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Abstract— Industrial Control Systems are part of our daily 

life in industries such as transportation, water, gas, oil, 

smart cities, and telecommunications. Technological 

development over time have improved their components 

including operating system platforms, hardware capabilities, 

and connectivity with networks inside and outside the 

organization. Consequently, the Industrial Control Systems 

components are exposed to sophisticated threats with weak 

security mechanism in place. This paper proposes a 

supervised energy monitoring-based machine learning 

approach for anomaly detection in a clean water supply 

system. A testbed of such a system is implemented using the 

Festo MPA Control Process Rig. The machine-learning 

algorithms, which include SVN, KNN, and Random Forest, 

perform classification tasks process in three different 

datasets obtained from the testbed. The algorithms are 

compared in terms of accuracy and F-measure. The results 

show that Random Forest achieves 5% better performance 

over KNN and SVM with small datasets and 4% regarding 

large datasets. For the time taken to build the model, KNN 

presents the best performance. However, its difference with 

Random Forest is smaller than with SVM.  
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I. INTRODUCTION 

Industrial control systems (ICS) are widely used in critical 
and large industries like power plants, gas, water, oil, 
transportation, chemical, and pharmaceutical. ICS began to 
emerge decades ago and were not designed with security in 
mind, as they were not expected to be connected to office 
networks or the internet [2]. Currently, a considerable amount 
of ICS components can be found connected to the Internet, 
leading to the exposure of ICS to skilled hackers that might 
take advantage of their online availability with the intention to 
execute attacks with harmful consequences [12]. Fig 1 shows a 
possible integration between a corporate and industrial 
network. This includes three segments of: production network, 

SCADA, and corporate network where production network and 
SCADA are both part of ICS.  

Attacks to ICS are not new. In 1982, an unverified report 

of a Trojan program inserted in a SCADA system software 

caused a natural gas explosion along the Trans-Siberian 

pipeline [11]. An attack on the Maroochy Shire sewage 

control system in Queensland- Australia in 2000 caused 

millions of litres of raw sewage to spill out into the City. The 

Stuxnet worm, which have been developed in 2005 but 

discovered in 2010, targeted the Iranian’s nuclear facilities. 

Stuxnet is a sophisticated attack that exploited four zero-day 

Windows vulnerabilities to get into computers and the 

network. More recently, on December 2015, around 230,000 

people from a small region of Ukraine suffered a power 

outage for few hours. This is caused by a variant of the 

malware which infected the power facilities and made some of 

the ICS’s components unbootable [9]. These are just a few 

examples to understand the criticality of these systems for 

people and environment and to show that ICS face challenges 

with threats able to cause considerable impact. 

  

The term ICS describes the integration of hardware and 

software in industrial environments [7]. Depending on the 

type of industry, each ICS is built to support different needs in 

an efficient manner. The components of an industrial process 

control the process by means of operating actuators, reading 

sensors, and Process Variables (PV) e.g. temperature, 

pressure, and flow [6]. One of the main components of this 

type of industrial network is the Programmable Logic 

Controller (PLC) which is an industrial solid-state computer 

generally composed of inputs, outputs, memory, CPU, 

communication modules, and a power supply [9]. The PLC 

was introduced in the late 60’s and was designed to replace 

relay logic systems, however currently PLCs can also provide 

different capabilities such as web server, network integration 

and more. It monitors different types of automated process and 

makes logic-based decisions depending on the information 

provided by the components connected to it [5]. There are 

several types of ICS. Supervisory Control and Data  



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Industrial Control System and Corporate Network. 

Acquisition (SCADA) systems are mostly used for gathering 

data of the control process remotely. This data is presented 

through a Human Machine Interface (HMI). This type of 

architecture usually applies to large geographic areas such as 

power grid, water plants that might be located thousands of 

kilometers away [3]. Another type of ICS is Distributed 

Control Systems (DCS). These systems are process oriented 

and monitors local processes. DCS can be similar to SCADA 

systems regarding architecture and technology, however, DCS 

monitors complex industrial processes in a small area, for 

instance, an industrial plant with different time constraints [4] 

[10].  

