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SYNOPSIS 

Optimisation of Timber Frame Closed Panel Systems for Low Energy Buildings 

Jesus M. Menendez Amigo 

The United Kingdom published a legally binding document to reduce national 

greenhouse gas emissions by year 2020 up to 34% against the 1990 levels. This target 

also fulfils the Europe 2020 strategy of 20% carbon emission reductions by year 2020 

(EC, 2010). Emissions due to space heating count for around 60% of the total domestic 

emissions (DCLG, 2012). The report “Rethinking Construction” published in 1998 

emphasised the opportunities to improve the quality and efficiency of the UK construction 

sector (Egan, 1998). More recently, a framework has been published by the Government 

to tackle fuel poverty by building more energy efficient homes (DECC, 2015). In terms 

of energy performance, Passivhaus is recognised as one of the most energy efficient and 

researched construction standards which requires an exceptionally high-level of 

insulation and airtightness. 

Closed-panel timber frames are a relatively new system in UK with an opportunity 

for growth. These advanced panels are pre-fitted in the factory, reducing the on-site work. 

However, closed-panel systems present a more complex sole plate fixing detail which can 

have an undesirable long-term impact on the structural and thermal performance of the 

building. The work presented in this thesis investigates the structural considerations, 

racking performance, of timber frame closed panel systems for future building 

regulations. The thesis underlines the significance of structural stability, serviceability 

and detailing in relationship with long-term thermal efficiency and airtightness, according 

to Passivhaus standard. 

An experimental study was carried out to investigate the structural racking 

performance of advanced closed panel systems. A comparison was made between the 

behaviour of the timber frame panels and the analytical PD 6693-1. A set of different wall 

panel built-ups is presented for optimised Passivhaus design, including thermal bridge-

free sole plate details. A timber frame racking software application was developed to 

optimise the structural design of shear walls. A parametric study was carried out with this 

tool to generate efficient timber frame wall design tables for different applied racking 

loads and U-values. The software application also allows for direct specification of robust 

sole plate base fixings and thermal bridge free details. 
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1 INTRODUCTION 

In the United Kingdom, the whole housing sector accounts for around 30% of the 

total CO2 national emissions (AEA, 2008) and space heating represents more than half of 

those housing emissions (DCLG, 2012). Recently, procedures and regulations have been 

released to set a global standard for low-energy construction. Passivhaus is one of these 

low-energy schemes which has been in the public domain for over twenty-five years. On 

average, a certified Passivhaus dwelling build in the UK saves almost 90% of the space 

heating demand if compared with a house built to 1990s building regulations (Schnieders 

& Hermelink, 2006). 

This chapter introduces the concepts of closed timber frame panels, low energy 

building and affordable housing. This provides essential background to demonstrate the 

opportunity for off-site close timber frame panel as a preferred construction system for 

the residential market and for future building regulations. 

The chapter also defines the scope of the thesis within this broad field of study. The 

research aims and objectives that were investigated throughout the total period of study 

are underlined. Lastly, at the end of the chapter, an outline of the content and structure of 

the thesis is described. 
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1.1 Background to the project 

The United Kingdom, as member of the European Union which ratified in 2002 the 

Kyoto protocol (UNFCCC, 1997), committed to reduce by 12.5% the greenhouse gas 

levels of year 1990 by year 2012. Greenhouse gases are mostly carbon dioxide. Indeed, 

the actual global reduction of Kyoto greenhouse gases for the period 1990-2012 was of 

almost 25% but emissions from buildings increased in the same period (DECC, 2014). 

The UK carbon emissions reduction targets for the year 2020 and 2050 are 34% and 80% 

respectively. These reduction figures also fulfil the EU target of 20% carbon emissions 

reduction by year 2020 (EC, 2010). 

Timber presents ideal properties to be manufactured offsite under lean 

manufacturing principles and with different levels of very high finishing detailing. In 

addition, timber panelised systems also benefit from excellent carbon footprint, low 

thermal conductivity, high strength-to-weight ratio and ease of construction. 

As a result, closed timber frame panels, as a new modern form of engineering and 

construction, need to be considered in order to exploit commercially available forest 

resources in higher value-added end products for the construction industry and, in 

particular, for low-energy building technologies. Also, the prescription of bioconstruction 

materials can reduce the embodied carbon footprint associated with the building (Kemp, 

2010). 

1.1.1 Closed Timber Frame Panels 

Timber Frame Closed Panel (TFCP) systems, when carefully detailed, are an 

example of Modern Methods of Construction (MMC) which can easily accommodate 

satisfactory levels of insulation between the studs without compromising weight, 

structural stability and cost.  

Furthermore, the economic, industrial and social housing transformation occurred 

in the last decade, and triggered by the global UK housing demand, caused the 

development of new MMC. As a result, timber frame open panels are being replaced by 

TFCP systems. In addition, optimisation on labour cost, construction time and quality 

assurance is achieved by manufacturing these panels off-site under indoor controlled 

conditions. 
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Higher levels of quality and accuracy are required in the production of closed panel 

systems which must be supported by an internal cultural change of quality fabrication and 

reduced tolerances at all levels. 

1.1.2 Market review and affordable housing 

Recent previsions in housing requirements made by the Government Coalition only 

for England were around 232,000 homes per annum, including social, self-building and 

private market sectors (Holmans, 2013). This information was slightly over the forecast 

published by MTW Research (MTW, 2012). The figures in this report and the 

performance of the new UK housing market since 2006 are shown in Figure 1-1. 

 

Figure 1-1 Number of dwellings built in UK since 2006 

Currently, the existing maximum capacity within the industry is estimated to be 

around 150,000 homes. Furthermore, traditional building materials such as bricks and 

blocks and skilled labour are receding resulting in a short-term imbalance where supply 

does not meet housing demand. 

These foreseen events will cause a change in the industry towards more productive 

manufacturing processes. Modern methods of construction and particularly off-site lean 

manufacturing processes have been highlighted as a viable solution to provide affordable 

housing (Hairstans, 2010). 
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The timber frame construction market includes a range of structural systems 

manufactured for both the residential and the commercial sector (Figure 1-2):  

 

Figure 1-2 Structural timber frame systems 

According to the MTW report (MTW, 2012), around 37,000 timber frame dwelling 

units were built in year 2012 for a total market value of just under £380 million. This 

represented a market share of about 25%. The value share within the different timber 

systems is shown in Table 1-1. 

Table 1-1 Value share by timber system in 2006, 2012 and est. 2016 adapted 

from MTW (2012) 

Timber system 
            (%) 

2006 2012 
2016 

(predicted) 
Open panel 74 83 68 
Closed panel 10 7 12 
SIPs 8 3 12 
Hybrid 3 5 2 
Post & Beam 3 1 4 
Volumetric 2 1 2 
TOTAL sales 
(million ₤) 

420 450 750 
 

The drop and increase in hybrid and closed panel systems in recent years (2012-

2016) may be explained by the difficult market conditions that have led to all sectors of 

the panellised systems including several business failures. However, the growth of 

panelised systems for the UK timber frame sector disagree with previous estimates 

(Vailikangas, 2002). In that research, the author predicted a market share for open panel, 

closed panel and SIPs of 65%, 25% and 7% respectively. 

From the above information, it is concluded that market share of open panel systems 

will be decreased in the period 2016-2020 benefiting closed and SIPs panels. The likely 

reasons of this growth in closed and SIPs panels may be quicker erection schedules and 

better overall construction quality. Nevertheless, this market assessment does not include 

other potential offsite timber systems such as cross laminated timber (X-LAM) or 

Brettstapel (Dowel-lam, Nailed-lam). 



Chapter 1: Introduction 

 

J. M. Menendez - October 2017   5 

 

1.2 Problem Overview 

The dissemination of new structural design codes in Europe, including a set of ten 

Eurocode documents, has made the design process more transparent but also more 

onerous. As a result, it is frequent within the Architecture, Engineering and Construction 

(AEC) sector to prescribe overestimated structural elements for both the design and the 

materials utilised. This common practise is seconded by the lack of specialised affordable 

software for the highly disaggregated timber industry (Hairstans, 2010). 

Apart from the recent upgrading on building regulations, the United Kingdom 

timber frame construction sector is also facing severe challenges due to the arrival of new 

Engineered Wood Products (EWP), the implementation of lean manufacturing techniques 

and the recent substitution of the British Standards BS 5268 in benefit of the Eurocode 5. 

Therefore, there is a clear need for a design software platform to produce transparent 

Eurocode 5 compliant and replicable reports which also enables for the inclusion of 

product specific mechanical properties. 

A racking design software application, able to carry out accurate and quick 

structural calculations for timber frame walls, has been developed. This tool facilitates 

the optimisation of the structure by effectively examining the materials and the design 

employed. The application Tedds® and Tedds for Word (Tedds) from CSC (UK) Ltd. 

was selected as a programming platform due to its compatibility with Microsoft® Office, 

wide UK commercialisation and contrasted experience in structural design. 

Existing information and literature on closed timber frame panels, even for those 

systems Passivhaus certified, does not include combined structural and thermal 

properties. Furthermore, there is a lack of information about the impact of inappropriate 

sole plate details for closed panel systems.  

This research provides a series of structural-efficient closed timber frame wall panel 

designs for low energy buildings including various critical sole plate connection details 

and a comprehensive hygrothermal analyses of the solutions for future reference. 
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1.3 Scope of Thesis 

In order to successfully propose a series of closed timber frame wall panel systems 

for low energy buildings, limitations were put on the scope of the research. Although 

various thermal analyses were carried out for several European climates, this research 

focuses on the UK context only. 

The Passivhaus standard (Feist, 1993) was set as the benchmark for low energy 

building consideration. Passivhaus is a proven construction methodology in compliance 

with the European Directive 2010/31/EU, Energy Performance of Buildings (EPBD), 

where all new buildings are required to be Nearly Zero Energy (NZEB) by the end of 

2020 (EC, 2010). 

The thermal performance investigations were conducted for two proposed closed 

timber frame panel configurations and for the sole plate base connections between the 

timber frame and the foundation. Furthermore, two common foundation types were 

considered: slab on grade and suspended timber floor system. No further research was 

undertaken for other timber frame details. 

The research addresses low-rise and low-energy building typologies only where 

lateral stability governs the structural design. This is found in energy efficient timber 

frame buildings where the frame dimensions are considerable wider to accommodate 

thicker insulation batts or rolls and therefore no axial or bending failure occur. On the 

contrary, large timber frame imperforations due to large windows, especially in south 

orientations, can frequently cause racking and other instability issues.  

Platform frame systems enable for a higher degree of prefabrication and 

standardisation which is in agreement with the scope of the research. Hence, timber frame 

racking performance was the only parameter investigated for structural optimisation 

purposes and under static lateral loading only. However, this parameter also indirectly 

included provisions for robust closed panel sole plate fixing specification.  

Research efforts were not given to other important aspects of building performance 

such as acoustic or fire performance nor other environmental aspects like the building life 

cycle assessment (LCA) or the green credentials of the insulation materials. 
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1.4 Aims and Objectives 

The main aim of this thesis was to develop two optimised closed timber frame wall 

panels for high thermal performance. A review of the different timber frame systems 

provided a gap knowledge refer to the relationship between thermal and structural 

performance for closed panel systems. 

The methodology used to achieve this aim was to analytically determine adequate 

insulated timber frame wall build-ups for Passivhaus certification with satisfactory levels 

of structural performance. A limitation on wall panel deformation of 10 mm was also 

considered in order to provide long-lasting airtight construction details. Within this aim, 

a particular importance was given to the relationship between structural and thermal 

performance of the closed panels and with special focus on the sole plate base fixing 

detail. 

A secondary aim was the development of a racking software application to provide 

structural engineers with a platform for flexible design and closed timber frame 

optimisation. A direct outcome of the development of the software application was the 

optimisation of timber frame wall designs due to the parametric analyses undertaken 

directly by the tool. This also facilitated the delivery of a set of robust details for low 

energy buildings and Passivhaus design. 

These two aims were achieved by completing the following core research objectives 

as follows: 

i. To carry out a data gathering of timber frame shear walls and sole plate connection 

tests from open timber frame panels. 

ii. To propose two different closed panel timber frame configurations suitable for 

low energy building design. 

iii. To investigate the hygro-thermal performance of these closed panel systems based 

on different materials and sole plate details. 

iv. To carry out 2-D thermal Finite Element Analysis (FEA) of different sole plate 

fixing details for thermal optimisation and future reference. 
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v. To investigate the impact of current timber fraction calculations on the overall 

thermal performance of Passivhaus timber frame buildings. 

vi. To develop a simplified theory for the analytical optimisation of closed panel 

timber frame sole plate details. 

vii. To compare the analytical and experimental racking results of the two proposed 

closed panel systems under partially and fully restrained sole plate base fixing 

conditions. 

viii. To develop a Eurocode-compliant software application to optimise the structural 

performance of timber frame shear walls by enabling flexible design and by 

integrating specific material data from test results. 

ix. To validate this software application by comparing the analytical output obtained 

with the results achieved from other calculation tools under the same analytical 

methodology. 

x. To perform a parametric analysis for shear wall optimisation. 

xi. To integrate the output of the optimised racking walls with the results from the 

thermal analyses and providing technical data-sheets for direct Passivhaus timber 

frame wall specification. 

1.5 Thesis Outline 

This thesis is comprised of six chapters and ten appendices. A high-level literature 

review including housing construction industry in UK, Modern Methods of Construction, 

closed panel timber frame walls, and thermal and structural requirements for affordable 

low-energy buildings is presented in Chapter 2. 

A study of the thermal performance for the proposed closed panel timber frame wall 

systems is discussed in Chapter 3. This investigation includes a specific literature review 

on the subject, the complete description of the two timber frame configurations, an 

investigation on FEA software for linear and point thermal bridge simulation and a study 

on the hygrothermal performance of the wall assemblies on different climates. 
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The structural performance optimisation of the closed timber frame panels is 

detailed in Chapter 4. The research presents a literature review on timber frame shear 

walls, investigations on different timber frame materials, an explanation of the research 

methodology containing analytical and experimental research and the comparison 

between the tests undertaken with the analytical method provided by PD 6693-1. 

Chapter 5 describes the methodology and development of the Trimble Tekla Tedds 

Timber Frame Racking Design Application. This validated software provides to structural 

engineers with a transparent and flexible timber frame racking design being the 

calculation run more than 2,000 times a year. 

The outcomes and conclusions related to the research carried out in the previous 

chapters are summarised. These conclusions set the basis for a simplified model 

containing relevant structural and thermal information. Lastly, two simplified models 

containing optimised details for the proposed closed timber frame panel systems are 

provided. Potential areas for future work and further research are also reported in this 

chapter. 
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2 REQUIREMENTS FOR 

FUTURE AFFORDABLE 

HOUSING 

This chapter is a summary and a critical discussion of the research and background 

information related to low-energy timber buildings. The first three sections set the 

framework to the research, present a historical review of different building regulations 

and introduces modern methods of timber construction (MMC). This first part justifies 

the research work carried out on advanced timber frame closed panel as a potential 

mainstream construction system for low-energy dwellings. 

The last three sections of the chapter provide a high-level literature review as an 

outline to the three different main fields of work considered in this research: the thermal 

performance of energy efficient timber frame buildings, the racking optimisation of shear 

walls and the use of integrated software for timber design. 

An extensive literature review of these key research areas is later included into each 

of the relevant chapters. The organisation of this chapter is shown in Figure 2-1. 
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Figure 2-1 Organisation of Chapter 2 
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2.1 The Housing Construction Industry in UK 

A background to the UK construction industry relevant to the housing sector is 

included in this section. The review contains past, present and future UK building 

regulations, other voluntary construction standards, the drivers for affordable housing and 

a summary of the Construction 2025 strategy published by the UK Government.  

2.1.1 Building regulations 

In Great Britain, the first attempt to establish a unified building regulations was in 

1936, when an optional guidance on the control of construction and building conditions 

was introduced (Britain, 1936). About thirty years later, the first mandatory Building 

Standards (1963) for England and Wales were published. 

Building regulations have been amended to progressively minimise primary energy 

consumption and hence, to mitigate carbon dioxide emissions. Table 2-1 summarises the 

changes in the thermal properties of the building fabric for new homes over the last 50 

years according to the Scottish Building Standards and the England and Wales Building 

Regulations.  

Table 2-1 Historical review of building fabric requirements for Scotland and 

England & Wales Building Regulations 

  Scotland England and Wales 

   1965 1981 1995 2010 1963 1983 1997 2010 

U-value wall 1.70 0.70 0.47 0.30 1.70 0.60 0.45 0.25 

(W/m2K) roof 1.50 0.40 0.25 0.20 1.50 0.40 0.35 0.18 

 floor - - 0.45 0.25 - - 0.45 0.20 

 windows 4.80 4.80 3.30 2.00 4.80 4.80 3.10 1.80 

Airtightness q50 - - 10 10 - - 10 10 

Glazing area % 12 12 22.5 25 12 15 25 25 

  wall wall floor floor wall wall floor floor 

 

In addition, energy performance has increasingly been emphasised in recent 

revisions to the Building Regulations. Minimum thermal properties for the building fabric 
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are clearly defined in both documents. The following parameters have been repeatedly 

amended since then: 

▪ Thermal transmittance  Uvalue  in W/m2K 

▪ Airtightness    Q50 in m3
 m−2 h−1 

Concurrently, allowance for minimum glazing area has also been modified. This 

percentage of glazing area is now related to the total floor area of the building instead of 

the total wall area as stated in earlier regulations. A historical review of minimum 

requirements is also described in Table 2-1. 

Several contributors have been targeted for the implementation of governmental 

policies and measures: energy supply, land and waste management, industrial processes, 

transport system and housing. The UK residential sector counts for around 15% of the 

total national carbon emissions. Various energy-related schemes were published across 

the UK with more or less success, such as the Code for Sustainable Homes (DCLG, 2010). 

This voluntary environmental assessment method, revised on May 2014, aimed for 

progressive reductions in the Dwellings Emission Rate (DER) over the Target Emission 

Rate (TER) as shown in Table 2-2. However, this code was finally withdrawn on March 

2015. 

Table 2-2 Regulatory stages to zero carbon and CSH levels (derogated) 

Code level % improvement over TER Implementation 

* 10%  

** 18%  

*** 25% 2010 

**** 44% 2013 

***** 100%  

****** ´zero carbon home´ 2016 

 

A closer look to the known as “Fabric First approach” highlights the relevance of 

the thermal envelope (Taylor et al., 2012). This is corresponded by the substantial change 

on the minimum U-Value requirements released in the latest England and Wales Building 

Regulations update (Table 2-3). 
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Table 2-3 Minimum U-Value requirements for England & Wales Building 

Regulations (DCLG, 2012) 

 U-value (W/m2K) 

 2010 2013 

roof 0.25 0.13 

wall 0.18 0.18 

floor 0.20 0.13 

window 1.80 1.40 

2.1.2 Other international standards 

Voluntary low energy building standards have been published around the world for 

the past 30 years. The standard R-2000 was introduced in 1982 to improve the energy 

efficiency of new built Canadian homes, as a consequence of the drastic increase of oil 

prices. This governmental program was initially based in technical guidelines for design, 

modern technology, good practice and materials. Alongside, the Government of Canada 

launched a scheme for training builders in low energy construction. Since then, thousands 

of homes have been built to this standard. Countries such as US, Russia, Germany, Poland 

or Japan have homes built to R-2000. 

In 1988, Prof. Wolfgang Feist and Prof. Bo Adamson came upon the concept of 

high energy efficiency homes based on building physics. This idea was developed into 

the Passivhaus (Feist, 1993). The Passive House Institut and the first building, four 

terraced homes, were established in 1990 in Darmstadt, Germany (Figure 2-2). Only four 

requirements are needed to achieve this standard: 

▪ Space heating or cooling demand less than 15 kWh/m2 per year, or 

▪ Space heating or cooling load less than 10 W/m2 

▪ Primary energy demand less than 120 kWh/m2 per year 

▪ Building airtightness less than 0.6 air changes per hour (ach) at 50 Pa 

Another globally recognised low energy standard is the Swiss Minergie-P® which 

is a more stringent version of the Minergie baseline standard introduced in 1998 

(Minergie, 2008). This registered trademark follows similar principles as the Passivhaus 

standard, but also it allows for water-based heating and cooling systems for even and 

efficient air distribution. 
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Figure 2-2 First Passivhaus building (Darmstadt, Germany) 

The Minergie standard limits the space heating or cooling demand to the nature of 

the building and it varies from 45 kWh/m2 per year for hospitals to 15 kWh/m2 per year 

for warehouses. The standard is popular in Switzerland where more than 18,000 homes 

have been built to Minergie standards, a thousand of them to Minergie-P. Other Minergie-

P projects have been built in Abu Dhabi, France and Japan. The energy requirements of 

these standards and for new dwellings are summarised in Table 2-4. 

Table 2-4 Energy requirements for new homes according to various 

standards 

 E&W (2013) R-2000 Passivhaus Minergie-P 

Space heating 
(kWh/m2) 

39/46 40 15 15 

Thermal bridges 
(W/mK) 

0.02 minimal < 0.01 minimal 

Airtightness 6.0(1) 1.5 0.6 0.6 
(n50)     

(1) For E&W airtightness is measured as q50 instead. 
 

The Passivhaus standard criteria has been adopted as a compulsory building 

regulation in several European local authorities (Table 2-5) to fulfil the EU future energy 

efficient requirements. Also, several studies have validated the principles of the standard 

in other climates (Krainer, 2008 Schnieders & Hermelink, 2006). From the internal 

Passivhaus database, more than 50,000 dwellings built worldwide are recorded according 

to these principles. In the UK, McLeod et al. (2012) proposed a method to generate 

reliable climate data sets for future climate predictions. More recently, the Royal Institute 
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of British Architects (RIBA) has referred to Passivhaus in the UK as an “emerging 

popular low-energy standard for housing” (RIBA, 2015). As a result of this worldwide 

diffusion, this study follows the Passivhaus criteria as a thermal performance benchmark 

criterion throughout the research.  

Table 2-5 Councils or regions where Passivhaus has been implemented 

Council Country Year Type 

Vorarlberg Austria 2007 Public 

Wels Austria 2008 All 

Antwerp Belgium 2013 All 

Brussels Belgium 2014 All 

Bremen Germany 2011 Public 

Hamburg Germany 2012 Public 

Luxemburg Luxemburg 2016 All 

Oslo Norway 2014 Public 

Villamediana Spain 2013 Public 

Dún Laoghaire Ireland 2016 All 
 

2.1.3 Drivers to affordable housing 

For the last decades and under successive UK governments, the construction 

industry have failed to provide a housing supply that matched the demand required 

(Holmans, 2013). The direct consequence of this housing imbalance has been a 

continuous growing price for home ownership and rising rents. 

In the meantime, the real wages of the average worker have suffered a stagnation 

for over a decade. During the period 2003-2014, the accumulated average hourly salary 

rose a 29 % whilst in the same eleven years period, the accumulated inflation rose by 

32.5% (Bell, 2015). 

The combination of these two aspects housing shortage and the decrease of 

potential home owner´s purchasing power, lead the drivers to affordable housing. Another 

financial challenge related to housing is fuel poverty which was defined by the Scottish 

Government in the Housing (Scotland) Act 2001 as: 
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“…A household is in fuel poverty if, in order to maintain a satisfactory 

heating regime, it would be required to spend more than 10% of its income 

(including Housing Benefit or Income Support for Mortgage Interest) on all 

household fuel use”. 

Statistically and in general terms, a household is considered to be in fuel poverty 

when the total fuel cost is over 10% of the household income. A study on fuel poverty in 

England (Moore, 2012) published the reduction in minimum income standards (MIS) that 

a British household had to consider to fully afford the household fuel costs. Taking into 

account a maximum fuel cost of 10 % of the household´s income, in England there are 

almost 5.5 million homes in fuel poverty (Table 2-6). 

Table 2-6 Households in fuel poverty, England after (Moore, 2012) 

Reduction in MIS cost Households 

 Thousand Per cent 

No reduction required   15,943 74.5 

Up to 10%   874 4.1 

10 to 20%   870 4.1 

20 to 30%   719 3.4 

30 to 40%   762 3.6 

40 to 50%   741 3.5 

More than 50%   1,498 7.0 

     

Total in fuel poverty   5,464 25.5 
 

Another well-defined set of drivers with an emphasis on skilled workforce, efficient 

and technologically advanced construction industry to exploit the UK construction sector 

in a global market was published by the UK government in the Construction 2025 report 

(DBIS, 2013). The clear strategy of this document is to provide a vision of where the UK 

construction sector will be in year 2025, and which is in line with the research carried out 

in this thesis, is summarised in the next section. 

2.1.4 Construction industry strategy 2025 

This document published in year 2013 defines a strategy for collaboration and 

partnership between the UK government and the industry to provide the basis to exploit 

its strengths in the global market which is forecast to grow by over 70% by year 2025. 
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The strategy also estimates four clear figures of the improvement in the industry to be 

reached by 2025 which are visually presented by Figure 2-3. 

 

Figure 2-3 Summary of industry targets set by Construction 2025 (DBIS, 

2013). 

Although the publication includes the UK construction industry as a whole, there 

are strong references to the housing sector as a key market also to support other industries. 

The document forecasts from 1.7 to 2.5 million new homes by year 2025 which translates 

to 140-200k homes being built every year. Furthermore, the strategy also identifies the 

existing housing stock as the biggest potential opportunity where a large retrofit 

programme will be supported.  

The Construction 2025 vision includes five key areas to focus: 

▪ People: talented and diverse skilled workforce 

▪ Efficient industry: productive and technologically advanced 

▪ Sustainable: low-carbon and green construction materials 

▪ Growth: achieving growth across the entire UK economy 

▪ Leadership: reputation of UK construction in the global market 
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Also, to deliver the industry targets illustrated by Figure 2-3 and in addition to these 

five key areas for improvement, six drivers of change were required: 

▪ Overall image improvement of the industry 

▪ Increased skills of the workforce 

▪ Understanding the future work opportunities 

▪ Improvement in procurement processes and client satisfaction 

▪ Strong and resilient supply chain 

▪ Effective research and innovation 

Outcomes from this thesis contribute to improve key areas and drivers required by 

this Construction 2025 strategy. In order to facilitate potential improvement in exports by 

the UK timber frame industry, the Chapter 3 of this research thermal performance of 

timber frame walls, also considers other different climate areas. 

The current and future building regulations reviewed in this section together with 

the drivers to mitigate the issues of the current housing scenario and with the clear future 

vision defined in the Construction 2025 strategy must be considered in the fast 

development of modern methods of construction. 

2.2 Modern Methods of Construction 

UK government has encouraged the use of Modern Methods of Construction 

(MMC) to produce a higher quantity and quality of houses (Egan, 1998) with a clear 

strategy for efficiency and elimination of waste (Office, 2011). The starting point of the 

UK commission was to tackle the degenerative cycle (Figure 2-4) in the construction 

industry caused by poor quality products resulting in inefficient processes with low 

financial profitability and subsequent absence of investment in research and development 

(Hairstans, 2010) 

Additionally, a declining availability of skilled workforce such as carpenters or 

bricklayers has already been identified by several authors (Johnsson & Meiling, 2009 

Kemp, 2010; Green et al., 2014). A recent set of surveys published by the Construction 

Industry Training Board (CITB) and shown in Table 2-7 identified general labourers, 

bricklayers and carpenters as the harder-to-fill occupations (CITB, 2011, 2014). 
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Figure 2-4 Degenerative cycle, adapted from Hairstans (2010) 

Although MMC often requires a specialised workforce, the significant shift of 

building skills from on-site to off-site, the increase in factory mechanisation and the 

standardisation of internal processes could gear traditional on-site demands to a more 

multi-skilled workforce. 

Table 2-7 Occupations with Hard-to-Fill vacancies in 2009, 2011 and 2014. 

Occupation 
2014 

n= 181 
2011 
n= 56 

2009 
n = 70 

General labourers 18% 12% 17% 

Carpenters 14% 15% 19% 

Bricklayers 9% 19% 6% 

Technical staff 9% 8% - 

Plasterers 8% 15% 4% 

Scaffolders 8% 1% 4% 

Plumbers 8% 4% - 

Roofers 7% 1% - 

Machine operatives 7% 3% 15% 

Electricians 2% 15% 6% 

Others 10% 7% 29% 
 

MMC can be defined as a construction methodology which provides an efficient 

management process to produce more building products of better quality in less time 

(Kozlowska et al., 2015). These processes can be made on-site or off-site but the general 

concept is to use components and assemblies that are faster to install in order to increase 

the rate of quality and affordable housing supply. The direct consequences of any type of 

MMC are: 
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▪ Reduced waste, skilled labour and reworking on-site 

▪ Greater speed of construction 

▪ Improved logistics and material handling 

▪ Production of quality and affordable buildings 

The Office of the Deputy Prime Minister and the Housing Corporation were 

investing over a £1 billion in 2004-05 on facilitating affordable housing with an implicit 

focus on four different technologies as shown in Figure 2-5 (Hairstans, 2010). 

