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San Cristóbal de La Laguna, Spain

esegredo@ull.edu.es

Eduardo Lalla-Ruiz
Institute of Information Systems,

University of Hamburg
Hamburg, Germany

eduardo.lalla-ruiz@uni-hamburg.de

Emma Hart
School of Computing, Edinburgh

Napier University
Edinburgh, United Kingdom

e.hart@napier.ac.uk

ABSTRACT
�e mutant vector generation strategy is an essential component of
Di�erential Evolution (de), introduced to promote diversity, result-
ing in exploration of novel areas of the search space. However, it
is also responsible for promoting intensi�cation, to improve those
solutions located in promising regions. In this paper we introduce
a novel similarity-based mutant vector generation strategy for de,
with the goal of inducing a suitable balance between exploration
and exploitation, adapting its behaviour depending on the current
state of the search. In order to achieve this balance, the strategy
considers similarities among individuals in terms of their Euclidean
distance in the decision space. A variant of de incorporating the
novel mutant vector generation strategy is compared to well-known
explorative and exploitative adaptive de variants. An experimental
evaluation performed on a well-known suite of large-scale contin-
uous problems shows that the new de algorithm that makes use
of the similarity-based approach provides be�er performance in
comparison to the explorative and exploitative de variants for a
wide range of the problems tested, demonstrating the ability of the
new component to properly balance exploration and exploitation.
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1 INTRODUCTION
Di�erential Evolution (de) is a sub-class of Evolutionary Algorithms
(eas), that is arguably one of the most powerful and versatile evolu-
tionary optimisers for continuous parameter spaces in recent times
[3]. A large body work considers the importance of maintaining
both �tness and population diversity within de, given that main-
taining diversity is understood to be a prerequisite for avoiding
rapid convergence to local optima. A recent survey article [3] pro-
vides a detailed insight into numerous strategies for promoting
exploration at di�erent stages of the evolutionary process with de.
However, as noted by [2], promoting diversity at all stages of an
evolutionary process might be counterproductive, resulting in a
diverse but poor population.

�is motivates a search for solution approaches and strategies
that properly manage the population diversity while simultane-
ously driving high-quality performance through search. Within
de, one way to mitigate diversity loss can be achieved by de�ning
mutant vector generation strategies that simultaneously consider
the characteristics of the individuals and state of the search when
selecting the individuals involved in mutation. In this paper, we
propose a novel strategy for generating mutant vectors, where the
main goal is to provide a suitable balance between exploration and
exploitation depending on the progress of the search procedure.
At the same time, it aims to improve the quality of the solutions
provided at the end of the executions. Mutant vectors are typically
created by combining three randomly selected solutions (r1, r2, r3)
from the population: the speci�c method of combination can be
chosen to either promote intensi�cation or diversi�cation, and can
be tuned through judicious parameter choice. Our novel method
introduces a function that determines what fraction of a ranked pop-
ulation that one of the randomly selected solutions r3 can be chosen
from, rather than randomly selecting from the entire population,
depending on how many iterations have taken place.

First, the population is sorted in descending order in terms of
the similarity (based on Euclidean distance in the decision space)
of each individual with respect to the ��est individual. A new
function dictates what fraction of the sorted population is permit-
ted to be used for selection of r3 such that at the beginning of a
given run, r3 will be selected from among the best individual’s δ
least similar neighbours in the current population, therefore pro-
moting exploration. As more and more function evaluations are
performed, however, the best individual’s least similar neighbours
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are progressively discarded, and therefore, the balance is moved
from exploration towards exploitation. At the end of the execution,
only the best individual’s δ most similar neighbours are involved
in the selection, and consequently, exploitation is promoted.

We evaluate the new procedure (termed de-sim) on a well-known
test suite of scalable continuous optimisation problems proposed in
[7] consisting of 15 functions. �is test suite was proposed for the
special session and competition on Large Scale Global Optimisation

organised in the �eld of the Congress on Evolutionary Computation

(cec) 2013. Both the special session and the competition have been
organised in subsequent editions of that conference, including the
most recent cec’18. As a result, it is the latest test suite proposed
for large scale continuous optimisation. Considering the di�erent
editions of the competition, the best performing approaches usually
combine multiple algorithms to solve an instance. In the current
work, the main goal is not to outperform those state-of-the-art
approaches which rely heavily on algorithm portfolios, since a
direct comparison to these hybrid schemes would not be fair.

