
Computational Mechanics manuscript No.
(will be inserted by the editor)

A smoothed finite element approach for computational

fluid dynamics: Applications to incompressible flows

and fluid–structure interaction

Tao He · Hexin Zhang · Kai Zhang

Received: date / Accepted: date

Abstract In this paper the cell-based smoothed finite element method (CS-FEM)
is introduced into two mainstream aspects of computational fluid dynamics: incom-
pressible flows and fluid–structure interaction (FSI). The emphasis is placed on the
fluid gradient smoothing which simply requires equal numbers of Gaussian points
and smoothing cells in each four-node quadrilateral element. The second-order,
smoothed characteristic-based split scheme in conjunction with a pressure stabi-
lization is then presented to settle the incompressible Navier–Stoke equations. As
for FSI, CS-FEM is applied to the geometrically nonlinear solid as usual. Following
an efficient mesh deformation strategy, block-Gauss–Seidel procedure is adopted
to couple all individual fields under the arbitrary Lagriangian–Eulerian descrip-
tion. The proposed solvers are carefully validated against the previously published
data for several benchmarks, revealing visible improvements in computed results.

Keywords Smoothed finite element method · CFD · Incompressible flows ·
Fluid-structure interaction · Characteristic-based split · ALE

1 Introduction

Computational fluid dynamics (CFD) is a modern discipline concerned with math-
ematical modeling, numerical methods and software tools of fluid dynamics. The
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principle of the majority of CFD problems relies on the Navier–Stokes (NS) equa-
tions which describe how different variants (e.g. the velocity, pressure, tempera-
ture and density) of a moving fluid are related and predict what is the flow state
physically. As a matter of fact, the numerical resolution of these balance equa-
tions (with moving and deformable boundaries) has drawn a substantial amount
of endeavors from both scientific and engineering communities. Under the um-
brella of this major branch, finite element method (FEM) is widely utilized for
analysis and design of a variety of specializations like incompressible flows past
bluff/streamlined bodies [63,78] and fluid–structure interaction (FSI) [58,4]. Nor-
mally, the standard Galerkin finite element procedure for incompressible flows is
confronted with two sources of numerical instabilities [63]. One source is due to
the presence of the convective acceleration in the NS equations, mainly causing
spurious oscillations in the velocity field. The other source rests with the inappro-
priate usage of a pair of interpolation functions for velocity and pressure fields,
which primarily poses the pressure oscillations. In the past decades, a number of
stabilized FEMs have been successfully devised to prevent these potential insta-
bilities. Popular approaches contain streamline upwind/Petrov–Galerkin (SUPG)
formulation [8], Taylor–Galerkin method [18], Galerkin/least-squares (GLS) tech-
nique [35], pressure-stabilized Petrov–Galerkin (PSPG) formulation [66], space–
time FEM [64,65,59,60,57], characteristic-based split (CBS) scheme [77,53], etc.
Nowadays FEM has become one of stable and robust numerical methodologies
for solving CFD related problems and delivering deep insights into fluid physics.
For example, the complex three-dimensional turbocharger flow is handled by the
space-time variational multiscale FEM incorporating isogeometric analysis [60].

Typical finite element solution results in a system of algebraic equations, which
approximates the original partial differential equations (PDEs) based upon a fi-
nite element discretization. During the process, we probably observe the overly-stiff
phenomenon owing to the fully compatible strain field [49]. In examining meshless
and finite element methods, Liu and his colleagues [48] found gradient smoothing

[9,71] an elegant remedy to the afore-mentioned overly-stiff issue, as well as a valu-
able alliance of these two methods. In the seminal publication [48], the smoothed
finite element method (SFEM) is proposed by incorporating gradient smoothing
operation with the traditional FEM. The essential idea behind SFEM lies in mod-
ification of the compatible strain field whereby a Galerkin model may deliver some
superior properties. This method is saliently featured with the softened stiffness
matrix that yields more accurate solution to discrete PDEs than the standard
FEM. After a decade of development, a group of SFEM models has been fostered
with versatile applications in solid mechanics, heat transfer and acoustics whose
governing equations perfectly suit the technique after introducing divergence the-
orem. The reader is referred to the monograph [49] and the review article [72] for
the state of the art of SFEM.

In recent years, SFEM has seemingly been applied into a range of FSI prob-
lems as follows. The immersed SFEM is developed in [75,73,70,74] where SFEM is
responsible for nonlinear solids. Wang et al. [68] integrated SFEM in solid mechan-
ics with a strong-form fluid solver under the arbitrary Lagrangian–Eulerian (ALE)
description [34]. Similarly, the authors adopted SFEM to quantify the structural
finite deformation triggered by fluidic excitation in a partitioned manner [24,27,
28,30]. However, these scenarios do not provide any settlements tailored for the
NS equations, but rather replicate SFEM’s early success in solid mechanics.
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The major dilemma that SFEM faces in CFD stems from interpolating the
mixed product of a quantity and its gradient in the NS equations, such as the
convective acceleration. For this reason, the underlying investments may be dis-
couraged from CFD. Most recently, we have witnessed a joyful breakthrough that
makes the cell-based smoothed FEM (CS-FEM) accessible to incompressible NS
equations in terms of three schemes to interpolate nodal quantities involving the
mixed product [38].

This work is motivated by the need for a broadening utilization of SFEM for
CFD. A natural preference is given to the simplest CS-FEM that is initiated on
the basis of bilinear four-node quadrilateral (Q4) element. The easy smoothing
treatment is proposed for the fluid equations to bypass the strenuous operations.
For this purpose, we set up the equal amounts of Gaussian points (GPs) and
smoothing cells (SCs) in each element to compute fluid fluxes. That is to say, the
contribution from all SCs is accumulated in the loop circulating the Gaussian inte-
gration. As a result of this collective effort, a second-order smoothed CBS (S-CBS)
scheme with the stabilized pressure gradient projection (SPGP) technique [12,54,
1,6] is utilized to decouple the fluid velocity and pressure. As to FSI, the nonlinear
block-Gauss–Seidel procedure [26,25] is preferred to interconnect individual fields
owing to its attractive simplicity with good convergence. In short, the marriage
of SFEM and fractional-step method may soothe the pressure fluctuation on (dy-
namic) boundaries. This is potentially important to both incompressible flows and
FSI simulations.

