying in the function of N, and fractal dimension n =2.  

 

2.5 Discontinuity of the path  

Let us assume that the grading curve “continuously” varies due to breakage. If N varies, the non-

normalized entropy path of the grading curve in terms of [S0,S] is continuous. However, the normal-

ized entropy path of the grading curve in terms of [A,B] is not continuous. Some formulae can be de-

rived for the discontinuity. If some i zero fractions are added from the smaller side (Fig 6). 
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The A change for i=1,2… additional smaller zero fractions,  respectively : 
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Table 2. The A coordinates for the fixed fractal dimension n = 2 (a=2, maximum S point), in the 

function of N 

N [-] 2 3 4 5 6 7 

A [-] 0,667 0,714 0,756 0,790 0,819 0,843 
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Figure 1 Simplex with N=7 (a) Lattice of continuous sub-simplexes (integers: fractions). (b)  The 

image of the  the optimal lines of continuous sub-simplexes in the non-normalised entropy diagram.   

(Az N=7 szimplex (a) a folytonos, határoló rész-szimplexeinek struktúrája, (b) optimális vonalak 
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képe a nem- normalizált entrópia diagramban.) 

  

    
(a) 

 

(b) 

Figure 2. Simplex for N=4, the inverse image in the simplex for (a) three inner entropy diagram 

points (green A=0.66 B=1.2, red: A=0.5 B=1.2, blue: A=0.3 B=1.2). (b) the maximum B line, called 

optimal line (in red). (N=4, 3-dimenziós szimplex. Az entrópia leképezés inverz képe a 3 dimen-

ziós szimplexen. (b) Optimális vonal (b) Inverz kép (fentről lefele első: A=0.7 B=1.2,második: 

A=0.5 B=1.2, harmadik: A=0.3 B=1.2)).  
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Figure 3. The image of the optimal points with the global maximum of S from N=2 to N=40 in (a) 

normalised diagram, (b) partly normalised diagram. 
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(b) 
Figure 4. The optimal grading curves (a) N=7, A varies. (b) N varies, A=2/3. (Optimális szemeloszlá-

sok, (a) N=7, A változik, (b) N változik, A=2/3.) 
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Figure 5. Internal stability criterion of Lőrincz 

(1986) in the partly normalized diagram. (Lőrincz 

(1986) belső stabilitási kritériuma a félig 

Figure 6.  Discontinuity of the normalized entropy 

path, in case of i new, smaller i (initially N =2 optimal 

soil). (Számított szakadás a normalizált pályán, ha i db 

zérus nagyságú frakciót adunk a keverékhez a kisebb ol-
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normalizált diagramon). dalról, N =2, kezdetben optimális eloszlás esetén.) 

 

3 EXPERIMENTS 

3.1 Crushing tests at the BME with topology change  

The following testing procedure was developed. Each sample was subjected to a series of crushing 
treatments using a specially reinforced crushing device made at the Geotechnical Department with the 
following dimensions: diameter: 50 mm; height: 70 mm; wall thickness: 3 mm. Each treatment in-
volved the application of a compressive load of 25,000 N to the sample contained in the crushing pot, 
using a loading machine at the Department of Construction Materials and Engineering Geology, BME. 
After the compression of the sample, it was removed frotn the crushing pot for grading curve meas-
urement then was returned back  and the treatment was repeated  (Fig. 7, Lőrincz  et al. 2005, 2017).  
 
The results with a one-fraction soil is shown in Fig. 8. The results with initially 2-fraction silica and 
carbonate sands from the same initial grading and testing conditions are shown in Figs 9 to 10. These 
indicated the same entropy paths, only the rate of crushing was different. The non-normalised entropy 
path was monotonic (So decreased, ΔS increased).  The normalized path showed a jump when the 
number of the fractions was changing, at the start of the test. The discontinuity at the beginning of the 
test drifted the path into the stable region of the diagram. After the jump, a linear part of the entropy 
path occurred within the diagram (A decreased, B increased) until the maximum entropy increment li-
ne was reached. After reaching the maximum entropy increment line, the path followed it. The 
computed jump is in solid line in Figure 10 and the subsequent straigth line path in dashed line. 
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Figure 7.  Reinforced crushing pot designed by 