  
Panelised Volumetric 

  
Hybrid solutions Novel products 

Figure 2-5 Different technologies of MMC 

▪ Panelised units fabricated off-site and assemble on-site to produce a 

volumetric structure. The process of manufacturing the frame may gradually 

integrate insulation, services, windows and doors or internal and external 

finishes to produce advanced panelised systems. 

▪ Complete volumetric construction as three-dimensional unit modules 

produces in factory. In this case, transportation limitations may constraint 

architectural and other design features. 
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▪ Hybrid technologies combining both panelised and volumetric units. These 

technologies may be of particular interest with volumetric modules for 

highly serviced rooms such as mechanical rooms or bathrooms whilst the 

rest of the building are made of 2-D panels. 

▪ Other construction technologies. This may include novel product 

developments such as floor and roof cassettes, pre-cast foundation solutions, 

other foam products for in-situ wall formation or thin-joint block work. 

2.3 Closed Panel Timber Frame Walls 

Timber frame systems, in line with the original definition of MMC, is a potential 

solution due to its environmental credentials, mechanical properties and light weight 

(DTI, 2004). Additionally, the environmental performance of wood is a major driver for 

the use of timber in buildings (Wang et al., 2014). 

Considering a number of thermal features such as an adequate insulation or airtight 

assemblies, offsite timber frame advanced closed panel systems can be considered as a 

cost-effective MMC for low energy buildings (Hairstans, 2010) as successfully 

implemented in other countries (Fossdal & Edvardsen, 1995). Although the level of 

confidence in using prefabricated timber frame systems was reduced in the past  (WRAP, 

2007), there is a current increase in confidence in off-site timber construction 

(Hausammann and Franke, 2014) 

Timber frame buildings are generally formed by roof, floor and wall systems. 

Nevertheless, floor systems, except for suspended ground floors, have a minimal contact 

with the outdoor environment i.e. are not a part of the thermal envelope on its integrity. 

As a result, the influence of floor systems on low-energy buildings is minimal. For that 

reason, floors are not investigated in this research. 

On the other hand, roof systems are particularly exposed to outside conditions and 

must fulfil structural, thermal and acoustic requirements. Also, other aspects such as 

architectural design, local planning permission and building regulations and even the 

integration with the context and form of the building, result in roof systems to be beyond 
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the scope of this study. Nevertheless, part of the outcomes of this research may be applied 

to roof systems. 

Finally, external wall systems and integrated windows account for almost half of 

the energy losses in a dwelling (Figure 2-6).  

 
 

Figure 2-6 Sources of heat loss in a dwelling 

Additionally, external walls require sufficient load bearing capacity to withstand 

gravity and lateral actions. The improvement of standard open panel timber frame systems 

into advanced designs for structural and thermal performance, while satisfying future 

building regulations, provides a significant practical challenge to achieve integrated and 

innovative building design in a cost-effective manner. 

One of the outcomes of this research is to provide standardised and modular details 

that can be incorporated in different architectural designs for a range of applications, 

under structural and thermal requirements and for the UK context. However, another two 

different climate regions were considered solely for condensation-risk calculations and 

presented as a discussion for future work. 

2.4 Thermal Requirements for Low-energy Buildings 

One of the main aspects of energy efficiency in residential and commercial 

buildings is based on the reduction of the heating energy demand (Rosenfeld, 1999). The 

“Fabric First” approach focuses on the external building envelope as a main and most 
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economical driver to reduce heat loss. The results of a recent survey based on information 

provided by 250 UK architectural practises highlighted that 70% of them forecast for year 

2016 a significate increase in advanced insulation products on their projects (RIBA, 

2015). There is a clear evidence that current building regulations are integrating improved 

energy efficient measures into the architectural design. 

Another recent report (Lepadatu, Bliuc, & Baran, 2010), published by the Royal 

Academy of Engineering (RAE), emphasised heat flow through the fabric, control of 

moisture, air movement, sun, light, acoustics, climate and biology as principal aspects for 

low carbon design and recommended further research in this topic. For the purpose of this 

research on timber frame walls, heat flow, moisture as heat transfer by water and airflow 

through the building fabric are considered as thermal performance variables. 

2.4.1 Fundamentals of heat transfer 

The first law of thermodynamics (conservation of energy) is the principle for heat 

transfer processes. In a closed system, the total energy in equilibrium, for an irreversible, 

reversible or quasistatic process, is the sum of the heat and work added to that system 

(Warner & Arpaci, 1968): 

∆𝐸𝑡𝑜𝑡 = 𝑄 + 𝑊       (2.1) 

 

Where: 
  

 

∆𝐸𝑡𝑜𝑡 is the change in internal energy  

𝑄 is the heat added to the system  

𝑊 is the work generated by the system  

 

The process of heat transfer can be defined as thermal energy in transit due to a 

physical temperature difference. This thermal energy in transit can occur in three different 

heat transfer modes (Figure 2-7) in a stationary medium generating a temperature gradient 

(conduction), between a surface and a moving fluid (convection) or as a consequence of 

electromagnetic waves containing energy generated by two surfaces at different 

temperature (radiation). 
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Figure 2-7 Heat transfer modes in a dwelling 

The most relevant heat transfer mode associated with Passivhaus buildings is the 

conduction mode. Heat transfer by convection is rather limited due to the insignificant 

temperature gradient difference inherent to this construction standard and the absence of 

interstitial or surface condensation (Schnieders & Hermelink, 2006). The Passivhaus 

standard includes a soft-criteria where temperature difference shall be lower than 2 ºC 

and where surface radiant temperatures shall be lower than 4.2 ºC in order to eliminate 

internal convection (Feist, 1996). 

Conduction is a transfer of energy resulting of the interaction from the more excited 

to the less excited particles that constitute matter like an object or a wall. As higher 

temperatures present more energetic molecules, the transfer of energy occurs in the 

direction of decreasing temperatures i.e. from the warm side to the cold side of an external 

wall. The equation for the heat transfer by conduction (Fourier´s law) is given as the 

amount of energy transferred by unit of time and for a one-dimensional plane is presented 

in Equation 2.2 

𝒒̈𝒙 =  −𝒌 
𝒅𝑻

𝒅𝒙
 (2.2) 

Where: 
   

𝑞̈𝑥 is the heat flux in W/m2  
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𝑘 is the thermal conductivity in W/m K  

𝑑𝑇

𝑑𝑥
 is the temperature gradient  

The minus sign is the mathematical representation of the heat transfer direction of 

decreasing temperature. In case of steady-state conditions where there is a linear 

temperature distribution, the gradient may be: 

𝒅𝑻

𝒅𝒙
=  

𝑻𝟐 − 𝑻𝟏

𝑳
 (2.3) 

As expressed in Fourier´s law (Equation 2.2), the thermal conductivity in a given 

direction-x, can also be described as: 

𝒌𝒙 =  − 𝒒̈𝒙  
𝒅𝒙

𝒅𝑻
 (2.4) 

Thus, for a defined temperature gradient, the conduction heat flux increases if the 

thermal conductivity also increases. Furthermore, for an isotropic material it is assumed 

to be: 

𝒌 =  𝒌𝒙 = 𝒌𝒚 = 𝒌𝒛 (2.5) 

A summary of the thermal conductivities, k, for various materials is provided in 

Figure 2-8. 

 

Figure 2-8 Thermal conductivity of different materials (Bergman et al., 2011) 
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2.4.2 Moisture transfer processes 

One of the main causes of deterioration for timber frame buildings is the continuing 

presence of moisture on the building envelope which can even cause the collapse of the 

structure (Meklin et al., 2003). An excessive condensation within the timber frame can 

corrode metalwork, trigger the growth of bacteria and mould and increase the risk of 

biological attacks by xylophagous (Kalamees & Vinha, 2003 Lamoulie et al., 2012). 

Moisture within a building can occur as interstitial or surface condensation (Figure 2-9). 

 
a) Interstitial condensation b) Surface condensation 

Figure 2-9 Interstitial and surface condensation (TRADA, 2012) 

Interstitial condensation occurs when vapour comes to contact with colder 

temperature conditions and within the structure reaching the dew point. This is 

particularly dangerous as it may cause wood decay within the timber structure if the water 

deposition is persistent and moisture content of the timber is greater than 20% for long 

periods of time (Dinwoodie, 2000). The presence of water also may corrode metal work 

within the structure. Lingering interstitial condensation also reduces the conductivity of 

most of the insulation materials causing dew point to appear in an earlier point within the 

structure. 

Alternatively, surface condensation occurs when internal warm and moist air 

contacts a cold inside surface that are at or below the dew point of that internal air. 

Usually, surface condensation appears like a patch or damp stain on internal surfaces. 

This can cause mould growth and material decay. For example, in order to avoid 

condensation on windows, the surface temperature must be greater than 12.6 ºC (Feist, 

1993). 
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Managing moisture transfer 

In terms of building physics, accumulation and transport of moisture for one and 

two-dimensional building assemblies occur in four different ways (Bergman et al., 2011): 

▪ Condensation as a function of the variable humidity of heat transferred by 

thermal conduction through different materials. 

▪ Transfer of latent heat caused by the different vapour diffusion of the wall´s 

build-up materials. 

▪ Accumulation of moisture due to the different vapour sorption curves of the 

timber frame materials. 

▪ Capillary moisture as a result of horizontal vapour surface diffusion or capillary 

vertical conduction. 

Condensation risk analysis 

One and two dimensional hygrothermal numerical models are widely used to 

accurately assess the moisture behaviour and condensation risk of different wall types 

and materials even when human interaction is considered (Kalamees & Vinha, 2003). 

In order to minimise condensation risk in a timber frame wall, for a constant indoor 

and outdoor climate, the design of the wall needs to be analysed and optimised. The 

different parameters affecting the moisture transfer ratio within a construction system are 

detailed in Table 2-8. 

Table 2-8 Factors that affect moisture transfer in timber frame walls 

Climate Components Properties 

Internal temperature Sequence of materials Vapour permeability 

Internal RH VCL membrane Thickness 

External air temperature Wind membrane Material density 

External RH Thermal bridges Conductivity 

 Ventilation  

 Insulation  
 

For the research presented in this thesis, the following parameters were 

investigated: 
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1. Position and material of the sheathing panel, 

2. thickness and material of the insulation between studs, 

3. overall vapour permeability of the timber frame wall construction. 

In terms of condensation risk assessment, some authors defined various levels of 

risk depending on building strategies such as moisture vapour buffering or mechanical air 

renovation rates (Liuzzi et al., 2013; Rosenau, 2009) and even when human interaction is 

considered (Lamoulie et al., 2012; Ferroukhi et al., 2014). However, in this thesis as 

energy efficient Passivhaus buildings must be provided with mechanical ventilation 

which is able to compensate for induced moisture, human interaction on the building is 

not considered therefore only a “No risk” condensation level is accepted in a design stage. 

For this condensation level definition, a clear identification of structural and non-

structural material is provided: 

▪ The overall humidity of the wall does not increase overtime. 

▪ Non-structural materials are kept below 23% relative humidity at all times. 

▪ Structural materials are kept below 20% relative humidity at all times. 

▪ Surface materials are kept below 20% relative humidity to avoid mould 

growth. 

2.4.3 Air permeability of buildings 

Air through the building envelope or through its components can leak from inside 

to outside (exfiltration) or more commonly from outside to inside (infiltration). This air 

leakage can be caused by: 

▪ Gaps in any construction joint. 

▪ Cracks around windows, doors, internal or external finishes. 

▪ Construction porosity like brick, blocks or permeable wooden panels. 

▪ Service penetrations like pipes, flues, ducts or wires. 

The first three points can be directly influenced by the construction systems and 

materials used in the building and by the assembly of these different components as part 

of the construction assembly (Erhorn & Lahmidi, 2009; Sandberg & Sikande, 2005). In 

addition, the air flow due to air infiltration creates a heat loss ventilation path which 
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reduces the transmittance value of the construction assemblies. Also, the mechanical 

ventilation system may not operate as designed due to this uncontrollable infiltration 

causing an increase in the heating demand of the building. 

The air permeability is a measured variable of the building fabric performance that 

takes into account the total air leakage through the envelope. This permeability, in m3/ 

(m2 h), is commonly used to determine the airtightness of the building under a reference 

pressure differential. Although this pressure can vary, airtightness value, for most of the 

standards, are related to an applied differential pressure across the building of 50 Pa (Pan, 

2010; Sinnott & Dyer, 2012). 

In the UK, the test procedure is defined by BS EN ISO 9972:2015 which has 

recently superseded BS EN 13829:2011. This methodology introduces a fan and a 

pressure-measuring device to determine the airflow passing through a given area (Figure 

2-10). 

 

Figure 2-10 Schematic layout of air permeability apparatus 

The most common apparatus is a blower door assembly with a variable speed motor 

to control air flow rates (Equation 2.6). 
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𝑸 = 𝑪 (∆𝑷)𝒏 (2.6) 

Where: 

  

 

𝑄 measured air flow in m3 / h 
 

𝐶 𝑎𝑛𝑑 𝑛 are constants related to tested building  

∆𝑃 is pressure difference 
 

 

Abundant studies can be found with air leakage test measurements for a variety of 

buildings (Fraisse et al., 2006; Stephen, 1998; Walther & Rosenthal, 2009). It is apparent 

from these studies that UK airtightness results are influenced by construction type, 

dwelling type, year of construction, type of house ventilation and on-site construction 

quality as suggested also by Korpi et al. (2004). 

In terms of a potential change of building airtightness during its service life, 

different studies concluded that after a period of time homes can either become leakier 

and less tight or may not change significantly (Antretter et al., 2007; Phillips et al., 1993). 

However, there are no evidence that any of these construction systems tested were closed 

timber frame panels. 

The required airtightness of the building envelope is achieved by installing a 

continuous layer made of materials with an adequate permeability such as cross-

laminated timber, wet plaster, in-situ concrete, wood based boards or building membranes 

(Bastian, 2014). 

An adequate air permeability Ka is limited between 0.001 and 0.002 m3 m-2 h-1Pa-1 

which has been suggested for a material to be considered as airtight layer on Passivhaus 

construction. These recommended values corresponds approximately with an equivalent 

air layer thickness Sd of 0.5 - 1.0 m respectively (Langmans et al., 2010). 

Construction gaps can be avoided by, for example, detailing tight interlocking 

connections with minimal tolerances between components and with a good 

implementation of these details both in factory and on-site. On the other hand, the 

appearance of cracks around openings and other high-stress concentration areas are 
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directly related to the serviceability performance of the structural system. This thesis 

considers these three factors in order to provide a robust construction detail for resilient 

low-energy timber frame buildings. 

2.5 Structural Requirements for Low-energy Buildings 

The structural design of low-energy and Passivhaus timber buildings shall consider 

design simplicity, thermal continuity and robust airtight details (Leskovar & Premrov, 

2012). Nonetheless, thermal bridge free design in timber buildings, although significant, 

it is not as critical as for steel or concrete buildings due to its intrinsic lower thermal 

conductivity (Kosny et al., 1997). 

Additionally, a timber frame wall shall provide a thermal resistance to the heat flow 

and also it should perform as an acoustic barrier for sound propagation. The previous 

section, thermal requirements for low-energy buildings, has highlighted the relevance of 

the thermal properties of the fabric within current Building Regulations and it has 

introduced timber frame closed panel as a feasible pre-fabricated construction system. 

However, the timber frame wall must also be structurally sound. This section describes 

the synergies and conflicts of closed timber frame wall panels for structural and thermal 

purposes. 

2.5.1 Open panel timber frame systems 

The first timber frame houses, known as longhouses (Figure 2-11a), were built by 

early European farmers between the years 4500 and 3000 BC. The lack of structural 

design and carpentry knowledge resulted in the longevity of theses constructions 

generally exceeding no more than twenty years. Other tribes evolved this method of 

construction to build either stronger or quicker houses. A lighter evolution of the 

longhouse houses was developed by The Celts after occupying Central Europe in 400 BC. 

These Celtic houses (Figure 2-11b) were all of similar width and length. 
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a) Neolithic longhouse b) Celtic house 

Figure 2-11 Reconstruction of ancient timber frame houses 

 

Regarding modern timber frame buildings, there are two predominant forms of 

construction: balloon frame and platform frame. Balloon frame systems present 

continuous studs over two or more stories with only one top and bottom rail (Figure 2-12 

a). The floor joists are supported by horizontal beams fixed internally to the studs. 

On the other side, a platform frame system is a storey-by-storey assembly process 

where the floor joists are supported directly on top of each floor rail (Figure 2-12 b). 

Balloon frame could be more indicative of medium-rise buildings, typically from 

three to six storey height, due to its better longitudinal structural stability (Cavanagh, 

1997). 

However, platform frame systems enable for a higher degree of prefabrication and 

standardisation (Kolb, 2008) which is in agreement with the subject of this research. 

In platform timber frame construction, the building designer or engineer, from the 

architectural layout, must consider a series of structural checks (TRADA, 2007): 

▪ Design of roof elements including common rafters, purlins, ceiling joists and 

its connectors. 

▪ Design of floor elements including main floor beams, secondary joists and 

columns from floors above or the roof structure and its connectors. 

▪ Design of wall elements including external wall studs, lintels, columns, 

façade materials and its connectors. 
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▪ Stability of the building including overturning, sliding effects and racking 

resistance of timber frame walls. 

  

a) Balloon frame b) Platform frame 

Figure 2-12 Balloon and Platform frame construction after Kolb (2008) 

The structural design of timber frame wall panels for low energy buildings is mostly 

governed by the racking resistance (Figure 2-13). This is the tendency of the frame to 

distort from a rectangular to a rhomboid shape under the action of an in-plane force. 

Although some literature suggest that the racking resistance of timber frame shear 

walls is governed by the behaviour of the sheathing to frame connection (Judd & Fonseca, 

2005; Pattonmallory et al., 1985; Sugiyama & Uchisako, 1991), the performance of the 

sole plate fixing detail may also have a significant impact on the global racking resistance 

of the wall frame (Girhammar & Kallsner, 2004; Leitch, 2013). 
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Figure 2-13 Platform timber frame design flow chart (TRADA, 2007) 
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These two arguments are considered here as the structural performance indicators 

amongst other structural analyses such as compression strength of a stud, bearing strength 

of wall panel or bottom rail and head plate strength (Porteous & Kermani, 2007). An 

example of a full timber frame wall design, as detailed in Table 2-9 and a detailed full 

timber frame calculation including these structural checks is given in the Appendix I. 

Subsequently, structural optimisation of prefabricated timber frame wall panels is 

focused on racking resistance and on the sole plate base fixing detail. 

Table 2-9 Structural design requirements for shear walls 

 Strength Stiffness 

Stud 
Axial compression 

Axial + Flexural 
Torsion 

0.005 l for Glulam or LVL 
0.003 l for solid timber 

Head binder 
Top/bottom runner 

Bending 
Bearing 

Shear 
l / 250 

Lintels 

Bending 
Bearing 

Shear 
Torsion 

l / 350 

Sole plate 
Bearing 

Uplift 
Slip < 0.4mm 

Stability 
Racking 

Overturning 
Sliding 

h / 250 

 

2.5.2 Closed timber frame panels 

Several commercial closed timber frame panels have been studied for low-energy 

buildings, some of them being even Passivhaus certified as the illustrated by Figure 2-14. 

However, there is no specific literature published on the combined structural and thermal 

behaviour of these advanced closed panel systems for very low energy buildings. 

On the other hand, there are a multitude of studies on open panel timber frame 

racking performance. Nonetheless, only one publication was found with timber frame 

panels for higher thermal performance. This Canadian study investigated a prefabricated 

timber frame wall system with an additional sheathing board in the centre of the wall (Ni 
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et al., 2007). The patented system called MidPly Wall presents a superior racking 

resistance due to the middle board connection acting on double shear but maintains the 

wall thickness to low values. 

 
 

Steico Bausystem Ecococon Straw Panels 

 
 

Knauf Warm Wand Systeme Cygnum Passive 350 

Figure 2-14 Passivhaus certified advanced timber frame systems from 

Passivhaus certified components database (www.passivehouse.com) 
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More recently, a study on the structural and thermal behaviour of timber-concrete 

prefabricated wall system was published but for mid-rise and tall buildings (Hein et al., 

2015). 

Furthermore, closed panel shear walls, contrary to open panel construction, must 

deal with a relatively complex connection system to the underneath construction 

(TRADA, 2013). This particular collection of connections is referred as the sole plate 

base fixing detail. On site access to the sole plate detail in prefabricated closed panel units 

is rather difficult. The solution to this problem is often found in the design of structurally 

convoluted sole plate geometry and the inclusion of additional shear planes (Menendez 

et al., 2013). 

Therefore, the sole plate design for closed timber frame wall panels presents a 

decrease of strength and stiffness in comparison with standard open panel construction. 

Additional design caution must be taken in order to comply with the minimum end and 

edge connection distances (Leitch, 2013). 

2.5.3 Other timber building systems 

In this sub-section, a brief critical literature review on different structural timber 

systems other than timber frame walls is presented. The vast majority of the research 

found is on open panel timber frames with very few studies on advanced timber frame 

closed panels, the area of this PhD research. However, some studies on racking resistance 

of different systems has been undertaken recently, mainly for massive Cross-Laminated 

Timber (X-LAM).  

Massive solid timber 

During the last decade, massive solid timber walls, and particularly X-LAM, have 

become a popular construction system for commercial and even mid-rise buildings (Hein, 

2014). Shear walls made of this EWP have been extensively tested in Europe with a great 

emphasis on seismic behaviour (Dujic et al., 2008). Similarly to timber frame shear walls, 

the anchorage connection has proven to be especially relevant to the global panel 

deflection for walls with and without openings. 
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Stiffness of X-LAM shear walls depends on the quality and homogenisation of the 

internal lamellas, hence a good degree of quality control in the manufacturing process is 

required (Steiger et al., 2012). Furthermore, excellent seismic behaviour has been shown 

by X-LAM structures also in full-scale buildings (Ceccotti et al., 2013). Experimental 

results have been compared with numerical Finite Element Analysis (FEA) models which 

have been used in the publication of a design provision for seismic design (Parida et al., 

2013). 

SIP Panel and other timber systems 

Structural Insulated Panels (SIPs) are an alternative construction system (Figure 

2-15a) for residential and commercial buildings where insulation and wooden boards, 

most commonly Oriented Stranded Board (OSB), act as a composite element for 

structural purposes (Kermani, 2006). Beside timber frame construction, Glulam portal 

frames sheathed with plywood (Figure 2-15b) were also tested to understand and predict 

the behaviour of this timber system when larger open areas are required (Komatsu, 2004). 

Although the thermal performance of this systems can be considered satisfactory 

for low-energy buildings (Krarti et al., 2007; McCullom et al., 2010), other concerns on 

embodied carbon and long-term energy performance were raised (Pierquet et al., 1998). 

 
 

a) SIP Panel b) Glulam portal frame 

Figure 2-15 Other timber structural systems 
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Regardless of the type of system and material, any structure has to provide 

resistance to vertical and horizontal loads in order to maintain its structural integrity. A 

literature review of these actions on timber frame walls is given in the next section. 

2.5.4 Actions on the structure 

By definition, a shear wall is a structural system that transfers lateral load, acting 

on the building, to the foundation by diaphragm action (Figure 2-16). The most common 

lateral loads applied are wind and seismic forces. Other lateral loads such as fluid or earth 

pressures are seldom on timber structures. 

The interaction between the loading and the material properties of the timber 

building must be understood. Depending on the type of load on the wall panel tested, two 

loading schedules are commonly performed: monotonic static and cyclic dynamic. 

The first test method measures the Ultimate Limit State (ULS) resistance of the wall 

and the vertical and horizontal deformations under constant pressure and can be 

approximated to standard wind forces. 

 

Figure 2-16 Diaphragm action in a shear wall before and during wind load. 

The second test method is commonly undertaken for structures subjected to seismic 

or high wind loads on tall buildings. This is not common in timber structures in the UK 

and therefore it is excluded on this research. 
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Vertical or gravity loads 

Permanent vertical actions contribute to the resultant equilibrium from destabilising 

lateral forces and therefore these need to be considered for shear wall design. For 

example, anchorage systems does not have much influence on racking resistance when 

high levels of gravity load occurs (Dujic & Zarnic, 2002). Similarly to this conclusion, 

Ni and Karacabeyli (2005) stated that holding down devices may not be required when 

considering large dead loads (i.e. considering all the dead loads and returning walls of 

dwellings with more than two stories and heavy roofing). Nevertheless, wind uplift was 

not considered in that study published in Canada. 

No influence of additional vertical gravity load on fully restrained walls was 

observed in an experiment with more than 40 tests, under combined lateral and vertical 

loads and under static and cyclic load protocols (Payeur et al., 2011). However, one of 

the outcomes of the study stated that lateral resistance of shear walls could not be solely 

reliant on vertical loads. 

Wind loads 

Prior to the assessment of the racking performance of a shear wall, a good 

estimation of the wind load on the structure must be produced. In the UK, Eurocode 1 

part 4 (BSI, 2010) provides the design provisions for wind load for low and medium rise 

buildings. 

Load duration has to be considered for timber structures as the strength properties 

of wood decreases the longer the duration of the acting load is. Eurocode 5 describes wind 

load as “instantaneous load duration” which can provide the design of the shear wall, 

depending on the wood material, even with a favourable factor, i.e. kmod greater than 1.0 

(Porteous & Kermani, 2005). 

2.5.5 Structural concerns on current building design 

Architectural modern designs take into account the need of the building to adapt to 

future floor plan configurations. Frequently, this results in even customer-oriented design 

layouts with large internal open areas and few partition walls (Stehn & Bergström, 2002). 
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Contemporary buildings are also defined by other design features from solar passive 

architecture such as large south-facing glazing areas and compact building shapes (Smeds 

& Wall, 2007). 

However, these architectural features can result in a design with insufficient lateral 

stability or bracing (Leskovar & Premrov, 2012). A study on structural failures in 157 

timber buildings conducted by Frühwald (2011) concluded that half of these structural 

failures were due to design errors and mostly due to instability issues.  

Modern building construction requires economy, efficiency and speed of erection 

which can be delivered by panelised wall products (Lindow & Jasinski, 2003). 

Nevertheless, prefabricated construction requires a high level of detailing which not 

always is produced causing difficulties in the execution phase (Paterson, 2013). A 

common example of this issue can be found on the sole plate base fixing detail for timber 

frame construction. 

Furthermore, concerns on lateral stability of light-weight low rise timber frame 

buildings have been reported due to openings (Doudak et al., 2006) and to prefabrication 

(Toro et al., 2007). A similar conclusion on lateral bracing, but for open panels, was 

previously published by Liu et al. (1990). In that study, the authors state that structural 

failure can occur also at roof and top wall level and the connection between these two 

systems should be detailed to avoid uplift. 

Timber frame buildings are highly indeterminate structures with a high capacity to 

redistribute lateral and gravity forces. The design of this complex and redundant system 

may either be over-estimated or under-estimated (Kasal et al., 2004). Hence, the designer 

must assume a correct method to transfer the lateral forces to the substrate. For low and 

mid-rise timber buildings, shear walls are the predominant structural system to provide 

lateral bracing and gravity resistance (Vessby, 2008). As a result, structural optimisation 

can be achieved by accurately predicting the performance of the system and the load 

transfer paths within the structure (Mi et al., 2004). 

As mentioned previously, large openings have indeed a significant impact on the 

strength and stiffness performance of shear walls. 3-Dimensional modelling 
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investigations undertaken by He, Lam, & Foschi (2001) on regular timber frame cubes 

and with one side presenting a large opening (75% of wall area) concluded that global 

shear capacity of the structure was reduced by almost 50%. In the same study, the 

torsional moment generated on the model caused nine significant different deformations 

at each of the top corners. Other studies have also noted the occurrence of shear torsional 

moments on buildings with asymmetric distribution of shear wall stiffness (Ellis & 

Bougard, 2001 Smith, 1979). 

Timber frame wall assemblies formed by multiple wall panels, very common in 

prefabricated construction, require a vertical connection between two adjacent panels in 

order to transfer shear forces along the abutted studs (B. Kallsner & Lam, 1995). This 

design shear strength between panels is set by Eurocode 5 (BSI, 2009) to be at least 2.5 

kN/m which is on reasonable agreement with other studies (Girhammar & Kallsner, 2009; 

Morsefortier, 1995; Vessby, 2011). 