The remainder of this paper is organized as follows. The theory of CS-FEM is
briefly recalled in Section 2. The ALE form of fluid governing equations is given
in Section 3 while the structural dynamics is depicted in Section 4. The mesh
updating method is described in Section 5. Subsequently, Section 6 explains the
partitioned coupling algorithm in detail. Several benchmark examples are investi-
gated in Section 7. Concluding remarks are drawn in the final section.

2 Fundamental basis of CS-FEM

We discretize a two-dimensional computational domain Ω into ne Q4 elements
such that Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωne

and Ωi ∩ Ωj = ∅ (i 6= j). A Q4 element is

subdivided into a set of complementary SCs, i.e. Ωi = Ω̃1
i ∪ Ω̃2

i ∪ · · · ∪ Ω̃nc

i where
nc is the number of SCs in the i-th element. As illustrated in Fig. 1, the smoothed
gradient of a field variable b at a point xc in an SC is approximated by

∇̃b(xc) =

∫

Ω̃

∇b(x)W (x− xc)dΩ, (1)

where ∇ means the gradient operator and ∇̃ is its smoothed counterpart, Ω̃ des-
ignates the SC and W is the Heaviside-type kernel that possesses the following
properties [71]

W (x− xc) > 0 and

∫

Ω̃

W (x− xc)dΩ = 1. (2)

Applying Gauss theorem into the right-hand side of Eq. (1) yields

∇̃b(xc) =

∫

Γ̃

b(x)n(x)W (x− xc)dΓ −
∫

Ω̃

b(x)∇W (x− xc)dΩ, (3)
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where Γ̃ is the boundary of Ω̃ and n is the unit outward normal of Γ̃ . A piecewise
constant kernel W is now formulated in form of

W (x− xc) =





1

Ac
x ∈ Ω̃,

0 x /∈ Ω̃,
(4)

where Ac =
∫
Ω̃
dΩ is the area of the SC. Substituting Eq. (4) into Eq. (3), we

have

∇̃b(xc) =

∫

Γ̃

b(x)n(x)W (x− xc)dΓ =
1

Ac

∫

Γ̃

b(x)n(x)dΓ, (5)

where the gradient of a constant vanishes automatically.
The Galerkin procedure leads to the following approximation of b

b = NI b̄I , (6)

where NI is the shape function at node I, the bar indicates a nodal quantity
and Einstein summation convention is applied. With the aid of Eq. (6), Eq. (5) is
rewritten as

∇̃b(xc) =
(
∇̃NI(xc)

)
b̄I =

(
1

Ac

∫

Γ̃

NI(x)n(x)dΓ

)
b̄I . (7)

Since one-point Gaussian quadrature is sufficiently accurate for two-node line in-
tegral, the item enclosed within external brackets on the right-hand side of Eq. (7)
can be transformed to its algebraic form

∇̃NI(xc) =
1

Ac

4∑

i=1

NI(x
gp
i )n(xgp

i )li, (8)

where 4 indicates the number of segments per quadrilateral SC, xgp
i is the GP on

the i-th segment Γ̃i and li is the length of Γ̃i.
By now, no coordinate transformation is involved in the gradient smoothing

process such that a heavily distorted mesh is possibly accommodated [48]. Fur-
thermore, the imported smoothing concept may pass on to wet boundaries the
improved traction or pressure. The construction of shape functions for CS-FEM
is shown in Fig. 2. A Q4 element is partitioned into four quadrilateral SCs in
consideration of the stability condition [48]. Of total nine nodes, extra five nodes
are generated to compute the smoothed shape functions by simply averaging those
values at four corners [48,14].

3 Incompressible fluid flow

3.1 Governing equations

Without loss of generality, the NS equations governing an isothermal incompress-
ible viscous fluid flow on a time-dependent domain Ωf ⊂ R

2 in a time interval
(0, T ) are written in their ALE formulation of

∇ · u = 0 on Ωf × (0, T ), (9)
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ρf
(
∂u

∂t
+ c · ∇u− f

f

)
−∇ · σf = 0 on Ωf × (0, T ), (10)

where u is the fluid velocity, ρf is the fluid density, c = u − w is the convective
velocity, w is the mesh velocity, f f is the fluid body force and σ

f is the fluid stress
tensor. For the Eulerian flows, we have w = 0 such that c degenerates into u.

The constitutive equation for Newtonian fluid reads as

σ
f = −pI+ 2µǫ and ǫ =

1

2

(
∇u+ (∇u)T

)
on Ωf × (0, T ), (11)

where p is the pressure, I denotes the identity tensor, µ is the dynamic viscosity,
ǫ indicates the rate-of-strain tensor and superscript T means transpose.

It is assumed that proper boundary conditions (abbreviated to BCs) are im-
posed at different segments of the domain boundary Γ f below

u = g
f on Γ f

d, σ
f · nf = h

f on Γ f
n, (12)

where Γ f
d and Γ f

n designate the Dirichlet and Neumann sub-boundaries, respec-
tively, and nf is the unit outward normal of Γ f

n. The fluid problem is initiated by
prescribing initial conditions as follows

u(x, t = 0) = u
0, p(x, t = 0) = p0 on Ωf

0, (13)

where x and t, of course, represent the spatial and temporal coordinates, respec-
tively. The coupling conditions on fluid–structure interface Σ will be presented in
a separate subsection.