Lőrincz, used for crushing tests. (A Lőrincz által 

tervezett mini-mozsár) 

Figure 8.  Normalised entropy path of a one-

fraction soil. n: serial number of the crushing. 1: 

maximum B point. 2: maximum S point. 3: ap-

proximate minimum B line. (Normalizált entrópia 

pálya frakció esetén. n: törés-szám, 1,2: maxi-

mum B és S pont. 3: közelítő minimum B vonal.) 
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Figure 9.  Non-normalized entropy path for initially N =2 soils, crushing test with topology change 
and with 30 crushing treatments. (a) carbonate soils, change in S0  ~ 0,6;  change inS  ~ 0,7. (b) Sili-
ca  soils  change in S0 ~ 1,5; change inS  ~1,8. (A nem-normalizált entrópia pályák. (a) mészkő ho-
mok (b) szilícium homok.) 
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(a)     (b) 

Figure 10. The normalised entropy paths of soils in Fig. 9. (a) Open circles indicate silica sand, full 

circles carbonate sand.  (b) The computed jump in solid line and the subsequent straith part in dashed 

line. (A normalizált entrópia pályák a 9. ábra talajaira. (a) Kör: szilícium homok, kitöltött kör: mészkő 

homok. (b) A számított szakadás (folytonos vonal) és az ezt követő egyenes szakasz (szaggatott)). 

3.1 Crushing tests at University of Roma Tor Vergata  with topology change 

The mechanical behaviour of granular materials with crushable grains under one-dimensional com-

pression at medium to high stress has been tested by Casini et al (2013), the maximum load of tests 

reported by the authors is 2 MPa. The material used for the experimental work is a Light Expanded 

Clay Aggregate (LECA) whose grains break at relatively low stress (Casini et al 2013). Reconstituted 

samples were prepared with different initial grain size distributions and their evolution observed under 

one-dimensional compression (Casini et al 2017). In the frame of an ongoing reseach collaboration, 

some tests with large (50 MPa) load were made as follows. The oedometer cylinder (d=25mm, 

h=42.5mm) was filled through dry pluviation. Performing of the compression test till 50MPa with a 

displacement rate of 1mm/min, sieving was made and the post test material was treated again. The 

grain size distributions were reevaluated by fitting Weibull distribution (Guida et al 2016) assuming 

N=17, the results shown in Figure 11 are again similar to Figure 10. 

 

4 DISCUSSION 

4.1 Reanalysis of some laboratory tests with no topology change  

Twenty five direct shear tests were conducted on dry granular rock fill material with particle sizes 

ranging from 19mm to 4.75mm. Two rock types were tested, a weak rock (Siltstone) and a strong rock 

(Andesite). The particle distribution of each test sample was determined prior and after testing. Two 

tests were carried out at each confining stress; a compression only test and a compression and shear 

test (Fityus and Imre
,
 2017, 2017a). The grain size distributions data are reevaluated on Figure 12 

showing similar pattern as in the case of Figure 10. 

4.1 Reanalysis of degradation path measured in open pit mine  

The extraction of coal using open pit techniques disturbs vast areas of the land. The samples 

represented here came from sedimentary rock waste dumps of an open pit coal mine in the Hunter 

Valley of Australia, which the owners had been rehabilitating progressively. The soil particles are 

influenced by natural degradation  due to eg., meteorological effects and fragmentation due to 

mechanical effects. 

 

The samples were obtained by digging, taking care to avoid excessive particle breakage. Separate 

samples were taken from both the upper 150mm (the “topsoil”), and from the soil between 150 and 

300mm deep (the “subsoil”).  In the laboratory, the collected samples were oven dried and gently 
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sieved down to 150 microns using standard procedures. The material passing 150 microns was then 

analysed using a Malvern laser diffraction particle sizer, down to a fine particle size of 0.5 microns.  

