
Towards reducing complexity of multi-agent
simulations by applying model-driven techniques

Benjamin Hoffmann1, Kevin Chalmers2, Neil Urquhart2, Thomas Farrenkopf1

and Michael Guckert1

1 KITE - Kompetenzzentrum für Informationstechnologie,
Technische Hochschule Mittelhessen, Germany

{benjamin.hoffmann, thomas.farrenkopf, michael.guckert}@mnd.thm.de
2 School of Computing, Edinburgh Napier University, Scotland

{k.chalmers, n.urquhart}@napier.ac.uk

Abstract. Creating multi-agent simulations is a challenging task of-
ten requiring programming skills at the professional software developer
level. Model driven methods of software development are an appropri-
ate tool for reducing the complexity of the development process of such
simulations. The modeller is relieved from implementing time consuming
programming details and can concentrate on the application itself. We
present the domain specific language Athos with which network based
traffic simulations can be created declaratively. The models are platform
independent and executable code can be generated for two popular multi-
agent platforms. We use a simple yet illustrative example to show how
Athos can be applied.

Keywords: domain-specific language, model-driven development, traf-
fic simulation

1 Introduction and Motivation

Agent-based simulations are an effective technique to model and analyse systems
in which the overall behaviour is determined by the behaviour of its constituent
autonomous entities [28].Generally, Agent-Based Modelling (ABM) is a chal-
lenging task [25, 31, 5]. In comparison to more traditional modelling approaches
like system dynamics, ABM has an increased level of cognitive complexity. Ven-
drov et al. argue that one reason for the higher complexity can be found in
the programming languages used in current ABM frameworks [31]. These lan-
guages provide a low-level abstraction which makes it hard to create, understand
and validate agent-based models. This is especially true for domain experts who
are not professional programmers. Additionally, the complexity of ABM has
increased due to grown computing power allowing larger models with more com-
plex interactions [25]. At the same time, the domains analysed by ABM have
become more complex themselves and thus require more powerful models [1].
Development of agent-based simulations requires insight into two distinct bod-
ies of knowledge [3]: the knowledge and experience of experts in the respective
domain; and skills in software development.

It seems obvious that domain experts should work closely with software en-
gineers to achieve high-quality agent-based simulations. In practice, the cooper-
ation often leads to new problems like inconsistent terminologies [22] or different
expectations regarding competences [29]. Therefore, scientific software is often
designed and implemented by the same scientists who will eventually use it for
their work. These scientists usually lack fundamental software engineering ex-
pertise [18]. North and Macal consider the development of interfaces that allow
domain experts with little programming knowledge to create agent-based models
as one key challenge in the field of ABM [23].

Having successfully implemented an agent-based model, verification and vali-
dation pose the next challenges [6]. While verification ensures that a model imple-
mentation is congruent with its conceptual specification, validation guarantees
that the implementation accurately represents reality [33, 17]. If implementation
languages require an increased effort to understand a model implementation,
they also make verification and validation more difficult. In addition, current
approaches impede replication as they are often directly interwoven with their
target platform [28].

The use of Domain-Specific Languages (DSLs) constitutes a promising ap-
proach towards the solution of the aforementioned problems (c.f., e.g. [23, 21]).
By production of intermediate models that bridge the gap between the re-
searcher’s abstract non-formal models and the final model implementation, DSLs
present well-sized building blocks to create models from which simulations can
automatically be generated. As the complexity of implementation details is hid-
den from language users, models become more comprehensible and focused. In-
creased abstraction also facilitates reproducibility of models and thus ensures
high-quality simulation results in the scientific community.

In this paper, we present a DSL called Athos which supports researchers in
the development of agent-based simulations. Athos allows declarative specifica-
tions for traffic simulation scenarios and thus relieves modellers from complex
programming tasks. Major benefits of this approach are a clearer separation
of concerns in the overall simulation model and enhanced support for domain
experts in the set-up of agent-based simulations.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on DSLs and agent-based simulations and discusses how these research
fields have been brought together in related projects. Section 3 explains how
Athos raises the abstraction level for agent-based models and thus alleviates the
aforementioned problems. Section 4 presents a case study that applies Athos to
a simple yet illustrative problem. Section 5 concludes this paper and shows some
directions for future work.