Although the latest developments of new engineered wood products such as X-

LAM or hybrid LVL elements are initiating the construction of relatively high-rise timber 

buildings (Hein, 2014; Walford, 2006), timber frame systems are still predominately used 

in low-rise buildings i.e. three or less stories where research is abundant (Larsen & 

Munch-Andersen, 2011). 

Consequently, the scope of this research and the literature review provided in 

section 4.2 focuses on timber frame systems only. 

2.6 Concluding Comments 

This chapter has shown different parameters to consider when designing low-

energy buildings. From the high-level and the critical literature reviewed, it can be 

concluded that thermal and structural performance are key factors to deliver robust low-

energy timber frame building solutions. The minimum energy performance has 

increasingly been updated in recent Building Regulations. Furthermore, special attention 

was given to building fabric, in terms of thermal transmittance and in terms of 

airtightness. Similarly, extremely high energy efficient standards, such as Passivhaus are 

currently being adopted to comply with future building requirements. 
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In order to mitigate the imbalance between housing demand and number of homes 

built, the UK government has encouraged the introduction of Modern Methods of 

Construction (Barker, 2004). Timber frame closed panel systems are a suitable 

technology for affordable housing. However, the level of confidence in using advanced 

timber frame systems is reduced depending upon the level of prefabrication where further 

research is required (WRAP, 2007). 

A need for thermal performance research on timber frame walls and for low-energy 

building design was identified in the literature review. Energy transfer in a wall frame 

occurs mainly by conduction from the warm side to the cold side according to Fourier´s 

Law. Managing the moisture transfer ensures a construction free of condensation risk. 

Thermal performance can be predicted by 1-D and 2-D numerical models which must 

satisfy with the relevant standards (EN ISO 9972). 

The airtightness of a low-energy building also needs to be higher to comply with 

Passivhaus standard. Construction type and on-site quality procedures were found to be 

influential on airtightness. However, no publications were found on airtightness durability 

for advanced closed timber frame systems. This thesis considers robust construction 

details to provide timber frame buildings for durability and resilience. 

The tendency of the timber frame to distort in-plane, also known as racking, is the 

mechanism to resist lateral loads. For low-energy low-rise buildings, racking frequently 

governs the structural design. The sole plate connection also significantly impacts on the 

global racking resistance of a timber frame wall. A research gap on racking and sole plate 

resistance for closed timber frame systems has been identified. This thesis attempts to add 

information on this shear wall topic. 

No timber frame construction details have been standardised for conformity with 

regards future regulatory requirements. This research will therefore seek to provide a 

compilation of informative data sheets containing thermal and structural details for 

advanced timber frame panelised systems. The energy efficient Passivhaus standard has 

been selected as a criterion for minimum thermal performance requirements. 
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The high-level literature review provided in this chapter has identified the 

Passivhaus standard as a valid construction method to comply with future UK regulations 

and also has identified closed timber frame panel systems as a construction technology to 

deliver affordable housing. Moreover, no publications have been found that investigated 

structural and thermal performance in combination for closed timber frame panels. 

Furthermore, questions have been raised about the contribution of sole plate base fixing 

details on the racking performance of timber frame walls which may have also and impact 

on long term thermal behaviour. 

As a conclusion, this chapter has found a knowledge gap for further research on 

closed timber frame panels and for future building regulations which is investigated in 

the next chapters. 
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3 THERMAL PERFORMANCE OF 

TIMBER FRAME WALLS 

Thermal performance characteristics of timber frame wall panels are presented in 

this chapter. A background to thermal performance introduces the materials, processes 

and analyses to be considered in the research. A concise literature review on this topic, 

complementing that presented in Chapter 2, is also provided. 

The next section identifies three different timber frame wall panel configurations 

for further thermal performance investigation: a standard timber frame as a benchmark 

scenario, and two commercial advanced closed panel timber frames. The purpose of this 

exercise is to understand the thermal implications of available closed timber frame panel 

systems in relation to traditional open timber frame construction. 

The Thermal resistance of the three timber frame build-ups combined with two 

different sheeting materials are calculated by analytical and numerical methods. Also, a 

timber fraction value for advanced timber frame panels is proposed based on the study of 

four different house types built. The thermal performance investigations conclude with a 

thermal bridge simulation analysis for two different sole plate details. The last section 

investigates the hygrothermal characteristic of the wall assemblies in three different 

climate zones in order to classify the build-ups as condensation-free. 

The organisation of the chapter is illustrated by Figure 3-1. 
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Figure 3-1 Organisation of the Chapter 3. 
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3.1 Background to Thermal Performance 

One of the first measure to achieve a good level of thermal efficiency in any kind 

of building is insulation. Insulation in the walls, in the floors or in the roof. All over the 

world, in order to improve building energy performance, building regulations are seeking 

to reduce the maximum allowable U-values, heat transmittance measured in W/m2 K. For 

this reason, the U-value limit for wall panels considered in this thesis was 0.15 W/m2 K 

as the maximum value recommended by the benchmark criteria, the Passivhaus standard 

(Feist, 1996). This standard is seen as a strategy reference for energy efficiency. However, 

it does not consider other issues like life cycle assessment (LCA) or environmental 

credentials (Dequaire, 2012) where timber frame construction can perform well. 

External timber frame walls can offer a significant level of insulation with relatively 

slender wall thickness when compared to other construction types such as brick and block, 

steel framing, cross-laminated timber, rammed earth or even insulated concrete 

formwork. Only SIPs panels can provide the same level of thermal resistance in thinner 

wall structures. Nevertheless, the long-term durability of the insulation foamed in SIPs 

panels has been shown to be less than that of other materials (Pierquet et al., 1998). 

It is important to highlight that thicker walls not only require more materials to 

fabricate but they can reduce the useable floor area of a dwelling on a fixed footprint 

which can consequently increase the building cost per square metre. In terms of off-site 

manufacturing, thicker walls frequently cost more to fabricate and the factory layout may 

require more fabrication space and/or more expensive and powerful equipment. 

There are many different types of insulation utilised within a timber frame 

construction including: rigid batts, flexible blankets or rolls, blown-in or loose-filled with 

flakes or granules or sprayed foam directly (Table 3-1). Also, in order to deliver even a 

better thermal U-values, additional insulation can be added on the internal and/or external 

side of the wall by rigid insulation or flexible insulation supported by a sub-structure i.e. 

service cavity. 
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An additional method to improve the global thermal resistance of the building 

envelope is to use reflective insulation or membranes facing an air cavity (Belusko et al., 

2011). 

Table 3-1 Types of insulation materials. Table adapted from Pfundstein et al. 

(2008) 

Type Material 
Conductivity 

λ / k (mW/m K) 
Density 

δ (kg/m3) 

Blanket or roll 

Fibreglass 
Rock wool 
Wood fibre 
Cotton wool 
Aerogel 

32-45 
35-45 
36-45 
40-50 
17-21 

20-200 
35-150 
30-270 
20-60 
60-80 

Rigid 

Expanded Polystyrene (EPS) 
Extruded Polystyrene (XPS) 
Polyurethane (PUR) 
Polyisocyanurate (PIR) 
Wood fibre 
Mineral fibre 
Compressed straw panel 
Cork boards 
Vacuum Insulated Panel 
Foamed glass 

30-35 
29-39 
22-30 
23-30 
38-45 
32-45 
40-70 
40-70 
5-15 

60-90 

15-30 
25-45 

30-100 
30-100 

110-300 
30-200 
70-140 
90-220 

150-300 
120-230 

Blown-in 

Cellulose 
Fibreglass 
Vermiculite 
Cork 
EPS pearls 

40-45 
35-38 
46-65 
40-60 
32-45 

30-80 
20-50 

70-160 
60-100 
15-30 

Sprayed & foamed-in 

Wet-spray cellulose 
Fibreglass 
Icynene 
Polyurethane 
Phenolic foam 

40-50 
38-45 
38-44 
25-40 
22-40 

50 
10 
30 
30 
40 

 

The theoretical thermal resistance of the building envelope may be negatively 

influenced by poor workmanship both off-site and on-site. Thermal by-pass or air moving 

inside the insulation layer, i.e. creation of air spaces and cracks around the insulation, will 

degrade the U-value to a certain degree depending on where these gaps are found 

(Bankvall, 1987). Reduction of thermal performance for insulated walls with 10 mm and 

3 mm air gaps at top and bottom was reported as 193% and 158% respectively by 

Lecompte (1990). 

The thermal transmittance of timber frame walls is also influenced by its timber 

fraction and by any thermal bridges associated with junction detailing. These two factors 
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are particularly relevant on highly insulated walls where bad design or fabrication can 

make a timber frame perform as poorly as some steel frame designs particularly in busy 

framing areas (Kosny et al., 1997b). 

Airtightness is another parameter associated with thermal performance and where 

maximum allowable values for air permeability, q50, are specified in the building 

regulations. In Passivhaus buildings, the infiltration losses are more restrained with an air 

change rate, n50, value of lower than 0.6 h-1 required. Hence, the building must be 

ventilated mechanically in order to provide fresh air to the occupants and to remove 

odours, pollutants, moisture and stale air from inside the airtight building. Furthermore, 

any airtight layer forming part of the construction detailing, regardless its material, must 

be durable and satisfactory over time (Erhorn-Kluttig et al., 2009). There is a scarcity of 

literature on the longevity of airtight layers for low-energy buildings and the conclusions 

of these few studies are indeed contradictory. 

A comprehensive literature review on the parameters influencing the thermal 

performance of timber frame systems (TFS) for low-energy building design is given in 

the next section. 

3.2 TFS Thermal Performance Literature Review 

In section 2.4, Thermal Requirements for Low-energy Buildings, an overarching 

literature review was presented with the basis of heat and moisture transfer processes and 

air permeability of buildings. In this section, a further critical investigation of research 

published on thermal resistance, timber fraction, thermal bridges, airtightness and 

condensation is given from a low-energy building context. 

3.2.1 Thermal transmittance U-value of walls 

Once the building geometry and design has been established, the next step is to 

determine precisely the building envelope build-up and the insulation type and thickness. 

This includes floor, wall, and roof elements and other boundaries to unheated rooms. The 

objective is to have a first approach to the optimum U-Value in order to satisfy the 

maximum allowable or the required heating demand. 



Chapter 3: Thermal Performance of Timber Frame Walls 

 

J. M. Menendez - October 2017   51 

 

The thermal transmittance can be determined under steady state or transient 

condition. Steady state condition is achieved when the temperature is independent of time 

at each point of the body and this is frequently considered in one-dimensional or two-

dimensional coordinate systems. Transient or unsteady state conditions occur when heat 

transfer is variable driven and time-dependent. This normally occurs when the boundary 

conditions change i.e. the surface temperatures are altered. 

A further mathematical analysis from the Fourier´s law described in section 2.4.1, 

Fundamentals of heat transfer, to determine heat transfer for different conditions and 

given in the following equations: 

   

 𝑄̇  =   𝑄 (𝑥, 𝑦, 𝑧) (3.1) 

 
𝑄𝑐𝑜𝑛𝑑
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 𝜕2𝑇

𝜕2𝑥
 =   0 (3.3) 

 𝜕2𝑇

𝜕2𝑥
+  

𝜕2𝑇

𝜕2𝑦
=   0 (3.4) 

 𝜕2𝑇

𝜕2𝑥
+  

𝜕2𝑇

𝜕2𝑦
+  

𝜕2𝑇

𝜕2𝑧
=   0 (3.5) 

 𝜕2𝑇

𝜕2𝑥
+  

𝜕2𝑇

𝜕2𝑦
+  

𝜕2𝑇

𝜕2𝑧
+  

𝑒̇𝑔𝑒𝑛

𝑘
=   0 (3.6) 

 𝛼

𝜌 𝐶𝑝
(

𝜕2𝑇

𝜕2𝑥
+  

𝜕2𝑇

𝜕2𝑦
+  

𝜕2𝑇

𝜕2𝑧
+ 

𝑒̇𝑔𝑒𝑛

𝑘
) +

𝑄̇

𝜌 𝐶𝑝
=   

𝜕𝑇

𝜕𝑡
 (3.7) 

Where: 

  

 

𝑄̇ is the energy transfer for x, y and z planes, in J  

𝑘 is the thermal conductivity, in W / m K  
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𝜕𝑇

𝜕𝑥
 is the temperature gradient in x plane   

𝑒̇𝑔𝑒𝑛 Is the internal thermal energy generated, in J / kg  

𝛼

𝜌 𝐶𝑝 
 is the energy released per unit energy required to raise the 

temperature of a unit volume of a body by one degree 
 

𝑒̇𝑔𝑒𝑛 is the internal thermal energy generated, in J / kg  

Equation 3.1 express energy transfer as a heat conduction vector working in a 

coordinate system. The heat is conducted in the direction of decreasing temperature as 

indicated in equation 3.2. Equations 3.3, 3.4 and 3.5 describes in one, two and three-

dimensions respectively the steady state conditions. When heat is generated inside the 

body, equation 3.6 applies. Finally, equation 3.7 expresses heat conduction for transient 

conduction and internal heat generation. 

An equivalent thermal series circuit analogy is frequently used to determined one-

dimensional heat transfer in composite walls. In Figure 3-2 is represented a wall 

composed of two external layers and a middle layer with better thermal conductivity (i.e. 

SIP panel). A thermal resistance Ts,1 and Ts,4 for convection and surface radiation is added. 

This is the basis for the overall heat transfer U-value analytical coefficient for 

homogeneous building elements and in accordance with the standard ISO-6946 (2007) 

where each layer of a building component presents a thermal resistance determined by 

the thickness and the thermal conductivity of the material (Equation 3.8). 

  

𝑈 =  
1

∑ 𝑅𝑖 +  𝑅𝑠𝑖,𝑠𝑒
 =  

1

𝑅𝑠𝑖 +  
𝑑1

𝑘1
+

𝑑2

𝑘2
… +  

𝑑𝑖

𝑘𝑖
+ 𝑅𝑠𝑒  

 
(3.8) 

Where: 

  

 

𝑈 is the thermal transmittance in W/m2K  

𝑅𝑖 the material, i thermal resistance in m2K / W  

𝑅𝑠𝑖,𝑠𝑒 the internal and external thermal resistance in m2K / W  
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𝑑𝑖 the material, i thickness in m  

𝑘𝑖  the material, i thermal conductivity in W/m K  

 

Figure 3-2 Equivalent thermal series circuit analogy for homogeneous walls. 

Adapted from Bergman et al. (2011) 

On the other hand, the thermal resistance for inhomogeneous walls, i.e. timber 

frame panels, cannot be determined with one-dimensional analysis. In these systems, the 

heat flow is now multi-dimensional where an equivalent thermal series-parallel circuit 

analogy can be used (Figure 3-3). 

However, for this analogy,  the heat flow can reasonable be assumed as one-

directional (Bergman et al., 2011). Multi-dimensional effects are significant if the 

incremental difference between the conductivity of the materials, kF – kG, are a factor of 

five or bigger (Anderson, 2006; Feist et al., 2007). In that case, two-dimensional heat 

flow calculations are required. For the analytical U-value calculation considering only 

one-dimension heat transfer (Equation 3.9), two estimates are determined: 

  

𝑈 =  
1

𝑅𝑇
=  

1

𝑅´𝑇 + 𝑅´´𝑇

2

 
(3.9) 

Outdoor 

𝑇∞1, ℎ1 

 Indoor 

𝑇∞4, ℎ4 
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▪ Lower estimate R´T when surfaces normal to the x-direction are considered 

isothermal, temperatures remain constant (Figure 3-3 a). 

▪ Upper estimate R´´T when surfaces parallel to the x-direction are considered 

adiabatic, no heat transfer (Figure 3-3 b). 

 

    

a) Isothermal surface on y-axis. 

Change with constant temperature 

b) Adiabatic surfaces on x-direction. 

Here heat does not enter or leave the body 

Figure 3-3 Equivalent thermal series-parallel circuit analogy for a timber 

frame wall. Adapted from Bergman et al. (2011) 

Optimised results from the analytical expression to determine the heat transfer of 

inhomogeneous walls are directly influenced by the timber fraction. This is the amount 

of timber presented in a wall and placed in the insulation layer without any insulated 

thermal break. Commonly, this ratio is seldom calculated on a project-specific basis and 

standard values from literature are often used. As shown in Figure 3-3, this is the ratio 

between the Area F and the Area G.  

The results from experimental research carried out in hot boxes, a calibrated air-

conditioned series of chambers, have shown that steady state heat convection through a 

vertical porous medium are in good agreement with the analytical methodology presented 

by Langmans et al. (2012). However, two-dimensional transient state simulations may be 

required to analyse the effectiveness of timber walls for example in renovation projects 

when they may be affected by rising moisture condensation (Holm & Kunzel, 2003). 

3.2.2 Timber fraction 

A widely used 15% timber fraction default value for standard timber frame 38 mm 

studs at 600 mm centres, i.e. from the centre of the stud to the centre of the stud, with 
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noggins (horizontal bracing pieces) and double top plate is used, or 12.5% if the standard 

wall has one single top rail (upper frame timber) with no intermediate noggins instead 

(Anderson, 2006; DCLG, 2007). Figure 3-4 represents in red the amount of timber 

commonly accountable for the wall panel timber fraction for an imperforated and 

perforated wall. 

 

Figure 3-4 Timber accountable for timber fraction 

A high timber fraction value is a consequence of a greater amount of wood in the 

wall panel due to, for example, point loads or openings in the wall panel with no insulation 

behind the additional wood (as shown on the right image in Figure 3-4). As a result of 

this larger timber fraction, the actual thermal transmittance of the wall is greater but with 

a linear thermal bridge higher than predicted in the energy model. 

The significance of, higher than predicted, timber fraction values on the overall wall 

thermal performance has been published (Bell & Overend, 2001; Emmitt & Gorse, 2013) 
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but not for energy efficient timber frame closed panels. Another study was carried out in 

Canada by Qasass et al. (2014) but no information was given on the stud spacing used in 

the research. Furthermore, Luxton (2014) concluded that in 20 timber frame houses 

studied, many of them presented a much higher than predicted timber fraction value and 

claimed this underestimated value as a contribution to the ´performance gap´ problem in 

the UK for timber frame houses. 

On the other hand, Friedman & Cammalleri (1996) suggested that the common 

default Canadian timber fraction of 14% could easily be improved to just 9.4%. However, 

the definition of timber fraction in these studies are not clear for low-energy buildings 

where thermal bridges in the timber frame may be also accountable as shown later in 

Figure 3-27. 

In the case of a wall panel with window openings, the additional timber surrounding 

the opening and added to the frame to facilitate its installation, is considered as well as a 

thermal bridge window installation, φinst (Schild & Blom, 2010). 

The British Research Establishment (BRE) document 443, Conventions for U-value 

calculations, states that all timber that presents insulation behind the stud or lintel, if 

placed away from the window and in all of the remainder section may not be accountable 

for the timber fraction (Anderson, 2006). This agrees with the principle of continuous 

insulation to avoid thermal bridges but no further information has been found advising 

how thick this insulation layer should be.  

Furthermore, a triple stud resulting from an applied point load as shown in Figure 

3-4 (arrow pointing downwards), can be considered either as a timber fraction on that 

particular panel or as independent linear thermal bridge (Feist et al., 2007). 

3.2.3 Critical thermal bridges 

A thermal bridge can be defined as a part of the building envelope where the heat 

flow density at that point, and typically perpendicular to the surface area, increases or 

decreases. In that particular point, the temperature-specific heat loss is raised exceeding 

the corresponded value of the equivalent surface area multiplied by the transmittance of 

the envelope. The additional heat loss is the effect of the thermal bridge. There may be 
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cases of good detailing where the timber bridge effect is negative resulting in the actual 

heat loss being smaller than the U-value of the corresponding building envelope. 

Two different types of thermal bridges are frequently found in low-energy 

buildings: construction and geometric thermal bridges (Larbi, 2005). Construction 

thermal bridges (Figure 3-5a). are found when the insulation layer is partially or totally 

penetrated by a material with higher conductivity. 

This thermal bridge can be linear (ψ-psi-value) or point (χ – chi-value). Examples 

of these types can respectively be timber studs within a timber frame wall or fixings for 

an external thermal insulation composite system (ETICS) façade. 

 
 

a) Concrete joist on a roof. 

Mould growing as a consequence of linear 
thermal bridge 

b) building envelope junction sho 
Heat flux path in external corner 

Figure 3-5 Construction (left) and geometrical (right) thermal bridges 

Geometrical thermal bridges occur when the thickness or the material of the 

insulation layer changes (Figure 3-5b). This is relevant when the bridge is on exposed 

surfaces. The thermal bridges present a greater impact when insulation levels in the 

envelope are particularly high. 

The effects of cold thermal bridges on the global heat losses for a building can be 

significantly high. Also, due to design and structural constraints, thermal bridges may be 

complicated to avoid resulting on additional cost to the project (Kosny et al., 1997a). 

Conversely, thermal-bridge free detailing is needed not only for project economy 

(Schnieders & Hermelink, 2006) but for structural safety as the risk of pathologies related 

to moisture issues are minimised (Hens, 2012). 
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In Passivhaus design, linear thermal bridge free design is considered if Equation 

3.10 is fulfilled (Feist, 1993). 

  

𝜓𝑎 ≤ 0.01
𝑊

𝑚  𝐾
 

(3.10) 

 

Where: 

  

 

𝜓𝑎  is the maximum linear thermal bridge in W/m K  

Thermal bridge calculations due to interconnectivity between different building 

structural elements is commonly analysed by two-dimensional software (Pfluger, 2005). 

In order to minimise the thermal effect of the load bearing element within the building, 

new engineering wood products are constantly being redeveloped (Tuomi, 1987). 

Point thermal bridges describe the effect of penetrations on the insulation layer such 

as metalwork fixings on the timber sole plate. Significant point thermal bridges are less 

common than linear thermal bridges therefore, it is recommended to reduce linear 

penetrations to only the structurally necessary point penetration (Hopfe & McLeod, 

2015). 

In Passivhaus design, point thermal bridge free design is considered (Feist, 1993) 

when Equation 3.11 is fulfilled. 

∆𝑈𝑇𝐵  =   
∑ 𝜒

𝐴
≤ 0.01

𝑊

𝑚2  𝐾
                                                                (3.11) 

 

Where: 

   

∑ 𝜒

𝐴
 

is the maximum summation of all of the point thermal bridges 

divided by its area in W/m K 
 

A study carried out by Feist (2006) provided a summary of linear thermal bridge 

for both standard construction practice (from 1990s) and Passivhaus thermal bridge free 

construction. The conclusions shown in Figure 3-6 highlights the connection between the 
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foundations and the wall as the most critical for heat losses hence. This research examines 

the significance of the sole plate connection for thermal bridging optimisation. 

There are few thermal bridge-free details published in the literature. Accredited 

construction details have been published in Scotland (SBSA, 2009) and England and 

Wales (DCLG, 2007) but with declared Psi-values largely exceeding 0.01 W/m K. Pitts 

and Lancashire (2011) describes some high-performance external timber frame walls but 

it does not provide any robust sole plate connection detail. 

 

Figure 3-6 Typical thermal bridge values, in W/m K, for standard and 

Passivhaus construction (Feist, 2006) 

On the other hand, Pokorny et al. (2009) suggest a series of different external wall 

to foundation connections with calculated thermal bridge values less than 0.01 W/m K 

and recognised by the Passivhaus Institut as thermal bridge-free connections (Figure 3-7). 

However, these connection details do not provide any structural information. 

Additionally, modifications on those details may be needed for practical construction. 

Another descriptive guide for designing energy efficient timber building envelopes 

was published in Canada (Finch et al., 2013). The comprehensive library of timber frame 

build-ups and connections, although well illustrated, does not provide any quantitative 

values for thermal nor structural performance. 
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Internally exposed CLT wall with external 
flexible insulation and rainscreeen facade. 
Slab on grade foundation with rigid 
insulation underneath. 
 OSB plate 

Dual box beam wall with insulated 
service cavity and rainscreen façade. 
Slab on grade foundation with rigid 
insulation underneath 
 OSB plate 

  

Insulated timber frame wall with insulated 
service cavity and ETICS façade. 
Slab on grade foundation insulated on the 
upper side. 

Insulated I-joist timber frame with 
insulated service cavity and 
rainscreen façade. 
Slab on grade foundation insulated on 
the upper side. 

 Fibre cement plate 

Figure 3-7 Example of thermal bridge free sole plate connections and 

relevance to airtightness detailing (Pokorny et al., 2009) 
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3.2.4 Airtightness 

The heat loss improvement on the overall thermal performance that airtight 

construction offers is commonly not perceived. Contrary to this point of view, Doebber 

& Ellis (2005) state that airtightness is more influential than insulation continuity or 

thermal mass. Moreover, improvements on the thermal resistance of building envelopes 

can be counterproductive if inadequate levels of airtightness are in place due to potential 

moisture-related problems on the interface (Leardini & Van Raamsdonk, 2010). 

It has been stated by Asiz (2008) that the butt joint between adjacent shear wall 

panels showed excessive air leakage in the form of infiltration or exfiltration (depending 

on pressure differentials), thus causing an important source of heat loss within the 

building fabric. In that study, a 1D-2D FEA analysis was able to predict with good 

agreement the thermal performance of a timber wall assembly if the panel-to-panel 

connection was perfectly sealed. 

Geissler (2001) studied the airtightness of 87 timber frame buildings in Germany 

where only 5% of them presented an adequate level of airtightness in order to install a 

Mechanical Ventilation with Heat Recovery (MVHR) system. In his study, the average 

air leakage measured of the old buildings were higher, up to 4 times on average for 

buildings over 15 years old, than newly built houses. 

A study undertaken by Molin et al. (2011) indicated that the airtight layer of a low 

energy house showed signs of damage on the plastic membrane probably caused by the 

tenants and by the kitchen fan. In a similar approach, a research project studied the 

airtightness of 31 Passivhaus dwellings after project completion and two years after that 

date (Reiss, 2003). 

The study concluded that 20 out of the 31 houses showed a certain degree of 

airtightness degradation and 9 out of 31 houses had a 50% greater air change rate. Indeed, 

four dwellings presented an airtightness value greater than the maximum allowable by 

the Passivhaus standard (0.6 ach). 

Another similar study carried out more recently on 25 Minergie-P standard low-

energy dwellings (Bossard & Menti, 2013) concluded that 12 out of 25 buildings 
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presented a worse airtightness after a period of time but only four out of 25 houses had a 

50 % air changes more per hour and this was attributed to a defected window installation. 

Figure 3-8 and Figure 3-9 represent the variation on airtightness data for these two studies. 

 

Figure 3-8 Building airtightness test results for 56 dwellings after Bossard & 

Menti (2013) Reiss & Erhorn (2003). Red line shows Passivhaus criteria. 
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Figure 3-9 Airtightness difference from first and second test for 56 dwellings 

after Bossard & Menti (2013) Reiss & Erhorn (2003). Red line shows no variation. 
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The controversy about the results for the integrity of airtightness in energy efficient 

buildings over time should be explored in future work with contribution also for closed 

timber frame panel systems. 

3.2.5 Moisture assessment 

When designing any type of structure, the risk of any type of interstitial 

condensation and mould growth must be assessed. There are several methods for 

interstitial condensation risk analysis but the most extensively used is the “Glaser 

method”. This mathematical method assesses the amount of interstitial condensation that 

can be stored over the coldest month of the year and the amount of water that is able to 

evaporate in a cold summer. 

If the amount of water generated during winter is lower than the evaporation limit 

in summer, no condensation risk is considered (ISO-13788, 2012). This method can only 

be applied in assemblies where steady state conditions are met such as standard light 

weight timber frame (Ojanen & Kumaran, 1996).  

However, transient-state condition models with moisture load issues such as 

construction moisture, driven rain, rising damp or summer condensation cannot be 

determined using the standard steady-state Glaser calculations (Künzel, 2000). 

For these cases, numerical simulation software like WUFI© or Delphin can be used 

to simulate the transient moisture transfer generated (DIN-4108-3, 2014). Although this 

method is not reliable for internally highly-insulated buildings, with high sorptive 

properties, this practice is not recommended on new low-energy buildings where 

insulation is preferable to be placed on the external side of the wall (Kalamees & Vinha, 

2003). 

Additionally, these software packages allow for the transient assessment of the 

mould growth risk on the surface of several building materials according to the Viitanen 

Mould Index (VMI) methodology  (Viitanen & Ojanen, 2007) and further described in 

Table 3-2. 
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Table 3-2 Viitanen Mould Index 

Mould index Growth Description 

0 
1 
2 
3 
4 
5 
6 

No growth 
Microscop amount on surface 

<10% microscop coverage 
<10% visual coverage 

10-50% visual coverage 
>50% visual coverage 
100% visual coverage 

Spores inactivated 
Initial stage of growth 

- 
New spores produced 

Moderate growth 
Plenty of growth 

Very heavy growth 

 

This dynamic time-dependent model suggests a classification for an accumulative 

mould growth index depending on critical relative humidity for germination, temperature, 

moisture and material. An example for the accumulative Viitanen Mould Index 

methodology for a storey ceiling dividing a heated and unheated room is shown in Figure 

3-10. 