This paper focuses on SCADA systems and presents a 

supervised energy monitoring-based machine learning 

approach for anomaly detection in a clean water supply 

system. In order to develop this concept, we implement a 

SCADA testbed using the Festo MPA Process Control Rig. 

The testbed emulates a clean water supply system and allows 

monitoring of the energy consumption of two of its 

components, the pump and the pneumatic valve using the 

INA219 current sensor [28]. A raspberry pi collects and writes 

the values from the current sensors in an ARFF file format, 

which, is the file format used by WEKA version 3.8.2 [32]. 

This paper presents the results of three machine learning 

algorithms that perform classification tasks on the dataset 

collected. The next section presents the related research in the 

field. 

II. RELATED WORK 

In this section, existing work related to intrusion detection 
schemes for SCADA systems are discussed in the two main 
categories of supervised and unsupervised machine learning 
techniques with a particular focus on water treatment systems. 
The electronic literature search was conducted on Google 
Scholar using query phrases such as: “scada”, “intrusion 
detection system”, “anomaly-based detection”, “water”, 
“supervised machine learning” and “unsupervised machine 
learning” with 2010 to 2018 publication year filter applied.  

A. Supervised Machinel Learning Papers 

 In [16], the authors proposed Support Vector Machine 
(SVM)-based technique to detect cyber-attacks on Industrial 

Control Systems (ICS) based on communication profile. They 
employed SVM with different optimization of the hyper-
parameters to classify malicious and benign traffic on their 
own testbed. Their testbed contains two water tanks equipped 
with control devices and controlled automatically. Their 
datasets constructed from the period of four-stage penetration 
tests during which malicious and benign packets are labelled 
based on their source IP addresses. They used Metasploit 
Framework (Rapid7) for penetration tests and Wireshark to 
capture packets. Addressing their captured results, they 
achieved around 95% classification accuracy and 0.048% error 
rate which is the average of ten rounds with cross validation. 
However, their selected features are limited to two: packet 
intervals and packet length. Also, the type of their penetration 
tests (i.e. black box testing, white box testing or grey box 
testing) are not clear. This means it is unclear either they ran 
the penetration tests having the full knowledge of the system, 
without knowing the ins and outs of the system or having a 
partial knowledge of the system.  

In [17], the authors proposed a one-class Network 
Introduction Detection System (NIDS) for SCADA using 
Software Defined Network (SDN). They employed One-Class 
Classification (OCC) based on SVM: One-Class Support 
vector Machine (OCSVM) and Support Vector Data 
Description (SVDD) to detect abnormal traffic behaviour on 
Smart Grids. They simulated an SDN-based SCADA system 
using a large-scale topology, with one main control centre, four 
intermediate control centres, eight distribution substations, and 
hundreds of field devices. They then used OpenFlow protocol 
to periodically extract statistics from the SCADA network. 
Their NIDS detects abnormal traffic behaviour from a training 
set containing only the signature of traffic generated under 
normal network operation. In addition to OpenFlow’s native 
features they enabled the use of other extracted features 
including packet inter-arrival time, packets per second and 
mean packet length. They also used Principal Component 
Analysis (PCA) and Genetic Algorithm (GA) to determine the 
optimal set of features for traffic classification. Addressing 
their captured results, they achieved more than 99% accuracy 
rate for OCSVM and less than 98% accuracy rate for SVDD. 
However, their attack scenario is limited to one simulated DoS 
attack. Additionally, given that they only considered the 
signature of normal traffic, it is not clear how they distinguish 
between an attack and a system misconfiguration.    

In [18], the authors proposed a behaviour-based attack 

detection and classification scheme for a Secured Water 

Treatment (SWaT) system using machine learning algorithms. 

They used a SWaT testbed which is an operational scaled 

down water treatment plant producing five gallons of doubly 

filtered water per minute including six-stage filtering 

processes replicating those found in cities. Each process 

dependent on the previous one and having one dedicated 

separate PLC. They used nine supervised machine learning 

(ML) algorithms: Neural Networks (NNs), SVM, Logistic 

Regression (LR), Random Forest (RF), J48, Best-First Tree 

(BFTree), Bayesian Network (BayesNet), Naive Bayes (NB) 

and Instance-based Learning [16](IBK) with various 

parameter values to find the best parameters for each 

classifier. They employed 18 attacks from 10 different types to 



build the model for their nine machine learning algorithms. 