2 Background and Related Work

A Domain Specific Language (DSL) is a programming language that is tailored
towards a specific problem domain. Advantages of DSLs include decreased devel-
opment time and reduced requirements of software development skills, allowing

a domain expert to develop software for the given domain. When constructing
models, a DSL allows a stronger focus on the model and domain issues rather
than on lower-level programming issues ([10] and [7]). Exploring complex prob-
lems through computer based simulation and modelling has been widely recog-
nised as a useful means of increasing our understanding of real-world problems.
A number of software frameworks for simulation and the associated analysis ex-
ist. These range from generalist frameworks such as SimStudio [30] to domain
specific simulations such as MatSim [16] designed specifically for the transporta-
tion domain. A recent overview of the development and use of domain-specific
modelling is given by Çetinkaya [4]. According to [16], such software models
may be utilised via software packages aiming directly at the domain user. This
often leads to models constrained to the functionality offered by the packages’
user interface. If a model is incorporated within a DSL, the user may use the
DSL to configure the model offering a far wider range of possibilities.

Multi-Agent Systems (MAS) are regarded as a useful means to construct
simulations. Most simulations revolve around the interactions of a set of entities
such as: people or vehicles [11]; stock market shares [24]); or consumers within
a marketplace [9]. In such scenarios, the entities in the system being modelled
can be represented by specific software agents. Ge and Polhill [11] use a MAS
to investigate the actions of commuters and how their decisions are influenced
by changes in the road network (specifically, the addition of new road links). In
this case groups of commuters are represented by a software agent that takes
decisions from the perspective of that individual.

Most software-based simulations are carried out for the benefit of specialists
in other fields. This leads to a paradox. The non-computing specialist is unable
to construct simulations using a framework such as the Java Agent Develop-
ment Environment (JADE) [2] and instead uses an existing simulation package
(e.g. MatSim [16]). Package-based simulation is restricted by the functionality
provided by the package which may or may not be sufficient for the task being
considered. If no package exists that can support the desired simulation, then
a platform such as JADE or NetLogo [32] must be used by someone with the
appropriate specialised skills. A DSL is a programming language that is tailored
towards a specific domain (including Software Engineering [7] or MAS [12]).
It requires less skill than a traditional programming language. This gives two
distinct advantages: the language can be learned by a domain expert; and the
process of model development is simplified.

Within transportation, a DSL has the potential to isolate the modeller from
issues such as handling details of maps, coordinate systems or routing. This
frees the modeller to concentrate on issues such as defining decision making and
making explicit the problem constraints. This has two useful outcomes. Firstly,
the development process may be accelerated. Secondly, the development may be
undertaken by a domain specialist rather than a software engineer.

A contribution in that direction is made by Hassan et al. [14] who define a
process to develop models for a given domain in the field of social sciences. The
authors base their approach on the INGENIAS methodology [26] that comprises

a meta-metamodel from which further metamodels can be derived. INGENIAS
provides the necessary tools to develop a working graphic editor for the defined
(meta-)models together with the necessary transformations to the intended tar-
get platform. The presented approach is designed so that it can potentially be
applied to any agent-based modelling and simulation approach within the con-
fines of social sciences. On the one hand, this makes the presented approach
highly flexible and applicable for a wide range of problems. On the other hand,
, it requires users to develop a suitable metamodel for their problem as well as
suitable transformations and cannot be applied in an out-of-box style.