 

Figure 3-10 VMI for a storey ceiling dividing unheated and heated room 

Frequently, the moisture dynamics of the 1-D or 2-D detail is studied for a period 

of three years where the total water content of the constructions should not show a 

gradually increasing trend under standard building conditions (Figure 3-11) 
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Figure 3-11 Total water content of construction by WUFI pro 5.0 

The hygrothermal and durability of X-LAM floor details, on highly-insulated 

basements for floating houses, was investigated by C. Buxbaum, Seiler, and Pankratz 

(2007) using numerical methods due to concerns of this particular detail in Passive 

Houses. This research concluded that moisture accumulation on the XPS insulation layer 

was low after a 30-year simulation period. However, the author highlighted that any 

cracks and gaps in the vapour layer could lead to large moisture masses on the floor side. 

Another experiment undertaken by the same author, in this case for highly insulated I-

joist flat roof, concluded that this type of construction, with the right choice of vapour 

retarders and wind membranes, no moisture was retained within the structure (Christoph 

et al., 2008). These research conclusions highlight the need for special attention to any 

hygrothermal issues on highly insulated timber buildings. Attention must should be taken 

during onsite building stage when exposed construction elements may absorb high-levels 

of water which cannot subsequently escape through the building fabric. 

Further research on this area has successfully proven the accuracy of transient-state 

numerical methodology to determine time-dependant heat and moisture conditions 

(Karagiozis et al., 2001; Lengsfeld & Holm, 2007; Marian & Pavol, 2010; Teasdale-St-

Hilaire & Derome, 2007). 

In this research, one-dimensional heat, air and moisture (HAM) software, WUFI® 

Pro 5.0, was utilised due to its extended use in this research field to model the proposed 

Time (days) 
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timber frame walls in order to predict their hygrothermal behaviour for three different 

climates. The hourly record of the humidity of each material of the build-up was 

monitored to assess the condensation risk of each construction system. 

As a moisture content assessment reference, the timber frame wall panel is 

considered risk-free of mould growth if both the structural wood-based materials and 

other elements of the wall do not exceed more than 20% and 23% moisture content (MC) 

respectively, more than eight weeks per year. These eight weeks are the addition of any 

period longer than a week where the MC limit is surpassed (Lamoulie et al., 2012). 

However, a more conservative range of 18 % and 20% respectively is recommended by 

WUFI® developers (Karagiozis et al., 2001) 

Another commonly used methodology to analyse the risk of mould growth is by 

determining the temperature factor of the internal surface fRsi (Equation 3.12). If the 

internal envelope presents a temperature factor greater than 0.75 the construction is 

considered safe with no damage to the structure from condensation (BRE, 2006). 

  

𝑓𝑅𝑠𝑖  =  
𝜃𝑠𝑖 − 𝜃𝑒

𝜃𝑖 − 𝜃𝑒
  (3.12) 

Where: 

   

𝑓𝑅𝑠𝑖   temperature factor of the internal surface  

𝜃𝑠𝑖  temperature of the internal surface, in ° C  

𝜃𝑖  indoor temperature, in ° C  

𝜃𝑒 outdoor temperature, in ° C  

In case of the presence of gaps in the insulation layer, natural convection may 

increase moisture load within the building envelope even with just a 3 mm air gap 

(Siddall, 2009). This issue has been also reported where an external vapour control layer 

is installed and small air gaps are presented within the internal insulation (Langmans, 

Klein, & Roels, 2013). 



Optmisation of Timber Frame Closed Panel Systems for Low Energy Housing 

 

68  J. M. Menendez - October 2017 

 

The thermal parameters involved in low-energy building design have been 

reviewed. In the next section, the research has collated all of the findings to propose two 

thermally efficient closed panel timber frame configurations. 

3.3 Description of Timber Frame Wall Build-Ups 

Thermal transmittance is frequently the governing design parameter for low-energy 

timber fame walls (TRADA, 2011). Hence, a suggestion for a timber frame build up is 

based primarily on the thermal resistance of the component. Once all the hygrothermal 

requirements are fulfilled, the research concentrates on the structural performance. 

In this section three different walls are presented a standard “six inches” timber 

frame panel used as a benchmark scenario and two advanced timber frame systems using 

I-joists and dual insulated studs respectively. Although the type of stud on the walls is 

maintained, insulation and sheathing materials were altered. 

The depth of the advanced timber frame closed panels presented varies in order to 

obtain different tabulated U-values and hence, better thermal transmittance. The studs are 

presented in three different formats of 195 mm, 245 mm and 300 mm. Stud spacing, in 

order to minimise timber fraction, is set at 610 mm centres. Sheathing of the frame is also 

presented in two different formats: OSB sheathed both sides and OSB sheathing on the 

internal side and rigid wood fibre board on the external side. 

In terms of internal finishing, the study considers two scenarios; a service aired 

cavity and an insulated service cavity both with plasterboard finish. In terms of external 

finishing, in all cases a ventilated façade, also called a cavity or drained wall, with no 

significant impact on thermal performance was used (CIBSE, 2006; Feist et al., 2007). 

Further details of the panel build-ups are given in Table 3-3. 

The technical specifications of the materials used in the research are based on 

commercially available products and for the advanced panel systems, based on the actual 

specimens tested. A summary of the materials, types and related standards is given in 

Table 3-4. Figure 3-12 provides a comparative image of the different I-joist and K2 

materials utilised in the timber frames. 
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Table 3-3 Summary of timber fame build-ups. 

(units in mm) 
Benchmark 

I-Joist 
PassiveWall 

Dual frame 
K2 

Studs 

Depth 
150 
 
 

195 
245 
300 

(45+60+90) 
(45+110+90) 
(45+165+90) 

Width 45 47 45 

Spacing 610 610 610 

Insulation  
Mineral wool 
Wood fibre 

Sheathing 

Internal side 
OSB/3   9mm 
 
 

OSB/3 
 

OSB/3 

9mm 
 

15mm 

External side 
OSB/3 9mm 

Wood fibre 60mm 

Membranes 

Airtightness 
VCL 
 

VCL 
Taped OSB 

Windproof 
Breathable 

n/a 

Insulated  
Service 
cavity 

Mineral wool 
45mm 

External finishing Ventilated façade 
 

Table 3-4 Timber frame material properties 

Material Type / Grade Norm 
Conductivity 

λd (W/mK) 
 

Wood products C16 BS EN 338 0.13  

 OSB/3 BS EN 300 0.13  

 I-Joist ETA-05/0224 0.13-0.18  

 LVL BS EN 14374 0.13  

Insulation Mineral wool BS EN 13501-1 0.032  

 Flexible wood fibre BS EN 13171 0.038  

 Rigid wood fibre BS EN 13171 0.046  

 XPS BS EN 13164 0.037  

Membranes VCL BS EN 1849-2 
BS ISO 12572 

n/d  

 
Windproof BS EN 12310-1 

BS ISO 12572 
n/d  

 Tapes BS EN 13984 n/d  
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Figure 3-12 Comparative illustration of the I-joist and K2 timber frames 

Timber frame and sheathing metal fixings are not included in this section as the 

impact can be considered negligible in the overall thermal resistance of the timber frame 

wall system (Anderson, 2006 Pokorny et al., 2009). This agreed with the research exercise 

carried out in section 3.6.2. 

The boundary between the timber frame system and the foundation is the sole plate 

connection. The components and geometries of this detail, for each wall build-up 

proposed, is a thermally improved detail from standard construction practice and is tested 

for structural optimisation purposes in chapter 4. Although the standard dimensional 

tolerances for this type of connection are recommended to be ±10 mm (TRADA, 2013), 

the potential gap created would cause negative thermal effects at a critical point. For this 

reason, the tolerance suggested in the research is ±5 mm and the gap filled with flexible-
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type foam. However, in order to minimise the linear thermal bridge of this critical 

connection, a modified version is also suggested. The benchmark timber frame is also 

considered, in terms of on-site connectivity, as a closed panel system. 

Further detailed information and drawings for all possible timber frame build-up 

combinations, including the sole plate base detail fixing, is provided in the following sub-

sections and in the Appendix II. 

3.3.1 Description of timber frame components 

Timber frame panels are fixed together in factory or off-site to make a timber frame 

wall. The components used in this process are typically framing material (studs, rails, 

lintels and noggins), sheathing, membranes and fasteners. Although timber frame 

structures can be erected on any type of foundation, the most common substrates are 

suspended floor systems over concrete blocks or concrete slab (TRADA, 2013). This 

must be also considered within the thermal bridge calculations. 

Framing material 

Structural framing studs, runners or rails and lintels, made of softwood shall be 

individually graded with a strength class C16 or better according to BS EN 338 (BSI, 

2003). Although structural calculations shall  determine section sizes and grades, the most 

common timber sizes in UK are 38 x 89(90) mm and 38(45) x 145(150) mm what is 

typically known as “four and six inches” with nominal sizes on brackets (TRADA, 2007). 

Studs can be also made of engineered wood products (EWP) such as Glulam, 

Laminated Veneer Lumber (LVL) or I-Joist. In this research, one of the advanced closed 

panels systems presents I-joist as stud and top and bottom rail framing members. 

The moisture content for use in buildings under service class 1 and 2 shall not be 

greater than 20%. A preferable and recommended moisture content of the timber when 

installed, in order to reduce shrinkage, is 12-15% MC (Williamson, 2002). The timber 

should also be marked with its moisture content followed by the letters DRY (if naturally 

dried) or KD (if kiln dried). 
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Structural softwood used on the wall frame, which is of durability class 5 or lower, 

should be treated for both durability and for insurance purposes (such as NHBC 

compliance scheme). The treatment is essential in the following areas: 

▪ Sole plates 

▪ Joinery resting directly on the damp proof course (DPC) 

▪ Timber used for external cavity barriers (battens for ventilated cladding). 

Sheathing material 

Eurocode 5 states that only wood-based board products complying with EN 13986 

(BSI, 2004) and EN 12871 (BSI, 2010) are suitable for racking resistance of timber frame 

walls. However, PD 6693-1 states that plasterboard-only sheathed timber frame walls can 

be designed for racking resistance. Nevertheless, the use of a wood-based panel is 

recommended (TRADA, 2006). For external walls, the panel should be suitable for 

structural use in service class 2 conditions. Therefore, the wood-based materials which 

are deemed fit for purpose is shown in Table 3-5. However, OSB/3 is by far the most 

common sheathing material in the UK. 

Table 3-5 Suitable sheathing materials for external racking wall panels 

Material Service Class 

LVL 2 / 3 

Plywood  
 636-2 2 
 636-3 3 

OSB  

 OSB/3 1 / 2 
 OSB/4 1 / 2 

Particle board  

 P5 1 / 2 
 P7 1 / 2 

Hardboard  

 HB.HLA1 1 / 2 
 HB.HLA2 1 / 2 

Medium density board (MDF)  

 MBH.HLS1 1 / 2 
 MBH.HLS2 1 / 2 

Medium density fibre (MDF)  

 MDF.HLS 1 / 2 
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Fasteners 

Metal dowel-type fasteners are used to connect the timber frame members and to 

fix the sheathing panel to the frame. The fasteners used must present CE marking in 

accordance with EN 14592 (BSI, 2008a). The lateral load carrying capacity depends on 

the bending behaviour of the fastener and the bearing stresses of the timber or panel in 

contact along the shank of the fastener. Friction and axial pull-out resistances may 

contribute also to the lateral shear capacity. In line with the CE marking, the fastener 

manufacturer must declare values for the characteristics shown in Table 3-6. 

Table 3-6 Characteristics of fasteners according with CE marking 

Parameter Fastener type 

Wire specification All 

Geometry All 

Yield moment All 

Withdrawal resistance Nails / Staples / Screws 

Head pull-through All 

Tensile capacity Nails / Screws 

Head twist off Screws 

Torsional resistance Screws 

Corrosion resistance: 
type and thickness 

All 
 

Eurocode 5 provides an analytical model based on Johansen (1949) equations but 

slightly modified to consider also the combination of friction forces and withdrawal in 

the connection (commonly referred as “rope effect”). The fastener’s shear capacity 

prediction, achieved by this analytical method, is considered satisfactory by numerous 

studies. 

Membranes 

Two types of membranes are commonly used for modern timber frame systems: a 

vapour control layer (VCL) membrane on the internal side of the insulation and a 

windproof breathable membrane on the external side of the insulation. Properties for these 

materials are given in Table 3-7. The mission of these membranes is to provide 

airtightness to the system (vapour retarders) and to control moisture through the building 

fabric (wind barriers). The equivalent air layer thickness, Sd, measured in metres, 
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indicates the thickness of a static layer of air that presents the same water vapour 

resistance. This parameter ordinarily relates to the “breathability” of the building 

envelope. 

The VCL membrane can be eliminated if an airtight sheathing material is taped at 

every joint. However, the economy of these membranes and the issues regarding the 

permeability of thin OSB (Peper, 2014) make membranes a popular choice. 

Table 3-7 Technical specifications for membranes (DAFA® systems) 

 
Sd-Value 

(m) 
Tear resistance 

(N) 
Tensile strength 

(N/50mm) 
Mass 

(g/m2) 

HiFoil adaptive retarder 0.2 - 10 59 130 100 

AluFoil vapour barrier 300 200 250 150 

Difoil vapour retarder 2 90 90 100 

ProFoil vapour barrier 140 60 130 184 

WindFoil wind barrier 0.02 130 95 105 

UV Façade wind barrier 0.12 n/d 170 160 
 

On the other hand, a permeable membrane, such as a wind barrier, can be 

disregarded if another suitable material protects the timber frame from moisture. In this 

case, rigid forms of water-repellent insulation can be placed instead. 

There are bio-materials like high density rigid wood fibre or expanded cork 

insulation boards which are suitable to protect the timber frame. Other non-natural 

insulation products that can perform as a wind barrier are EPS, XPS or foamed glass. 

These products are frequently installed at the sole plate level as they are more durable 

than the natural insulation materials described previously. 

3.3.2 Benchmark wall panel 

There are over seventy timber frame manufactures registered as members of Timber 

Research and Development Association (TRADA), the UK´s largest organisation dealing 

with timber and wood products. Although this is a large number of fabricators, the vast 

majority of them produce standard four or six inches timber frame kits in a very similar 

approach (Figure 3-13). 
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Figure 3-13 External open panel timber frame wall 

In this research, four companies based in Scotland were visited in order to propose 

a documented benchmark timber frame scenario: 

▪ RTC Timber Systems, Elgin. 

▪ Oregon Timber Frame, Selkirk. 

▪ CCG Construction Group, Cambuslang 

▪ Alexanders Timber Design, Troon 

A summary of the characteristics of the materials commonly used for these 

companies are defined in Table 3-8 below: 

Table 3-8 Materials to fabricate benchmark timber frame 

 RTC Oregon CCG ATD 

Studs 45x145 38x140 38x140 45x145 

Sheathing 
9mm OSB/3 
2 layers 

9mm plywood 
2 layers 

9mm OSB/3 
2 layers 

9mm OSB/3 
2 layers 

Insulation Mineral wool Mineral wool Rock wool Mineral wool 

Membranes Yes Yes Yes Yes 
 

Regarding the sole plate base fixing detail, this differs considerably if the timber 

frame wall is manufactured as open or closed panel. Figure 3-14 shows two examples of 

sole plate details for standard closed panel systems. However, these details are seldom 

used in practice as most of the production manufactured in UK is open panel. 
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Figure 3-14 Sole plate detail for closed panel (in red) 

As an alternative, two common open panel sole plate details are described for the 

purpose of the research: a sole plate on top of a concrete raft foundation and a timber 

frame on top of a suspended timber floor cassette (Figure 3-15). This facilitates a 

comparison between the current foundation type practice and the proposed advanced 

timber frame systems. 

 

Figure 3-15 Benchmark timber frame elevation and section drawings 
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3.3.3 I-joist PassiveWall™ – RTC panel  

The first advanced closed panel system proposed was studied at early stages of this 

research as part of a Knowledge Transfer Partnership (KTP) project between Edinburgh 

Napier University and the Scottish company RTC Timber Systems. Although, the KTP 

project was not successfully completed due to the liquidation of the company, the concept 

of a super-insulated timber frame made of I-joist was included in this research. 

The RTC PassiveWall™ was an industrialised panel to be installed as wall, floor or 

roof cassettes. The wall panel was formed by I-Joist of 2 different depths, 245mm and 

300mm, one 9mm OSB board at each side of the panel and insulated core of recycled 

mineral wool fibre glass. The panels had a vapour barrier on the inside and a breathable 

membrane on the outside. Panels were simply fitted by the fixing system called 

PassivePlate at foundation and inter-storey level (Figure 3-16). 

  

Figure 3-16 RTC PassivePlate on foundation and on lintel junction 

The most common panel dimensions were 263 mm and 318 mm in width, wall 

lengths up to 12 m and 2900 mm in height if transported flat or 3950 mm if transported 

vertically (toast rack) on the trailer. These are common maximum dimensions limited by 

transportation. This timber frame panel also includes in this research some modifications 

to the original PassiveWall™ design for thermal optimisation. The core insulation can be 

made using mineral wool or wood fibre. This may be insufflated rather than being semi-

flexible batts or rolls in order to fill the wall panel entirely around the I-profile. 

Alternatively, if insulation products are batts or rolls, it is recommended to pre-insulate 

the web of the I-joist by gluing the same insulation material. The purpose is to have a 
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rectangular compound stud to avoid air pockets in the panels. The sole plate, in slab on 

grade and raft foundations, is formed by LVL instead of plywood to improve the structural 

performance with a packer of XPS insulation glued on top to form the tongue and groove 

system with the wall. In the case of suspended timber floors, the XPS packer is glued on 

top of the floor cassette. An alternative to OSB sheathing at each side of the panel is also 

presented to improve the thermal performance. The external OSB sheathing board is 

substituted by 60mm of rigid high-density wood fibre board which also it acts as a 

windshield barrier. Finally, the internal cavity for services can be insulated to improve 

the overall U-value. In this case, it is recommended to place the internal battens 

horizontally. A section of the different wall panel configurations is shown in Figure 3-17 

where core insulation maybe mineral or wood fibre wool. 

 

Figure 3-17 RTC wall build-up for different core insulation 

The different panel configurations and materials for the RTC timber frames are 

described in Table 3-9. 

Table 3-9 Materials to fabricate RTC timber frame panels 

RTC I-beam panel materials 

Studs 47x195 47x245 47x300 

Sheathing 
9mm OSB/3 
9mm OSB/3 

9mm OSB/3 
Wood fibre 60mm 

 

Insulation Mineral wool Wood fibre wool  

Membranes VCL + Windshield VCL only  

Service cavity  Insulated   
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Similar to the benchmark wall panel, the two sole plate details used in this research 

are timber frame on top of concrete raft and timber frame on top of suspended timber 

floor cassette. In this case rigid wood fibre board insulation is placed instead of OSB/3 

sheathing in the outside. It is also recommended to protect the edge of the foundation with 

XPS rigid insulation board (Figure 3-18). 

 

Figure 3-18 RTC I-beam timber frame elevation drawings 

3.3.4 Dual Frame – K2 panel 

The second advanced closed panel system proposed was also studied at early stage 

of the research as part of the European Regional Development Fund (ERDF) project titled 

Wood Products Innovation Gateway between Edinburgh Napier University and the 

Scottish company Kraft Architecture. This project focused on the feasibility of Scottish 

home-grown timber for the fabrication of advanced closed panel systems. However, in 

this research, the source of the timber is not considered and the grade of the framing 

material is classified as C24. 

The Kraft architecture K2 wall system is a dual frame comprising of external and 

internal studs manufactured from sawn lengths of structural timber of standardised cross-
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sectional sizes. In order to provide in-plane rigidity, sheathing material is secured to both 

the external and internal frame using pneumatically driven mechanical fasteners. The 

external frame forms the primary load bearing structure of the wall and is therefore 

sheathed with a structural board material, typically OSB, to provide the required racking 

capacity. 

The internal frame is typically non-load bearing, carrying only the internal finishes 

and therefore can be sheathed using 12.5mm plasterboard in order to provide fire 

resistance and an internal finishing. In situations where a high degree of racking resistance 

is required, OSB may also be secured to the internal face in addition to the plasterboard. 

The cavity between the two sheathing materials can be of varying depth according to 

insulation requirements. The completed wall assembly is sealed top and bottom using 

22mm weather and boil proof (WBP) plywood plates (Figure 3-19). 

  

Figure 3-19 K2 panel and sole plate detail 

The wall is secured to the foundation substrate using a combination of smooth nail 

and screw type fasteners. These act collectively to provide resistance to sliding and, if 



Chapter 3: Thermal Performance of Timber Frame Walls 

 

J. M. Menendez - October 2017   81 

 

they possess a sufficient withdrawal capacity, overturning forces. However, a 

modification to this sole plate detail has been considered in this research due to structural 

issues of the slant fasteners as EC5 minimum spacing distances may not be fulfilled if the 

angle and the penetration depth is not adequate. The timber frame panel also includes 

some modifications to the original K2 design for thermal optimisation. The core 

insulation can be made using mineral wool or wood fibre in the form of batts, rolls or 

insufflated. The insulation between internal and external frame is glued XPS to optimise 

manufacturing. 

The sole plate, in concrete slab on grade and raft foundations, is formed by plywood 

with a timber packer glued to it to facilitate the line-up and fixing of the wall to the sole 

plate. In the case of suspended timber floor cassette construction, the plywood over the 

concrete blocks is substituted by LVL whilst the timber packer is fixed directly on top of 

the floor. Contrary to the I-joist timber frame, the 60 mm of rigid high-density wood fibre 

board is added to the external OSB/3 sheathing to provide racking resistance to the 

external load bearing frame. The rigid insulation is placed nonetheless to evaluate the 

thermal improvement. 

The internal cavity for services can be insulated to improve the overall U-value. In 

this case, it is recommended to place the internal battens horizontally. A section of the 

wall panel configurations is shown in Figure 3-20 where core insulation is glued XPS. 

 

 

Figure 3-20 K2 wall build-up for different core insulation 
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The different panel configurations and materials, for the purpose of this chapter, are 

described in Table 3-10. Note that a 9 mm sheathing board was also included if external 

wood fibre board was used. 

Table 3-10 Materials to fabricate K2 timber frame panel 

K2 wall  

Studs 45x195(135) 45x245(135) 45x300(135) 

Sheathing 
 
 

9mm OSB/3 
9mm OSB/3 
 

9mm OSB/3 
9mm OSB/3 
Wood fibre 60mm 

 

Insulation Mineral wool Wood fibre wool  

Membranes VCL + Windshield VCL only  

Service cavity  Insulated   
 

Similarly to the benchmark wall panel, the two sole plate details used in this 

research are timber frame on top of concrete raft and timber frame on top of suspended 

timber floor cassette. 

In case rigid wood fibre board insulation is placed on the OSB/3 sheathing board in 

the outside, it is recommended to protect also the edge of the foundation with XPS rigid 

insulation board (Figure 3-21). 

 

Figure 3-21 K2 timber frame elevation drawings 
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Once all the timber frame walls were well-defined, the corresponding hygro-

thermal investigation was carried out. Prior to undertaking the study, a comparison of 

different thermal modelling tools was performed in order to determine the preferred 

software application. 

3.4 Comparison of FEA Software for Thermal Simulation 

There are different standards used to numerically determine linear thermal 

transmittance in building construction (Anderson, 2006). In the UK, the BRE 497 

document describe the conventions for calculating thermal bridges but it is not valid for 

Passivhaus as it considers internal dimensions rather than external (Ward & Sanders, 

2007). The procedure recommended by the Passivhaus Institut to determine thermal 

bridges is the EN ISO 10211 (ISO, 2007). 

Three different software packages, for two-dimensional simulation of steady-state 

heat transfer for building physics, were evaluated to assess the accuracy of their engines 

with regard of the ISO 10211 method (Table 3-11). A fourth 2-D method, a German 

online platform - www.u-wert.net, developed by Dr Ralf Plag and validated in several 

studies (Capener at al., 2014; Weber et al., 2015) was also evaluated. Furthermore, these 

values were compared with the analytical simplify method (BSI, 2008b). 

Table 3-11 List of 2-D simulation heat transfer software 

Software License Type Country Validation CAD import 

Therm 7.4 Free Heat US 

ISO 10211-2:2007 
ISO 10077-2:2012 

Yes 

Flixo Commercial Heat Switzerland Yes 

HTFlux Commercial HAM Austria Yes 

U-wert.net Free Heat Germany No 
 

The heat transfer analysis process flowchart for the four programs is almost 

identical. A schematic representation is shown in Figure 3-22. The maximum percent 

energy norm error setting for EN 10211 compliance is documented to 2%. This had to be 

set manually in Therm 7.4. 

http://www.u-wert.net/
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Figure 3-22 2D Heat transfer procedure flow chart 

3.4.1 Materials and geometry reference values 

In order to obtain a valid result for the comparison between the different software 

packages analysed, the thermal properties and the geometry of the external wall details 

must be equal in all three packages. Table 3-12 presents the thermal conductivity of the 

materials employed in the wall and their source. It is important to bear in mind that the 

thermal conductivities for the wood-based materials were considered isotropic with 

physical property declared perpendicular to the grain. 

Table 3-12 Thermal properties of timber frame wall materials 

Material 
 

Thermal conductivity 
λD (W/mK) 

Vapour diffusion 
µ (dry) 

Source 
 

Timber C16 0.130 50.0 (Dinwoodie, 2000) 

OSB/3 board 0.130 50.0 (Williamson, 2002) 

Mineral wool 0.032 1.0 BBA AC 95/3212 

XPS 0.037 150.0 BBA AC 95/3102 

Woodfibre board 0.046 10.0 DoP No 01-0006-03 

Wood wool 0.038 2.0 (STEICO, 2009) 

LVL I-flange 0.130 50.0 (STEICO, 2009) 

MDF I-web 0.180 30.0 (STEICO, 2009) 
 

The boundary conditions of the wall were set as for the standard surface film 

resistance coefficients given by Feist (2006) and in accordance to BSI (2008b). In this 
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particular case, for the different wall sections, three different boundary conditions were 

maintained and specified: 

▪ Adiabatic condition, i.e. no heat transfer across the thermodynamic system 

and its surroundings (Equation 3.14) 

▪ internal film resistance at 20 ºC and 0.13 m2K/W 

▪ external film resistance at 0 ºC and 0.13 m2K/W 

  

(
𝜕𝑇

𝜕𝑛
)

𝑤
=  𝑞̇𝑤 = 0 (3.14) 

Where: 

   

𝜕𝑇

𝜕𝑛
  normal derivative of the temperature at the wall  

𝑞̇𝑤 heat transfer on the wall  

 

The geometries of the three different wall build ups are shown in Figure 3-23. It 

corresponds to a section of one intermediate stud at spacing 610mm centre to centre. The 

geometry is symmetrical and the resulting isotherms for the wall section with higher U-

value are, as expected, perpendicular to the adiabatic boundary conditions. 

 

 

Figure 3-23 Geometry of walls studied for U-value correlation 
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3.4.2 Results 

The U-value calculations according to the analytically simplified BSI method (BSI, 

2008b) were determined by three independent numerical tools in order to corroborate this 

methodology independently of the tool selected. The PHPP also integrates a U-value 

calculation tool which complies with ISO 6946 (Feist et al., 2007) and was also used in 

the study (Figure 3-24). The calculation results from the different programs are presented 

in the Appendix III. 

 

Figure 3-24 U-values of sample walls according to EN 6946 from PHPP 8.5 

Assembly no. Building assembly description Interior insulation?

1 Benchmark

     Heat transfer resistance [m²K/W]       interior Rsi : 0.13

exterior Rse : 0.13

Area section 1 l [W/(mK)] Area section 2 (optional) l [W/(mK)] Area section 3 (optional) l [W/(mK)] Thickness [mm]

1. OSB/3 0.130 9

2. Knauf Earthwool 0.032 45x150 KVH C24 0.130 150

3. OSB/3 0.130 9

Percentage of sec. 1 Percentage of sec. 2 Percentage of sec. 3 Total  

93% 7.4% 16.8 cm

U-value supplement W/(m²K) U-Value: 0.233 W/(m²K)

Assembly no. Building assembly description Interior insulation?