Addressing their results, BFTree showed the best results in 

terms of precision and accuracy. However, their selected 

features e.g. sensor reading and actuator commands have not 

been clearly identified nor discussed. Additionally, their 

model may not be able to detect zero day attacks or the attacks 

that have not been considered in their selected categories.   

In [21], the authors employed behaviour observation and 

big data analysis techniques for cyber threat detection in a 

simulated pressurised water nuclear reactor. In their 

simulation, each component has a corresponding observer to 

extract physical behavioural information that helps towards 

constructing the dataset for their experiments. They used two 

datasets to run their experiments. The first dataset includes 

smaller events with a reduced number of features while the 

second dataset includes larger events with a greater number of 

features. They have gathered features such as: overall water 

volumes, steam output, energy creation, water tank levels and 

speed of water flow. They then used supervised learning 

algorithms such as Uncorrelated Normal Density based 

Classifier (UDC), Quadratic Discriminant Classifier (QDC), 

Linear Discriminant Classifier (LDC), Decision Tree 

(TREEC), and Parzen Classifier (PARZENC) to detect 

attacks. Addressing their presented results, in the initial 

evaluation, the classifiers were able to produce 68.34% 

accuracy which is increased to 96.65% in the second 

evaluation where they increased the number of the events and 

number of the features captured for each event. However, 

while there are advantages in using simulation environments, 

they come with a set of disadvantages. For example, they are 

flexible, but they are not standardized. Additionally, building 

a simulation does not require data, but validation does. 

B. Un-Supervised Machinel Learning Papers 

Using a similar SWaT testbed, the authors in [19] 
employed unsupervised machine learning algorithms for 
anomaly detection in water treatment systems. For their 
implementations, they used logs from SWaT that contain both 
benign and malicious events including network traffic, sensor 
data and actuator data collected over eleven days of continuous 
operations. The benign logs, which are the events generated by 
SWaT under normal condition, have been used to train the 
model. The malicious logs, which include 36 different attack 
scenarios, have been used to evaluate the performance of their 
proposed unsupervised anomaly detection model. In their 
paper, they compared two unsupervised machine learning 
algorithms: a Deep Neural Network (DNN) with feed forward 
layers of multiple inputs and outputs and a one-class SVM. 
Additionally, they tuned some hyper parameters in both 
algorithms before training. Addressing their results, DNN 
performs slightly better than one-class SVM in general. 
However, some of the performance metrics they captured are 
poor and need to be improved e.g. recall for both DNN and 
SVM models. 

Using a similar SWaT testbed, the authors in [20] 
employed unsupervised Recurrent Neural Networks (RNN) for 
anomaly detection in water treatment systems. Their dataset 

contains readings from sensors and actuators on the SWaT 
testbed during eleven days including seven days of normal 
continuous operation and four days of attack scenarios. The 
malicious scenarios include thirty six attacks some of which 
are consecutively within a ten minutes gap of each other, while 
some others are performed by leaving time for the system to 
stabilise. Their dataset has been normalised by removing the 
mean and scaling to unit variance during the data pre-
processing stage and before feeding the data to unsupervised 
RNN. They then used Cumulative Sum method to identify 
anomalies in the SWaT testbed. Addressing their results, they 
were able to detect the majority of their designed attacks with 
low false positive rates. However, their model is restricted to 
identifying attacks on a single process (Process 1) and not the 
entire system.   

In [22], the authors proposed an unsupervised clustering 
approach for Intrusion Detection Systems (IDS) in 
ICS/SCADA applications. They used datasets from a simulated 
power distribution system containing 15 sets with 37 power 
system events. Each event is either: a natural event, a no event, 
or an attack event.  The attacks scenarios include: remote 
tripping command injection, relay setting change, and data 
injection. They applied PCA for the feature reduction, 
standardizing to improve clustering results, unity based 
normalization, and quantization to reduce the large variance in 
the dataset. After using PCA approach and to improve the 
computational efficiency, they employed only five features out 
of 128 to classify data in the dataset. They compared their 
proposed IDS, where clustering is combined with the Fuzzy 
Inference System (FIS), with K-MEANS and Fuzzy C-means 
(FCM) algorithms. Addressing their results, their proposed IDS 
shows the benefits of adding FIS claiming that adding such 
intelligent techniques can provide a mechanism that can be 
used to get more info out of the clustering algorithm results. 
However, as mentioned before, using simulated experiments 
comes with a set of disadvantages. 