GAMA [13] is another contribution that aims to facilitate the creation and
simulation of complex agent-based models through employment of a platform-
internal DSL. Models are described in GAML, a DSL that allows to define mul-
tiple layers within a simulation (e.g. one layer for the inside of buildings and
another for the outside world buildings are located in), handling of geographi-
cal data, and definition of agents’ attributes and behaviour. Though GAML is
an agent-oriented DSL, it also allows to describe parts of a model by means of
ordinary differential equations. In contrast to our approach, GAML is domain-
specific in that it is agent-oriented, but it does not aim at a specific application
domain. This makes it difficult to describe models in a pure or mostly declarative
way but requires users to define agents’ behaviour through actions and reflexes
in a more procedural manner.

3 Athos – A DSL for Traffic Simulations

Conceptual
Model

Athos
Model

Athos
Meta-Model

re
p
re
se
n
te
d
b
y d

eriv
ed

fro
m

built from

Athos Generator

NetLogo
Model

Repast
Model

CIM

PIM

PSMverifies

Fig. 1. Athos’ Modelling Approach.

Athos is a DSL that seeks to support the development of MAS simulations.
The language focuses on traffic scenarios that involve vehicles (agents) with indi-
vidual behaviour (e.g. finding shortest routes). Thus, an Athos program involves
a multitude of individual-level optimisation problems that each affect the state

of the global system. Athos allows scenario definition in a declarative manner.
This relieves users from complex programming tasks and enables them to focus
on what to simulate instead of how to simulate it (c.f. [31, 3]).

Figure 1 illustrates the main components of the language and its flow of
information. The creation of a traffic simulation with Athos is based upon the
development of a conceptual model which features aspects from the domain of
traffic optimisation. These models allow to describe information on aspects that
are relevant in this context, e.g. the capacity of certain roads in an area of
interest or how certain types of vehicles congest certain roads. However, these
models do not contain any information on computational details. Thus, from a
computational view, they are created on the most abstract level and considered
as Computationally Independent Models (CIM) [19].

The language elements of Athos were derived from the CIM level in order
to make them available to models which also consider aspects that are relevant
for computer simulations. While these models are more specific than their CIM
ancestors, they still do not allow any assumptions with regard to the imple-
mentation platform. Models on this level are said to be Platform Independent
Models (PIM) [19, 28]. Every program written in Athos constitutes such a PIM.
Since the meta-model elements from which Athos programs are built are directly
derived from the domain of traffic optimisation problems, each Athos PIM con-
cisely represents the underlying CIM of the traffic domain.

The Athos generator finally processes models from the PIM level and trans-
forms them into models for a specific simulation platform known as Platform
Specific Models (PSM). In order to transform a PIM into a PSM, the generator
has to add platform-specific details to the information drawn from the PIM. This
is done by means of code templates which are created for every supported target
platform. Currently, Athos features templates for two agent-based simulation
platforms. The first is the NetLogo3 platform, whose models follow a procedu-
ral paradigm. The other platform is the Repast Simphony4 platform for which
models are constructed in an object-oriented way. As is pointed out by Sansores
and Pavón, the creation of models for different target platforms supports valida-
tion and verification efforts as both simulation implementations should present
equivalent results [28].

The main tool used in the development of the language is the Xtext5 language
workbench (version 2.12). Next to the definition of the abstract and concrete
syntax of the language, the workbench was also used to define transformations
that constitute the language’s dynamic semantics.

Athos is developed in an iterative and incremental manner. Although Athos is
ultimately intended to support the development of various different optimisation-
related traffic scenarios, it focuses on one part of the problem domain at a time.
The language’s first major development iteration focused on scenarios in which
agents seek to get from a given starting point in a road network to a predefined

3 https://ccl.northwestern.edu/netlogo/
4 https://repast.github.io/download.html
5 https://www.eclipse.org/Xtext/

destination. For this, they seek to find the route that requires the least amount
of time. Since in the underlying network the amount of time it takes to travel a
given road is dependent on the current traffic situation, each agent is confronted
with a dynamic optimisation problem.