Bearing the above discussion in mind, the following questions
are addressed in this paper:

• To what extent does de-sim outperform an explorative
strategy (rand/1).

• To what extent does de-sim outperform an exploitative
strategy (current-to-pbest/1).

Experimental results show that the new method statistically
outperforms rand/1 in 73% of the functions tested, and outperforms
current-to-pbest/1 on 40% of test-instances. We conclude with some
general comments regarding the manner by which the new method
maintains a suitable balance between exploration and exploitation,
and suggestions for future-work relating to how the speed by which
de-sim shi�s from exploration to exploitation might be addressed.

2 BACKGROUND
In the related literature, the impact on diversity that mutant vector
generation strategies may cause has been explored mainly in the
context of low-dimensional continuous optimisation. For example,
in [4], a ranking-based mutation operator embedded in de for un-
constrained low-scale continuous optimisation was proposed. In
this approach, individuals are ranked according to their �tness, then
during mutation, some of them are proportionally selected with
regard to the created ranked list. Similarly, recent work proposed in
[12] considered the selection of individuals using stochastic rank-
ing and probabilistic-based selection when dealing with small-scale
continuous constrained optimisation. In this case, those individu-
als having higher positions within the ranking are more likely to
be selected during the mutation. In [1], alternative ranking-based
mutation operators are introduced. Some of the parents in the
mutation strategies are proportionally selected according to their
�tness ranking in the population. �e higher ranking a parent
obtains, the more opportunity it will be selected, hence enhancing
the exploitation ability of de. As with the methods described above,
the proposed ranking method does not consider diversity explicitly,
only the objective function values or their constraint violations.

Unlike previously proposed strategies that consider ranking vec-
tors in multiple ways according to �tness, we propose a novel
method that ranks a population with respect to similarity of each

Algorithm 1 Pseudocode of di�erential evolution
Require: n, F , CR

1: Generaten individuals or target vectors as the initial population
through an initialisation strategy

2: while (stopping criterion is not satis�ed) do
3: for (j = 1 : n) do
4: �e individual ®X j belonging to the current population is

referred to as the target vector
5: Obtain a mutant vector ®Vj through the mutant vector

generation strategy
6: Combine ®X j and ®Vj through the crossover operator to get

the trial vector ®Uj

7: Select the ��est individual between ®X j and ®Uj as the sur-
vivor for next generation

8: end for
9: end while

10: return the ��est individual in the population

individual to the ��est one. A linear ranking function then dy-
namically selects a proportion of individuals from the ranked list
from which a vector is chosen at random to participate in the mu-
tation, thus enabling the balance of exploration and exploitation to
change over the course of the search, something that has not been
addressed previously. In addition, in contrast to previous work in
which the vast majority of experimental studies undertaken to eval-
uate new mutant strategies have only considered low-dimensional
continuous problems as test-beds, we tackle a more challenging
test-bed composed of large-scale problems.

3 METHOD
In Section 3.1 we provide a general description of de and of the ex-
plorative and exploitative de versions used for comparison through-
out the paper. �e novel similarity-based mutant vector generation
strategy is introduced in Section 3.2. For all de variants discussed,
parameter adaptation mechanisms are provided by jade: this is
described in Section 3.3.

3.1 Di�erential evolution
We adopt the most frequently used nomenclature for de [11], i.e.,
de/x/y/z, where x is the individual to be mutated, y de�nes the
number of di�erence vectors used, and z indicates the crossover
strategy. �e variants de/rand/1/bin and de/current-to-pbest/1/bin,
which intrinsically promote exploration and exploitation [10, 15],
respectively, are selected as suitable comparison schemes. �e term
bin refers to the binomial crossover, which is described later.

Algorithm 1 shows the operation of de. First of all, n individ-
uals are generated through an initialisation strategy (step 1). In
this work, Opposition-based Learning (obl) [14] is applied as the
initialisation mechanism. With respect to the set of large-scale
problems addressed, previous work shows that the incorporation
of obl into an explorative de variant, such as de/rand/1/bin, is
likely to provide be�er solutions than those achieved by applying
other initialisation approaches [8]. Once the initial population is
obtained, it is evolved until a given stopping criterion is satis�ed
(step 2). At each generation, the following steps are carried out for
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each individual ®X j=1...n belonging to the current population (step
3), denoted as target vector in de terminology (step 4).