In [1], the authors proposed an unsupervised anomaly-
based detection approach for integrity attacks on a water 
distribution system. Their proposal is based on k-nearest 
neighbour technique and includes two stages of: automatic 
identification and automatic extraction. They used a real 
dataset and two simulated datasets. Each simulated dataset 
consists of twenty-three nodes and 10,500 observations while 
the real dataset includes 38 data nodes and 527 observations. 
Addressing the results, their proposed unsupervised approach 
show better detection accuracy and efficiency results compared 
to three anomaly detection approaches, two of which are based 
on unsupervised learning, while the third is based on semi-
supervised learning. However, given that their proposed 
approach is based on k-nearest neighbour technique, their 
scheme is rather computationally expensive particularly when 
it computes an inconsistency score for each observation.  

 
In this paper, despite the fact both [21] and [22] employed 

simulation environments, we developed a SCADA testbed 
using The Festo MPA Process Control Ring which is an 
operational scaled down clean water supply system. 
Additionally, unlike [18], our selected features are 
comprehensively explained and discussed. Furthermore, unlike 



[16], we have measured more features in our testbeds to 
achieve a better classification accuracy. Based on our best 
knowledge we could not find any research papers proposing a 
supervised machine learning approach based on energy 
consumption metrics on a Festo MPA Process Control Rig. 
Our implemented testbed allows energy consumption 
monitoring for anomaly detection using two components on a 
Festo MPA Process Control Rig by employing the INA219 
sensor.  

III. DESIGN AND IMPLEMENTATION 

 For testing purposes an uninterrupted clean water supply is 
physically modelled using the Festo MPA Process Control rig 
[23], Fig 2. It has four control loop integrated which can 
operate individually. For the testbed we use components such 
as: pump, pneumatic valve, ultrasonic level sensor and flow 
meter. The aim is to maintain the required tank water level set 
point using one control loop in the tank B102. An 
uninterrupted clean water supply is an essential utility in which 
the main water is usually gravity fed to a surrounding area 
from a water tank located at a height to sustain a suitable 
delivery pressure.  

 In this exercise, we consider such a tank to be supplied 
from a downhole pump providing naturally filtered water from 
a water table located underground. The water is pumped via a 
variable speed drive so that the required tank water level can be 
maintained while the demand from the tank varies throughout 
the day. The water level of the tank is measured as Process 
Variable (PV) for closed-loop control of the delivery pump to 
maintain the required tank water level Set Point (SP). 
Minimising pump switching in this way reduces the pressure 
surges in the supply line and optimises tank storage capacity in 
event of high demand periods. A pneumatic valve, V102, 
simulates the demand from the tank. When the water is in 
demand, the downhole pump starts transferring water to the 
main tank until it reaches the set point. 

A. Testbed Components 

Fig 3 shows the diagram of the testbed built for this paper 

and Fig 4 shows the real implementation. It consists of the 

following components:  

 Festo MPA Process Control Rig [23].  

 Human Machine Interface (HMI). 

 Switch. 

 PLC Simatic S7-1500. 

 Two INA219 current sensors. 

 One Raspberry PI3. 

 One desktop computer with TIA Portal V14. 

 One laptop with Linux operating system. 

 

B. INA219 Sensor 

The INA219 sensor is a breakout board that measures 

voltage and current. It can measure up to 26v and ±3.2A. It is 

powered with 3v to 5V, and it has I2C pins.  

 

Fig. 2. Festo MPA Process Control Rig. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Testebed implementation. 