Traffic-related problems necessitate the definition of some kind of network.
Athos allows specification of road networks that consist of nodes and edges in
a straightforward manner. In order to populate the network with agents, nodes
can be defined as sources from which new agents originate. Users can specify
time-based patterns in which agents are created. It is also possible to model
distribution functions. These functions control how source nodes spawn agents
with different properties into the system.

Agents differ in two major properties. Firstly, agents can be assigned different
routing modes that determine how they move inside the network. Most of the
time, modellers will assign an a priori destination to agents. However, in order
to generate background noise or to simulate public transport routes, it is also
possible to define agents that circle or shuttle along a pre-defined sequence of
nodes in the network. Secondly, agents can be assigned a congestion factor. The
congestion factor is a value that determines to what extend the respective agent
will congest, i.e. slow down, traffic on the road it travels on. This way, agents
can represent different types of vehicles. An agent with a high congestion factor
could represent a bus or a tractor whereas an agent with a low congestion factor
could represent a fast car or a motorcycle.

As was already stated, agents that head towards a pre-defined destination
try to get there in the least possible amount of time. Vehicle agents calculate
the fastest path from their current location to their intended destination node
by means of Dijkstra’s algorithm [8]. They do so every time they enter a node
of the network. Whenever agents recalculate the fastest path, they consider the
current traffic situation in the network. For this, roads must be assigned a nu-
merical value that represents the amount of time cars need to travel them. To
this end, Athos allows the definition of cost functions as ordinary mathemati-
cal expressions. Within these expressions, various properties like the length of
the road or the accumulated congestion factor of all vehicles can be used. The
value of the accumulated congestion factor for a given road depends on both the
number and the types of agents that are on this road at a given point in time.

The described language features allow for the definition of traffic-dependent
travel durations. The higher the accumulated congestion factors of all vehicles
on a given road, the longer it takes these vehicles to get to the next road. This,
in turn, increases the time window in which other vehicles can further increase
the accumulated congestion factor on this road. This way, the language allows
for the definition of scenarios where increased numbers of agents congest certain
roads so that traffic may ultimately grind to a halt. By default, all simulation
scenarios track the total amount of time cars have spent in the system.

Figure 2 shows an excerpt of the language’s meta-model. Any program writ-
ten in Athos is a Model. A program features several types of Functions. Some of
these are used to influence the way an agent travels a given edge. Such functions

1..* 1

1..*1..*
from

1

to

1

1

function

11..*

1

Model

Function

name:EString
expression:Expression

Network

EdgeFunction

DurationFunction

Node

name:EString
x:int
y:int

Edge

name:EString

FunctionalEdge

length:int
cfactor:int
path:int Source

frequency:int
every:int
until:int

SproutFct

AgentProb

pobability:int

ReferringAPContainingAP

AgentType

Fig. 2. Simplified Excerpt of Athos’ Meta-model

are called EdgeFunctions. This is because they are always associated with an
arbitrary number of Edges. Agents that travel an edge have to follow the rules
implied by the function associated with this edge. As will be shown shortly,
there is also another type of function that is used by (or associated with) agents.
EdgeFunctions are further specialised to DurationFunctions. They feature an
expression that determines the amount of time it takes to cross a certain edge.
Later versions will feature additional specialisations of the EdgeFunction class,
e.g. speed-dependent functions whose expressions determine the speed by which
agents drive on a given edge.

Each program must also feature a Network which consists of Nodes and
Edges. Nodes and edges must be identifiable by a unique name. Additionally,
nodes need coordinates to locate them in the plane. Edges need both a node
from which they emerge and a node to which they lead. Nodes can assume the
role of a Source that sprouts agents into the network. Source nodes are always
associated with a sprout function (SproutFct). A sprout function contains a
(non-empty) set of agent probabilities (AgentProb). Both specialisations, i.e.
ContainingAP and ReferringAP, have a reference to an AgentType and an in-
teger that represents the probability with which the referred type of agent is
created. While a ContainingAP allows to define an anonymous agent type inside
a sprout function, ReferringAP objects refer to a named agent type defined in
an Athos program.