First, the mutant vector generation strategy is applied to produce
a mutant vector ®Vj (step 5). Equation 1 describes the mutant vec-
tor generation strategy rand/1, where r1, r2, and r3 are mutually
exclusive integers chosen at random from the range [1,n], and also
di�erent to index j. Since all individuals involved in the mutant
vector generation strategy are randomly selected, this strategy pro-
motes exploration rather than exploitation. Nevertheless, by means
of the parameter F , which refers to the mutation scale factor, the
diversi�cation and intensi�cation abilities of the algorithm can be
balanced. Large values of F promote exploration, while small values
turn the approach into a more exploitative scheme.

®Vj = ®Xr3 + F × ( ®Xr1 − ®Xr2 ) (1)
With the aim of applying a de variant that promotes intensi�-

cation rather than diversi�cation, the mutant vector generation
strategy current-to-pbest/1, is also considered herein. In this variant,
a mutant vector ®Vj is created starting from a target vector ®X j as it
is described in Equation 2. Indexes r1 and r2 are mutually exclusive
integers randomly selected from the range [1,n], and also di�erent
to index j. Furthermore, the individual ®Xr3 is randomly selected
from the ��est p × 100% individuals. Some of the ��est individuals
in the population are considered by this mutant vector generation
strategy, and consequently, it is more exploitative than the approach
rand/1, which only considers randomness. As can be observed, in
addition to the mutation scale factor F , parameter p can be used to
de�ne the balance between the exploration and exploitation capa-
bilities of the algorithm. By considering large p values, the scheme
becomes more explorative, while it becomes more exploitative with
small p values. Finally, the parameter K is also introduced, but in
order to make the con�guration of the approach easier, K = F is
usually considered in the related literature [10, 15].

®Vj = ®X j + K × ( ®Xr3 − ®X j ) + F × ( ®Xr1 − ®Xr2 ) (2)
Once the mutant vector is obtained, it is combined with the target

vector through the application of a crossover operator to obtain
the trial vector ®Uj (step 6). �e combination of the mutant vector
generation strategy and the crossover operator is usually referred
to as the trial vector generation strategy. For this work, the binomial
crossover was selected, whose operation is shown in Equation 3.
�e decision variable i belonging to individual ®X j is represented
by x j,i . A random number uniformly distributed in the range [0, 1]
is given by randj,i , and irand ∈ [1, 2, ...,D] is an index selected at
random ensuring that at least one decision variable belonging to
the mutant vector is inherited by the trial one. Hence, variables are
inherited from the mutant vector with probabilityCR, also denoted
as the crossover rate. In the remaining cases, variables are inherited
from the target vector.

uj,i =

{
vj,i i f (randj,i ≤ CR or i = irand )
x j,i otherwise

(3)

�e trial vector generation strategy might produce infeasible
individuals. To address this, an infeasible value in a particular deci-
sion variable is randomly re-initialised in its corresponding feasible
range. Once the trial vector is obtained, it is compared against its

corresponding target vector in terms of the objective function value.
�e ��est individual survives for the next generation (step 7). In
our approach, the trial vector survives in case of a tie.

3.2 Similarity-based mutant vector generation
strategy

�is section introduce a novel similarity-based mutant vector gen-
eration strategy. �e main goal of the strategy is to provide a
suitable balance between exploration and exploitation, depending
on the current stage of the search procedure, in order to improve
the quality of the solutions found. As with the other mutant vec-
tor generation strategies described in the previous section, the
similarity-based approach is applied at step 5 of Algorithm 1. In
order to generate a new individual, the similarity-based mutant
vector generation strategy makes use of Equation 2. Depending
on the particular selection of the individual ®Xr3 , the strategy can
promote exploration or exploitation. If ®Xr3 is similar to the ��est
individuals in the population, it will promote exploitation. In this
case, its behaviour will be similar to the strategy current-to-pbest/1.
On the other hand, if ®Xr3 is di�erent from the ��est individuals in
the population, it will move the balance towards exploration.