In this paper, we collected the power consumption of two 

devices: the pump and the pneumatic valve by means of the 

INA219 sensor. This sensor was used as a similar one was 

successfully applied in a previous industrial control research 

[14] [13]. Measuring the current of the pump and the 

pneumatic valve requires breaking its circuits and connecting 

the INA219 sensor as part of the electric circuit. The pump has 

an independent motor controller. Therefore, the INA219 

sensor is wired to it in order to obtain the energy use of the 

pump. The pneumatic valve is connected to a digital output of 

the PLC. In order to monitor the operation from the pneumatic 

valve, the INA219 is wired to this output of the PLC. It is 

because unlike the pump the valve does not have an 

independent controller. 

C. Raspberry PI. 

The raspberry pi is a single-board computer that runs the 

Linux-based operating system [31]. It can run multiple tasks, 

unlike Arduino board. The raspberry pi3 collects the 

information obtained by the INA219 sensors through the 
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Fig. 4. Physical Testbed. 

I2C bus. Each INA219 sensor is allocated its own I2C address 

to identify the sensor. The address jumpers of the INA219 

sensor is set by a drop of soldering between them [28]. 

D. Normal and attack scenarios 

This testbed simulates an uninterrupted clean water supply. 
In a normal operation, the tank B102 represents a reservoir of 
water to be maintained at a specified level. The tank B101 
contains the water supply simulating the natural water table 
and feeds tank B102 through the variable speed pump P101. 
The valve V110 is slightly open representing a constant 
demand for water. During peak times, the pneumatic valve 
V102 represents a high demand for water. The pneumatic valve 
V102 opens for two minutes every three minutes. For the 
attack scenario, we assume that the attacker has access to the 
industrial network and is able to communicate with the PLC 
and execute attacks in the network such as man in the middle, 
with the aim to tamper with the information displayed in the 
HMI. Thus, the attacker will send commands to the PLC and 
modify its operation. Meanwhile, the operator will not be able 
to notice these modifications because the HMI shows the 
information modified by the attacker.  

The aim of the attacker is to disrupt the water supply in a 

small town by reducing the amount of water in the reservoir 

tank. To achieve this goal the attacker modifies the PLC 

memory that holds the value of the tank water level set point. 

The attack is performed against the PLC over the network. In 

this scenario, the attacker modifies the space of memory of the 

PLC that contains the set point of the reservoir tank.  

E. Dataset 

The dataset contains the information collected by the 
sensors INA219 wired in the Festo MPA Process Control Rig. 
Each sensor provides four features: 

 Voltage. The voltage at the pump and the valve. 

 Current. The current flowing in the pump and the 
valve solenoid. 

 Energy Consumption. The amount of energy or power 
used by the pump and the valve. 

 Voltage in shunt resistor. It calculates the current by 
measuring the voltage dropped across the known 
shunt resistor. 

 We have considered three different datasets. Table 1 shows 
the characteristics of the datasets in each case. For the first 
case, only one sensor is wired to the testbed. The sensor 
monitors the energy consumption from the pump. It should be 
noted that the attacker only modifies the reservoir tank set 
point, which is related to the energy consumption in the pump. 
The remaining datasets provide information about both 
INA219 sensors.  

F. Data preprocessing 

Machine learning algorithms learn from data. Data 
preprocessing is an important step although it is less known 
than other steps such as data mining [26]. Usually, the raw data 
comes with imperfections like missing values, inconsistencies, 
and noise. The removal of these imperfections could be one of 
the most difficult issues for machine-learning. The 
performance of the machine learning algorithms depends on 
the quality of the pre-processed data [24]. The data pre-
processing step can be summarized in the following steps: 

1) Selecting the data: Sometimes all the collected data is 

not useful. Additionally, selecting the right features usually 

has an impact on the results expected by the machine learning 

algorithm [25]. The current sensor INA219 provides four 

features. We removed the voltage feauture from the pump 

because the value is constant either under attack or normal 

operation. At the end, we add class feature in each dataset 

which identifies each instance either as malicious or benign. It 

is considered malicious if the timeframe that the reservoir tank 

setpoint is modified.  

 

 

TABLE I.  DATASETS SUMMARY. 