In view of the characteristic length L and the free-stream velocity U , we define
the dimensionless scales

x̂ =
x

L
, t̂ =

tU

L
, û =

u

U
, ĉ =

c

U
, p̂ =

p

ρfU2
, f̂

f =
f fL

U2

to develop the dimensionless ALE–NS equations

∇ · u = 0, (14)

∂u

∂t
+ c · ∇u−∇ · σf − f

f = 0, (15)

along with the constitutive relation

σ
f = −pI+ 1

Re

(
∇u+ (∇u)T

)
, (16)

where Re = ρfUL
/
µ is the Reynolds number and all hats are dropped. The

nondimensionalized BCs and initial conditions share the same form as Eqs. (12)
and (13).
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3.2 Solution procedure

The CBS scheme [77,53] combines the characteristic Galerkin method [50] with the
fractional-step method [10,62]. The former process suppresses spurious oscillations
via higher-order time stepping in the convection-dominated flows whereas the lat-
ter procedure stabilizes the pressure field. The second-order pressure splitting error
can be guaranteed by inclusion of the pressure gradient, but the increased accu-
racy inevitably imperils the stabilizing properties of the original first-order scheme
[12,54]. In what follows, the additional SPGP stabilization [12] is introduced to
overcome this penalty.

An auxiliary equation in regard to the variable q

q−∇p = 0, (17)

is defined, whereby the continuity equation (14) is modified as

∇ · u+ φ∇ · q− φ∇2p = 0, (18)

with φ denoting the stabilization parameter. We will numerically discuss φ later
as it is yet unclear how to exactly determine the parameter in theory [12].

The temporal discrete version of Eqs. (18), (15) and (17) may be written as

∇ · un+1 + φ∇ · qn − φ∇2pn+1 = 0, (19)

un+1 − un

∆t
= −cn · ∇un −∇pn+1 +∇pn −∇pn +

1

Re
∇2

u
n + (f f)n, (20)

q
n+1 −∇pn+1 = 0, (21)

where superscript n denotes the n-th time slice and ∆t = tn+1 − tn is the time
step. The auxiliary variable q is explicitly treated in Eq. (19) while the pressue of
Eq. (20) is temporally discretized in the semi-implicit manner.

Following the CBS procedure, Eq. (20) admits the decomposition below

u∗ − un

∆t
= −cn · ∇un −∇pn +

1

Re
∇2

u
n +

∆t

2
c
n · ∇(cn · ∇un +∇pn), (22)

un+1 − u∗

∆t
= −∇(pn+1 − pn) +

∆t

2
c
n · ∇2(pn+1 − pn), (23)

where u∗ signifies the intermediate velocity, and the body force and the third-order
terms are neglected.

Taking the divergence of Eq. (23) and expanding the semi-discrete form of
Eq. (19) at the next time level yield

(∆t+ φ)∇2pn+1 = ∇ · u∗ +∆t∇2pn + φ∇ · qn, (24)

where the third-order terms are discarded as well.
With introduction of the gradient smoothing, the main steps of the stabilized

second-order S-CBS scheme are arranged below

Step 1: Predict the velocity field

u
∗−un = ∆t

(
−cn · ∇̃un − ∇̃pn +

1

Re
∇̃2

u
n +

∆t

2
c
n · ∇̃(cn · ∇̃un + ∇̃pn)

)
,

(25)
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Step 2: Update the pressure field

∇̃2pn+1 =
1

∆t+ φ

(
∇̃ · u∗ +∆t∇̃2pn + φ∇̃ · qn

)
, (26)

Step 3: Correct the velocity field

u
n+1 − u

∗ = −∆t

(
∇̃(pn+1 − pn)− ∆t

2
c
n · ∇̃2(pn+1 − pn)

)
, (27)

Step 4: Renew the auxiliary variable

q
n+1 = ∇̃pn+1. (28)

Imposition of BCs is straightforward: the velocity BCs are prescribed for Steps 1
and 3 on Γ f

u, while the pressure BC for Step 2 on Γ f
p. Besides, q2 = 0 is applied

on the pressure-free outlet for Step 4.

3.3 Time-step limitations

It is of interest to remark that the semi-implicit CBS scheme is conditionally stable
[78]. The general time-step limitations are recommended as [78,53]

∆t 6 ∆tcrit = min(∆tconv, ∆tdiff), (29)

where ∆tcrit signifies the critical time step, and ∆tconv and ∆tdiff are the con-
vection and diffusion limits, respectively. The latter two velocities are calculated
from

∆tconv =
h

|u| , ∆tdiff =
1

2
h2Re, (30)

where h means the characteristic size of the element.

To account for the stability and convergence, Codina [12] advocated that the
pressure stabilization parameter must satisfy the following relationship

φ 6
1

4
h2Re, (31)

for viscous dominated flows on the Eulerian mesh. By inspecting Eq. (30), we may
reconsider the inequality as

φ 6
1

2
∆tdiff . (32)

Recalling Eq. (29), the range of the stabilization parameter is suggested as

φ 6 0.5∆tcrit, (33)

or, it may be replaced for safety by

φ 6 0.5∆t. (34)
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3.4 Finite element discretization

The standard Galerkin spatial approximation is performed to discretize the fluid
equations in space. Since the CBS scheme permits the equal-/low-order interpola-
tion for both velocity and pressure, the two primitive variables are approximated
as

u = Nū, p = Np̄, (35)

where N designates the shape function of Q4 element. Substitution of spatial
approximation (35) into the semi-discrete form of Eqs. (25)–(28) entails the final
matrix form

M
f(ū∗ − ū

n) = −∆t

(
C̃

n
u ū

n + G̃p̄
n + K̃τ ū

n +
∆t

2
(K̃n

u ū
n + Q̃

n
p̄
n)− f

n
u

)
,

(36)

H̃p̄
n+1 = − 1

∆t+ φ

(
G̃ū

∗ −∆t(H̃p̄
n − f

n
p ) + φG̃q̄

n
)
+ f

n+1
p , (37)

M
f(ūn+1 − ū

∗) = −∆t

(
G̃

T(p̄n+1 − p̄
n) +

∆t

2
Q̃

n(p̄n+1 − p̄
n) + f̌

n
p

)
, (38)