Figure 3 illustrates how Athos allows for the definition of agent types to-
gether with type specific attributes and optimisation functions. An AgentType

can either be named or anonymous depending on whether its name attribute was
set. Each AgentType can be assigned an arbitrary number of attributes defined
in the model (e.g. fuelConsumption). The connection between the type and the
attribute is established by means of an AttributeAssignment which also assigns
a value for the attribute. For this reason, all agents of the same type have the

types* attributes*

assignments

*

attribute

1

route1..* destination1

Model

AgentType

name:String
congestionFactor:int
routingMode:int

AgentAttribute

name:String

AttributeAssignment

value:Double

Function

AgentFunction

Node

{xor}

Fig. 3. Athos’ AgentType-related meta-model elements.

same value for a given attribute. As was already mentioned, different AgentTypes
can be assigned different congestionFactors and routingModes. The attributes
of an agent can be used inside an AgentFunction. An AgentFunction can be as-
signed to an AgentType so that all agents of this type will calculate their routes
in a way that minimises the associated function.

4 Example

This case study demonstrates how Athos can be applied to a simple yet illus-
trative problem. We first consider a network of roads with a single source and a
single target of traffic. Agents (i.e. cars) are created in the source node and use
a shortest route to the target while travel time depends on congestion effects on
the roads represented by the edges of the network.

Given such a traffic aware network with vehicles travelling from defined
sources to individually defined targets, analysing the overall behaviour of this
system soon becomes a complex task. While static instances (i.e. networks with
static travel times not affected by congestion) of the problem can be solved
with analytical methods, agent based simulations are an appropriate tool for
dynamic versions of this problem. However, even simple networks quickly lead
to complex programs in popular, rather easy to use agent based programming
environments. In our case study we consider a network of eight nodes and nine
edges. This network corresponds to Samuelson’s example [27] in which the Braess
paradox and the effect of modified cost functions determining the choice of the
routes is examined.

1 model Model1 world xmax 60 xmin 0 ymax 60 ymin 0
2 functions // functions used in the model
3 durationFunction traveltime length + cfactor * accCongestionFactor
4 network
5 nodes // nodes of the network
6 node a (2.0, 15.0)
7 node b (10.0, 15.0)
8 node c (20.0, 15.0)
9 node d0 (30.0, 15.0)

10 node t1 (8.0,25.0)
11 node t2 (15.0, 25.0)
12 node d1 (15.0, 5.0)
13 node d2 (23.0, 5.0)
14 edges // roads that connect the nodes
15 edge ab from a to b length 2.0 cfactor 0.02 function traveltime
16 edge cd from c to d0 length 2.0 cfactor 0.02 function traveltime
17 edge at1 from a to t1 length 10.0 cfactor 0.002 path "ac" function traveltime
18 edge t1t2 from t1 to t2 length 10.0 cfactor 0.002 path "ac" function traveltime

19 edge t2c from t2 to c length 5.0 cfactor 0.002 path "ac" function traveltime
20 edge bd1 from b to d1 length 10.0 cfactor 0.002 path "bd" function traveltime
21 edge d1d2 from d1 to d2 length 10.0 cfactor 0.002 path "bd" function traveltime
22 edge d2d from d2 to d0 length 5.0 cfactor 0.002 path "bd" function traveltime
23 edge bc from b to c length 1.0 cfactor 0.03 baseSpeed 1.0 function traveltime
24 sources
25 a sprouts (congestionFactor 100.0 destination d0) frequency 25.0 every 1 until 3

Individual travel time is calculated by means of the duration function trav-
eltime defined in line 3. This function accumulates the product of cfactor and
congestionFactor over all individuals using the edge at the very moment and
adds it to the length of the edge. Note that congestionFactor is an attribute of
the travelling agent that determines how strong this individual agent will add
to congestion while cfactor is an attribute of the edge and defines the (linear)
congestion effect on this edge.