 

The relative base entropy A decreased, the entropy increment ΔS monotonically increased during 

degradation. The largest fraction disappeared at the topsoil due to the meteorological degradation 

effects. The sample point pairs (N=17) in the entropy diagram were situated close to the maximum 

normalised entropy increment line, having near-finite fractal distribution with fractal dimensions 

between 2.5 and 2.8 (computed using the “a” parameter of the closest optimal mixtures with the same 

A values), according to expectation since the starting, undisturbed soil has fractal distribution (Fig. 13) 

4.1 The entropy path of crushing and degradation 

The entropy path during crushing tests (or natural degradation or fragmentation) is monotonic for the 
non-normalised coordinates, the base entropy So decreases, the entropy increment ΔS strictly 
monotonically increases.  These reflect the decrease in mean diameter and the increase in the true 
entropy of thermodynamics (entropy principle).  
 
The normalized path showed an initial jump when the number of the fractions was changing, at the 

start of the laboratory test (Figs 10 to 12), verifying the jump formulae (Eqs (17, 18)). After the jump, 

it was monotonic (A decreased, B increased), differing by a constant from the non-normalised coordi-

nates. More precisely, a linear part may have occured within the diagram until the maximum entropy 

increment line was reached then it was followed.  

 

On the normalized entropy increment B line all distributions are fractal. The final point of the normal-

ised path is possibly the global maximum of the normalised line. This diagram point is the symmetry 

point of upper bounding line of the normalized entropy diagram with fractal dimension 3, inde-

pendently of the number of fractions N. For large N the n is close to  3 over a wide range of A. 

 
In the laboratory crushing tests, the minimum grain size is limited by a crushing limit being around 
some microns Kendall (1978)). The largest fraction is not vanishing due to the ‘cushioning effect’ 
(Miao and Airey (2013)). Therefore, it can be assumed that after the start of the test, the number of the 
fractions is constant (N= Nmax), and the final point of the non-normalised path is possibly the global 
maximum of the non-normalised line related to N= Nmax.   

4.1 A possible crushing rate definition  

Since the path during crushing tests is monotonic in terms for the non-normalised coordinates, the base 
entropy So decrease or its normalised version during a given, fixed mechanical impact can be used for 
rock characterization with a nice physical meaning, reflecting the decrease in the mean diameter 
(defined properly by the grading entropy theory first, some results are shown in Fig 9, Table 3).  
 
If the rate of the breakage is measured along the normalised entropy path, then a reference point and a 
size of the crushing treatment are necessary to be selected on the monotonic part of the path. The one 
fraction soils show monotonic normalized entropy path along the maximum B line (from A=1, Lőrincz 
et al, 2005, Fig 8). For an initially multi-fraction soil, there is a jump which be computed on the basis 
the suggested formulae, some computational results are shown in the Appendix and Table 3.  
 

Table 3. Breakage rate characterization with the normalised and non-normalised mean diameter 

measure increments for an initially A=0.2, N= 2 soil, (see Figs. 9, 10, App.) (A törési sebességet 

jellemző, átlagos szemcseátmérő mérőszám-változás azonos energiánál, 9-10. ábra és Melléklet) 

parent rock type in A [-], between 0-10 increment, monotonic part in S0 [-], between 0-30 increment 

silica 0,05 0,6 

carbonate  0,18 1,5 

 

Table 4. Geometrical probability that an arbitrary grading with N fractions is stable. (A belső 

stabilitáshoz tartozó geometriai valószínűség különböző frakciószám esetén) 

N [-] 2 3 4 5 10 20 30 

P(A>2 /3) 3,33E-01 2,22E-01 1,67E-01 1,30E-01 4,16E-02 5,54E-03 8,24E-04 
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(a)     (b) 

Figure 11.  A soft rock multicompression test with topology change (Guida et al 2016; Casini et al 

2017). (a) The normalised entropy path. (b) The computed jump in solid line and the subsequent 

straith part in dashed line. (A normalizált entrópia pálya egy puha kozet eseten. (a) Az eredmények. (b) 

A számított szakadás (folytonos vonal) és az ezt követő egyenes szakasz (szaggatott)). 
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(a)     (b) 

Figure 12.  The compression-shear test data on andezite and soft rock.(a) The normalised entropy 

path. (b) The computed jump in solid line and the subsequent straith part in dashed line. 