M
f
q̄
n+1 = G̃

T
p̄
n+1, (39)

where the assembled matrices and vectors are presented below

M
f =

∫

Ωf

N
T
NdΩ, H̃ =

∫

Ωf

(∇̃N)T(∇̃N)dΩ,

C̃
n
u =

∫

Ωf

N
T(∇̃T

c
n
N)dΩ, G̃ =

∫

Ωf

(∇̃N)TNdΩ, K̃τ =
1

Re

∫

Ωf

(∇̃N)T(∇̃N)dΩ,

K̃
n
u =

∫

Ωf

(∇̃T
c
n
N)T(∇̃T

c
n
N)dΩ, Q̃

n =

∫

Ωf

(∇̃T
c
n
N)T(∇̃N)dΩ,

f
n
u =

1

Re

∫

Γ f

N
T
n
T(∇T

u
n)dΓ +

∆t

2

∫

Γ f

N
T(nT

c
n)(∇T

c
n
u
n +∇p)dΓ,

f
n
p =

∫

Γ f

N
T(nT∇pn)dΓ, f̌

n
p =

∆t

2

∫

Γ f

N
T(nT

c
n)∇(pn+1 − pn)dΓ.

At a closer observation of the above representation, the two smoothed ele-
ment matrices being derivated from the second derivatives are directly finalized
by assembly of all SCs of the element e, i.e.,

e
H̃ =

∫

Ωf
e

(∇̃N)T(∇̃N)dΩ =

nc∑

i=1

(∇̃N)Ti (∇̃N)iA
i
c, (40a)

e
K̃τ =

1

Re

∫

Ωf
e

(∇̃N)T(∇̃N)dΩ =
1

Re

nc∑

i=1

(∇̃N)Ti (∇̃N)iA
i
c. (40b)

The remaining smoothed element matrices manifest themselves in the mixed
product of a quantity and its first derivative, see eG̃ for example. To handle those
items, we simply dictate that the number and numbering of GPs per Q4 element
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exactly equal to those of SCs. Since 2×2 GPs in Q4-FEM and nc = 4 in CS-FEM
are often adopted in practice, it is straightforward to estimate eG̃ below

e
G̃ =

∫

Ωf

(∇̃N)TNdΩ =

2∑

i=1

2∑

j=1

(∇̃N)TijN(xgp
ij )A

ij
c . (41)

As can be seen from Fig. 3, the contribution of four SCs and GPs per Q4 element
successfully circulates within one recurrence. Compared to [38], we organize the
smoothed element integral into a more comprehensible pattern.

4 Structural dynamics

Consider a structural domain Ωs ⊂ R
2 with the boundary Γ s which comprises

the same three types of boundaries as well. A structure immersed in a fluid con-
tinuously sustains the fluctuating fluid force. The equation of motion is expressed
in the Lagrangian description with proper initial and boundary conditions. The
isotropic assumption is made for the structural problem.

4.1 Rigid–body motion

In the case of a single rigid body undergoing both translation and rotation (see
Fig. 4), the structural displacement is represented by d = {d1, d2, θ}T where
subscripts 1, 2 and θ designates the horizontal, vertical and rotational components
defined at the center of gravity G, respectively. The equation of structural motion
is formulated by



m1

m2

mθ


 d̈+



c1

c2
cθ


 ḋ+



k1

k2
kθ


d = R, (42)

where the dot illuminates the derivative with respect to t, mi, ci and ki (i =
1, 2 and θ) stand for the generalized mass, damping and stiffness of the structure,
R = {Fd, Fl, Fm}T is the applied fluid force, Fd, Fl and Fm signify the drag,
lift and pitching moment, respectively. As pictured in Fig. 4, the compatibility
condition must be satisfied between the surface point P and the center of gravity
G [55].

Next, the dimensionless scales

x̂ =
x

L
, t̂ =

tU

L
, d̂1 =

d1
L
, d̂2 =

d2
L
,

Cd =
2Fd

ρfU2L
, Cl =

2Fl

ρfU2L
, Cm =

2Fm

ρfU2L2
,

m̂1 =
m1

ρfL2
, m̂2 =

m2

ρfL2
, m̂θ =

mθ

ρfL4

and the reduced parameters

ξ1 =
c1

2
√
m1k1

, ξ2 =
c2

2
√
m2k2

, ξθ =
cθ

2
√
mθkθ

,
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fr1 =
fn1L

U
, fr2 =

fn2L

U
, frθ =

fnθL

U
,

fn1 =
1

2π

√
k1
m1

, fn2 =
1

2π

√
k2
m2

, fnθ =
1

2π

√
kθ
mθ

are computed to nondimensionalize Eq. (42), where the drag coefficient Cd, the
life coefficient Cl and the moment coefficient Cm are the dimensionless applied
forces, the mass ratio m̂i is the dimensionless mass, ξi is the damping ratio, fri
is the reduced natural frequency, and fni is the natural frequency. Therefore, the
dimensionless equation of structural motion is visualized as

d̈+ 4π



fr1ξ1

fr2ξ2
frθξθ


 ḋ+ 4π2



(fr1)

2

(fr2)
2

(frθ)
2


d =





Cd

2m̂1
Cl

2m̂2
Cm

2m̂θ





. (43)

4.2 Flexible–body motion

For an elastic solid, the elastodynamics equation governing the conservation law
of linear momentum reads as

ρs
(
d̈− f

s
)
−∇ · σs = 0, (44)

where ρs is the structural density, f s is the structural body force, σs is the Cauchy
stress tensor and the structural damping is omitted. Other material constants
contain Young’s modulus E and Poisson’s ratio ν. The plane stress assumption is
made for the two-dimensional case.