Before selecting individual ®Xr3 , the population is sorted in de-
scending order in terms of the similarity, i.e., the Euclidean distance
in the decision space, of each individual with respect to the ��est
individual in the population. A�erwards, an index r3 (which must
be di�erent to indexes r1, r2 and j) is randomly selected from the
range [l(ω),u(ω)]. Functions l(ω) andu(ω) set a lower and an upper
bound, respectively, for the range from which index r3 is selected,
and depend on the current stage of the search, de�ned by the num-
ber of function evaluations ω performed so far. We apply a linear
ascending function shown in Equation 4 to calculate u(ω), where n
is the population size, the total number of function evaluations of
a run is given by Ω, and parameter δ < n refers to the minimum
number of individuals involved in the selection of ®Xr3 . Once a par-
ticular value is given by u(ω), the lower bound l(ω) is calculated as
l(ω) = u(ω) − δ . Hence, at the beginning of a particular run, when
only a few function evaluations have been performed, the lower
and upper bounds will be close to 0 and δ , respectively. As the
execution progresses, both bounds will linearly increase. Finally,
at the end of the run, the lower and upper bounds will be close to
n − δ and n, respectively.

u(ω) = n − δ
Ω
· ω + δ (4)

As a result, at the beginning of a given run, ®Xr3 will be selected
from among the ��est individual’s δ least similar neighbours in the
current population. Exploration is thus promoted at early stages of
the search procedure. As more and more function evaluations are
performed however, the ��est individual’s least similar neighbours
are progressively discarded, and therefore, the balance is moved
from exploration towards exploitation. At the end of the execution,
only the ��est individual’s δ most similar neighbours are involved
in the selection, and consequently, exploitation is promoted.

Finally, it is worth noting that for a �xed population size, param-
eter δ allows the balance between the exploration and exploitation
abilities of the similarity-based mutant vector generation strategy
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to be adjusted. With small values of δ , its intensi�cation ability
is increased at late stages of the optimisation process, while it is
decreased considering large values.

3.3 Parameter adaptation through jade
As can be observed in previous sections, values for the mutation
scale factor F and the crossover rate CR have to be set to run de
with the mutant vector generation strategies described. Controlling
or adapting the parameters of an algorithm while it is executed
has shown to provide signi�cant bene�ts with respect to tuning or
keeping those parameters �xed for the whole execution [5]. �ere-
fore, a signi�cant amount of research relating to the adaptation of
de parameters can be found [3, 13].

jade [15] includes one of the best performing and most fre-
quently used approaches to adapt parameters F and CR. �ose
control mechanisms produce values for F and CR before executing
the trial vector generation strategy (steps 5 and 6 of Algorithm 1),
thus generating a new trial vector by using the newly created val-
ues. Hence, every individual has associated its own values for
parameters F and CR.

In jade, a particular value for F is randomly obtained through a
Cauchy distribution with location factor µF and scale parameter
equal to 0.1. If that value is lower than 0, then another one is
sampled from the distribution, while if it is greater than 1, then
it is truncated to 1. �e location factor µF is initialised to 0.5,
and then, its value is updated at each generation a�er step 8 of
Algorithm 1. In order to achieve this, the Lehmer mean (meanL)
of the successful values of F (SF ), the previous value of µF , and a
parameter c representing the adaptation speed of µF are considered.
�e set SF consists of those values of F associated to trial vectors
that have been able to replace their corresponding target vectors
in the population to survive for the next generation (step 7 of
Algorithm 1). Equation 5 illustrates the updating mechanism of µF .

µF = (1 − c) · µF + c ·meanL(SF ) (5)
With respect to the control mechanism of CR, it is similar to the

control approach of F (Equation 6). In this case, a value for CR is
randomly generated through a Normal distribution with mean µCR
and standard deviation equal to 0.1, and then truncated to the range
[0, 1]. �e mean µCR is initialised to 0.5 and updated by considering
the arithmetic mean (meanA) of the successful values of CR (SCR ),
the previous value of µCR , and a parameter c that represents the
adaptation speed of µCR .