Case 

Dataset Characteristics 

Instances Attributes 
INA219 

sensors 

Training 

Data 

Testing 

Data 

Case I 3547 4 1 2341 1206 

Case II 6907 8 2 4558 2349 

Case III 13252 8 2 8746 4506 



2) Preprocessing the data: The raspberry pi collects and 

writes the values from the current sensors in an ARFF file 

format, which, is the file format used by WEKA. Another 

point to consider at this stage is that our data does not have 

any missing values that might affect the performance of the 

algorithm.  

 

3) Transforming the data: Processing raw data through 

machine learning algorithms usually is not a good practice. 

Each machine learning algorithm has its own requirements 

regarding preprocessing data. For instance, the KNN 

algorithm shows a better performance when the input data is 

normalized [26]. We applied normalization and 

standardization techniques to the three datasets obtained in our 

testbed. In addition, the datasets captured from the testbed 

show unbalanced classes, as a consequence, it might bring 

inaccurate results when the model is trained.  

G. Supervised Approach 

 In this paper, we applied three supervised machine learning 
algorithms performing classification tasks for the dataset 
obtained from the Festo MPA Process Control Rig. The 
algorithms are KNN, SVM and Random Forest. 

 KNN. The KNN (K-Nearest Neighbour) algorithm 
stores entire dataset in memory, consequently, there is 
no learning involved. The training data has to be 
consistent and pre-processed properly. KNN classifies 
a case by a majority vote of its neighbours. One case 
is assigned to the class most common among its K-
nearest neighbours measured by a distance function. 
In addition, KNN performs better when the dataset is 
normalized [26]. The majority of the features obtained 
in the control process implemented in this research are 
continuous; consequently applying the normalization 
techniques might speed up the classification process. 

 SVM. The SVM algorithm (Support Vector Machine) 
has shown efficiency classifying text features. SVM 
seeks for a hyperplane in a multidimensional space 
and separates different cases with a given margin. 
SVM uses different kernels for classifying the data 
[24]. In this case, we run SVM in the datasets with 
different parameters with the aim of finding the 
highest accuracy. 

 Random Forest. This is considered one of the most 
versatile algorithms as it is capable of performing 
either regression or classification. Random Forest 
grows multiple trees and classifies new cases 
depending on attributes. One of the benefits of this 
algorithm is the capability of handling large amounts 
of data [27]. We expect to gather variations in energy 
consumption of the endpoints in the control system 
implemented. To do so, we monitor the energy 
consumption of the endpoints on-line. 

 We chose the algorithms above because they have been 
applied in similar researches as it can be seen in section II. 
Each algorithm has different parameters that can be tuned in 
order to improve its performance [30]. We tuned each 

algorithm with the optimal parameters based on the highest 
accuracy and F-measure. We avoid overfitting by using a 
resample technique (K-fold cross validation) in order to 
estimate the model accuracy. The next section provides the 
classified results under optimal parameters with the intention 
of comparing them fairly. The next section presents the results 
of the three algorithms run on our three. 

IV. RESULTS 

We use WEKA machine learning and data mining 
software because it is widely used and it provides an extensive 
number of algorithms for testing purposes. The algorithms 
chosen for this test were KNN, SVM and Random. Fig 5 
shows the energy consumption from the pump and the valve 
under normal and attack conditions. The parallel red lines in 
Fig 5 show the execution of an attack. When the control system 
is operating under normal conditions the pattern of energy is 
stable, however, when the set point from the reservoir tank is 
modified by the attacker the energy consumption in the pump 
changes as it can be seen in Fig 5. The attacker does not 
manipulate the pneumatic valve in this scenario. It should be 
considered that this attack will affect the distribution of water 
in a real scenario because the operator does not notice the 
change in the reservoir tank set point in the monitoring system.  

Fig 6 to 8 show the results of the three algorithms 
performing classification tasks on our three pre-processed 
datasets. The test for the algorithm KNN was performed using 
the following distances: Euclidean, Manhattan, Minkowski and 
K distances from zero to ten. The chosen distance parameter 
did not affect the results of precision, accuracy and recall; 
instead, it increased and decreased the time to build the model. 
When the k-neighbour parameter changes the results also 
change although it does not vary much. The SVM algorithm 
shows different results depending on the kernel selected. We 
tested SVM algorithm with the following kernels: Polynomial, 
normalized polynomial, Pearson VII and radial basis function. 
Fig 6 shows the result of Pearson VII kernel function (PUK) 
and Fig 7 shows that Random Forest algorithm presents a 
better result compared with the other two algorithms. For this 
algorithm, the parameter depth was modified ten times 
however the default depth presents the best result. 