To accommodate the geometrical nonlinearity, the Saint Venant–Kirchhoff con-
stitutive model is assumed below

S = D : E and E =
1

2
(FT · F− I), (45)

where S is the second Piola–Kirchhoff stress tensor, D stands for the constitutive
tensor, E means the Green–Lagrangian strain tensor, and F = I + ∇d is the
deformation gradient tensor. The second Piola–Kirchhoff stress tensor, S, is related
to the Cauchy stress tensor, σs, via the geometric transformation given by

S = JF−1
σ

s
F

−T, (46)

where J = det(F).
The initial and boundary conditions are imposed to close the system of solid

equations in the following manner

d(x, 0) = d
0, ḋ(x, 0) = ḋ

0 on Ωs
0, (47a)

d = g
s on Γ s

d, σ
s · ns = h

s on Γ s
n, (47b)

where ns is the unit outward normal of Γ s
n.
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Likewise, the following dimensionless scales are defined

x̂ =
x

L
, t̂ =

tU

L
, d̂ =

d

L
, Ê =

E

ρfU2
, f̂

s =
f sL

U2
, m̂ =

ρs

ρf

in order to enable the nondimensionalization of Eq. (44). Discarding all superscript
hats, the dimensionless version of the geometrically nonlinear elastodynamics equa-
tion is established as

d̈− 1

m̂
∇ · σs − f

s = 0, (48)

alongside with the given initial and boundary conditions.

4.3 Finite element discretization

Here we commence spatial discretization for the elastic solid. As usual, the stan-
dard Galerkin procedure is used with the finite element approximation to the
displacement, velocity and acceleration

d = Nd̄, ḋ = N ˙̄d, d̈ = N ¨̄d, (49)

which generates the incremental equilibrium equation for dynamic analysis below

K
n∆d̄ = R

n+1 −P
n −M

s ¨̄dn+1, (50)

where K represents the tangent stiffness matrix, Ms is the mass matrix, ∆d̄ =
d̄n+1 − d̄n is the increment of nodal displacement, R is the external force and P

is the internal force.
Depending upon the geometrical nonlinearity, it is necessary to iterate Eq. (50)

in each load step until a required tolerance is satisfied. This linearization is carried
out by the modified Newton–Raphson procedure using total Lagrangian formula-
tion [2]. The mass of the body considered is assumed to be conserved in dynamic
analysis. Hence the smoothed equilibrium iteration equation is written as

K̃
nδd̄(k) = R

n+1 − P̃
n+1(k−1) −M

s ¨̄dn+1(k), (51)

where δd̄(k) is the incremental displacement in the k-th subiteration at the current
time step and the tangent stiffness matrix is decomposed into linear and nonlin-
ear parts, namely K̃ = K̃l + K̃nl. The resultant matrices and vectors admit the
following representation

∆d̄
(k) = ∆d̄

(k−1)+δd̄(k), Ms = m̂

∫

Ωs

0

N
T
NdΩ, R = m̂

∫

Ωs

N
T
f
sdΩ+

∫

Γ s
n

N
T
h
sdΓ,

K̃l =

∫

Ωs

0

B̃
T
l DB̃ldΩ, K̃nl =

∫

Ωs

0

B̃
T
nlS̃B̃nldΩ, P̃ =

∫

Ωs

B̃
T
l σ̃

sdΩ.

The key to compute these quantities consists in the smoothed deformation
gradient tensor F̃ = I + ∇̃d [14,13]. Details of the modified Newton–Raphson
procedure considering specific time discretization methods can be found in [2,7].
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4.4 Time marching method

The widespread availability of step-by-step time integration algorithms is seen in
computational analyses of structural dynamics. Here, the structural movement is
integrated in time with the Generalized-α method [11] which is generally superior
to the Newmark-β method [52]. To do this, the semi-discrete equation of motion is
applied to a general midpoint within one time interval, implying that the following
modified equation holds

M
s ¨̄dn+1−αm +C ˙̄dn+1−αf +Kd̄

n+1−αf = R
n+1−αf , (52)

where Ms, C and K represent the mass, damping and stiffness matrices, respec-
tively, and we prescribe

¨̄dn+1−αm = (1− αm)¨̄dn+1 + αm
¨̄dn, (53a)

˙̄dn+1−αf = (1− αf)
˙̄dn+1 + αf

˙̄dn, (53b)

d̄
n+1−αf = (1− αf)d̄

n+1 + αf d̄
n, (53c)

R
n+1−αf = (1− αf)R

n+1 + αfR
n. (53d)

To set d̄n+1 as the single unknowns in Eq. (52), the Newmark approximations
[52] to the acceleration and velocity at tn+1 are stated as

¨̄dn+1 =
1

β∆t2
(d̄n+1 − d̄

n)− 1

β∆t
˙̄dn − 1− 2β

2β
¨̄dn, (54)

˙̄dn+1 =
γ

β∆t
(d̄n+1 − d̄

n)− γ − β

β
˙̄dn − γ − 2β

2β
∆t¨̄dn. (55)

Accordingly, the generalized midpoint acceleration and velocity are given by

¯̈
d
n+1−αm =

1− αm

β∆t2
(d̄n+1 − d̄

n)− 1− αm

β∆t
¯̇
d
n − 1− αm − 2β

2β
¯̈
d
n, (56)

˙̄dn+1−αf =
(1− αf)γ

β∆t
(d̄n+1 − d̄

n)− (1− αf)γ − β

β
˙̄dn − (γ − 2β)(1− αf)

2β
∆t¨̄dn.

(57)
The time integration parameters β, γ, αm and αf are defined as functions of the
spectral radius ρ∞ [11], whose optimal expressions take the form of

β =
1

4
(1− αm + αf)

2, γ =
1

2
− αm + αf , αm =

2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞
ρ∞ + 1

, (58)

where 0 6 ρ∞ 6 1 for the desired level of numerical dissipation. Here we specify
ρ∞ = 0.1 for the rigid body [16] whereas ρ∞ = 0.5 for the elastic solid [17].

In addition, the calculation of smoothed internal force complies with the inter-
pretation of [43]

P̃
n+1−αf = (1− αf)P̃

n+1 + αfP̃
n = (1− αf)P̃(dn+1) + αfP̃(dn), (59)

while working on the elastic solid.
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5 Two-level mesh updating

Imposition of interface conditions in time requires that the position of moving
interface is accurately captured in the ALE domain whilst maintaining the sat-
isfactory mesh quality. Hence the mesh deformation is of cardinal significance in
fluid–structure coupling. For instance, in the space-time FEM the variational for-
mulation written over its space-time domain automatically takes into account the
deformation of the spatial domain with respect to time. Such a process is particu-
larly effective for forced motion of a cylinder where the mesh movement is known
a priori [64]. For free motion of a body, a general pseudo-elasticity equation ap-
proach is proposed in association with the stabilized space-time FEM [39].