µCR = (1 − c) · µCR + c ·meanA(SCR ) (6)

4 EXPERIMENTAL EVALUATION
�is section is devoted to describing the computational experiments
carried out to assess the performance of the novel similarity-based
mutant vector generation strategy proposed in Section 3.2. From
now on, the de version incorporating the novel mutant vector strat-
egy will be termed as de-sim. At the same time, the explorative
and exploitative de variants selected for comparison purposes (Sec-
tion 3.1), which incorporate the mutant vector generation strategies
rand/1 and current-to-pbest/1, will be termed as de-rand and de-
current, respectively. At this point, it is worth noting that the

three aforementioned de versions are adaptive, since the control
mechanisms provided by jade are used to adapt the values of the
mutation scale factor F and the crossover rateCR, as we previously
described in Section 3.3.

Experimental method. All the approaches just described were
implemented through the Meta-heuristic-based Extensible Tool for

Cooperative Optimisation (metco) [6]. Experiments were executed
on one debian gnu/linux computer with four amd® opteron™
processors (model number 6348 he) at 2.8 ghz and 64 gb ram. Since
the approaches considered are stochastic, each run was repeated 30
times. In order to compare the di�erent de versions, the following
statistical testing procedure was considered [9]. First, a Shapiro-

Wilk test was performed to check whether the values of the results
followed a normal (Gaussian) distribution. If so, the Levene test

checked for the homogeneity of the variances. If the samples had
equal variance, an anova test was done. Otherwise, a Welch test was
performed. For non-Gaussian distributions, the non-parametric
Kruskal-Wallis test was used. For all tests, a signi�cance level
α = 0.05 was taken into account.

Problem set. A test suite of scalable continuous optimisation
problems proposed in [7] has been chosen. Speci�cally, the prob-
lem set consists of 15 functions: fully-separable functions (f1–f3),
partially additively separable functions (f4–f11), overlapping func-
tions (f12–f14), and a non-separable function (f15). Following the
suggestions given in [7], a total number of D = 1000 decision vari-
ables was �xed for all problems, with the exception of functions f13
and f14. Because of overlapping subcomponents, D = 905 decision
variables were set for these two test cases.

4.1 Comparison of the similarity-based
strategy and an explorative strategy

In this �rst experiment, the main goal was to analyse the per-
formance of the novel similarity-based mutant vector generation
strategy with respect to an explorative mutant vector generation
method. �us, the approaches de-sim and de-rand were compared.
�e scheme de-rand only considers random selection of individu-
als involved in the mutant vector generation strategy, and therefore,
it manages diversity by moving the balance signi�cantly towards
exploration. However, if diversity management is not carried out
in a intelligent manner, it can be counterproductive. Our hypoth-
esis is that de-rand does not manage diversity intelligently, i.e.,
it mainly promotes exploration during the search, and as a result,
an approach inducing a suitable balance between exploration and
exploitation, such as de-sim, may provide a be�er performance in
terms of the solutions a�ained. Both schemes were executed by
considering n = 50 individuals, and by following the suggestions
given in [7], the stopping criterion was set to a maximum number of
3 ·106 function evaluations. Furthermore, as we previously stated in
Section 3.3, values for parameters F and CR were adapted through
the control mechanisms provided by jade with an adaptation speed
c = 0.1. In the case of the de-sim approach, appropriate values for
parameter δ were obtained from a preliminary analysis. In general,
δ = 5 provided the best performance for all test cases, with the
exception of functions f2, f7 and f8, where δ = 10 a�ained the best
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Table 1: Mean, median, and standard deviation (sd) of the error achieved by de-sim and de-rand at the end of 30 executions for
problems f1–f15. �e last two columns shows if de-sim statistically outperformed de-rand (↑), if the former was statistically
outperformed by the latter (↓) and if both approaches did not show statistically signi�cant di�erences (↔)