(Kompressziós-nyírási kísérletek, andeziten és puha kőzeten. (a) A normalizált entrópia pálya. (b) A 

számított szakadás (folytonos vonal) és az ezt követő egyenes szakaszl (szaggatott)). 
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(a) (b) 

Figure 13. Degradation of waste rock in open pit mine rehabilitation, sample pairs of topsoil (open 

symbol, more degraded) and subsoil (full symbol, less degraded) in the (a) partly-normalized diagram 

and (b) in normalized diagram. (Egy külszíni bánya meddő anyagának degradációja. A taka-
ró és az alatta lévő alapréteg minta párok a (a) részben normalizált diagramon és 
a (b) normalizált diagramon, a takaró réteg (üres kör) jobban degradálódott, mint 
az altalaj (teli kör). 

4.1 Some comments on the degradation path and internal stability  

As a result of breakage or degradation, the base entropy So decreases, the entropy increment ΔS 
strictly monotonically increases. These express a decrease in the mean diameter (defined properly by 
the grading entropy theory first) and the entropy principle of thermodynamics. In the most general 
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case, the normalized entropy path may consist of 3 parts, the initial jump, a linear part which reaches 
the maximum entropy increment line then the path goes on the maximum entropy increment line up-
wards where all distributions are fractal. The final point of the path is possibly the global maximum of 
the normalized entropy increment B line. 

The overall soil stability is described by the criterion that A > 2/3. In soils which meet this criterion, 
the matrix of coarser soil particles is stable and able to form a resistant skeleton, even though suffusion 
may occur. Concerning this rule, it is important to note that the size of the grading curve space where 
the condition is met is decreasing with the fraction number (e.g. for N=2, the 1/3 of the grading curves 
are acceptable, for N=3, the 2/9 of the grading curves are acceptable, for N=10, the 4/100 of the grad-
ing curves are acceptable, for N=30, the 8/10000 of the grading curves are acceptable, Table 9).  

 
Concerning the maximum entropy increment line, the fractal dimension n varies between 3 and -  

on the A>0.5 side, n varies between 3 and -  on the A<0.5 side of the maximum normalized entropy 
increment line. These depend on N except at the symmetry point of the diagram (A = 0.5, B = 1/ln2). At 
the symmetry point n = 3, independently of N.   The distribution is unstable in terms of grading 
entropy criterion if A <0.66. The related n depends on N, it is 2,62 for N=7, it is 2,25 for N=3, it is 2.96 
for N=30. The fractal distribution is stable if  n< 2 (indepently of N, A). Both the natural and the 
breakage data available – with fractal dimensions of around 2.2 to 2.96 – are generally related to the 
transitional stability zone on condition that the N is larger than about 5. This fact can be explained by 
the initial jump since without it the probability of an internally stable soils is practically zero for large 
N values. The jump is directly related to 1 – A, being the larger if the inital A less. When some new, 
smaller fractions appear, the jump drifts the path to the A>0.5 side, more stable part of the diagram 
where n<3. 

 
The breakage path and the internal stability of natural soils seem to be deeply linked. The 
discontinuity at the appearance of some finer fractions may drift the normalised entropy increment 
path into the stable part of the diagram. In nature, stable fractal distributions occur due to the large de-
gree of fragmentation and degradation, however, without this process, the probability that an arbitrary 
grading with N>10 fractions is stable is practically zero.   

5 CONCLUSION  

5.1 Some comments on the entropy parameters  

 The grading entropy parameters are some kind of integrals of the whole grading curve. These sta-

tistically are well-defined parameters and have some physical contents, as follows. The base entropy 

S0 is a weighed mean of the fraction serial number which depends linearly on the mean log2 diameter 

d. The relative base entropy parameter A has a potential to be a grain structure stability measure possi-

bly based on the simple physical fact that it expresses the ration of the larger grains and, if enough 

large grains are present in a mixture then these will form a skeleton. The entropy increment ΔS 

measures how much the soil behavior is really influenced by all of its N fractions. For those grading 

curves, in which all N fraction s are well represented, the entropy increment is close to lnN/ln2.  

5.1 Laboratory test for crushing rate characterization 

Since starting from the same normalized initial grading, the entropy path seems to be independent of 

the type of rock, a new laboratory rock qualification test can be elaborated. The results with silica and 

carbonate sands, the results with siltstone and andesite from the same initial grading and testing condi-

tions indicated the same normalized entropy path, only the rate of breakage was different. The first 

results concerning the characterization of rate of crushing are as follows.  
 