2 K2 panel

     Heat transfer resistance [m²K/W]       interior Rsi : 0.13

exterior Rse : 0.13

Area section 1 l [W/(mK)] Area section 2 (optional) l [W/(mK)] Area section 3 (optional) l [W/(mK)] Thickness [mm]

1. OSB/3 0.130 9

2. Knauf Earthwool 0.032 90x45 KVH C24 0.130 90

3. Knauf Earthwool 0.032 110x45 XPS 37 0.037 110

4. Knauf Earthwool 0.032 45x45 KVH C24 0.130 45

5. OSB/3 0.130 9

Percentage of sec. 1 Percentage of sec. 2 Percentage of sec. 3 Total

93% 7.4% 26.3 cm

U-value supplement W/(m²K) U-Value: 0.135 W/(m²K)

Assembly no. Building assembly description Interior insulation?

3 RTC Passivewall

     Heat transfer resistance [m²K/W]       interior Rsi : 0.13

exterior Rse : 0.13

Area section 1 l [W/(mK)] Area section 2 (optional) l [W/(mK)] Area section 3 (optional) l [W/(mK)] Thickness [mm]

1. WoodFibre board 0.046 60

2. Knauf Earthwool 32 0.032 LVL 47x45 0.130 45

3. Knauf Earthwool 32 0.032 MDF 9x155 0.180 155

4. Knauf Earthwool 32 0.032 LVL 47x45 0.130 45

5. OSB/3 0.130 9

Percentage of sec. 1 Percentage of sec. 2 Percentage of sec. 3 Total

91% 7.7% 1.5% 31.4 cm

U-value supplement W/(m²K) U-Value: 0.115 W/(m²K)
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The U-values calculated, for all of the methods, were equal within three decimal 

places. The values provided by the analytical PHPP methodology were almost the same 

(Table 3-13). These results must be interpreted with caution because no statistical analysis 

was considered. However, the results confirm that for timber frame wall panel thermal 

transmittance calculation, the simplified approach given by EN ISO 6946 is adequate. 

Table 3-13 U-values compared with four different 2D FEA software  

U-value 
(W/m2K) 

Analytical (EN 6946) 2D FEA (EN ISO 10211) 
PHPP Therm Flixo HTFlux U-wert 

Benchmark 0.233 0.232 0.232 0.232 0.232 

K2 wall panel 0.135 0.134 0.134 0.134 0.134 

RTC I-joist 0.115 0.116 0.116 0.116 0.116 

 

Although, the outcomes of the five tools were almost identical, the U-wert has been 

the preferred tool for the subsequent U-value calculation of the different wall 

combinations due to the additional thermal information provided (Figure 3-25). These 

are: interior surface temperature, moisture content, thermal phase shift and heat storage 

capacity and are presented in section 6.1. 

 

Figure 3-25 Screenshot of U-Wert.net with an I-joist wall analysis 



Optmisation of Timber Frame Closed Panel Systems for Low Energy Housing 

 

88  J. M. Menendez - October 2017 

 

Similarly, the FEA software HTFlux has been chosen as a preferred tool for thermal 

bridge calculation due to the additional capabilities with regard to condensation risk 

analysis (HTFlux, 2015). 

3.5 Thermal Transmittance of Walls 

The U-value baseline, for the creation of a wall build-up benchmark, was designed 

to comply with the minimum value stablished by building regulations when this research 

section started (2013) of 0.25 W/m2K. For the object of this thesis, the minimum 

performance was set to maximum Passivhaus standard recommendation of 0.15 W/m2K. 

Additionally, the Passivhaus standard for refurbishments, EnerPHit, has published 

(Bastian, 2014) a suggested U-value for different climates ranking from arctic to very hot 

(Figure 3-26). The U-value for artic (light blue) , cold (blue) , cold-temperate (dark blue) 

and warm-temperate (green) areas, where the advanced timber frame panel systems may 

be economically feasible, are 0.09 W/m2K, 0.12 W/m2K, 0.15 W/m2K and 0.25 W/m2K 

respectively. 

 

Figure 3-26 Passivhaus climate zones (Bastian, 2014) 

In this section, the U-values for all of the possible wall combinations, as described 

in Table 3-3, are given. The online tool U-wert has been used to perform the calculations. 

However, for the accurate determination of the thermal transmittance, and as result of the 

disparity of information gathered in the literature review, a comprehensive study of the 

timber fraction is detailed in the next sub-section. 
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3.5.1 Determination of Timber Fraction 

The standardised timber fraction information reported from the section 3.2.2 of the 

literature review was rather controversial, and there were no general agreement on the 

methodology employed to determine this factor. 

Low-energy buildings require to use a building fabric with high thermal resistance. 

Additionally, the design of this buildings must account for thermal bridging if this cannot 

be avoided. Public Passivhaus projects include a complete report of thermal bridges 

including timber frame wall to foundations, to roof and to floor elements. Also, there is 

an additional thermal bridge to be appraised in the design that considers the installation 

of windows and doors. 

All these issues resulted in the development of a different quantitative methodology 

to determine the actual timber fraction of energy efficient timber frame walls when 

thermal bridging is known (Figure 3-27). 

Yellow: insulation         Red: Accountable for timber fraction     Green: Accountable for thermal bridge 

Figure 3-27 Timber accountable for timber fraction in a wall panel 

In this figure, in red is noted additional timber that contributes to the lower thermal 

resistance of the insulation layer whilst in green is represented additional timber that 

contributes to a (linear) thermal bridge. Additional considerations must be taken in case 

the window joist lintels are placed immediately underneath the top rail and when the 
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width of the joist equals to the full depth of the timber fram frame. In that case, area 

related to the lintel must be added to the overall timber fraction. 

In order to provide an accurate estimation of timber fraction for the thermal 

transmittance of the suggested closed panel timber frame build-up models, the 

manufacturing drawings of four different real low energy projects were used to determine 

this value. The design of the timber frame walls was carried out with particular care to 

not use more timber than required for the assembly with timber fraction on mind but also 

considering structural compliance. Every panel for each wall and for each project was 

considered and timber area related to total area of the wall was analysed. Panels with a 

noteworthy opening area were recorded. The results of the four different projects with the 

theoretical timber fraction calculated, as per Equation 3.14, are presented in Table 3-14. 

  

𝑇𝐹𝑖  =  
𝑏𝑖

𝑠
× 100  (3.14) 

Where: 

 

 

 

𝑇𝐹𝑖  timber fraction for wall i  

𝑏𝑖 stud breadth  

𝑠 stud spacing  

Table 3-14 Typology of projects for Timber Fraction calculation. 

  No. storey 
Stud size 

b×h (mm) 
Spacing 

s (mm c.c.) 
Theoretical TF 

% 
Measured TF 

% 

Project 1  1 45x220 600 7.5 9.2 

Project 2  1 45x220 600 7.5 6.9 

Project 3  1 60x120 625 9.6 9.3 

Project 4  2 60x160 625 9.6 10.0 
  

The statistical results of the analysis and a reference to values from literature are 

given in Table 3-15. In conclusion, a Timber Fraction of 10 % it is a sensible approach 

and therefore, this is the suggested value on the calculation for the compound timber 

frame wall U-values. This percentage is used for the benchmark and the K2 panel. For 
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the RTC I-joist timber frame, a value of 10 % is used for the flanges and a proportional 

value of 2 % is considered for the web. 

Table 3-15 Statistical and Timber Fraction reference values 

n=42 Experiment 
Friedman & 

Cammalleri (1996) 
Val-U-
Therm 

Mean 10.36 % 9.4 % 10% 

SD 4.68 %   

Median 9.65 %   
 

Further information on the methodology and timber frame manufacturing layouts 

to determine this timber fraction is attached in the Appendix IV. 

In summary, the results from Figure 3-28 shows a weak correlation between timber 

fraction and area of the wall. 

 

Figure 3-28 Relationship between Timber Fraction and wall area 

3.5.2 Calculation of U-values 

In this sub-section, the U-value for each wall build-up configuration is determined 

by numerical methods. The final purpose of this exercise is to present a series of timber 

frame configurations for direct prescription according to a required U-value. Moreover, 

the optimal thermal performance for every different wall is the reference target scenario 

for next chapter: structural performance optimisation. 
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The 1-D u-wert online tool has been utilised to perform the U-value calculations 

with the following boundary and modelling conditions: 

▪ Geometry of the building wall element: Minimum one period, T ≥ 1 

▪ Timber fraction of frame: TFs and TFflange = 10% for studs and I-joist flange 

and TFweb = 2% for I-joist web 

▪ Timber fraction of internal insulated service cavity: TFsc =7.5% 

▪ Internal thermal film surface resistance: Rsi = 0.13 m2K/W 

▪ External thermal film surface resistance: Rse = 0.13 m2K/W 

The properties of the materials used on the timber frame walls are described in 

Table 3-4 Timber frame material properties. In order to account for the corresponding 

timber fraction in the software, with a value of 10% (all types of timber studs and I-joist 

flanges) and 2% (I-joist webs), the equivalent timber frame stud spacing suggested is: 

▪ 45/450 mm for studs and I-joist flanges and 405mm clear stud spacing 

▪ 9/450 mm for I-joist web and 441mm clear web spacing 

For each wall panel build-up, and with the same core thickness, there are four 

different configurations as shown in Figure 3-29: 

 
  

Configuration 1 Configuration 2 

  
Configuration4 

 

 
 

Configuration 3 

Figure 3-29 Panel configurations for each wall type. 
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An additional explanation of configurations 1, 2, 3 and 4 (clockwise from top left) 

are presented below: 

1. Intermediate insulation and frame core with sheathing boards at both sides. 

2. As configuration one plus insulated service cavity in the internal side. 

3. Intermediate insulation and frame core with sheathing in the internal side and 

rigid wood fibre board insulation on the external side. In case of the K2 wall 

panel, there is sheathing board at both sides for structural purposes and also 

rigid wood fibre board insulation on the external sheathing board for thermal 

enhancement. 

4. As configuration 3 with an insulated service cavity in the internal side. 

Finally, mineral glass wool (MW) and flexible wood fibre (WF) insulation batts for 

the intermediate core layer were investigated. The U-values for the resultant 56 different 

wall panel configurations were calculated. The results are presented in Table 3-16. 

Table 3-16 U-values for timber frame wall build-ups 

Core depth 
h (mm) 

 K2-Panel RTC-Panel Benchmark 
Config MW WF MW WF MW WF 

1951 

1 0.173 0.200 0.175 0.201 0.245 0.270 

2 0.144 0.162 0.145 0.163 0.189 0.207 

3 0.141 0.158 0.143 0.160 0.185 0.203 

4 0.121 0.133 0.123 0.135 0.152 0.164 

245 

1 0.136 0.158 0.140 0.161   

2 0.117 0.133 0.120 0.136   

3 0.115 0.130 0.119 0.134   

4 0.102 0.113 0.104 0.116   

300 

1 0.110 0.128 0.115 0.133   

2 0.098 0.112 0.101 0.115   

3 0.096 0.110 0.100 0.114   

4 0.086 0.097 0.090 0.100   
1Core depth for benchmark panel is 150mm 
 <0.25 E&W Building regulations <0.12 Passivhaus cold  
 <0.15 PH cold-temperate  <0.09 Passivhaus artic  

 

From the results, it is evident that the benchmark timber frame configuration is not 

suitable for Passivhaus construction, even for configuration 4 with external rigid wood 

fibre board insulation and internal insulated service cavity. Furthermore, the benchmark 
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wall panel without additional insulation and with wood fibre insulation in the core layer 

does not even comply with minimum Building Regulation requirements.  

It is also clear that a 195 mm core timber frame for advanced panels is also not 

suitable for Passivhaus standards. Only two wall configurations are suitable for artic 

Passivhaus climate both having external insulation, internal insulated service cavity and 

mineral glass wool as core insulation. Timber frame walls for cold-temperate climate are 

easily achieved with additional insulation on the intermediate 195 mm wall. 

An interesting observation was the impact of timber fraction on the global wall U-

values. Figure 3-30 shows that when timber fraction is added to the frame U-value, it has 

more impact on less insulated timber frame walls. This observation was even more 

remarkable for the benchmark scenario. The impact of timber fraction on the frame 

configurations 3 and 4 were almost negligible. 

The analyses of the U-values depending on the build-up configuration and for each 

of the insulation cores mineral wool and wood fibre insulation, are presented in Figure 

3-31. The results show an almost identical U-value for the K2 dual frame and RTC I-joist 

frame for each of the intermediate core layers and insulation types. In general, insulating 

the internal service cavity and externally by a wood fibre rigid board improves the global 

U-value by 30 % to 35%, independently of the insulation core type. 

The impact on the thermal resistance of the walls by insulating the 45mm service 

cavity is almost identical than by insulating externally the frame with a 60 mm rigid wood 

fibre board. This conclusion is related to the differences on the thermal conductivities of 

both materials. 

The nominal thermal conductivity, λD, were considered in the calculation of the 

timber frame U-values. This value is also known as the rounded up to the nearest 0.001 

W/m K conductivity value, λ90/90. This conductivity is declared when the production is 

not exceeded by at least 90% with a 90% confidence interval. 
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Figure 3-30 Timber frame U-value (grey) and timber fraction added (bold) 
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Figure 3-31 U-value comparison for insulation core and wall type 

3.6 Analysis of Thermal Bridges 

The largest heat flow was found close to the perimeter of the floor. The conversion 

of the thermal bridge resulting from a three-dimensional model to a two-dimensional 

model when the dimension of the floor is similar to the width of the building can be 

considered acceptable (BSI, 2009d). In this case, the steady-state ground heat transfer 

coefficient can be expressed as per Equation 3.16 where the ground thermal bridge, 𝜑𝑔, 

is determined by numerical simulation. 

  

𝐻𝑔 = 𝐴 𝑈 +  𝑃 𝜑𝑔  (3.16) 

Where: 

   

𝐻𝑔  steady-state ground heat transfer coefficient, in W / K  

𝐴 area of floor, in m2  

𝑈 transmittance between internal and external lay, in W / m2 K  
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𝑃 exposed perimeter of floor, in m  

𝜑𝑔  ground thermal bridge, in W/ m2 K  

 

In this section, one hundred and forty linear thermal bridges for three different 

timber frame panels and for two different foundation types were undertaken to determine 

optimised sole plate details. Furthermore, a qualitative assessment of a point thermal 

bridge simulating was carried out by using 2-D FEA analysis to understand the thermal 

significance of metal fixings within the sole plate detail. 

3.6.1 Methodology and boundary conditions 

The reference documents to consider for analysing 2-D thermal bridge calculation 

of heat flow and surface temperatures were the recommended by ISO 10211:2007:  

▪ ISO 6946, building components and building elements for the thermal 

resistances of the surfaces. 

▪ ISO 13370:2007, Thermal performance of buildings, for the methodology 

to simulate heat transfer via the ground. 

▪ ISO 13788, Hygrothermal performance of building components and 

elements to determine internal surface temperatures to analyse surface and 

interstitial condensation issue. 

The two-dimensional planes of the ground and soil for the sole plate to the 

foundations thermal bridge calculation, according to EN ISO 10211, is as shown in Figure 

3-32. For this dimension, 0.5×b should be considered at least, the greater value as per 

Equation 3.17 (Feist, 2006): 

  

0.5 𝑏 = {
1 𝑚 𝑐𝑙𝑒𝑎𝑟 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 
4 × 𝑤𝑎𝑙𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠                                

}  (3.17) 

The widest wall, according to the results from the previous U-value calculation 

exercise, was achieved on a 300 mm thick central core for a total width of 475mm. In 

order to simplify the thermal bridge simulations for all of the wall configurations, the wall 

was considered to be 500 mm thick. Hence, the floor width b, was taken as 2 m. 
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Figure 3-32 Ground geometry and dimensions for 2-D thermal bridge model 

The resultant soil geometry is a rectangle of 6 m long by 5 m deep. The wall and 

the floor are projected 2 m from the external base point. This dimension covers all the 

cases for any Passivhaus envelope system suggested in this research. 

The Austrian FEA software HTFlux was selected to perform the thermal bridge 

analyses. Previously, the optimal resolution of the mesh for the thermal simulation was 

determined, according to the stability of the results and simulation time (Figure 3-33), at 

3.5 mm resulting in over 2.5 million cells for each of the models. 

 

Figure 3-33 Determination of FEA mesh resolution 
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The average simulation time for an Intel Core i5 processor and 8 GB of memory 

was 120 s. An example of the model definition, geometry and materials input created in 

this tool and for the K2 wall panel is shown in Figure 3-34. 

 

Figure 3-34 HTFlux geometrical definition with no cladding simulated 

The thermal properties of the timber frame and insulation materials considered in 

the analysis were described in section 3.4.1 and summarised in Table 3-12. The rest of 

materials not declared previously are detailed in Table 3-17. 

Table 3-17 Thermal properties of non-timber frame materials 

Material 
 

Thermal conductivity 
λD (W/mK) 

Vapour diffusion 
µ (dry) 

Source 
 

Gypsum plasterboard 0.250 10 EN 12524 

Cement screed 1.330 37 HTFlux 

Solid concrete block 1.150 100 EN 12524 

RF concrete 2% 2.500 130 EN 12524 

RF concrete 1% 2.300 130 EN 12524 

Soil 2.000 1 ISO 13770 

Sand 2.000 1 ISO 13770 

Gravel 2.000 1 ISO 13770 
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The boundary conditions of the spaces surrounding the timber frame, the suspended 

floor and the soil elements are defined as the recommendations provided by the 

Passivhaus Institut (Feist et al., 2007) and the three documents presented at the beginning 

of this section. 

Although the temperature of the boundary conditions does not have a direct impact 

on the thermal bridge calculation, they do in terms of accuracy of resulting solution. Also, 

the minimum surface temperature Tmin and the temperature factor fRsi are dependant of the 

temperature of the internal and external boundary conditions as detailed in Table 3-18. 

Table 3-18 Simulation model boundary conditions 

BC T (ºC) RH (%) Re,i (W/m2K) 

PH internal wall 20 50 0.13 

PH rainscreen wall 0 80 0.13 

PH external wall 0 65 0.04 

PH floor void 2.2 65 0.17 

PH internal down 20 50 0.17 

PH internal up 20 50 0.10 

PH soil conditions 10 80 0.00 
 

3.6.2 Sole plate detail: point thermal bridge 

Significant point thermal bridges shall be determined by three dimensional 

analyses. This is a labour-intensive task that requires complex and time-consuming 

meshing models. 

In the case of timber frame fixings at the critical point, the sole plate base 

connection, the significance of this effect can conservatively be analysed in 2D by 

considering a connector of a given diameter but with infinite length along the wall, i.e. 

simulating the fixing as a metal plate of thickness equal to its diameter. 

A thermal bridge simulation of the K2 wall panel sole plate connection with a 

horizontal screw or bolt of diameter 10 mm protruding 160 mm into the depth of the 

construction was analysed by the software HTFlux. 
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The K2 panel was selected for this simulation as the defined bolt was found in real 

sole plate detail examples whilst for the RTC panels, the current practice utilised slant 

screws for fixing the frame to the sole plate. 

Furthermore, another identical bolt but fixed vertically was simulated to determine 

the thermal influence of the connection between the sole plate and the foundation. In order 

to maximise the thermal bridge effect, the concrete slab was insulated with 240 mm of 

XPS insulation underneath. 

The comparison between this -linear- thermal bridge and a clear junction free of 

metal parts are determined by equations 3.18 and 3.19 and shown as heat flux (left) and 

isotherms (right) in Figure 3-35: 

  

 𝜑 𝑏𝑜𝑙𝑡,𝑣 = 𝜑𝑒𝑞𝑣,𝑏𝑜𝑙𝑡,𝑣 −  𝜑𝑒𝑞𝑣,𝑐𝑙𝑒𝑎𝑟    (3.18) 

  𝜑 𝑏𝑜𝑙𝑡,𝑣,ℎ = 𝜑𝑒𝑞𝑣,𝑏𝑜𝑙𝑡,𝑣ℎ −  𝜑𝑒𝑞𝑣,𝑐𝑙𝑒𝑎𝑟  (3.19) 

Where: 

   

𝜑 𝑏𝑜𝑙𝑡,𝑣,ℎ  thermal bridge of the bolted detail, v (vertical), h(horizontal) 

𝜑 𝑒𝑞𝑣,𝑏𝑜𝑙𝑡,𝑣,ℎ  thermal bridge of a linear equivalent bolt (vertical and 

horizontal) 

𝜑 𝑒𝑞𝑣,𝑐𝑙𝑒𝑎𝑟 thermal bridge of the detail with no bolts 
  

It can be seen in red colours the greater heat flux caused at the bolted connection 

but this heat flux is not proportional across the sole plate. The resultant effect of the 

10x160 mm bolt connected vertically and horizontally in the sole plate, as a linear thermal 

bridge along the full length of the wall was: 

ψbolted   = 0.011 W/(mk) 

This thermal bridge heat loss, derived from a point thermal bridge approximation, 

can be considered almost as a Passivhaus thermal-bridge free detail. 

As a result, it can be concluded that the thermal impact of the mechanical fasteners 

within the sole plate, only if they are not penetrating the full depth of the connected 

element, may not be considered as a heat loss in the energy balance. 
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Figure 3-35 Point thermal bridge due to bolted connection 

3.6.3 Sole plate detail: linear thermal bridge 

The thermal performance of the suggested three wall panel configurations was 

determined in terms of U-value in section 3.5.2. However, the global thermal performance 

of the wall panel must consider the thermal bridge between the wall panel and the 

substrate including the sole plate base fixing detail. 



Chapter 3: Thermal Performance of Timber Frame Walls 

 

J. M. Menendez - October 2017   103 

 

A series of thermal bridge analyses were carried out for the three wall panel 

configurations with several stud depths and for two different types of foundations: slab 

on grade and suspended timber floor cassettes. Two different internal finishing were 

considered: insulated service cavity and non-insulated service cavity. 

No effect on the thermal simulation was considered for the non-insulated service 

cavity. Finally, each of the wall panels presented two different external configurations: 

OSB/3 and windshield membrane and rigid wood fibre board apt for external 

applications. It must be noted that for the case of the K2 wall system, the OSB/3 must 

also be installed at the external side of the frame to provide the structure with racking 

resistance. 

The three different wall panels also utilised two materials as timber frame 

insulation: mineral wool and flexible wood fibre. Finally, the perimeter of the substrate 

for both, the slab on grade and the suspended timber floor was simulated with and without 

60 mm thick vertical XPS insulation. 

The nomenclature of each wall panel subjected to thermal bridge analysis, and 

described in Table 3-19, is as follows: 

    000AA_BB_C01.D01.E01_YY 

In total, over 140 linear thermal bridges where analysed in HTFlux. The 

representation of four different wall panel and substrate configurations, including the 

nomenclature proposed, is presented in Figure 3-36. The detailed calculations and the 

report of the thermal bridge simulation for the RTC timber frame panel is given in the 

Appendix V. 

As stated in the previous sections, there are different procedures to perform thermal 

bridge simulations. One of the greatest difference is the wall and floor reference lengths 

which can be measured either internally or externally. 

Internal measurements are generally used in the UK as required in the Standard 

Assessment Procedure (SAP 2012) whilst external thermal bridge measurements are 

compulsory for Passivhaus design. In this investigation, only external dimensions are 

considered. 
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Table 3-19 Thermal bridge wall panel nomenclature 

Ref Attribute Parameters 

000 Timber frame depth 

150 – 150 mm 

195 – 195 mm 

245 – 245 mm 

300 – 300 mm 

AA Wall panel configuration 

B – Benchmark 

K2 – K2 panel 

RTC – RTC panel 

BB Type of timber frame insulation 
MW – Mineral wool 

WF – Flexible wood fibre 

C External Rigid Insulation 

0 - No 
1 - Yes 

D Insulation on substrate perimeter 

E Insulated service cavity 

YY Type of substrate 
SG – Slab on grade 

SF – Timber suspended floor 
 

This difference has a direct impact when calculating thermal bridges. If the same 

construction detail is calculated, the resultant linear thermal bridge is greater when 

measured internally, as the heat losses on the junction area are not accounted from the 

surrounding building envelope. 

On the other hand, there is a relationship between the U-value of the components 

and the resultant thermal bridge of the inter-connection. Typically, the higher the U-value 

is for the walls and floors, the greater the influence of the linear thermal bridge on that 

sole plate connection. 

In this case, the criteria followed in the research established variable wall U-values 

for each of thicknesses proposed and for the three panel configurations. In terms of 

characteristic U-values for the floor systems, three different approaches were considered:  

▪ U-value of suspended floor system of 0.20 W/m2K, equivalent to a timber 

joist with 200 mm mineral wool insulation in between. 

▪ U-value of slab on grade foundation system of 0.34 W/m2K, equivalent to a 
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100 mm of XPS insulation on top of the slab. 

▪ U-value of slab on grade foundation system for comparison of 0.18 W/m2K, 

equivalent to a 200 mm of XPS insulation on top of the slab. 

245RTC_WF_0.0.0_SG 245RTC_WF_0.1.1_SG 

  

195K2_MW_0.0.1_SF 195K2_MW_1.1.1_SF 

  

Figure 3-36 Representation of four different wall panel configurations 

The results of the linear thermal bridge simulations for the advanced closed panel 

timber frames are presented by Figure 3-37. 

W/mK 
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Figure 3-37 Thermal bridge simulation, in W/mK for advanced closed panels 

The results of this study indicate that advanced wall panel to foundation detail 

provides no additional heat loss to the building construction as all of the thermal bridge 

analyses were negative. The research also concludes that for slab on grade foundation 

type, the thermal bridge for the RTC it is slightly more favourable than the K2 panel for 

frame depths of 195 mm and 245 mm but the thermal performance of the K2 is better for 

a timber frame depth of 300 mm. 

W/mK 

W/mK W/mK 

W/mK W/mK 
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In the case of suspended timber floors, the RTC wall system behaves slightly better, 

in terms of thermal bridging, than the K2 panel for all three timber frame depths. 

The installation of 60 mm of XPS insulation on the perimeter of the foundation for 

both the slab on grade and the suspended floor is the individual parameter that has the 

greatest influence on thermal bridging. This is an important consideration as this measure 

does not provide any direct improvement on the wall and floor U-values, but can reduce 

the heat loss of the whole building. 

As expected, there is no difference in the thermal behaviour of the timber frame 

walls insulated with mineral wool and the timber frame walls insulated with flexible wood 

fibre. The thermal bridge simulations for the later are slightly less favourable due to the 

higher thermal conductivity of the wood fibre. However, this difference is more 

significant for 195 mm timber frame walls whilst it is almost negligible for 300 mm 

timber frame walls. 

In the case of the benchmark, open timber frame panel, a different thermal 

behaviour is observed. In this case, the suspended timber floor provides better thermal 

bridge values if no additional insulation is installed or if only the service cavity is 

insulated. Also, in this case, the timber frame with mineral wool insulation provides a 

greater reduction in thermal bridging for both slab on grade and suspended timber floor 

system. 

The addition of 60 mm XPS insulation on the perimeter of the floor improves itself 

the thermal performance of the detail as much as 0.03 W/m K over the timber frame with 

no additional thermal measures (Figure 3-38). 

The insulated service cavity in the thermal simulations was modelled with 

horizontal battens spaced every 610 mm centres and mineral wool insulation between 

them. A research finding was that this approach, for the K2 and benchmark panels, 

performed thermally slightly worse than simulating a vertically fixed batten at the same 

stud spacing distance. 



Optmisation of Timber Frame Closed Panel Systems for Low Energy Housing 

 

108  J. M. Menendez - October 2017 

 

 

Figure 3-38 Thermal bridge simulation for benchmark timber frame 

This could be explained by the negative effect of the first horizontal batten where 

the skirting board is fixed. However, this factor had little influence for 300 mm thick 

walls (Table 3-20). 

Table 3-20 Effect of insulated cavities on thermal bridge value, in W/mK 

Wall panel Hor. batten Ver. battens Difference 

150B_WF_0.1.1_SF -0.025 -0.042 +0.017 

150B_WF_0.1.1_SG -0.027 -0.041 +0.014 

195RTC_WF_1.1.1_SF -0.058 -0.053 -0.005 

195RTC_MW_1.1.1_SF -0.054 -0.050 -0.004 

195K2_WF_1.1.1_SF -0.050 -0.054 +0.004 

195K2_MW_1.1.1_SF -0.047 -0.050 +0.003 

245RTC_MW_0.0.1_SG -0.074 -0.070 -0.004 

245K2_WF_1.1.1_SF -0.055 -0.058 +0.003 

300RTC_WF_1.1.1_SG -0.054 -0.053 -0.001 

300K2_MW_0.0.1_SG -0.092 -0.092 +0.000 

3.7 Moisture Control of Building Assemblies 

In order to assure a durable timber frame building and to avoid any future damage 

to the structure, it is essential to control moisture within the assemblies. The influence of 

the moisture in the building site was not considered in this research. Prefabricated 

advanced closed timber frame panels present shorter on-site building time. Hence, the 

risk of additional moisture in the assembly due to wet building site conditions is 

minimised. 