Alg. de-sim de-rand Statistical comparison
Func. Mean Median SD Mean Median SD p-Value Winner
f1 1.898e-13 3.225e-18 1.027e-12 7.215e-02 7.508e-02 1.315e-02 2.872e-11 ↑
f2 7.142e+02 6.009e+02 5.226e+02 1.630e-03 1.621e-03 2.580e-04 2.872e-11 ↓
f3 2.002e+01 2.002e+01 4.934e-04 2.002e+01 2.002e+01 5.830e-04 6.222e-11 ↓
f4 5.357e+10 4.780e+10 2.790e+10 3.533e+11 3.520e+11 1.027e+11 2.872e-11 ↑
f5 7.240e+06 7.128e+06 6.240e+05 7.467e+06 7.592e+06 8.934e+05 1.691e-01 ↔
f6 1.054e+06 1.054e+06 1.785e+03 1.054e+06 1.057e+06 1.187e+04 4.789e-05 ↑
f7 6.445e+08 5.998e+08 2.547e+08 2.221e+09 2.160e+09 4.139e+08 3.863e-25 ↑
f8 8.633e+14 5.896e+14 9.704e+14 9.460e+15 9.876e+15 2.292e+15 3.175e-11 ↑
f9 5.519e+08 5.417e+08 4.922e+07 5.854e+08 6.079e+08 7.592e+07 8.875e-03 ↑
f10 9.334e+07 9.346e+07 2.966e+05 9.337e+07 9.359e+07 7.482e+05 7.604e-02 ↔
f11 1.500e+11 1.195e+11 9.157e+10 1.835e+11 1.791e+11 4.967e+10 1.406e-03 ↑
f12 2.714e+03 2.726e+03 1.998e+02 5.019e+03 5.010e+03 1.272e+02 5.759e-51 ↑
f13 8.972e+09 8.703e+09 1.926e+09 2.407e+10 2.469e+10 3.577e+09 4.734e-11 ↑
f14 1.423e+11 1.286e+11 4.549e+10 3.976e+11 3.896e+11 5.177e+10 2.872e-11 ↑
f15 4.472e+07 4.162e+07 1.333e+07 8.294e+07 8.250e+07 7.769e+06 5.841e-10 ↑

results, and f14, where the value a�aining the best performance
was δ = 15.

Table 1 shows the mean, the median and the standard deviation
(sd) of the error a�ained by de-sim and de-rand at the end of the
runs for each of the problems tested. Moreover, the results of the
statistical comparison carried out with both schemes, by following
the statistical procedure described at the beginning of Section 4,
is also included. Particularly, the last two columns show, for each
function, the p-value and if de-sim statistically outperformed de-
rand (↑), if the former was statistically outperformed by the la�er
(↓), and if both schemes did not present statistically signi�cant
di�erences (↔). Method A statistically outperforms method B if
they present statistically signi�cant di�erences (p-value < 0.05),
and at the same time, A provides a lower mean and median of the
error in comparison to B.

�e clear superiority of de-sim with respect to de-rand in terms
of the solutions a�ained at the end of the runs can be observed from
this table. de-sim was able to achieve the lowest mean and median
of the error for all test cases, with the exception of functions f2
and f3, for which de-rand provided the best performance. In fact,
de-sim statistically outperformed de-rand in 11 out of 15 problems,
which represents 73.3% of the functions tested, while de-rand was
statistically be�er than de-sim only for problems f2 and f3. In
the case of functions f5 and f10, both approaches did not present
statistically signi�cant di�erences. �e experimental evidence thus
demonstrates the bene�ts of the proposed similarity-based mutant
vector generation strategy in comparison to an explorative strategy,
such as rand/1.

It would be interesting, however, to analyse how de-sim manages
diversity with respect to de-rand. Figure 1 shows the evolution of
the mean distance to the closest neighbour (dcn) for de-sim and
de-rand considering functions f1–f15. In general, for almost all
test cases, it can be observed that the mean dcn values provided
by de-rand are higher than those a�ained by de-sim during the
whole execution. �is suggests that de-rand preserves higher
diversity in the population in comparison to de-sim. Nevertheless,
as we stated in our hypothesis, managing diversity in an unsuitable
manner may be counterproductive. In fact, although de-rand
preserved higher diversity in the population with respect to de-sim,
the la�er performed signi�cantly be�er than the former in terms

of the solutions provided at the end of the runs for the majority of
the functions tested. As we previously stated, de-rand randomly
selects individuals to be involved in the mutant vector generation
strategy, and as a result, it manages diversity by mainly promoting
exploration. On the contrary, de-sim starts a run by promoting
exploration, and as the run progresses, the balance is moved towards
exploitation, thus providing a smarter method to manage diversity.