The present mesh deformation method adopts a blend of moving submesh
approach (MSA) [45] and the ortho-semi-torsional spring analogy model [51] in
the ALE context. Its fundamental principle comprises two stages below

– Spring analogy method assimilates the triangle submesh to the structural mo-
tion;

– MSA creates a mapping between the submesh’s deformation and that of ALE
mesh.

Interested readers are recommended to refer to [32,33,24,31] for thorough imple-
mentation. Though MSA moves fluid nodes with the aid of a background mesh, this
technique can reduce the expenditure on spring analogy method while preserving
the mesh topology [33,30].

On the other hand, the midpoint rule is applied to the mesh velocity scheme as
it automatically meets geometric conservation law for two-dimensional stabilized
FEM [46] and outstrips the second-order differencing scheme [19].

6 Partitioned solution strategy

6.1 Interface coupling conditions

In the partitioned scheme, the interplay between the fluid and structure is accom-
plished via separately enforcing the velocity continuity and traction equilibrium
on Σ as follows

u = ḋ and t
f = t

s, (60)

where tf = σ
f ·ns and ts = σ

s·ns are the fluid and structural tractions, respectively,
ns represents the unit outward normal of Σ pointing from the structure to the fluid
and nf = −ns. Since the external force acting on the immersed rigid body is a
concentrated load vector, the stress equilibrium on Σ becomes

∫

Σ

t
fdΓ =

∫

Σ

t
sdΓ and

∫

Σ

∆x× t
fdΓ =

∫

Σ

∆x× t
sdΓ, (61)

where ∆x is the distance between surface point P and center of gravity G, as
shown in Fig. 4. Also, the geometrical continuity is supplemented thanks to the
mesh movement

x = d and w = ḋ. (62)

Moreover, interface conditions (60)–(62) may be recast in a hybrid way to
alleviate the adverse time-lag effect [36,29,30].
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6.2 Block-Gauss–Seidel coupling algorithm

The FSI system constitutes a coupled set of nonlinear algebraic equations to be
solved for each time step. For numerical stability, kinematic and kinetic com-
patibilities are compulsively imposed on Σ through block-Gauss–Seidel procedure
which implicitly couples all interacting fields. Extra acceleration technique like the
Aitken’s ∆2 method [44] may be adopted for faster convergence. Within one time
interval, the present coupling algorithm is elaborated hereinafter.

Step 1: Initialize all variables and set k = 0
Step 2: Extrapolate the interface

x̄
n+1(k)
Σ = d

n
Σ +

(
3

2
ḋ
n
Σ −

1

2
ḋ
n−1
Σ

)
∆t

Step 3: Start fixed-point iterations and set k ← k + 1
Step 4: Rearrange the fluid mesh Ωf

n+1(k)

Step 5: Calculate the mesh velocity

w
n+1(k) =

x̄n+1(k) − xn

∆t

Step 6: Derive other geometrical quantities if necessary
Step 7: Compute the intermediate velocity

u
∗−un = ∆t

(
−cn · ∇̃un − ∇̃pn +

1

Re
∇̃2

u
n +

∆t

2
c
n · ∇̃(cn · ∇̃un + ∇̃pn)

)

Step 8: Update the pressure

∇̃2pn+1(k) =
1

∆t+ φ

(
∇̃ · u∗ +∆t∇̃2pn + φ∇̃ · qn

)

Step 9: Correct the velocity

u
n+1(k) − u

∗ = −∆t

(
∇̃(pn+1(k) − pn)− ∆t

2
c
n · ∇̃2(pn+1(k) − pn)

)

Step 10: Renew the auxiliary variable

q
n+1(k) = ∇̃pn+1(k)

Step 11: Deduce the fluid load and pass it to the structure/solid
Step 12: Solve equation of the structural equation

(
1− αm

β∆t2
M

s +
(1− αf)γ

β∆t
C+ (1− αf)K

)
d
n+1(k) =

(1− αf)R
n+1(k) + αfR

n +M
s

(
1− αm

β∆t2
d
n +

1− αm

β∆t
ḋ
n +

1− αm − 2β

2β
d̈
n

)
+

C

(
(1− αf)γ

β∆t
d
n +

(1− αf)γ − β

β
ḋ
n +

(1− αf)(γ − 2β)

2β
∆td̈n

)
− αfKd

n

Step 13: Estimate the interfacial residuals

g
n+1(k) = x

n+1(k)
Σ − x̄

n+1(k−1)
Σ
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Step 14: Check the convergence and the maximum number of subiterations: if
not convergent, then go ahead; otherwise, proceed to the next time step

Step 15: Relax the position of the interface

x̄
n+1(k)
Σ = ωx

n+1(k)
Σ + (1− ω)x̄

n+1(k−1)
Σ

Step 16: Return to Step 3

The stop criterion at the k-th subiteration is simply judged with

max(g
n(k)
1 , g

n(k)
2 , g

n(k)
3 , · · · , g

n(k)
nfs

) < ε and k < kmax, (63)

where nfs is the number of nodes on the interface, the convergence tolerance is
ε = 1.0 × 10−6 and kmax = 200 is the user-defined constant that controls the
maximum subiterations at each time step.

Alternatively, a variant algorithm may be acquired in case that Eq. (18) is
discretized in time by

∇̃ · un+1(k) + φ∇̃ · qn+1(k−1) − φ∇̃2pn+1(k) = 0. (64)

7 Results and discussion

7.1 Steady cavity flow

The geometry of lid-driven cavity flow is defined in Fig. 5(a). The cavity is meshed
with 40×40 Q4 elements in Fig. 5(b). Re = 100 and ∆t = 1.0×10−2 are chosen for
this problem. The velocity components computed without the SPGP technique are
severely oscillatory in Fig. 6. This is because the pressure difference pn+1−pn will
approach to zero in the CBS scheme once steady state is reached. Furthermore,
in accordance with [12,1], the stability of the second-order scheme seems more
sensitive to a smaller time step.