W/mK 

Benchmark configuration 
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The surface condensation risk analyses carried out in this research include two 

steady-state methodologies: the temperature factor and an evolved version of the one-

dimensional Glaser method. These two simulations do not consider other water 

transportation or water absorption processes, such as driven rain or water splashing off. 

Furthermore, only rain-screen ventilated façade systems are modelled in order to 

disregard potential water transportation from the outside to the inside. 

A third methodology is included at the end of the section which includes one-

dimensional dynamic hygrothermal simulation. This methodology not only evaluates the 

effect of built-in assembly moisture but driving rain, capillary transport, or summer 

condensation. 

Contrarily to thermal bridge simulation, condensation risk analysis requires, for any 

methodology type, clearly defined climate conditions. The next section defines three 

climate boundary conditions to limit the moisture control to a set climate scenario. 

3.7.1 Climate conditions 

In this research, no specific building site was established. Nevertheless, the 

suggested advanced closed panel systems provided a U-value from 0.09 W/m2K to 0.20 

W/m2K which related to timber frame walls from 195 mm to 300 mm thick respectively. 

According to the Passivhaus recommendations, these U-values correspond 

approximately to climate zones from artic to warm-temperate climates (Figure 3-26). 

However, only 2 out of 60 timber frame wall configurations studied (Table 3-16) are just 

adequate for artic climate conditions and for this reason, this climate is discarded in this 

study. 

Three climates are considered in the condensation risk analysis of the building 

assemblies for each of the method described in the following sections: cold, cold-

temperate and warm-temperate. Furthermore, three cities were identified within these 

categories and their available climate data were used in the simulations (Table 3-21). 
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Table 3-21 Climate conditions considered 

City (Country) Climate Min. T (°C) HR (%) fRsi criteria 

Warsaw (Poland) Cold -10 80 ≥0.75 

Edinburgh (UK) Cold-temperate -5 80 ≥0.70 

Bilbao (Spain) Warm-temperate 0 65 ≥0.65 

3.7.2 Temperature factor fRsi method 

This methodology it is widely used to determine if a building assembly is subjected 

to potential mould growth and surface condensation. The relative humidity of an external 

wall may exceed 80% when the indoor air relative humidity is greater than 70%. If this 

event occurs more than 72-96 h, mould is likely to develop on that surface. This method, 

based on EN ISO 13788, considers the internal moisture supply, the internal air 

temperature and the temperature factor to calculate the relative humidity of the surface. 

In this research, internal moisture supply is not considered as Passivhaus buildings 

require a mechanical ventilation with heat recovery systems that are able to help control 

and remove the excess of indoor moisture generation. Furthermore, for climates where 

the relative humidity is considered high all year round, an enthalpy heat exchanger can 

regulate the amount of indoor relative humidity by the use of hydrophilic membrane cores 

which allows for moisture diffusion from the membrane to the air and vice-versa  (Peper 

et al., 2005). 

The temperature factor of the internal building surface considers both the thermal 

resistance and the geometry of the materials present in the assembly and the internal 

surface resistances Rsi. This dimensionless unit refers to the temperature difference 

between the indoor and outdoor air that is present at the interior surface of the building 

assembly. Together with the temperature factor, the minimum temperature at the internal 

surface for 80% relative humidity also is an indicator of mould growth. This temperature 

for mould growth not to occur was determined as 16.7 ºC in a study carried out in 

Denmark (Green, 1979). 
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In Passivhaus, certification criteria for construction systems establishes a minimum 

temperature factor depending on the climate zone. This hygiene criterion shown in Table 

3-21, considers an internal heat transfer surface resistance of 0.25 m2K/W. 

The temperature factors obtained for the less favourable RTC, K2 and benchmark 

timber frames are shown in Figure 3-39. Although all the timber frame walls studied 

comply with the minimum fRsi required by the Passivhaus Institut, in some cases the 

minimum temperature delivered was too low. 

 

Figure 3-39 Temperature factor and minimum surface temperatures for 

benchmark (top), K2 (middle) and RTC (bottom) timber frames. 

Similarly to the thermal bridge analysis, slab on grade foundations provided a better 

temperature factor and a greater minimum surface temperatures. As expected, the results 
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obtained for K2 and RTC advanced timber frame walls were almost identical. Both 

building systems can be rated as condensation-risk safe for cold-temperate and warm-

temperate climates except for the suspended floor foundation with no additional 

insulation. Lastly, the benchmark timber frame with no additional insulation and with a 

suspended floor system was not safe even for warm-temperate climates. 

An extended full report of the temperature factor for the advanced timber frame 

assemblies is included in the Appendix VII. 

3.7.3 Glaser 2-D method 

The Glaser method (ISO-13788, 2012) determines the drying capacity of a 

construction detail in order to analyse the potential risk of interstitial condensation by 

considering steady-state conditions in one dimension. This methodology calculates the 

amount of condensation formed in a cold winter and the theoretical evaporation capacity 

in also a cold summer. If the evaporation capacity is greater than the condensation formed 

during winter and this does not exceed a certain limit, the construction is considered 

condensation risk free. 

As stated in section 3.2.5, this method is worldwide adopted for light-weight 

construction assemblies and does not take into account liquid migration nor hygroscopic 

sorption of the building materials.  

The 2-D Glaser approach is an evolution of the one-dimensional Glaser method 

developed by HTFlux (HTFlux, 2015) which extends the Glaser algorithm on to two-

dimensional planes. This method determines the vapour diffusion, partial vapour pressure 

and humidity based on constant parameter for building assemblies. The software runs a 

defined maximum number of iterations to converge to a stable solution. However, the 

steady-state model, as the 1-D Glaser method, does not consider liquid migration 

processes nor storage of moisture. Therefore, this method may not be as accurate on 

strong condensation formation in a construction assembly. However, this is seldom to 

occur on highly insulated Passivhaus assemblies (Feist, 1993). 

In order to proceed with the two-dimensional Glaser simulation, two material well-

known constants are required: 
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▪ Thermal conductivity, λ 

▪ Water vapour diffusion resistance, sd-value, µ 

The information and source on properties for the 2-D Glaser simulation carried out 

on this research are detailed in Table 3-12 for timber frame materials, in Table 3-7 for 

construction membranes and in Table 3-17 for other non-timber frame products. 

These 2-D Glaser qualitative analyses were carried out for the 195 mm K2 and RTC 

wall and for the suspended floor foundation type, 195K2_MW_0.0.0._SF and 

195RTC_MW_0.0.0_SF respectively. 

   

            Warsaw (Cold)  Edinburgh (cold-temperate)    Bilbao (warm-temperate) 

   

   

Figure 3-40 Humidity (top) and vapour flux (bottom) for 195 mm K2 panel. 

Figure 3-40 shows the hygrothermal result for the K2 advanced panel and for three 

different climates: cold (left), cold-template (middle) and warm-template (right). The 
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results do not provide any condensation risk in the construction assembly when an 

Ethylene Propylene Diene Monomer (EPDM) damp proof course is provided on top of 

the concrete block; a windproof shield membrane is installed in the external OSB/3 board 

and a VCL layer runs continuously on the internal OSB/3 board and through the internal 

floor cassette. 

On the other hand, Figure 3-41 shows the hygrothermal results for the RTC closed 

panels and also for three different climate scenarios: cold (left), cold-temperate (middle) 

and warm-temperate (right). These results also do not show any evidence of condensation 

risk in the construction assembly when an EPDM damp proof course (dpc) is installed on 

top of the concrete block, a windshield membrane is fixed in the external OSB/3 board 

and a VCL layer runs continuously on the internal OSB/3 board and through the internal 

floor cassette. 

   

            Warsaw (Cold) Edinburgh (cold-temperate)    Bilbao (warm-temperate) 

   

   

Figure 3-41 Humidity (top) and vapour flux (bottom) for 195 mm RTC panel. 
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3.7.4 One-dimensional hygrothermal transient method 

The aim of this dynamic hygrothermal procedure is to model more realistic 

conditions. Hence, drying-out moisture of the building assembly, water vapour 

condensation and the effects of precipitation over a timber cladded ventilated rain-screen 

are considered by in one-dimensional WUFI® models. The simulation period for all of 

the timber frame walls was three complete years. 

WUFI® Pro 5.0 already includes the climate data for two locations considered in 

the previous section: Bilbao and Warsaw. However, the climate for Edinburgh was 

obtained from Meteonorm v5.1 and exported in TRY format to WUFI®. The temperature, 

relative humidity, solar radiation and precipitation profiles are shown in Figure 3-42. 

 

Bilbao 

 

 

Edinburgh 

 

 

Warsaw 

 

Figure 3-42 Climate profiles for Bilbao, Edinburgh and Warsaw. Tª (top 

left), relative humidity (bottom left), solar radiation and precipitation (right) 
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Other boundary conditions and initial considerations required to perform the 

hygrothermal calculations for the wall panels are detailed below: 

▪ Inclination of the wall 90 º vertical 

▪ Height of the building above ground less than 10 m 

▪ Exterior surface heat transmittance of 17.0 W/m2K 

▪ Internal surface heat transmittance of 8.0 W/m2K 

▪ Internal indoor climate sine-curve low moisture load 45±15 % and sine-

curve temperature 21±1 ºC 

▪ West orientation of the wall due to dominant precipitation for all of the 

climates. 

▪ Constant initial temperature profile through the assembly components. Initial 

temperature in the assembly 20 ºC 

▪ Constant initial moisture profile through the assembly components. Initial 

water content of the assembly 80 % 

▪ Moisture Content of wood based boards in % at the last period peak 

▪ Isopleths as % RH on the interior surface 

The total water content is measured at beginning of year zero and after the set three-

year period. The aim of this activity is to consider all of the proposed building assemblies 

safe from a long-term increase of the water content within the envelope. A temporal short-

term increase is acceptable if the humidity is lower than the initial water content. 

Also, the moisture content of the individual layers containing wood-based materials 

was reported. The objective is to analysis the MC of the external OSB or wood fibre board 

insulation and the internal OSB board and to report any building assembly with more than 

18% MC even for short periods of four days in order to avoid degradation and further 

decay processes (Dinwoodie, 2000; Faherty & Williamson, 1998). 

Water content results did not show evidence of a long-term increase in the building 

assembly except for the benchmark timber frame build-up with additional insulation and 

for a cold climate scenario (Figure 3-43). The results plotted as an irregular line show a 

slightly higher water content within the assembly the colder the climate is. 
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Figure 3-43 3-year period water content in kg/m2 for construction assemblies. 

In terms of humidity for individual components there was no wood based material 

exposed to moisture content greater than 18 % for external OSB/3 boards or even wood 
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fibre insulation boards (Figure 3-44). The simulation was performed on the thinner wall 

panels as they are more able to accumulate water at colder temperatures.  

 

Figure 3-44 Total water content and variation of wood based boards 

However, for internal OSB/3 board humidity, the benchmark building assembly 

with additional insulation provided a MC greater than 20 % for extended periods of time 

(~3 months) within a cold climate. This timber frame build-up is therefore, not 

recommended. Additionally, this timber frame build-up is the only suggested assembly 
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that delivers a final water content higher than the initial one for cold and cold-temperate 

climates. 

Another observation found was that additional insulation on the frame causes an 

increase of the water content of the building assembly which is climate independent. This 

is a common effect observed in WUFI as thicker assemblies tend to retain more moisture 

than thinner walls (Karagiozis et al., 2001).  

The last parameter studied is the Isopleths diagram which provides the condensation 

occurring combination of relative humidity and temperature on the internal surface – 

Lowest Isopleth for Mould (LIM). The WUFI output for this parameter includes two 

limiting isopleths for building materials, LIM-B1 and LIM-B2, below which mould to 

occur is not expected. For the purpose of this research, LIM-B1 is the identified limit as 

the internal surface is a biodegradable substrate. 

Supporting the conclusions obtained from these two parameters, water content and 

moisture content of internal OSB/3, the isopleths resulted (Figure 3-45) agree on the risk 

of mould growth occurring for the benchmark timber frame with additional insulation. 

Indeed, the building assembly corresponding to the panel 150B_MW_1.1.1 determines 

positive mould growth of that particular frame for the climates of Edinburgh and Warsaw. 

There is no risk in the other timber frame panels according to the temperature and relative 

humidity isopleths. 

A full WUFI® report containing the full hygrothermal transient-state analysis for 

K2 and RTC closed panel timber frame systems and for the cold climate is included in 

the appendix VI. 

The results of the WUFI® Pro analysis were coherent with the temperature factor 

and minimum surface temperature determined in the previous sections. However, for the 

transient-state methodology, the influence of the sole plate and the type of foundation was 

not considered. 
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Figure 3-45 Isopleths for condensation occurring temperature and relative 

humidity.  

3.8 Summary 

This chapter proposed a series of advanced closed panel timber frame assemblies 

for low-energy buildings in different climate zones. The thermal properties of these wall 

panels were investigated in terms of timber fraction, heat transmittance, thermal bridging 

and moisture control. 

Temperature (ºC) 

Temperature (ºC)v 

Temperature (ºC)v 

Temperature (ºC) 

Temperature (ºC) 
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Timber frame construction may accommodate a great level of insulation between 

studs, one of the most relevant factors to achieve low-energy buildings, with slender 

walls. This is a factor to consider when dealing with extremely energy efficient buildings 

if the design does not want to compromise the usable floor area. Mineral wool and flexible 

wood fibre insulation has been investigated in the wall assemblies with absence of gaps 

and air pockets. Sole plate details were suggested for two types of commonly found 

foundations: concrete slab on grade with XPS insulation on top and suspended timber 

floor insulated with mineral wool. 

Specific literature on thermal performance was reviewed which identified a series 

of procedures on which to perform hygrothermal calculations on timber frame walls. 

From this review, different analytical and experimental methodologies in order to 

determine the thermal transmittance, U-value, were evaluated for both steady-state and 

transient conditions. In this research, for highly insulated new built timber frame 

buildings, two-dimensional steady-state simulations were found in good agreement with 

past experimental investigations. 

Thermal resistance, U-value, was identified as the governing design parameter for 

low-energy and Passivhaus timber frame walls. Two advanced closed panel wall 

assemblies of 195 mm, 245 mm and 300 mm and one open timber frame of 150 mm were 

presented with two different sheathing configurations. The external façade, for simulation 

ease, was considered as timber clad rain-screen. The assemblies were internally finished 

by a service cavity which may be insulated. Commercially available materials with 

declared isotropic thermal properties were used in all the hygrothermal simulations. A 

complete description of the timber, sheathing, fasteners and membranes materials and its 

properties was provided. 

Timber fraction values provided by literature may not be considered accurate or 

reflective of modern construction for highly insulated walls when geometrical and 

window installation thermal bridges are also accounted for. In most of the cases, timber 

fraction values taken from literature were found to be conservative. A methodology to 

determine timber fraction on energy efficient buildings was presented. Furthermore, the 



Optmisation of Timber Frame Closed Panel Systems for Low Energy Housing 

 

122  J. M. Menendez - October 2017 

 

timber fraction determined for four different low energy projects estimated a mean value 

of 10 % which was on agreement with some published values. 

The most significant thermal bridge found in traditional construction was the 

foundation to external wall detail which accounted for 50 % of the total linear thermal 

bridges in a typical dwelling. A comprehensive thermal bridging analysis on one hundred 

and forty details was carried out. The result of this investigation showed that the proposed 

closed panel configurations can be considered thermal bridge free. However, the action 

that contributed the most to mitigate thermal bridging was to place insulation on the 

foundation edge. The findings of the study also suggested that point thermal bridges at 

the sole plate, when no fully penetrating the detail, can be neglected. 

The literature review also identified and helped collated the airtightness results of 

fifty-six dwellings where tests were undertaken after completion and over a set period of 

time. In two-thirds of the cases, the airtightness of the buildings increased after it was 

occupied. This conclusion was in agreement with the as measured “Performance Gap” 

theory. 

Several methodologies for moisture assessment were reviewed. Minimum 

temperature factors, minimum internal surface temperatures, the Glaser method and one-

dimensional dynamic hygrothermal simulations were all considered valid approaches for 

light-weight timber frame construction. Three climates corresponding to cold (Warsaw), 

cold-temperate (Edinburgh) and warm-temperate (Bilbao) were identified. All the 

methods highlighted the risk of the benchmark case scenario, and particularly the panel 

with additional insulation, in cold and cold-temperate climates. The closed timber frame 

panels, in all the cases, were found safe from moisture ingress and long-term storage. 

This chapter has investigated the hygrothermal performance of two proposed closed 

timber frame panels. It has provided different wall panel configurations suitable for 

Passivhaus standard in three different climates. Also, the research has provided sole plate 

base details considered thermal bridge and condensation risk free. The following chapter 

will discuss the structural behaviour of the proposed solutions. 
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4 STRUCTURAL 

PERFORMANCE OF TIMBER 

FRAME WALLS 

In this Chapter, the structural performance of the two-advanced closed panel timber 

frames, regarded in the previous sections as optimal solutions, are analysed as shear walls. 

The investigation includes analytical and experimental methodologies to understand the 

structural performance of the wall and the sole plate connection detail in isolation and 

then in combination.  

Once the results of the experiments were corroborated with the latest analytical 

approach, defined by PD 6693 and included in the UKNA of the Eurocode 5, a timber 

frame racking application software was developed to provide structural engineers with a 

design tool for direct specification and with BIM enabled capabilities. The organisation 

of the chapter is illustrated by Figure 4-1. 
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Figure 4-1 Organisation of the Chapter 4 
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4.1 Introduction to Shear Walls 

Timber frame shear wall diaphragms are subjected to three major structural actions: 

vertical loading, out-plane actions due to horizontal loading, and in-plane lateral loading 

(TRADA, 2006). The capacity of the shear wall to withstand under the effect of these 

actions is determined by its strength. The structure will fail if the final action, alone or in 

combination, exceed the strength of the shear wall. 

A shear wall is a structural sub-assembly able to act as a diaphragm in order to 

transfer horizontal building loads to the foundation. It is also convenient to note that an 

external shear wall is also a physical boundary element between the outdoor and the 

internal environment (ASTM, 2006). 

The shear resistance of racking walls can be determined as load per unit length 

(kN/m) assuming that the load is distributed uniformly along the total length of the wall 

(Salenikovich & Dolan, 2003). In order to calculate shear capacity of timber frame walls, 

the permissible stress code BS 5268 (BSI, 2002) has been superseded by ultimate limit 

state i.e. Eurocode 5 (BSI, 2009b) design codes.  

A paper published by Dietsch and Winter (2012) states the unsatisfactory 

acceptance of the Eurocode 5 in the timber sector. Previously, Silih and Premrov (2010) 

concluded that the afore mentioned method B, generally delivers higher strength values. 

These statements are also supported by IStructE (2007) as the two Eurocode 5 design 

methods for racking performance, method A & method B, were defined as incompatible 

with standard UK timber frame construction practice. 

Abundant papers, related to ultimate strength of wood shear wall panels, have been 

published. Liu, Gopalaratnam, and Nateghi (1990) identified lack of wall resistance to 

both uplift and racking and lack of proper designed wall anchorage to foundation, as the 

main cause of excessive wood-frame house damage under high winds. The lack of 

structural redundancy, traditionally achieved by on-site continuous sheathing 

construction, results in a need of careful engineering design (Morsefortier, 1995). In order 

to ensure load transfer continuity, adequate anchor bolts or lag screws in the sole plate 

detail is identified as critical element in shear walls (Scott et al., 2005). This chapter 
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provides a literature review on shear walls and investigates the structural performance of 

the advanced timber frame panels, K2 and RTC, from a global perspective including 

design methodology, materials and sole plate base fixing details. 

4.2 TFS Structural Performance Literature Review 

Timber wall panels are defined by multiple variables which relate to both internal 

and external boundary conditions. Substantial research has been done in the field of shear 

walls mostly in North America, Europe, Japan and New Zealand, especially during the 

last two decades. 

In order to overview the existing literature in an organised and structured manner, related 

variables influencing the behaviour of racking walls were gathered together and classified 

according to the boundary conditions and limitations of the research undertaken. This 

classification is visually represented in Figure 4-2 where variables considered in this 

thesis are noted in bold. 

A recent Scandinavian publication by Labonnote (2013) summarises state-of-the-

art research on timber frame wall diaphragms. In this report, the author suggested the 

creation of a master database containing latest research on timber shear walls grouped by 

different domain areas (see Table 4-1). Furthermore, a collection of timber frame racking 

tests carried out at Edinburgh Napier University are provided in the Appendix VIII. 

Table 4-1 Database format proposed by Labonnote (2013). Adapted. 

Source Date Sheathing 
Boundary 
conditions 

Loading Analysis 

Author 1900 
OSB 
one sided 

Nail 
Vertical load 
Fully anchored 

Static 
EN 694 

ULS 
SLS 
Failure types 

…      
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Figure 4-2 Variables influencing the design of shear walls 

4.2.1 Structural wall diaphragms 

The strength and stiffness of shear walls is usually determined either by 

experimental testing of individual wall panels, by analytical equations derived from 

engineering principles and by numerical methods (Alsmarker, 1995; Dolan, 1991; 

Doudak, 2006; Salenikovich, 2000). 

Eurocode 5 currently provides two different methods to determine the racking 

capacity of shear walls. Method A is based on equilibrium where holding down devices 

are required at both stud ends. Method B, compulsory in UK and optional in Denmark 
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only, is based on a large series of tests where holding down is not used. In this method, 

the anchorage force to resist uplift is provided by the bottom rail fasteners which also 

prevent lateral sliding. This process generally delivers lower shear resistance than method 

A. 

Method B is based on the empirically design method established on the now 

superseded British Standard BS 5268 which relates to the test behaviour of nearly two 

hundred wall panels (Griffiths, 1987). However, this methodology has been questioned 

due to misinterpretations from the original British code (Kallsner & Lam, 1995). 

The fact there is not a clear analytical rationale, in line with the Eurocode approach 

behind the outcome of method B, resulted in the recent publication of an alternative 

method informally named method C and published as PD 6693-1  (Griffiths, et al. 2005). 

This analytical method does not require full tie-down of lead and trail studs (opposite to 

method A). However, this method accounts for other indirect holding down devices such 

as returning walls or vertical loading. Moreover, PD 6693-1 considers racking 

contribution for the sheathed area around openings (as in method B). Contrary to both 

method A and B, the new design methodology allows the racking contribution of 

plasterboard-only sheathed timber frame walls. 

According to these Eurocode methodologies, the full-height wall panel area 

enclosed by a window opening does not contribute to racking resistance in method A but 

it does in methods B and PD-6693. 

Finally, another method named “force transfer around openings” has been recently 

researched and tested in the US (Yeh et al, 2010). In this method, the shear wall is 

reinforced by metal straps or other plate material i.e. plywood around the opening. The 

method then analyses the re-distribution of forces around the opening. 

For the analytical methodology, the now published PD6693-1 has been followed 

through-out this research (BSI, 2012). 

4.2.2 Timber frame panel materials 

Before a review of the structural shear wall performance as a component, it is 

necessary to consider the mechanical properties of wood-based materials and metal work 
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components used in the fabrication of timber frame wall panels. This section collates 

relevant information on sheathing boards, sheathing and frame fasteners and anchorage 

metal work. 

Sheathing plates 

Sheathing boards have a direct impact on the racking performance provided by its 

shear modulus and particularly, by the contribution to the lateral load carrying capacity 

as part of a connection together with sheathing fasteners. According to EC5, sheathing 

materials shall be wood-based materials and must ensure a minimum distribution of shear 

forces from the board to the frame. These wood-based panels ensure a minimum level of 

ductility characterised on the load versus strain curve. For a certain fastener specification, 

three different equations are given in EC5 for plywood, hardboard and particleboard or 

OSB. Hence, the ductility of the sheathing connection is directly proportional to the 

embedment strength of the connection: Equation 4.1 to Equation 4.3 (Buckingham, 

1914). 

   

 𝑓ℎ,𝑘,𝑝𝑙𝑦𝑤𝑜𝑜𝑑 = 0.11 𝜌𝑘 𝑑−0.3 (4.1) 

 𝑓ℎ,𝑘,ℎ𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑 = 30 𝑑−0.3 𝑡0.6 (4.2) 

 𝑓ℎ,𝑘,𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒−𝑂𝑆𝐵 = 65 𝑑0.7 𝑡0.1 (4.3) 

Where: 

ρk  is the characteristic density of the sheathing board 

d  is the diameter of the fastener 

t  is the thickness of the panel 

Different publications agree that shear walls sheathed only with plasterboard can 

transfer little in-plane shear forces. If this is assumed, then the contribution to the overall 

stiffness of the three-dimensional structure can be ignored ( Asiz & Smith, 2011; Kozem, 

(2016); Premrov, 2012; Thomas, 2010). However, these studies completely neglect the 

overall contribution of plasterboard and under estimate the global stiffness of the 

structure. On the other hand, the UK Non-contradictory complimentary information 

(NCCI) document PD6693-1 provides conservative design shear capacities for different 

configurations of plasterboard sheathed walls. Other experimental studies observed a 
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modest racking resistance contribution of gypsum-based boards (Yasumura & Kawai, 

1997). 

Similar conclusions were reached in two other different studies by (Serrette, 

Encalada, Juadines, & Nguyen, 1997) where the shear strength of light-gauge steel frame 

sheathed with OSB only and with OSB and plasterboard combined were presented for 

static and cyclic tests. Table 4-2 compares the static test results of six light-steel frames 

sheathed with OSB only and OSB and 12.7 mm plasterboard. The results indicate that the 

contribution of plasterboard as additional sheathing layer is greater on shear walls with 

lower shear capacity. 

Table 4-2 Summary of static tests, after Serrette and Ogunfunmi (1996) 

 
 

Furthermore, an analytical study showed that fibre-plaster materials, in seismic or 

windy areas, present a significant loss of structural stiffness resulting in the creation of 

cracks in the plasterboard (Dobrila & Premrov, 2003). This outcome, as investigated in 

the previous chapter, could have a significant impact on the dilapidation of airtightness 

over time for Passivhaus and very low-energy buildings. In relation to other wood-based 

materials, a study with small-scale tests showed lower shear capacity on walls sheathed 

with OSB rather than with plywood (Beall et al., 2006). 

The EC5, and particularly the PD 6693-1, include a comprehensive set of 

application rules for the adequate arrangement of the sheathing boards within the timber 

frame. Also, minimum board width dimensions depending the location of a sheathing 

sheet within the panel are given to provide sufficient stiffness. Experimental work 

confirmed that sheathing arrangement has an impact on the wall stiffness (Cheung et al, 

1988). Additionally, an investigation undertaken by Lam et al., (1996) concluded that 

timber frame sheathed with oversized OSB panels under monotonic loading experienced 

a significant increase in both strength and stiffness. 
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Apart from the sheathing material, research undertaken in the United Kingdom 

suggests that brick and block skin façades of mid-rise timber frame buildings can increase 

the shear capacity of the walls due to its contribution as a system to the racking resistance 

and to the wind shield (TRADA, 2006). This outcome is now included in the non-

contradictory complementary document to Eurocode 5 for the UK (BSI, 2013). 

Although most recent experiments are performed with OSB as sheathing material, 

earlier studies on this subject were performed with plywood (Ni et al., 1999). However, 

the economy and availability of plywood for structural use nowadays is limiting its 

specification on timber frame panels. A study on wood fibre insulation boards conducted 

by Gebhardt & Blaas (2009) published embedment strength, pull-out, pull-through values 

and stiffness values of wood fibre connections to staples and nails. These values may be 

used to determine the shear resistance of timber frame walls sheathed with wood fibre 

insulation boards for roof, floor and wall systems, as suggested in the previous chapter. 

Frame members 

Structural floor diaphragm design includes timber blocking between joists to ensure 

the system performs as a true diaphragm. However, shear wall diaphragms not always 

present timber blocking at transversal sheathing edges. This situation is more commonly 

found when sheathing boards are installed horizontally to the frame. Ni & Karacabeyli, 

(2005) investigated horizontally sheathed unblocked shear walls and concluded that a 

reduction factor applies to the design shear strength depending on stud and nail spacing. 

The orientation of the OSB sheathing boards in the timber frame members is not 

arbitrary. In order to maximise the racking resistance and minimise horizontal deflections, 

panels should be orientated parallel to the frame, especially if the frame is unblocked 

(Leskela, 2005). 