 The precise grading curve data are essential in computing the entropy path. If the fines are not 

measured, then the fitting of a proper eg., Weibull distribution (see eg.,Guida at al (2016)) on 

the measured data is suggested. The number of fraction can be defined on the basis of the 

theoretical crushing limit.  
 

 Starting from the same initial grading, the rate of the breakage can be defined in terms of the 
non-normalised or the normalised entropy path or both under the same mechanical energy in-
put (see Table 3). The base entropy So reflects the decrease in the mean diameter. The 
normalized entropy path may consist of 3 parts, the initial jump, a linear part and a part along 
the maximum entropy increment line. A reference point is needed on the start of the monoton-
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ic, continuous part of the path. Further research is suggested on the breakage rate definition 
and, on the comparison with standard rock tests. 
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APPENDIX - RATE OF BREAKAGE FOR INITIALLY 2-FRACTION SOILS 

Some numerical examples are presented for the initially 2-fraction soils shown 10, the jump point is considered 

as a reference point with zero treatment. The initial A value of the initially 2-fraction soils was 0.1, 0.2 and, the 

linear part of the path was used for the computation of the increments in entropy coordinates A and B for 10 

crushing treatments. 

The normalised entropy path, the jump was computed using Eqs (17) and (18), the related data in Tables A to C 

are denoted as 0 treatment.  For this, it was assumed that the number of the fractions was increasing at the start 

of the test then it was constant. The increment in terms of A for silica or carbonate sand was around 0.05 or 0.19 

between the point 0 and the point related to 10 treatments, resp. The increment in terms of B for silica or 

carbonate sand was around 0.36 or 0.9 between 0 and 10 treatments, resp. (The secant slope B/A between 0 and 

10 treatments for silica sand was around -7,  for carbonate sand was -4).  

 

Table A. Normalised entropy path of silica and carbonate sands with identical initial (A =0,2 N=2) and jump co-

ordinates (Normalizált entrópia pálya azonos kezdeti (A =0,2 N=2)  és szakadási pont esetén).  

rock type Relative base entropy A [-] at crushing no of Normalized entropy increment B [-] at crushing no of 

 initial 0 (jump) 10 20 30 start 0 (jump) 10 20 30 

silica 0,2 0,8 0,746 0,69 0,65 1,04 0,44 0,805 1,02 1,14 

carbonate 0,2 0,8 0,62 0,57 0,54 1,04 0,44 1,29 1,32 1,38 

silica 0,1 0,77 0,73 0,68 0,67 0,68 0,27 0,639 0,88 0,919 

carbonate 0,1 0,77 0,58 0,54 0,51 0,68 0,27 1,251 1,31 1,325 

Table B.  The 0-10 increment in terms of A and B related on the monotonic part  of path to Table A. (Az első 10 

törés alapján számított törési sebesség A -ban és B-ben kifejezve az A. táblázat adatai alapján). 

A =0,2 A [-] Increment in A  [-] at crushing treatments of B [-] Increment in B [-]  at crushing treatment of 

rock type initial 0 - initial 0-10 10-20 20-30 start 0 -start 0-10 10-20 20-30 

silica 

0,2 0,6 0,05 0,06 0,04 1,04 -0,59 

-

0,36 -0,22 -0,12 

carbonate 

0,2 0,6 0,18 0,05 0,03 1,04 -0,59 

-

0,84 -0,03 -0,06 

silica 

0,1 0,675 0,05 0,05 0,01 0,68 -0,40 

-

0,36 -0,25 -0,03 

carbonate 

0,1 0,675 0,2 0,04 0,03 0,68 -0,40 

-

0,98 -0,06 -0,01 

Table C. Secant slopes on the monotonic part  of path for Table B. (A szelő hajlása az B. táblázat adatai 

alapján). 

A =0,2 A Increment in B /Increment in A at crushing treatment of 

rock type initial 0-10 10-20 20-30 

silica 0,2 -6,60 -3,91 -3,00 

carbonate 0,2    -4,67 -0,60 -2,00 

silica 0,1 -8,08 -5,00 -3,00 

carbonate 0,1    -5,00 -1,60 -0,33 

 