This PIM can either be generated to be run as a NetLogo or a Repast Sim-
phony simulation in their respective environment. While the first offers the easy
to use NetLogo system, the latter is created to be run in the scalable Java-based
Repast Symphony system. Note that this model is also computation indepen-
dent as we have argued in the previous chapters: we just define the problem
without details of how the solution is to be computed leaving that as a task of
the language and the architecture.

Comparing the model above with directly implemented simulations in both of
the target platforms shows that the model is highly self-documenting. The code
generated for either of the two platforms is difficult to understand even though
the underlying templates follow best practice approaches for the platforms. Prob-
ably one of the most basic measures for software complexity is simply counting
the number of statements or just lines of code. While the Athos model consists
of 25 lines, the generated NetLogo source contains 572 lines and the Repast
Symphony program 1531 lines in 8 classes. Note that according to the principles
of model driven software development, the generated code is well structured and
follows best practice guidelines and does not contain unnecessary statements.

We will discuss some exemplary language features of Athos by extending the
model from above. For example, different types of agents with individual be-
haviour in how they determine their preferred route from source to destination
can be defined. This can be done very intuitively by just defining an additional
type of agent ecoDriver to the default type and an alternative function ecoDriver-
Function to compute travel costs relevant to this type of agent. ecoDriver agents
possess the attribute fuelConsumption available to the newly defined function.

1 ...
2 agentAttributes fuelConsumption
3 agentTypes
4 agentType ecoDriver congestionFactor 50.0 attr fuelConsumption = 10.0 destination d_ optimises ecoDriverFunction
5 functions // functions used in the model
6 durationFunction traveltime length + cfactor * accCongestionFactor
7 agentFunction ecoDriverFunction length * fuelConsumption
8 ...

Furthermore, we can define two sources of traffic (a and b) both being the
origin of agents heading towards the same destination d. This is achieved by
replacing the last line of the model code by:

1 b sprouts (congestionFactor 100.0 destination d0) frequency 50.0 every 1 until 1
2 a sprouts (ecoDriver probability 95) , (congestionFactor 100.0 destination d0 probability 5) frequency 50.0 every 1 until 1

This increases the number of lines of code in the Athos model to 30 and to
587 in the generated NetLogo source.

Besides the number of lines of code as an obvious indicator for complexity, a
closer inspection of the implementations shows how the code in both platforms
contains a significant amount of instructions that can hardly be mapped to the
simulation directly but are necessary implementation details a domain expert
would not want to bother with. Following Crooks et. al., by applying the rule of
parsimony (aka Occam’s razor) we again get a strong argument for the quality
of the Athos approach (see [6]).

5 Conclusion and Future Work

This paper argues that a model driven approach for MAS in a given domain
(e.g. traffic as in our case study) can significantly reduce the complexity of the
code that is visible to the domain expert. The domain expert creates platform
independent models that are transformed into executable simulations. In this
paper, we have shown how Athos allows the creation of PIMs from computa-
tionally independent conceptual models in order to define scenarios in which
agents solve optimisation problems. In order to provide a deeper understanding
of the language, we have discussed Athos’ meta-model elements and how they are
related. We have also shown that Athos models describe the underlying problem
in a concise and declarative way. While the optimisation problems solved by the
agents are rather simple on the individual level, they yield a complex system
behaviour as all agents mutually affect their travel times in the network.

Athos was developed with an iterative approach and will continuously be
extended in that way. Later versions of the language will allow to define agents
that receive information on the current state of the network in a temporally
deferred manner. This will allow experiments on the importance of timeliness of
information in traffic networks. We will also introduce features that give fine-
granular control on what variables are to be tracked and visualised. Currently,
we are working on agents that can find optimal tours for a given set of nodes
and congestion dependent travel times in the network, i.e. these agents are facing
instantiations of a dynamic Travelling Sales Problem.