Sheathing and frame fixings 

Nail or screw spacing is a key variable influencing the design of shear walls. Nail 

perimeter spacing is restricted by Eurocode 5 to a maximum of 150 mm and a minimum 

of 7 times the fastener of the diameter (BSI, 2006). The spacing of internal fasteners is, 

by common practice, specified as twice the perimeter fastener spacing. This assumption 
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is corroborated by past studies (Cheung et al., 1988) and thus followed on this research. 

Nevertheless, an investigation from North America was undertaken with an internal nail 

spacing of four times the perimeter spacing which was considered apt to be used for 

design rules (He et al., 2001). 

Moreover, Chung & Yu (2002) concluded that the most relevant parameter 

influencing the structural performance of timber shear walls is the connection between 

the frame and the sheathing material rather than the mechanical properties of both the 

frame and the sheathing material. 

On the other hand, contribution of the vertical shear capacity by the frame fasteners 

is most commonly ignored. As part of research carried out in Sweden, the model proposed 

by  Girhammar et al., (2004) achieved, in partially anchored walls, a 15% increase on the 

shear strength capacity due to the inclusion of the vertical shear contribution from the 

frame fasteners. However, this model relies on the lower bound plasticity of the fasteners 

where the conditions for equilibrium are not always fulfilled. 

The lateral load carrying capacity of both sheathing and frame fasteners is directly 

related to the yielding capacity of the fastener. Plenty of research in this area has been 

done during the last fifty years. Mechanically fixed sheathing-to-frame fasteners, with 

plastic behaviour, are utilised in most of the analytical models discussed in the literature 

review. 

4.2.3 Timber frame panel configuration 

The understanding of the components in isolation for timber frame closed panels is 

the first step in order to characterise the mechanical properties of the system in 

combination. A comprehensive review of past research regarding panel specifications and 

openings is presented in this section. Research about the anchorage method of the wall to 

the substrate is also included. 

In the previous section, an overview of timber frame racking panel specifications 

and naming conventions was introduced. This sub-section provides further literature of 

timber frame shear walls for both conventional and non-conventional material 

specifications. It must be mentioned that, in a building with different timber frame shear 
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wall configurations and lengths, the stiffness of the walls is not equal. This assumption 

may lead to over-designed or under-designed load bearing walls (Kasal et al., 2004). 

Openings 

There is a wide agreement that openings have a significant impact on the strength 

and stiffness performance of shear walls. Three-dimensional modelling investigations 

undertaken by He et al. (2001) on regular timber frame cubes and with a large opening in 

one side (75% of wall area) concluded that global shear capacity of the structure was 

reduced by almost 50%. In the same study, the torsional moment generated on the model 

caused significant differential deformations at each of the top corners. Other studies have 

also noted the occurrence of shear torsional moments on buildings with asymmetric 

distribution of shear wall stiffness (Ellis & Bougard, 2001). 

A conservative approach, with no contribution of the area of the sheathing above 

and below of the opening, is generally considered in many countries. However, analytical 

(Ge et al., 1991) and numerical (Guan & Zhu, 2009) methods considering this area were 

compared with empirical results with good agreement. A recent study performed by 

Skaggs & Martin (2002) introduced a new model based on the result of transferring forces 

around openings. 

The results of another study performed by Yasumura (2000) lead to the conclusion 

that non-linear analytical models can underestimate considerably the racking resistance 

of perforate timber frame walls. Other simplified methods for designing shear walls with 

openings consider the wall as the addition of multiple panel segments when holding-down 

devices are installed at the end of each wall segment (BSI, 2009b; Ni, Karacabeyli, & 

Ceccotti, 1999). 

Sole plate base fixing anchorage 

Modern methods of timber off-site construction involving shear walls rely heavily 

on the structural behaviour of the connection to the substrate. Two different approaches 

on the sole plate detail are found in the literature: partially and fully restrained timber 

walls. 
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Fully anchored walls include holding down devices at the leading and trailing studs 

of the wall assembly. Perforated walls with a design methodology based on multiple 

segment walls also require holding down devices on cripple studs. 

Partially anchored walls do not present holding down devices. Partial vertical 

restrained is provided by positive vertical loads and by a percentage of the lateral load 

carrying capacity contribution from the bottom sheathing fasteners. Most of the studies 

and analytical models are validated for fully anchored panels (Kallsner & Girhammar, 

2009). However, potential difficulties on the constructability of prefabricated sole plate 

details resulted in the need for partially restrained solutions. In line with this demand, the 

release of PD 6693-1 provides the engineers with a well-defined and validated 

methodology. This analytical method is supported by previous research undertaken 

mainly in Sweden (Girhammar & Kallsner, 2004). The basis of the design accounts for 

some degree of vertical uplift resistance by the bottom runner sheathing fasteners. 

Conventional anchorage construction practise also includes the installation of a 

series of bolts at regular intervals on the sole plate. A recent study undertaken by Yeh et 

al. (2010) integrated the concept of Optimal Value Engineering (Bell & Overend, 2001) 

and resulted in design tables for different bolt spacing depending on combined shear and 

uplift forces. 

A stress distribution, for fully anchored shear walls and according to the plastic 

lower bound theory, was derived by Kallsner & Girhammar (2009). This theory assumes 

flexible frame members and fasteners acting a full plastic capacity causing a parallel force 

distribution in the sheathing material. This conclusion was developed from previous 

studies where a simplified plastic model for the design of partially and fully anchored 

shear walls were proposed and then corroborated (Girhammar & Kallsner, 2004; Kallsner 

& Lam, 1995). 

An alternative approach to partially restrained wall panels was published by Ni et 

al. (1999) as a guidance for the withdrawal Canadian Standard for engineering Design in 

Wood (CSA) in the 2001 edition. One of the conclusions of this study is the importance 

of understanding load paths in timber frame building systems. 
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Apart from the degree of anchorage restraint, the specification of the anchor bolts 

on the sole plate may influence the global structural performance. When combining bi-

axially lateral and uplift forces, brittle failure of the timber on the tangential to the grain 

direction were observed (Yeh et al., 2009). This is especially relevant on areas with very 

high wind loads. Furthermore, Girhammar and Kallsner (2009) also observed cross-wise 

bending and further splitting failures at the sole plate. In order to mitigate this effect, the 

authors suggested washer specifications and end and edge distances in the sole plate. 

A numerical expression, from fracture mechanics, was suggested by Serrano et al. 

(2011) to estimate the design load for vertically loaded bottom rails. Good agreement 

between the FEA model and the experiment was found for partially anchored walls. 

4.2.4 Analytical Methods 

As mentioned previously, Eurocode 5 currently presents two simplified analytical 

approaches to determine the racking resistance of timber frame shear walls: Method A 

and Method B (BSI, 2009c). 

Method A is based on a linear elastic model (Figure 4-3) where the walls are fully 

restrained by holding down devices at the leading studs and at cripple studs around 

openings. Design verification for this method requires substantial time as a check for each 

full sheathing sheet within a perforated panel shall be carried out. 

PD 6693-1 is a design method based on the withdrawal BS 5268-6.1 where test-

based values were converted to factors and formulas. However, this method did not follow 

the analytical principles of Eurocode 5 and un-conservative values were reported (J. 

Porteous & Kermani, 2007). 

This method PD6693-1 was published after several years of research as a non-

contradictory complementary document that support the Eurocode (BSI, 2012). This 

analytical method is now adopted in UK and, at the time of writing, it is being introduced 

in other countries like France or Spain. In this case, the racking analysis methodology is 

an adaptation of the simplified plastic model developed by Griffiths et al. (2005) and 

Kallsner and Girhammar (2004).  
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Figure 4-3 Linear elastic (left) and pure plastic (right) force distribution 

theory 

The analytical study carried out in this research focuses on this method C. A further 

explanation of the basis for timber frame racking design according to this theory is 

provided in section 4.3.1: Racking design methodology. 

Apart from Eurocode 5, other standards providing racking resistance of timber 

walls can be found (ANSI, 2011 IBC, 2009 NZS 3603, 1993). The methodology included 

in these standards is the result of previous broad research. In this section, a comprehensive 

review of research on analytical models for the design of timber frame shear walls is 

provided. 

The analytical models for the design of wall panel segments with perforated 

openings may provide racking capacity or may be disregarded for that purpose (BSI, 

2009b). A desktop study conducted by (Kozem Šilih & Premrov, 2012) concluded that 

timber frame walls with door openings could take up to 50% of the ultimate racking 

resistance of the equivalent imperforated wall. 

A study comparing two different analytical methods, multiple shear wall segments 

with and without openings, based on Phillips et al. (1993), was performed by Ni et al., 

(1999). This study concludes that the analytical methodology including openings 

provides a better prediction when compared with experimental past results. 
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In terms of deformations, PD 6693-1 does not provide any analytical procedure to 

determine racking stiffness (BSI, 2012). Nonetheless, clause 21.5.2.3 provides a 

condition to limit racking deflection (Equation 4.5). In terms of testing, shear stiffness is 

commonly evaluated at displacements measured at 20 % and 40 % of the ultimate load 

(Dujic et al., 2008; Porteous & Kermani, 2005) and determined in N / mm in Equation 

4.6.  

  

𝐾𝑖,𝑤 𝑓𝑝,𝑑,𝑡 ≤  8 (1 + 𝐾𝑐𝑜𝑚𝑏) (
𝐿

𝐻
) (4.5) 

𝑅 =  [
𝐹4 − 𝐹2

𝜈4 − 𝜈2
] (4.6) 

4.2.5 Experimental Methods 

Testing timber frame wall panels for racking resistance in isolation may not 

represent the actual boundaries of the design in service. Issues such as a three-dimensional 

construction, floor diaphragm action, upper loading contributing to stability and an 

overall understanding of the systems requires a more holistic approach. Stiffness under 

cyclic responses can be also measured as the relationship between maximum and 

minimum forces. Their corresponding displacements are determined for the seventh cycle 

as the previous six cycles are used to check the equipment and settlement (Fonseca et al.,  

2009) 

Relationship between the nail slip and shear wall deformation direction, out of 

plane, was investigated by Kamiya (1987). In this case, it was concluded that shear walls 

have a higher buckling capacity even considering these eccentrics applied loads. Also, 

the rigidity of the sheathing to frame joints positively impact the composite frame-to-

sheathing action. As a consequence of the different wall stiffness, there is an offset 

between the centre of the stiffness and the centre of the building impinging upon the 

torsional stability. In this experimental study, the most accurate method to predict the 

load distribution was the finite element analysis followed by the plate model. However, 

the determination of the different wall stiffness proved to be rather difficult. 
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A mathematical model combining non-linearity of fasteners and vertical loading 

and corroborated by laboratory testing was performed by Dujic & Zarnic (2002). The 

authors, in this case, suggested that non-linear behaviour of sheathing fasteners and 

anchors govern the racking behaviour for low and medium racking forces. 

The effect of vertical loads and holding-down restraint were tested in cyclic 

behaviour by Johnston, Dean, & Iii (2006). The authors concluded that lateral stiffness 

increases up to 80% with walls with vertical loads of 25 kN/m whilst holding-down 

anchors have minimal impact on the stiffness of the shear walls. 

In Canada, seven different test schedules were performed by Doudak et al. 

(2006).The investigation takes into account multiple uniformly distributed load (UDL) 

on top of the top runner, the inclusion of openings and different types of anchorage 

(Nelson et al., 1985). Similar to most of the studies reviewed, this test does not take into 

account the boundary conditions representing the action of the rest of the building 

elements like shear walls at the other direction or the effect of floor diaphragm. 

The past UK TF2000 research project (Ellis & Bougard, 2001) experimentally 

evaluated the stiffness of a timber frame platform building according to the different 

levels of internal and external finishing. It was demonstrated that finished buildings are 

much stiffer than the sheathed frame alone, although this incremental effect, is difficult 

to calculate. Also, frequent poor correlation between the experimental and the predicted 

analytical stiffness on timber frame shear walls on 3D wall-to-floor systems was observed 

by Filiatrault et al. (2002) On the other hand, a pseudo-dynamic test was carried out to 

estimate 3D behaviour of shear wall structures (Silih & Premrov, 2010). Parallel, 

Andreasson et al. (2002) concluded on his study that the behaviour of shear walls, at low 

levels of displacements, is best described by non-linear analysis. This contrast other 

studies where a linear relationship is assumed for nailed joints at low levels of load 

(Kamiya, 1987). On the other hand, according to He et al. (2001), the linearity of the 

displacements at low levels may be assumed for shear walls of low stiffness whilst stiffer 

shear walls present non-linear displacements even at low applied loads. 

An extensive racking test program was carried out by Leitch (2013) at Edinburgh 

Napier University as part of a doctoral research. Over forty different wall types were 
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tested for a total number of 112 individual panels. As a result of the large variability of 

the samples, the author proposed a naming convention to fully describe the wall panel 

specification (Table 4-3). This naming convention is followed throughout this research. 

Table 4-3 Naming convention for racking test, after Leitch (2013) 

 

The large dataset of experiments gathered in this thesis shows significant 

differences between analytical and experimental stiffness on racking wall panels with 

high aspect ratio. The analytical linear stiffness is based on the maximum lateral 

deflection of a cantilever beam theory. Here, it can be observed deformations, δv, due to 

shear and deformations, δm, due to bending according to the transformed section method 

(Parida et al., 2013). 

Nevertheless, alternative experimental studies have showed non-linear relationship 

between stiffness and wall lengths (Girhammar & Kallsner, 2009). 

Furthermore, an experimental study on the structural performance of scaled racking 

wall panels provided good agreement to predict the maximum load and initial stiffness 

(Lee & Hong, 2002). However, the load-strain deformation curves were unsatisfactory. 

Additionally, a recent study compared a series of forty-three static and dynamic racking 

test with several analytical methods. In particular, EC5 - method C resulted the most 

conservative method although the overall prediction was a good estimation (Salenikovich 

& Payeur, 2010). 
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Review of international test methods 

In Europe, apart from Eurocode 5, the racking resistance of timber frame shear 

walls can be determined by test undertaken to EN 594 (BSI, 2011). The loading schedule 

specified in this standard has been recently updated (Figure 4-4 (a)). 

  

a) EN594 / ASTM E564 b) ISO 21581 

Figure 4-4 Loading protocols of selected test methods 

In this update, although some recommendations were taking into account e.g. 

transverse bending of bottom plate, other suggestions from previous research were not 

included. The most notable suggestions were about the adequacy of testing the wall in 

pure shearing (Wu et al., 2002) or the adoption of more neutral configurations for 

considering vertical loading (Dujic & Zarnic, 2002). 

Another optional standard is the ISO 21581 Timber structures - static and cyclic 

lateral load test methods for shear walls which is the outcome of other investigations for 

racking behaviour in seismic areas (Yasumura & Kawai, 1997). This methodology and 

the loading protocol (Figure 4-4 (b)) was followed to predict strength and stiffness of 3D 

diaphragms (Kamada, Yasumura, Yasui, Davenne, & Uesugi, 2011). The ASTM E564-

06 is another static monotonic method to determine the shear capacity of light-frame walls 

on a rigid foundation and the loading protocol is similar to BS 594. This standard is not 

exclusive for timber frame and allows for light-gauge steel frame walls to be tested. 

However, ASTM E564 but does not evaluate combined bending and shear. 
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In order to use shear strength values from test results, a minimum of two tests of 

the same specimen are required if the shear resistance of each sample is within 10% of 

each other. Otherwise, at least three samples must be tested of the given construction 

detail (Labonnote, 2013). This was not considered in the experimental research due to the 

availability of wall samples. Hence, the experimental results presented in the next section 

of this research should be interpreted with caution if the shear resistance difference 

between same samples is greater than 10 % of each other. 

4.2.6 Other Research Methods  

In this section, a brief critical review of other two common methodologies is also 

given as they were referenced for future work. 

Numerical Methods 

The most popular numerical method to understand and estimate structural, solid and 

fluid mechanics is Finite Element Modelling (FEM). An overall review of research on 

this topic related to wood both as a construction material and as a product with more than 

three hundred entries can be found in Mackerle (2005). Nevertheless, the application of 

FEM techniques within current structural engineering practises is rather limited due to 

the time and cost involved in the definition of both boundary conditions and material 

properties. This has been reported even in the automotive industry (Bylund, Isaksson, 

Kalhori, & Larsson, 2004). However, in this sub-section a review of research on shear 

walls, involving FEA, is presented. 

A parametric analysis based on a FEA model was performed by Dujic et al. (2008) 

on twelve shear wall timber frame and X-LAM panels with different opening-to-area 

ratios. The maximum story drift was set to h / 200 or 0.5 % but specimens with the larger 

openings failed at lower drift. An interesting outcome of this study states that although 

the strength of X-LAM panels is significantly greater than the equivalent size timber 

frame wall, the difference in stiffness, for any opening ratio, is less significant. 

Another comparison study between a numerical methodology based on both a FEA 

shear wall model and laboratory tests concluded that a good agreement between both 

methods was achieved for the overall system deformation but significant differences 
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occurred for horizontal forces only (Mi et al., 2004). Similarly, Davenne, Daudeville, 

Kawai, & Yasumura (1997) concluded that 3-D models with coupling devices need to be 

developed for better prediction of reality. Also, for accurate predictions, the mathematical 

model for the mechanical fasteners introduced in the FEM analysis should be derived 

from experimental results (Dujic & Zarnic, 2002). 

Energy work 

Another less common mathematical method to estimate the performance of 

structural systems is by the law of conservation of energy in an isolated system. The 

energy absorption of the sheathing board and fasteners is the based for other numerical 

models. Some studies on this topic are introduced below. 

An elastic energy work model for predicting shear strength under racking load was 

suggested by Tuomi & McCutcheon (1978). Similar models were proposed assuming a 

pin-jointed timber frame with infinitive support stiffness (Källsner, 1984). A refined 

model of the previous study, including non-linear slip behaviour of the sheathing 

fasteners and linear shear deformation of the sheathing plate, was presented years after 

by McCutcheon (1985). 

4.2.7 Timber Frame Failure Modes 

Apart from the obvious consequences of structural collapse, timber frame wall 

panel failure modes are also investigated to understand the potential impact of structural 

movements on the performance of the building. Partial or even minimal failure of the 

system can cause discomfort to people and ultimately damage to the structure. 

Furthermore, partial and unnoticeable failure of the structure can cause air infiltration 

leakages within the building envelope. 

It can be found in several studies, for partially restrained panels, that the most 

common modes of failure occur in the form of uplift of leading stud and specially, nail 

withdrawal from the sheathing board (Dinehart & Shenton, 1998). Also, for perforated 

wall panels, significant and predominant sheathing tearing can be observed around the 

corners of the opening due to high stress concentration levels. This failure mode is 

attenuated if sheathing board is fixed flush to the frame. Similarly, Kawai & Okiura 
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(2003) identified and prevented premature failure of sheathing fasteners at the corners by 

means of reinforcements. Another method to strengthen the racking resistance of shear 

walls with openings under cyclic load was to sheath the timber frame with oversized OSB 

panels (He, 1997). 

A general failure mode was also described by Leitch (2013). Horizontal deflection 

or “drift” as result of rotation of the sheathing plate and the subsequent yielding of the 

sheathing fasteners was followed by a pull through of the head of the fastener at the 

bottom windward edge of the sheathing. This type of failure was also observed by 

Salenikovich & Dolan (2000) and described it as “unzipping”. This brittle failure is also 

common when the sheathing board is fastened by screws instead of nails (Kobayashi & 

Yasumura, 2011). 

In partially restraint shear walls, Leitch (2013) also observed yield fasteners at the 

bottom rail due to uplift reaction. As a result of this behaviour, a lead stud to bottom frame 

connection tend to fail prematurely. This failure has been also commented by other 

authors under different loading protocols (Caprolu, Kallsner, Girhammar, & Vessby, 

2012 U. A. Girhammar & Kallsner, 2009). However, the failure mode of racking timber 

frame panels, in terms of fastener behaviour, can vary significantly under monotonic or 

cyclic test conditions (Lam et al., 1996). 

In order to disregard failure of the timber frame wall due to buckling of the 

sheathing material, PD 6693 only provides just a simple check (Equation 4.7). 

Alternatively, Kallsner & Lam (1995) provide an equation to determine the critical stress, 

as if the sheathing material is subjected to a constant shear stress, before buckling occurs 

(Sugiyama & Uchisako, 1991). 

   

 
𝑏𝑛𝑒𝑡 

𝑡
 ≤ 100 

(4.7) 

Where: 

bnet  is the clear distance between studs and, 

t  is the thickness of the sheathing board 
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As largely presented in this literature review, connections and particularly yielding 

of the fasteners are responsible for most of the failure mode observed in timber frame 

walls. Hence, a short review of the yielding theory applied to metal fasteners to wood is 

given below.  

Yield theory for timber connections 

The theory of linear-elastic beam foundation or Winkler theory of beams is a simple 

method to predict the behaviour of connections. However, this mode, in attempt to fit a 

linear-elastic load-slip relationship, is not very accurate (Jumaat et al., 2004). 

The European Yield Theory considers a perfect plastic approach by assuming a 

uniformly distributed reaction to wood crushing along the length of the fastener. This 

theory is based on Johansen (1949) for bolted connections and was completed by Möller, 

(1950) for nails and by Larsen (1969 ) for screws. Furthermore, the model considers two 

effects on the connection: embedment or crushing of the wood fibres and yielding of the 

fastener forming zero, one or two hinges. Although the model is widely used due to its 

relative simplicity and accuracy for the determination of lateral load capacity of dowel 

and bolts connections, the theory is incomplete as it does not predict deformations. 

Subsequent studies have identified the dowel diameter and the member density as the key 

variables on the determination of connection stiffness (Heine & Dolan, 2001; Porteous & 

Kermani, 2005). 

Over-strength is usually necessary if ductility shall govern the design. This stiffness 

connotation implies avoiding brittle failure mechanisms for timber structures. A general 

connection over-strength ratio of 1.60, corresponding to utilisation factor of 0.625, was 

proposed by Jorissen & Fragiacomo (2011). 

According to the different failure modes for panel to timber connection, the fastener 

aspect ratio is considered the principal parameter (Tjeerdsma et al., 1998). This 

geometrical ratio is the coefficient between the member thickness and the diameter of the 

fastener (Equation 4.8). 

  

𝑎𝑐,𝑖 =  
𝑡𝑖

𝑑𝑐,𝑖
 (4.8) 
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The greater the ratio, more yielding occurs in the fastener. Likewise, the lesser the 

ratio, more brittle failure on the wood (Heine & Dolan, 2001). Certainly, an optimal 

connection design requires higher levels of yielding, not only in seismic areas for greater 

energy dissipation, thus nail fasteners are commonly preferred over screws (Carradine et 

al., 2006) 

Non-linear elastic foundation was derived for finite element models with a greater 

degree of accuracy by Foschi (1974). This theory has been followed by several authors 

(Chang et al., 2009). Alternatively, another analytical method to determine fastener 

yielding behaviour based on the Foschi method was proposed (Jumaat & Murty, 2004). 

This procedure is known as the 5% diameter offset method. 

Other methodology to determine the load-bearing capacity of joints is the virtual 

work approach (Aune & Patton-Mallory, 1986). Alternatively, simplified numerical 

methods based on diameter and density of the timber members have been published also 

by Jumaat & Murty (2004). 

Finally, in terms of optimisation, a study conducted by Anderson & Leichti (2007) 

concluded that increasing the yielding moment of the fasteners beyond a certain point, 

shear strength and stiffness did not improve the racking behaviour of timber frame shear 

walls. 

Once reviewed all of the shear wall aspects related to the geometry of the panel, the 

materials involved, the structural performance methodologies and the potential failure 

modes, this thesis examines analytical and empirical methodologies in order to 

understand the behaviour of the proposed closed panels. The findings of this study are 

also the basis for the development of a robust timber frame racking software application. 

4.3 Research Methods and Materials 

Contained within this section are the research methodology carried out in order to 

assess the structural performance of the suggested advanced closed panels and the 

characterisation of the timber frame and sheathing materials used in the fabrication of the 

tested timber frame walls. The empirical test results of the panels are presented in the 

section 4.5: racking test results. 
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The last sub-section describes the approach carried out in this study to understand 

the structural performance of the sole plate base fixing detail for advanced timber frames. 

4.3.1 Racking design methodology 

According to the PD 6693-1, only a wall which is fully restrained against 

overturning presents a racking strength equal to the shear capacity of the sheathing 

fasteners along the length of the bottom rail. If the wall is only partially restrained, a 

proportion of the fasteners will be diverted in order to contribute to the restorative 

overturning moment. Since it is assumed that fasteners can only provide racking 

resistance or tension resistance, not both in combination (Girhammar & Kallsner, 2009;  

Lam et al., 1996), the capacity of the wall is directly proportional to the additional hold 

down resistance provided. 

The maximum racking capacity will only be provided where the wall is fully 

restrained against overturning by means other than the sheathing fasteners along the 

bottom rail. Vertical point loads and uniformly distributed load shall be considered as 

restorative overturning moments. A schematic representation of the force distribution is 

shown in Figure 4-5. 

 

Figure 4-5 Shear wall distribution of forces 
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In order to satisfy equilibrium, the conditions in 4.9 must be met. The summation 

of moments at bottom rail must be zero. Furthermore, the equilibrium of forces at top rail 

and bottom rail must satisfy equations 4.10 and 4.11 respectively. 

  

∑ 𝐹𝑥  = 0 ∑ 𝐹𝑦  = 0 ∑ 𝑀  = 0 
(4.9) 

𝑟𝑡,𝑛 ∙ 𝐿 = 𝐹 (4.10) 

𝑟𝑡,𝑛 ∙ 𝛼 ∙ 𝐿 = 𝐹 (4.11) 

In this unified method, the factor α depends directly from the geometry of the wall 

panel and by mathematical derivation of Equations 4.12, 4.13 and 4.14 the aspect ratio 

factor can be simplified as per Equation 4.18: 

  

𝐹 ∙ 𝐻 = [(1 − 𝛼)𝐿 ∙ 𝑟𝑏,𝑛] ∙ [0.5𝐿(1 − 𝛼)] (4.12) 

𝐹 ∙ 𝐻 = 0.5 ∙ 𝑟𝑏,𝑛 ∙ 𝐿2[(1 + 𝛼)(1 − 𝛼)] (4.13) 

𝐹 ∙ 𝐻 = 0.5 ∙ 𝑟𝑏,𝑛 ∙ 𝐿2 ∙ (1 − 𝛼)2 (4.14) 

𝛼 = 0.5 ∙ (
𝐿

𝐻
) ∙ (1 − 𝛼)2 (4.15) 

0 = 0.5 ∙ (
𝐿

𝐻
) ∙ 𝛼2 + 𝛼 − 0.5 (

𝐿

𝐻
) (4.16) 

𝛼 =
−1 ± √1 + 4 (

0.5𝐿
𝐻 ) (

0.5𝐿
𝐻 )

2 (
0.5𝐻

𝐿 )
 (4.17) 

𝛼 =
√1 + (

𝐿
𝐻)

2

− 1

𝐿
𝐻

 (4.18) 

The adaptation of the simplified plastic model in PD6693-1 results in a racking 

strength design for a shear wall as per Equation 4.19 
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𝐹𝑖,𝑣,𝑅𝑑 = 𝐾𝑖,𝑤 ∙ 𝑓𝑝,𝑑,𝑡 ∙ 𝐾𝑜𝑝𝑒𝑛𝑖𝑛𝑔 ∙ 𝐿 (4.19) 

 

The modification factor Ki,w accounts for the aspect-ratio in Equation 4.18, for the 

vertical applied loads and for the holding-down devices and it is determined by Equation 

4.20: 

  

𝐹𝑖,𝑣,𝑅𝑑 =  𝑚𝑖𝑛
𝐾𝑖,𝑤≤1

√[1 + (
𝐻

𝜇𝐿
)

2

+ (
2𝑀𝑑,𝑠𝑡𝑏,𝑛

𝜇 ∙ 𝑓𝑝,𝑑,𝑡 ∙ 𝐿2
)] − (

𝐻

𝜇𝐿
) 

 

(4.20) 

Where 𝑀𝑑,𝑠𝑡𝑏,𝑛is the design net stabilizing moment from design permanent loads 

reduced by the vertical component of any design wind load in kN m. The µ factor is given 

by Equation 4.21: 

  

𝜇 = 𝑚𝑖𝑛
𝜇≤1

𝑓𝑤,𝑑

𝑓𝑝,𝑑,𝑡
 (4.21) 

 

and where 𝑓𝑤,𝑑 is the design withdrawal capacity of the sole plate to the substrate 

connection in kN/m. 