�e general behaviour changes, however, when considering func-
tions f2, f3 and f6. In the case of function f3, de-rand achieved
be�er solutions at the end of the executions by preserving higher
diversity during the whole run with respect to de-sim. �e above
may be explained by the fact that f3 could require the applica-
tion of approaches that mainly promote exploration rather than
schemes that in addition consider exploitation. For problems such
as f3, promoting exploitation may cause the optimiser to stagnate
in local optima. Taking into account problems f2 and f6, de-sim
provided a higher diversity in comparison to de-rand for almost
the whole run. For those test cases, de-sim may have failed by not
moving the balance towards exploitation in a proper way. Despite
the above fact, it can be observed how problem f2 requires the
application of an explorative optimiser, while schemes that also
consider exploitation are more suitable for function f6.

4.2 Comparison of the similarity-based
strategy and an exploitative strategy

�e main objective of this second experiment is to study the perfor-
mance of the similarity-based mutant vector generation strategy
with respect to an exploitative mutant vector generation approach.
In this case, we compare schemes de-sim and de-current. �e mu-
tant vector generation strategy current-to-pbest/1 of de-current
always considers some of the ��est individuals in the population
to generate novel individuals, and consequently, it is a more ex-
ploitative approach in comparison to de-rand, which uses random
selection. Our hypothesis for this second experiment is similar to
that suggested in the �rst one: de-current does not manage diver-
sity in a suitable manner because it mainly promotes exploitation,
so de-sim may perform be�er.

�e approach de-current was run with n = 300 individuals,
following a preliminary study that revealed that small population
sizes decreased performance signi�cantly. �is is likely due to
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Figure 1: Evolution of the mean distance to the closest neighbour (dcn) for schemes de-sim and de-rand considering 30 inde-
pendent runs

a shi� to intensi�cation caused by the small population size. In
addition, parameter p of the strategy current-to-pbest/1 was set
to 0.05. All the remaining parameters were �xed to those values
considered in the �rst experiment.

From Table 2, it can be observed that de-sim a�ained the best
mean and median of the error, providing statistically signi�cant
di�erences, at the end of the executions in 6 test cases, which
represents 40% of the problems tested. de-current provides the
best results with statistically signi�cant di�erences in the remaining
9 problems. We therefore suggest that this leads to the general
conclusion that this particular test suite favours the application of
optimisers that mainly promote exploitation, such as de-current.

Although de-sim was shown to manage diversity in a smarter
way than de-rand by inducing a suitable balance between explo-
ration and exploitation, de-sim might be failing with respect to
de-current in terms of the speed with which it changes from
promoting exploration towards exploitation. �is could be ad-
dressed by replacing the linear ascending function used by the
novel similarity-based mutant vector generation strategy. Never-
theless, that study is out of the scope of this paper, and will be
addressed as a future line of work. Despite the above, it is encour-
aging that de-sim was able to provide the best results in 40% of
the functions tested. �is is particularly noteworthy given that
de-current is one of the most successful and frequently used de
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Table 2: Mean,median, and standard deviation (sd) of the error achieved by de-sim and de-current at the end of 30 executions for
problems f1–f15. �e last two columns shows if de-sim statistically outperformed de-current (↑), if the former was statistically
outperformed by the latter (↓) and if both approaches did not show statistically signi�cant di�erences (↔)