Fig. 7 exhibits no oscillations at steady state since the difference between the
Laplacian of p and the divergence of q multiplied by φ stabilizes the pressure vari-
ation. Besides, the curve obtained from a smaller φ is closer to [21]. Nithiarasu
and Zienkiewicz [54] explained that modifying φ possibly reduces numerical oscil-
lations but could incur accuracy deterioration elsewhere. Among all φ in Table 1,
φ = 0.25∆t demands the least run time on a laptop with Intel(R) core(TM) i5-
5200U CPU and 16GB RAM. Therefore, φ may affect the numerical expense of
large-scale computations.

7.2 Unsteady flow over a circular cylinder

The incompressible flow past a circular cylinder is attempted at Re = 100. The
problem definition is plotted in Fig. 8(a) whereas the finite element discretization
is composed of 5190 Q4 elements and 5341 nodes in Fig. 8(b). The time step is set
as ∆t = 1.0× 10−2.

Table 2 lists the mean value of drag coefficient Cd,mean, the root-mean-square
error (RMSE) of drag coefficient Cd,rmse, the amplitude of lift coefficient Cl,max,
the RMSE of lift coefficient Cl,rmse and the Strouhal number St. The unstabilized
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scheme generates larger values of the first three indicators, whereas all stabilized
schemes agree well with the existing data [22,66,5,42,56,32,6].The predicted time-
varying Cd and Cl underline the negligible deviation between φ = 0.1∆t and 1.0∆t
in Fig. 9. The expenditure examined in Table 3 explains that φ = 0.25∆t consumes
the least time again. Unlike the steady flow, adjusting φ does not deteriorate
the accuracy. In Fig. 10, the vorticity contour using φ = 0.25∆t reflects that a
repeating pattern of swirling vortices is caused by unsteady separation of the flow
around the blunt body.

7.3 Vortex-induced vibration of a very light circular cylinder

Fig. 11 graphically illustrates free oscillations of a circular cylinder. System pa-
rameters are given as [37]: fr = 0.2, ξ = 0, Re = 100 and m̂ = 0.471 to m̂ = 0.157.
For numerical efficiency, the computational domain is divided into the Eulerian,
ALE and Lagrangian subdomains. The finite element mesh comprising 8880 Q4
elements and 9090 nodes, and the corresponding submesh are demonstrated in
Fig. 12. The time step is ∆t = 1.0× 10−2 and the relaxation factor is ω = 0.5.

Table 4 analyzes the φ-sensitivity through the m̂ = 0.471 case. We see that the
unstabilized scheme begets a failure whereas the stabilized schemes give nearly
identical data. We choose φ = 1.0∆t for all mass ratios, given its performance.
Eq. (33) still holds for FSI as the stability criterion because φ = 1.0∆t < ∆tcrit =
0.2828.

The time history of aerodynamic parameters is plotted in Fig. 13 for m̂ = 0.408,
at which our FSI method establishes the stable and smooth cylinder response.
However, the enlarged view in Fig. 14(a) indicates the failure of the traditional
strong staggered coupling (SSC) scheme [37]. By contrast, the present coupling
scheme based upon standard fixed-point iterations agrees well with that computed
by the nonlinear interface force correction (NFIC) approach [37].

Fig. 15 shows the x1-x2 trajectory at various m̂, illustrating that the VIV at
low Re is a self-limiting process [76]. The cylinder takes on the nearly symmetrical
trajectory shaping the classical Lissajous figure of “8”. Vorticity fields at m̂ =
0.393, 0.298 and 0.157 are displayed in Fig. 16 where the 2S vortex-shedding
mode [69] is seen in the wake.

7.4 Vortex-induced vibration of a flexible beam behind an obstacle

The benchmark problem proposed by Wall and Ramm [67] is schematically demon-
strated in Fig. 17. Physical parameters are specified as: ρf = 1.18 × 10−3, µ =
1.82 × 10−4, ρs = 1.0 × 10−1, E = 2.5 × 106, ν = 0.35, L = 1, U = 51.3 and
Re = 332.6. The meshing information is listed in Table 5. The fluid mesh and
MSA submesh are exhibited in Fig. 18. ∆t = 1.0× 10−2 and ω = 0.9 are utilized
here.

The almost equal results are reported in Table 6 among different φ, but φ = 0
incurs slow convergence at initial stage. As before, we adopt φ = 1.0∆t here.
Table 7 summarizes dmax2 and fo documented in the open literature [67,61,17,47,
3,7,41,23,15,20,25,28,40]. The obtained results are in good agreement with the
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available data. Note that fo = 0.0582 is very close to the first eigenfrequency of
the beam, f s

1 = 0.0591, which predominates the structural oscillations.
The unsteady periodic long-term oscillatory vibration of the tip is fairly de-

picted in Fig. 19(a). Fig. 19(b) demonstrates that the slightly longer time is re-
quired to reach the smaller characteristic amplitude in [28]. However, the under-
estimated amplitude may be obtained even though denser spatial discretization
or higher-order interpolation is used for the beam [41,15,20,40]. Three typical
snapshots of vorticity and pressure fields are displayed in Fig. 20. It is seen that
transient flow patterns and structural oscillations vary significantly in different
phases.

8 Conclusions

This paper has reported the straightforward implementation of CS-FEM into two
major areas of CFD. The stabilized second-order S-CBS scheme is proposed to
solve incompressible NS equations. In the fluid equations GPs cooperates with
equal SCs for each smoothed element integral, whereas CS-FEM works for the
solid routinely. The structural equations are advanced in time by the Generalized-
α method. The dynamic mesh is efficiently updated via MSA in combination with
spring analogy method. Block-Gauss–Seidel procedure is adopted for the fluid–
structure interplay within the ALE framework. The proposed methodologies do
not only make trivial revision to available FE codes, but also exhibit outstanding
performance in numerical tests. The main findings are summarized below

– The SPGP technique is crucial to the second-order S-CBS scheme in incom-
pressible flows and FSI.