Even though the number of lines of code required to define optimisation-
related traffic simulations can be dramatically reduced, there is a need to quan-
titatively evaluate how this affects the cognitive complexity of the models. For
this, Athos will have to be evaluated in an objective way by appropriate tests.
In this context, we will also empirically evaluate qualitative DSL aspects like us-
ability, productivity, learnability and reliability that are crucial for a successful
DSL [15]. We consider such a quantitative evaluation of these aspects to be of
utmost importance even though it is often neglected by language developers [20].

However, literature still offers little guidance on how how DSLs can be sys-
tematically evaluated [20]. This might be because this part of DSL development
is still at a rather immature stage [5]. For this reason, scientists should view it
as an important and interesting and rather unexplored area of further research.

References

1. Ana L. C. Bazzan and Franziska Klügl. A review on agent-based technology for
traffic and transportation. The Knowledge Engineering Review, 29(03):375–403,
2014.

2. Fabio Bellifemine, Federico Bergenti, Giovanni Caire, and Agostino Poggi. Jade
— A Java Agent Development Framework, pages 125–147. Springer US, Boston,
MA, 2005.

3. David Bruce Borenstein. Nanoverse: A constraints-based declarative framework
for rapid agent-based modeling. In Levent Yilmaz, editor, Proceedings of the 2015
Winter Simulation Conference, pages 206–217, Piscataway, NJ, 2015. IEEE.

4. D. Çetinkaya. A model driven approach to web-based traffic simulation. In A
model driven approach to Web-based traffic simulation, 2016.

5. Moharram Challenger, Geylani Kardas, and Bedir Tekinerdogan. A systematic
approach to evaluating domain-specific modeling language environments for multi-
agent systems. Software Quality Journal, pages 1–41, 2015.

6. Andrew Crooks, Christian Castle, and Michael Batty. Key challenges in agent-
based modelling for geo-spatial simulation. Computers, Environment and Urban
Systems, 32(6):417–430, 2008.

7. Arie Van Deursen and Paul Klint. Little languages: little maintenance? Journal
of Software Maintenance: Research and Practice, 10(2):75–92, 1998.

8. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

9. Thomas Farrenkopf, Michael Guckert, Neil Urquhart, and Simon Wells. Ontology
based business simulations. Journal of Artificial Societies and Social Simulation,
19(4):14, 2016.

10. Martin Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st
edition, 2010.

11. Jiaqi Ge and Gary Polhill. Exploring the combined effect of factors influencing
commuting patterns and co2 emissions in aberdeen using an agent-based model.
Journal of Artificial Societies and Social Simulation, 19(3), jun 2016.

12. R Grey. Agent tcl: A transportable agent system. Proceedings of the CIKM Work-
shop on Intelligent Information Agents, Fourth International Conference on Infor-
mation andKnowledge Management (CIKM95), 1995.

13. Arnaud Grignard, Patrick Taillandier, Benoit Gaudou, Duc An Vo, Nghi Quang
Huynh, and Alexis Drogoul. Gama 1.6: Advancing the art of complex agent-based
modeling and simulation. In International Conference on Principles and Practice
of Multi-Agent Systems, pages 117–131, 2013.

14. Samer Hassan, Rubén Fuentes-Fernández, José M. Galán, Adolfo López-Paredes,
and Juan Pavón. Reducing the modeling gap: On the use of metamodels in agent-
based simulation. In 6th conference of the european social simulation association
(ESSA 2009), pages 1–13, 2009.

15. Felienne Hermans, Martin Pinzger, and Arie van Deursen. Domain-specific lan-
guages in practice: A user study on the success factors. In Andy Schürr and Bran
Selic, editors, Model Driven Engineering Languages and Systems: 12th Interna-
tional Conference, pages 423–437. Springer Berlin Heidelberg, 2009.

16. A. Horni, K. Nagel, and K.W. Axhausen. The Multi-Agent Transport Simulation
MATSim. London: Ubiquity Press., 2016. DOI: http://dx.doi.org/10.5334/baw.

17. Michael J. North and C. Macal. Agents up close. In Michael John North and
Charles M. Macal, editors, Managing business complexity, pages 24–44. Oxford
University Press, Oxford and New York, 2007.