Alg. de-sim de-current Statistical comparison
Func. Mean Median SD Mean Median SD p-Value Winner
f1 1.898e-13 3.225e-18 1.027e-12 1.825e+03 1.588e+02 5.900e+03 2.872e-11 ↑
f2 7.142e+02 6.009e+02 5.226e+02 8.044e+03 6.297e+03 2.765e+03 2.872e-11 ↑
f3 2.002e+01 2.002e+01 4.934e-04 2.037e+01 2.037e+01 7.491e-03 2.025e-50 ↑
f4 5.357e+10 4.780e+10 2.790e+10 4.538e+09 4.599e+09 1.347e+09 2.872e-11 ↓
f5 7.240e+06 7.128e+06 6.240e+05 3.893e+06 3.955e+06 3.801e+05 3.224e-29 ↓
f6 1.054e+06 1.054e+06 1.785e+03 1.054e+06 1.058e+06 1.077e+04 2.077e-06 ↑
f7 6.445e+08 5.998e+08 2.547e+08 4.990e+06 5.261e+06 1.492e+06 3.071e-14 ↓
f8 8.633e+14 5.896e+14 9.704e+14 8.440e+12 7.668e+12 4.409e+12 2.872e-11 ↓
f9 5.519e+08 5.417e+08 4.922e+07 3.333e+08 3.349e+08 1.968e+07 1.210e-23 ↓
f10 9.334e+07 9.346e+07 2.966e+05 9.360e+07 9.381e+07 8.223e+05 5.657e-06 ↑
f11 1.500e+11 1.195e+11 9.157e+10 2.048e+08 2.053e+08 4.963e+07 2.872e-11 ↓
f12 2.714e+03 2.726e+03 1.998e+02 5.748e+03 5.617e+03 7.484e+02 2.872e-11 ↑
f13 8.972e+09 8.703e+09 1.926e+09 2.772e+08 2.512e+08 1.196e+08 2.872e-11 ↓
f14 1.423e+11 1.286e+11 4.549e+10 1.602e+08 1.272e+08 9.562e+07 2.872e-11 ↓
f15 4.472e+07 4.162e+07 1.333e+07 1.264e+06 1.268e+06 9.860e+04 2.872e-11 ↓

variants within the literature. As in the case of the �rst experiment,
it is instructive to study how de-sim manages diversity in com-
parison to de-current. Figure 2 shows, for each of the problems
addressed, the evolution of the mean dcn considering schemes
de-sim and de-current. In general terms, it can be observed that
the de-current approach preserves a less diversity during the
whole run compared to de-sim for those cases where the former
statistically outperformed the la�er in terms of the quality of the
solutions achieved. �e above con�rms our hypothesis regarding
the requirements of this particular test suite, in that schemes that
mainly promote intensi�cation (such as de-current), are able to
a�ain be�er performance.

For those test functions where de-sim provided the best results
at the end of the runs, it can be observed that it is able to induce a
proper balance between diversi�cation and intensi�cation at each
stage of the search. Clear examples that illustrate the above are
test cases f1, f2 and f12, where de-sim started the execution with
a diverse population, and as the run progressed, the population
gradually converged, becoming less diverse. Exceptions to the
aforementioned behaviour are apparent for functions f3, f6 and f10.
We draw a similar conclusion to that given in the �rst experiment
regarding problem f3: de-sim a�ained be�er solutions at the end
of the runs by preserving higher diversity for the whole execu-
tion in comparison to de-current. We conclude that promoting
exploitation signi�cantly when addressing function f3 could be
counterproductive, since the optimiser seems to converge to local
optima prematurely. Similar conclusions apply to f6 and f10.

5 CONCLUSIONS AND FUTUREWORK
In this paper we have proposed a novel, similarity-based mutant
vector generation strategy for de. Firstly, individuals are ranked
according to their similarity in terms of the Euclidean distance in the
decision space with regard to the ��est member in the population.
Secondly, the selection of individuals for mutation is guided by a
newly introduced linear function that adaptively determines what
fraction of the ranked population is considered during selection.

We have evaluated the contribution of our approach in the con-
text of explorative and exploitative de schemes. In this regard,
the results demonstrated that the new strategy outperforms the
schemes rand/1 and current-to-pbest/1 in approximately 73% and

40% of the functions tested, respectively. �is comparison validates
our hypothesis that the strategy can maintain a suitable balance
between exploration and exploitation, resulting in signi�cantly
improved performance.

Based on the features of some of the problems analysed in
which exploitative schemes provide be�er performance than ex-
plorative ones, the linear ascending function considered by the
novel similarity-based mutant vector generation strategy may in
future be replaced by other functions that facilitate a faster change
from exploration to exploitation. �is is a natural future line of
research. Furthermore, undertaking a study with longer run-times
with de-sim and de-current could be another promising avenue of
research, as sometimes, diversity-based approaches require longer
runs to provide noticeable bene�ts. It would also be interesting to
analyse, in the long-term, if de-sim provides be�er solutions at the
end of the runs in comparison to de-current, because of potential
stagnation in local optima of the la�er.
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