– The stabilization parameter has an impact on numerical accuracy and effi-
ciency. In particular, Eq. (34) is recommended for the Eulerian flows while
Eq. (33) for FSI.

– The FSI solver never asks for accelerated fixed-point iterations even in the case
of extremely low mass ratio.

Acknowledgements Support from National Natural Science Foundation of China under
grant number 51508332 is gratefully acknowledged.
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Fig. 6 The Re = 100 cavity flow without SPGP stabilization.
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Fig. 7 The Re = 100 cavity flow with SPGP stabilization.
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Fig. 10 Vorticity contour of the rigid circular cylinder at Re = 100.
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Fig. 11 Sketch of geometry and boundary conditions for the freely oscillating circular cylinder.
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(a) Finite element mesh for the fluid field.

(b) MSA submesh for the ALE domain.

Fig. 12 Snapshots of mesh and submesh of the cylinder problem.
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Fig. 13 Time history of aerodynamic parameters at m̂ = 0.408.
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Fig. 14 Time history of lift coefficient at m̂ = 0.408.
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Fig. 16 Vorticity contours of the oscillating circular cylinder at various m̂.
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(a) Finite element mesh for the fluid field.

(b) MSA submesh for the ALE domain.

Fig. 18 Snapshots of mesh and submesh of the beam problem.
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Fig. 19 Time history of vertical displacement at the measuring point.
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(a) Vorticity. (b) Pressure.

Fig. 20 Instantaneous contours of the beam problem.
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Table 1 Collection of run times for the cavity flow.

φ 0.1∆t 0.25∆t 0.5∆t 1.0∆t

run time (s) 1528.3 1509.2 1560.1 1598.5
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Table 2 Comparison of the previous and present results for the flow past a circular cylinder.

Reference Cd,mean Cd,rmse Cl,max Cl,rmse St

Karniadakis [22] 1.42 0.00504 N/A 0.26 0.17
Tezduyar et al. [66] 1.38 ∼ 1.43 N/A 0.357 ∼ 0.375 N/A 0.166 ∼ 0.17

Behr et al. [5] 1.3698 ∼ 1.4552 N/A 0.3706 ∼ 0.3946 N/A 0.1624 ∼ 0.1711
Kjellgren [42] 1.34 ∼ 1.37 N/A 0.292 ∼ 0.329 N/A 0.16 ∼ 0.17
Norberg [56] N/A N/A 0.32 N/A 0.164
He et al. [32] 1.373 ∼ 1.421 0.00757 ∼ 0.01368 0.355 ∼ 0.489 0.251 ∼ 0.344 0.166 ∼ 0.169

Bevan et al. [6] N/A N/A 0.332 ∼ 0.346 N/A 0.166 ∼ 0.167

Present study

φ = 0 1.8456 0.01531 0.4190 0.2652 0.1697
φ = 0.1∆t 1.3782 0.00853 0.3880 0.2663 0.1697
φ = 0.25∆t 1.3710 0.00857 0.3869 0.2667 0.1697
φ = 0.5∆t 1.3704 0.00869 0.3880 0.2681 0.1697
φ = 1.0∆t 1.3739 0.00888 0.3912 0.2711 0.1697
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Table 3 Collection of run times for the flow past a circular cylinder.

φ 0.1∆t 0.25∆t 0.5∆t 1.0∆t

run time (s) 17923.3 15832.9 18793.9 18868.3
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Table 4 Parametric study for the oscillating circular cylinder at m̂ = 0.471.

φ dmean1 drmse1 dmax2 Cd,mean Cd,rmse Cl,max St run time (s)

0 N/A N/A N/A N/A N/A N/A N/A N/A
0.1∆t 1.2270 0.0203 0.5376 1.8261 0.0495 0.2974 0.1624 33346.4
0.25∆t 1.2621 0.0240 0.5855 1.8793 0.0611 0.2948 0.1648 29873.3
0.5∆t 1.2938 0.0269 0.6161 1.9256 0.0711 0.2977 0.1672 30933.8
1.0∆t 1.3435 0.0306 0.6508 1.9997 0.0834 0.3040 0.1697 30028.4
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Table 5 Information on the mesh and submesh generation.

Subsystem Meshing item

Fluid
Element type Q4

Number of elements 9080
Number of nodes 9344

Solid
Element type Q4

Number of elements 80
Number of nodes 123

Submesh
Element type T3

Number of elements 246
Number of nodes 170
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Table 6 Parametric study for the beam behind an obstacle.

φ dmax2 fo run time (s)

0 1.31 0.0582 37790.6
0.1∆t 1.33 0.0582 37932.1
0.25∆t 1.34 0.0582 38985.7
0.5∆t 1.35 0.0582 37858.8
1.0∆t 1.34 0.0582 37566.9
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Table 7 Comparison of the present and previous results for the beam behind an obstacle.

Reference Dimension Coupling scheme dmax2 fo

Wall and Ramm [67] Two Explicit 1.20 0.0604
Teixeira and Awruch [61] Three Explicit 1.35 0.0584
Dettmer and Perić [17] Two Implicit 1.25 0.0634

Liew et al. [47] Two Monolithic 1.34 0.0609
Bazilevs et al. [3] Two Monolithic 1.21 0.0591

Braun and Awruch [7] Three Explicit 1.181 ∼ 1.215 0.0591
Kassiotis et al. [41] Two Implicit 1.07 N/A
Habchi et al. [23] Two Implicit 1.02 0.0634
De Rosis et al. [15] Two Explicit 1.08 N/A

Froehle and Persson [20] Two Implicit 1.12 0.0620
He [25] (20 × 1 Q9) Two Explicit 1.32 0.0586
He [28] (20 × 1 Q9) Two Semi-implicit 1.37 0.0586
He [28] (80 × 2 Q4) Two Semi-implicit 0.92 0.0622
Kaneko et al. [40] Two Implicit 1.10 0.0624
Present study Two Implicit 1.34 0.0582