18. Lucas N. Joppa, Greg McInerny, Richard Harper, Lara Salido, Kenji Takeda, Ken-
ton O’hara, David Gavaghan, and Stephen Emmott. Troubling trends in scientific
software use. Science, 340(6134):814–815, 2013.

19. Martin Kardoš and Matilda Drozdová. Analytical method of cim to pim transfor-
mation in model driven architecture (mda). Journal of information and organiza-
tional sciences, 34(1):89–99, 2010.

20. Tomaž Kosar, Sudev Bohra, and Marjan Mernik. Domain-specific languages: A
systematic mapping study. Information and Software Technology, 71:77–91, 2016.

21. Tomaž Kosar, Marjan Mernik, and Jeffrey C. Carver. Program comprehension
of domain-specific and general-purpose languages: comparison using a family of
experiments. Empirical software engineering, 17(3):276–304, 2012.

22. Ruqian Lu and Zhi Jin. Domain modeling-based software engineering: a formal
approach. volume 8, page 123. Springer Science & Business Media, 2000.

23. Michael J. North and Charles M. Macal. Agent based modeling and computer
languages. In Robert A. Meyers, editor, Encyclopedia of Complexity and Systems
Science, pages 131–148. Springer New York, New York, NY, 2009.

24. R. G. Palmer, W. Brian Arthur, John H. Holland, and Blake LeBaron. An artificial
stock market. Artificial Life and Robotics, 3(1):27–31, Mar 1999.

25. Hazel R. Parry. Agent based modeling, large scale simulations. In Robert A.
Meyers, editor, Encyclopedia of Complexity and Systems Science, pages 148–160.
Springer New York, New York, NY, 2009.

26. Juan Pavon, Jorge J. Gomez-Sanz, and Rubén Fuentes. The ingenias methodology
and tools. In Brian Henderson-Sellers and Paolo Giorgini, editors, Agent-Oriented
Methodologies, pages 236–276. IGI Global, 2005.

27. P.A. Samuelson. Tragedy of the open road: Avoiding paradox by use of regulated
public utilities that charge corrected knightian tolls. Journal of International an
Comparative Economics, 1(1):3–12, 1992.

28. Candelaria Sansores and Juan Pavón. Agent-based simulation replication: A model
driven architecture approach: Micai 2005: Advances in artificial intelligence: 4th
mexican international conference on artificial intelligence. pages 244–253. Springer
Berlin Heidelberg, 2005.

29. Judith Segal. Software development cultures and cooperation problems: A field
study of the early stages of development of software for a scientific community.
Computer Supported Cooperative Work (CSCW), 18(5):581, 2009.

30. Luc Touraille, Mamadou K. Traoré, and David R. C. Hill. A model-driven software
environment for modeling, simulation and analysis of complex systems. In Pro-
ceedings of the 2011 Symposium on Theory of Modeling & Simulation: DEVS In-
tegrative M&S Symposium, TMS-DEVS ’11, pages 229–237, San Diego, CA, USA,
2011. Society for Computer Simulation International.

31. Ivan Vendrov, Christopher Dutchyn, and Nathaniel D. Osgood. Frabjous: A declar-
ative domain-specific language for agent-based modeling. In William G. Kennedy,
Nitin Agarwal, and Shanchieh Jay Yang, editors, Social computing, behavioral-
cultural modeling, and prediction, volume 8393 of Lecture notes in computer sci-
ence, pages 385–392. Springer, Berlin, 2014.

32. Uri Wilensky. Netlogo. http://ccl.northwestern.edu/netlogo/, Center for
Connected Learning and Computer-Based Modeling, Northwestern University,
Evanston, IL, 1999.

33. Xiaorong Xiang, Ryan Kennedy, Gregory Madey, and Steve Cabaniss. Verifica-
tion and validation of agent-based scientific simulation models. In Agent-Directed
Simulation Conference, pages 47–55, 2005.