 
Fig. 5. Energy consumption in the valve and the pump 



 

 

 

 

 

 

 

 

 

Fig. 6. SVM Performance. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. KNN Performance. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Random Forest performance. 

Table II presents a summary of the time taken to build the 

model for each case (case I to case III). It can be seen that 

SVM takes much longer time than the rest of the algorithms. 

This is because the number of kernel evaluations that perform 

this algorithm increases with the amount of data in the dataset. 

For instance, the difference between the first and the third case 

regarding the number of kernel evaluations is about one 

thousand million, which results in 131.93 seconds of 

difference between them.  KNN is one of the most simplistic 

algorithms and the fastest compared with SVM and Random 

forest. It only computes the distance with the K-nearest 

neighbor and does not show considerable variation among the 

datasets.  

Accuracy provides an intuitive performance measure and it 

is the number of correct predictions over the total 

observations, however, accuracy alone is not the only metric 

to consider during the performance evaluation [24].  

TABLE II.  SUMMARY OF TIME. 

Algorithm 
Time taken to build the model 

Case I Case II Case III 

SVM 5.57s 31.15s 137.43s 

KNN 0s 0s 0.1s 

Random Forest 0.73s 0.1s 3.63s 

TABLE III.  DATASETS F-MEASURE. 

Algorithm 

F-Measure 

Case I Case II 

Case 

III 

SVM 69% 85% 87% 

KNN 71% 85% 87% 

Random Forest 76% 86% 91% 

 

The F-measure is the weighted average of precision and 

recall. F-measure is more useful than accuracy, although, it 

happens in unbalanced class distributions only [29]. The 

results show that Random Forest achieves 75% of accuracy 

with the smallest dataset and 91% when the data and attributes 

increased. In general, the three algorithms increase the 

accuracy along with the data, which can be compared with 

how the humans learn. This means better knowledge with 

more data. We use statistically significance, in order to choose 

the best algorithm for each dataset. The null hypothesis for 

this paper states that the three algorithms perform the same. 

The level of statistical significance is 0.03. It can be said that 

the statistical significance depends on the criticality of the 

data. Thereby, we choose 0.03 because the testbed represents a 

clean water supply system. Bearing that in mind, in case I, 

Random Forest outperforms with 5% to KNN and 3% to 

SVM. In case II, the three algorithms perform the same but in 

Case III, Random Forest presents the best performance again 

with 4% over KNN and SVM. 

Table III shows the results of the F-measure for each of the 

cases. It can be seen that the results are similar to the accuracy 

presented in Fig 6 to Fig 8. This is the result of having 

balanced datasets.  

V. CONCLUSIONS AND FUTURE WORK 

 This paper describes a new approach based on the power 
monitoring of the endpoints from a control system in order to 
detect anomalies.  The information is obtained by wiring two 
sensors INA219 in the control system. Afterwards, the reading 
from the sensors is collected with a raspberry pi3. The 
information obtained from the sensors is tagged as benign or 
malicious then classified using three different machine learning 
algorithms. Each algorithm was tuned with different 
parameters. The Random Forest algorithm provides the best 
results during the classification phase. The data is obtained 
from a real testbed designed and implemented at Edinburgh 
Napier University. The attacks were conducted to the control 
system implemented in Festo MPA Process Control rig. This 
system emulates a clean water supply. It can be seen that an 
attack on the reservoir tank set point results in a water outage 
for the user. In addition, it can be seen that applying supervised 
machine learning to the energy consumption of the pump and 

 

 

 



pneumatic valve of a downscaled clean water supply system 
permits to detect anomalous behaviour. 

 For future work, we plan to extend our work by improving 
our testbed in order to simulate the demand of customers in a 
more realistic manner. We have also planned to conduct 
different type of attacks and use machine learning for two 
attack classifications.   
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