The total design shear capacity per unit length of the perimeter sheathing fasteners 

is determined as per Equation 4.22 where 𝑓𝑝,𝑑,2 ≤∙ 𝑓𝑝,𝑑,1: 

  

𝑓𝑝,𝑑,𝑡𝑜𝑡𝑎𝑙 =∙ 𝑓𝑝,𝑑,1 + 𝐾𝑐𝑜𝑚𝑏 ∙ 𝑓𝑝,𝑑,2 (4.22) 

 

with 𝐾𝑐𝑜𝑚𝑏 a sheathing combination factor with values of 0.50 or 0.75 depending 

on the side of the second sheathing layer and on the sheathing material and schedule in 

comparison to the first layer. 

In order to account for the mean load carrying capacity of the sheathing fasteners 

along the edge of the perimeter of the frame and for the reduced non-linear behaviour of 

the fastener depending on the spacing, the design shear capacity of the sheathing fasteners 

per unit length, 𝑓𝑝,𝑑, is calculated from Equation 4.23: 
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𝑓𝑝,𝑑 =
𝐹𝑓,𝑅𝑑 ∙ (1.15 + 𝑠)

𝑠
 

(4.23) 

 

Where 𝐹𝑓,𝑅𝑑  is the design lateral capacity of the individual fastener and 𝑠 is the 

sheathing perimeter spacing in meters. 

Finally, to determine the design racking strength and if the wall present a framed 

opening not considered as discontinuity (4.24), then the opening factor, 𝐾𝑜𝑝𝑒𝑛𝑖𝑛𝑔 , is 

determined by Equation 4.25: 

  

𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 = 𝑖𝑓 |
𝑉𝑜𝑝𝑒𝑛𝑖𝑛𝑔                ≤ 0.65𝐻, 𝑜𝑟

𝐻𝑠𝑖𝑙𝑙 𝑡𝑜 𝑠𝑜𝑙𝑒𝑝𝑙𝑎𝑡𝑒 ≤ 0.25𝐻      
| (4.24) 

𝐾𝑜𝑝𝑒𝑛𝑖𝑛𝑔 = 1 −  
1.9𝐴𝑟𝑒𝑎

𝐻𝐿
 

(4.25) 

 

This approach does not consider any serviceability criteria other than a limitation 

derived from the panel geometry and the load ratio (Equation 4.26) 

  

𝐾𝑖,𝑤 ∙ 𝑓𝑝,𝑑,𝑡 ≤ 8 ∙ (1 + 𝐾𝑐𝑜𝑚𝑏) (
𝐿

𝐻
) (4.26) 

Once the analytical model is determined for strength and stiffness of shear walls, 

the next process is to investigate the mechanical properties of the timber frame 

components and the sole plate base fixing detail which were considered to corroborate 

the analytical model with the empirical racking tests. 

4.3.2 Characterisation of timber frame components 

One of the greatest benefits of Eurocode implementation is the inclusion of 

innovative materials and solutions into the design process. Current engineered wood 

products to be used in the timber frame are twin stud walls, I-joists, or metal-web studs. 

This implementation of innovative products also applies to sheathing materials such as 

fibre plasterboards or particle boards. Nevertheless, from 1st July 2013, all construction 

products for which a harmonised Product Standard exists, must be CE marked and 

manufacturers must also provide data compatible with Eurocode 5 (CPR, 2011). 
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An overall view of all available elements, connection types and components that 

may be used in the fabrication of advanced closed timber frame systems is given in Figure 

4-6. Also, a brief explanation of different timber frame products and sizes utilised in the 

fabrication of the K2 and RTC closed panels was given in Table 3-9 and Table 3-10. 

 

Figure 4-6 Products map for timber frame systems 
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Sheathing and sheathing fasteners 

Different sheathing materials and sheathing fasteners were used in the experiments 

in order to compare the resultant empirical racking strength with the analytical approach 

published by PD 6693 (BSI, 2012) and adopted in the software calculation developed in 

this research. 

The average dry densities for all of the sheathing boards used in the experiment 

were measured and compared with the manufacturer declared values. The 

characterisation of the sheathing materials is given in Table 4-4. 

Table 4-4 Characterisation of sheathing materials 

Material 

Producer Thickness 
(mm) 

Measured 
density   

(kg/m3) 

Declared 
density 

(kg/m3) 

ρmean nsample ρN 

OSB/3 Norbord 9.0 598 6 620 

MDF Panelvent 9.2 767 2 720 

Plasterboard Fermacell 12.5 1175 2 1150 

 

Different commercially available screws and nails were used to fix the sheathing 

boards to the timber frames. The technical data provided by the manufacturers were 

considered in the analytical approach and in the software application developed. Different 

spacing fastener schedules were also investigated with further information detailed in 

section 4.5.1. The materials characterisation of the sheathing fasteners utilised in the 

experimental research is presented in Table 4-5. 

Table 4-5 Characterisation of sheathing fasteners 

Fastener Id Type Producer Diameter (mm) Length (mm) Shank 

S1 Screw Timberfix 4.50 60 Threaded 

S2 Screw Rothoblaas 5.00 50 Threaded 

N1 Nail DuoFast 2.90 50 Smooth 

N2 Nail Paslode 2.85 50 Smooth 

N3 Nail DuoFast 3.10 50 Twisted 
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Timber frame materials and fasteners 

The timber materials used in the production of the frames were commercial C16 

timber, acoustically graded home-grown Sitka spruce (Picea sitchensis) and Finnjoist I-

beam from Metsa Wood. This 240 mm composite beam was made by LVL – Kerto® in 

the flanges and OSB/3 in the web. Due to several availability issues, the I-beam was 

slightly different to the simulated in the thermal performance, James Jones JJI-joists, 

which were 245 mm deep and flanges made by C24 timber. However, this has not a 

significant effect in neither the structural nor the thermal performance.  

In terms of measured density, both C16 imported timber and home-grown Sitka 

spruce were measured after the test. Due to its little used, the density of the other materials 

provided by the manufacturers was considered in the analytical method. The materials 

used in the interface between the timber frame and the testing rig and identified as the 

modified sole plate were also characterised and provided together with the timber frame 

materials in Table 4-6. 

Table 4-6 Characterisation of timber frame and sole plate materials 

Material Producer Dimensions 
(mm) 

Measured density 
(kg/m3) 

Declared 
density 
(kg/m3) 

ρmean nsample ρN,mean 

C16 Imported 45x89 412±33 24 420 

Home-grown Sitka 
spruce 

Fakland State 
(Sco) 

45x95 ext 
45x45 int 

424±27 104 3701 

I-Beam Metsa 45x240 - - 5102 

Kerto3 Metsa 45x400 - - 510 

WBP Ply n/a 18x200 - - 600 

WBP Ply3 n/a 3x15x400 - - 600 

1 Timber acoustically graded as C16 was manually selected to produce the timber frames 
although its related density was classified as C24. 
2 Flange density of the I-beam. The characteristic density of Kerto, for the analytical 
methodology, is 480 kg/m3. 
3 Kerto and plywood used as sole plate to fix the RTC wall to the testing rig 
 

Different commercially available screws, bolts and threaded nails were used to 

assembly the timber frames and to fix the sole plate to the rig. The technical data provided 

by the manufacturers were considered in the analytical approach and in the software 
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application. The materials characterisation of the timber frame fixings utilised in this 

experimental research is presented in Table 4-7. 

Table 4-7 Characterisation of timber frame and sole plate fasteners 

Fastener Producer No. Diameter (mm) Length (mm) Shank 

Nail N4 Paslode 2 3.10 90 ring 

Nail N5 Paslode 1 3.10 90 ring 

Screw S2 Rothoblaas 2 5.00 80 threaded 

Screw S3 TimberFix 2 3.00 60 threaded 

Screw S3 Rothoblaas 18 5.00 40 threaded 

Bolt B1 n/a - M20 n/a threaded 

Bolt B2 n/a - M16 n/a threaded 
 

Further explanation on the particular connection related to the fasteners for the sole 

plate details, including lateral load carrying capacity, is given in the section 4.5.1. 

4.3.3 Acoustically graded home-grown timber for K2 panels 

A total number of 104 studs of dimensions 45 x 95 x 2400 mm were sawn and 

marked at Living Solutions in Cowdenbeath, Scotland. The timber was locally sourced 

and conditioned in the same company. 

Preceding the grading process by the MTG grader, a visual inspection of the timber 

was undertaken in order to mainly detect dead knots and other wood imperfections. 

Furthermore, timber studs were also measured with a calliper and a measuring tape to 

check cross-sections and lengths were within a ±2 mm tolerance. 

The moisture content of the wood was measured with a MD-812 digital meter in order to 

correct the MOE (Figure 4-7). A problem on the custom-made kiln was identified due to 

the irregular moisture content of the timber batch. The boards presented a large variation 

(6 % to 20%) in the moisture content after the drying cycle. The timber studs were also 

weighted to correct the MOE. 
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The assumed mean density at 12% from literature on Sitka spruce was 390 kg/m3 (Moore, 

2011). However, the measured mean density of the timber graded as C16 and with a 

measured MC between 10% and 14% was slightly greater (409 kg/m3) The outcome of 

this research is detailed in Table 4-8 

   

Figure 4-7 Equipment used for grading: MTG grader (left), moisture meter 

(middle) and scale (right) 

Table 4-8 Visual inspection and MC of timber studs 

No. sample 
Studs 

MC>20% 
Studs 

MC<10% 
Studs 

defects 

104 32 10 3 

 

The three studs rejected due to defects were, in all the cases, for the presence of 

transversal dead knots across the full depth of the timber. However, they were also 

acoustically graded to check if they would have been rejected by the MTG grader. 

After acoustically grading the 104 timber studs and correcting the MOE from the 

current density and moisture content, the 42 studs which presented a either high or low 

moisture content were also rejected. From the remaining 59 studs, 35 studs were classified 

as class C16 (including strength grade C16, C18, C20 and C22), 14 studs were classified 

as C24 (including strength grade C24 or better) and 10 studs were rejected (13 studs in 

total if the visually rejected ones are considered). 

Furthermore, if moisture content had not been considered, 56 studs, 33 studs and 

15 studs would have been classified as C16, C24 and rejected respectively. A summary 

and a full distribution of the resulted grading investigation undertaken is presented in 

Table 4-9. 
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Table 4-9 Strength class distribution from home-grown Sitka spruce 

 
 

As the total number of C16 home-grown studs was just insufficient to fabricated, 

the closed K2 panels and the two single structural layer frame K2 panels (P1, P2, P7, P8, 

P13, P14, P15 and P16 from Table 4-17), the intermediate studs were C24 as they 

relevance on the racking performance is less significant than in the perimeter studs 

(Figure 4-8). 

 

Figure 4-8 C16 / C24 combined assembly of K2 panels 

This sub-section, research methods and materials, provides the analytical 

methodology to determine the racking performance of timber frame walls and 
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investigates the characterisation of the materials used in the fabrication of the closed 

timber frame walls. 

The home-grown timber used in the K2 panel was also acoustically graded in order 

to understand the product specific influence on the timber frame racking performance. 

Before proceeding to investigate the experimental racking behaviour of the 

proposed closed panels, it is necessary to explain the research carried out in order to 

optimise the structural performance of the sole plate base fixing details and also under a 

thermal criterion as identified in the previous chapter. 

4.4 Sole Plate Base Detail Optimisation 

There is a degree of uncertainty around sole plate base fixings for closed panel 

timber systems as supported by a lack of literature on this topic. Furthermore, as presented 

in the previous sections, the sole plate base fixing detail is critical from both, a thermal 

and structural perspective. 

A description of the isolation and combination theory, as a methodology to 

structurally optimise this detail, and the investigation of the theory on the suggested sole 

plate details is presented in this sub-section. 

The structural performance of the sole plate fixing detail for timber frame panels 

was initially described in a series of laboratory tests carried out previously at Edinburgh 

Napier University (Leitch, 2013; Menendez et al., 2013) and it has been developed further 

on this research. 

4.4.1 Isolation-combination theory for sole plate detailing 

The methodology of this investigation assessed the structural performance of closed 

panel sole plate components in isolation as a valid approach to provide structural 

information of the combined detail. 

Information of the closed panel sole plate details studied in the previous research 

(Leitch, 2013, Menendez et al., 2013) is shown in Figure 4-9 where the different shear 
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plane connections are highlighted individually. Each specific isolated connection named 

a) b) c) d) and e) is explained in detail in the next paragraphs. 

 

Figure 4-9 Detail of the two sole plate base fixings studied and their isolated 

connections. 

Table 4-10 summarises the relevant European Standards and bespoke methods used 

in the experiment. For fastener determination of yield moment, observed deformations 

did not comply with BS EN 409 recommendations (BSI, 2009a) as the loading points 

from the test apparatus moved along the dowel. As a result, the double plastic hinge 

deformation model developed by Coste (2010), and based on the previous work of 

Jorissen & Blass (1998) was adopted instead. Furthermore, it was observed that 

embedment tests caused also bending of the fastener. BS EN 383 standard invalidates 

embedment test results if bending of the fastener occurs (BSI, 2007). 

Table 4-10 Description of the tests methodology 

Test Method Equipment Applied load 

Lateral load capacity BS EN1380 100kN SCHENK BS EN26891 
Tensile strength BS EN ISO898-1 30kN Lloyd R30k 1mm/min 
Yield moment BS EN409 30kN Lloyd R30k 1mm/min 
Embedment BS EN383 30kN Lloyd R30k BS EN26891 
Pull through BS EN1383 100kN SCHENK 2mm/min 
Withdrawal BS EN1382 100kN SCHENK 2mm/min 
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The current standard for the design of racking walls in the UK, PD 6693-1 (BSI, 

2012), allows the sole plate to provide resistance against overturning moments. Therefore, 

fastener withdrawal tests were also undertaken in the previous experiments in order to 

assess its mechanical properties. 

The overall strength performance of the sole plate details was determined by the 

capacity of the weakest sub-connection as a revised model of the weakest link theory 

(Madsen & Buchanan, 1986). On the other hand, the overall stiffness of the sole plate 

base fixing was defined by the accumulative displacement occurred at each shear plane 

(Leitch, 2013). 

In order to determine the level of influence and characterise the structural 

performance of the sole plate detail for inclusion in the analytical methodology, the closed 

timber fame sole plate details were investigated in isolation and in combination. 

An open panel and a closed panel sole plate connection was suggested as per Figure 

4-9. The following connection components from the detail were identified and tested 

according to the methodology described in Table 4-10: 

a)  c) Timber to concrete: The study of this connection for both open and closed 

panel systems include 7.5x100 mm express nail type fastener. Substrate material was 

dense aggregate block of 7 N/mm2 compressive strength.  

b)  Timber to timber: Apart from joining the wall framing members, this 

connection is found at the base of the open panel and it is critical in terms of transferring 

the racking forces from the wall to the foundation. Fasteners tested include 3.0x90 mm 

smooth wire nail. 

d)  Timber to plywood to timber: This non-standard double shear connection 

comprised of 45x70 mm timber batten to the sole plate packer through 18 mm plywood 

by 4.4x115 mm self-tapping screw. 

e)  Timber to OSB to timber: Again, this non-standard double shear 

connection horizontally secured the interlock timber to the closed panel by 4.4x115 mm 

self-tapping screw. 
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This sole plate testing schedule was carried out at Edinburgh Napier University in 

collaboration with another doctoral study and already published by Leitch (2013) and 

Menendez et al. (2013). The complete test results with images of the apparatus and 

equipment utilised and the load versus displacement diagrams are provided in the 

Appendix IX. The summary of the results for the isolated connection tests are given in 

Table 4-11. Due to the ductile nature of the connections, the ultimate strength was based 

upon the measured resistance at 15 mm of displacement. It must be noted from Figure 

4-9 that connection details a) and c) were identical. 

Table 4-11 Structural test results summary for sole plates in isolation 

Connection Ultimate strength 
fmax (N) 

Slip modulus1 
kser (N/mm2) 

a) c) 4087 1594 

b) 3159 15002 

d) 5727 1297 

e) 11470 1542 
1 Slip modulus taken as linear stiffness between 0.1 - 0.4Fmax 

2 Slip modulus in accordance with BS EN 26891 
 

In order to confirm the performance of the sole plate fixing detail in isolation with 

the overall performance of the complete detail, the full sole plate fixing details for open 

and closed panel were tested in the same study (Menendez et al., 2013). These tests were 

performed according to a modified version of the BS EN 1380 test set up (BSI, 2009b) 

so as to replicate the shear load being transferred from the wall panel to the substrate. 

Table 4-12 presents the test results in terms of strength and stiffness of the open panel 

(OP) and closed panel (CP) sole plate base fixing detail respectively. The maximum 

ultimate strength value, fmax, was determined when 15 mm displacement of the bottom 

rail relative to the substrate was reached. Stiffness, kser, was based on the displacement of 

the bottom rail at 40 % of its ultimate strength. 

Table 4-12 Sole plate structural results in combination.  

Sole plate 
Ultimate strength 

fmax (N) 
Slip modulus 

kser (N/mm2) 

OP 2841 1364 

CP 4036 745 
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As stated before, the overall performance of the sole plate detail is dictated by the 

weakest connection. The investigations provided a direct comparison between the 

performance of the detail in combination and as the performance of the isolated 

components. The experimental results are presented by Table 4-13. 

Table 4-13 Isolation and combination sole plates strength 

Connection 
(N) 

Isolation Combination Ratio 

a) b) c) d) e) 

OP 4087 3159    2841 0.90 

CP   4087 5727 11470 4036 0.99 
 

Therefore, as the combination results are approximately equal to that of the weakest 

connection within the sole plate detail, the isolation-combination methodology followed 

in that research study was corroborated. The validation of this approach allowed for the 

optimisation of the sole plate fixing detail in MMC by designing effective shear planes 

of similar strengths. Nevertheless, the spacing of the fasteners for each component also 

influences the racking design as the strength capacity of the sole plate is given in 

resistance per meter run, kN/m. This approach is followed in the next section in order to 

determine an optimised sole plate detail solution. 

4.4.2 Sole plate structural performance of RTC and K2 frames 

One of the research outcomes from chapter 3 was that is more thermally efficient 

to have fewer but stronger fasteners at the sole plate. Additionally, another outcome stated 

that the heat flux of fasteners fixed perpendicular to the foundation can be neglected if 

they do not fully penetrate the sole plate. 

These outcomes have been considered in the development of robust sole plate 

details for the proposed closed timber panels. Nevertheless, it is important to bear in mind 

that in countries where earthquake action needs to be considered, a rather large number 

of ductile fasteners shall be preferable as that detail is able to dissipate more energy. 

Figure 4-10 and Figure 4-11 illustrate the sole plate base fixing details suggested 

for the K2 and RTC panels and used throughout this research. However, in conditions 
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when a holding down tie cannot be placed, i.e. narrow solid concrete block walls, an 

alternative detail with an external metal plate is provided (Figure 4-12). 

 

Figure 4-10 K2 closed panel sole plate, isolated tests represented a) to d) 

 

Figure 4-11 RTC closed panel sole plate, isolated tests represented d) to g) 

 

Figure 4-12 RTC alternative sole plate, isolated tests represented h) to j) 

These different individual sub-connections named from a) to j) are further detailed 

in Table 4-14 where these results were obtained according to Eurocode 5. 
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Furthermore, the structural performance of the sole plate components in isolation 

and also determined as per PD6933-1 methodology is presented in Table 4-15. 

As per weakest link theory and with an optimised fastener spacing, the ultimate 

limit state and the maximum withdrawal capacity of each connection type for the sole 

plate base details studied is also presented in Table 4-15. 

Table 4-14 Description of closed panel sole plate components. 

Plane Element 
1 

Element 
2 

Structural properties Fastener (mm) 
Ultimate 
strength 

fmax (N) 

Slip 
modulus 

kser (N/mm2) 

No dia length 

a) 45mm 
C16 

Concrete 
C20/25 

1348 1856 1 7.5 100 

b) 95mm 
C16 

60 mm 
C16 

995 1175 1 8.0 160 

c) 45mm 
C16 

parallel 
C16 

15081 1129 1 5.0 100 

d) 39mm 
Kerto 

Concrete 
C20/25 

1685 3004 1 7.5 100 

e) 45mm 
C24 

39mm 
Kerto 

5682 1004 1 4.0 80 

f) Frame 
C24 

Concrete 
C20/25 

38600 5705 WHT 440 Rothoblaas3 

g) 45mm 
C24 

parallel 
C24 

3016 1175 2 5.0 100 

h) 39mm 
Kerto 

Concrete 
C20/25 

1685 3004 1 7.5 100 

i) Frame 
C24 

Concrete 
C20/25 

17350 3596 WHT Plate Rothoblaas4 

j) 45mm 
C24 

parallel 
C24 

3016 1175 2 5.0 100 

1Axial withdrawal capacity of leading stud 
2Lateral carrying capacity considered at ¾h of sole plate connection with minimum 36 mm into 
Kerto. 
3Partially fixed with n20 4x60mm nails and M16 to foundations with no washer. Experimental 
Kser for no 20 4.0x60mm nails in WHT holding down strap. 
4Partially fixed with n10 4x60mm nails and M16 to foundations with no washer. Neff = 100.7. 

 

Table 4-15 Structural performance of closed panel sole plate in combination. 

Connection 
Spacing (mm) ULS 

Fmax,k 
(kN/m) 

Withdrawal 
Fax,Rk 

(kN/m) a) b) c) d) e) f) g) h) i) j) 

K2 800 600 900        1.66 2.47 

RTC    900 300 2ud 610    1.87 2.45 

RTC 
(alternative) 

       900 2 ud 610 1.87 4.23 
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Once the optimised sole plate base fixing details were identified and defined, a 

series of twenty racking tests were carried out. The results of this investigation are 

presented in the next section. 

4.5 Racking Test Programme. 

The information provided in this section includes the racking test results of the 

advanced closed timber frame panels described in the previous sections. The information 

on the racking experiments is expressed in both a quantitative (failure load, deformations) 

and qualitative manner (failure modes). 

Partially and fully restrained timber frame walls of different dimensions were tested 

for both the RTC and K2 assemblies. The BS EN 594:2011 is the experimental racking 

strength and stiffness methodology followed in this research. The advanced closed panel 

testing program and the number of tests carried out for each frame type were determined 

by the financial resources available. The test schedule is detailed in Figure 4-13. 

 

Figure 4-13 Experimental tests and number of panel samples. 

The dual frame K2 panel presents an external structural layer and an internal non-

structural frame. The connection between both frames is considered to be non-structural 

due to the properties of the XPS and the bonding agent. The testing program for this panel 

type comprises of two different configurations: one included only the structural layer 

whilst a second program tested the complete dual frame in order to investigate the 

contribution of the non-structural internal frame and the failure mode. 

Testing 
program

K2 Panel

Structural layer

n= 10

Dual frame

n=6

RTC Panel
I-joist
n=4
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The performance of the benchmark timber fame has been extensively reported in 

pass testing programs by Edinburgh Napier University (Leitch, 2013). This testing 

program was the initial baseline for this research and therefore, a summary of the results 

is provided in the Appendix VIII. 

4.5.1 Racking test procedure 

In this sub-section, information related to the empirical methodology followed in 

the research is detailed. 

Twenty timber frame wall panels were tested in accordance with BS EN 594:2011 

(BSI, 2011). This involved securing each panel in turn to a custom-built test rig and then 

applying a horizontal racking load as per the specified rate given by clause 6.4 of the 

afore mentioned standard. The particularity of the racking rig used was its horizontal 

setting instead of the more common vertical lay out (Figure 4-14).  

 

Figure 4-14 Racking rig lay-out 

The timber frame panels, due to several logistic and time issues, were tested in three 

different locations around Scotland. Nevertheless, all the timber frame panels, except one 

RTC panel, were tested in the same rig to the same method and with the same level of 

calibration as per United Kingdom Accreditation Service (UKAS) standard. 

The racking load was applied until the panel was deemed to have breached the 

failure criteria, Fmax, given by clause. 6.4.2 of the related standard except for two partially 

restrained RTC timber frame panels where large deformations occurred before. 
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In order to obtain test results from the I-joist timber frame for fully and partially 

restrained walls, the partially restrained RTC panels were firstly tested until the estimated 

0.7 Fmax then, they were turned over and fully restrained by holding down devices. These 

panels were finally tested to ultimate failure. It was ensured that all of the panels failed 

totally as the racking load began to reduce and as the panels did not show any recovery 

by redistribution of the load to the remaining fixings.  

Prior to the test procedure, and for all the panels except for the RTC , panels were  

subjected to 5 kN vertical loads. These loads, Fv, were applied to the head binder at the 

stud positions as stated in Figure 4-15, a modified horizontal rig from the test apparatus 

recommended in BS EN 594:2011. 

 

Figure 4-15 Plan and end-elevation of UKAS accredited racking test rig 

modified from BS EN 594:2011 

A stabilising load cycle with vertical loads of 1.0 kN was applied to the head binder 

at the stud positions and maintained for 120 s. After this period of time, the load was 

removed and the panel was allowed to recover for 600 ± 120 s before continuing the load 

procedure. Then, a vertical load Fv of 5.0 kN at each stud position, according to Figure 

4-15, was applied to the head binder and maintained for the full duration of the test. The 

load protocol followed in this research is  described in Figure 4-4a and detailed in BS EN 

594:2011 (BSI, 2011). Note that the loading protocol in this standard was modified from 

its previous version BS EN 594:1996. 
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Data from the load cells and displacement transducers was transferred to a 4 channel 

control box. Table 4-16 shows the channel allocation. Data was recorded at 1 s intervals 

and transferred to a MS Excel spreadsheet. The vertical imposed load when applied is 

connected to a vertical ram which maintains the load constant regardless the panel 

deformation. 

Table 4-16 Allocation of data channels during testing 

Channel Allocation 

1 Load cell - Applied racking load, FR 

2 Transducer - Deflection of frame at point 1 

3 Transducer - Deflection of frame at point 2 

4 Transducer - Deflection of frame at point 3 
 

The apparatus was supplied by a 15 ton capacity hydraulic ram connected to a 100 

kN capacity load cell. In order to simulated the imposed vertical loads, up to five 5 ton 

hydraulic rams were acting over the top runner through a steel backed timber. The 

pressure to actuate the ram was delivered via a hydraulic compressor governed by a 

control unit. In the rig, the panels were restrained out of the plane. The frictional effects 

were reduced by using a 3 mm Polytetrafluoroethylene (Teflon) sheathing. 

Once the rig was ready, the full-scale timber frame wall panels were tested as per 

configurations and materials detailed in next section. 

4.5.2 Full-scale racking testing 

The twenty-advanced closed panel timber frame walls were manufactured as per 

specifications detailed in Table 4-17. 

The standard wall specification was 2.4 m long panel with 38x140 mm timber frame 

fixed using 3.25x90 mm threaded nails and sheathed with one board 9 mm OSB/3 fixed 

to the frame by 2.9x50 mm smooth nails. The nomenclature and the parameters to define 

each wall reference utilised in this study is presented in Table 4-18 which follows Leitch 

(2013) methodology for racking testing reports. 

 [restrain] [length] [nail spacing] [sheathing] [load] [open WxL] [hold-down] 
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Table 4-17 Timber frame closed panel specifications 

Series name Panel Reference 
Sheathing 
fastener 

Wall 
type 

Structural layer 
imperforated K2 

P1-P2 P[L1.2].75 S1 D 

P3-P4 P[L1.2].75.PanelVent S1 D 

P5-P6 P[L1.2].75.FermaCell S1 D 

P7-P8 V5.75. N1 A 

Structural layer 
perforated K2 

P9-P10 
P[L3.6].75 

[1060x2070W]@670 
N1 B 

P11-P12 
P[L4.8].75 

[1060x2070W]@670 
N1 C 

Complete assembly 
imperforated K2 

P13-P14 V5.75 N1 A 

P15-P16 V5.75.DS N1 A 

Complete assembly 
imperforated RTC 

P17-P18 P[1.2].150.DS N3 D 

P19-P20 [1.2].150.DS.HD N3 D 
 

Table 4-18 Nomenclature of racking walls 

Code Parameters 

[length] 

2.4 m 
1.2 m 
3.6 m 
4.2 m 

[restrain] 
P (partially restrained) 
F (fully restrained) 

[nail spacing] 
S indicates screwed 

50 mm 
75 mm 
100 mm 
150 mm 

[sheathing] 
DS (Double sheathing) 
SS (Single sheathing) 

[load] 
V5 (Vertical 5kN/m) 
V10 (Vertical 10 kN/m 

[opening WxL] [Lee or Wind end] 
900x1280W 
900x1280L 
1900x1365W 

[hold down] HD (Holding down strap) 
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As an example, [OP.P.S75.SS] refers to an open panel [name] configuration 

partially restrained [P] where the sheathing is fixed by screws at 75 mm centre to centre 

in the perimeter [S75] and with a single sheathing layer [SS]. 

The fully restrained RTC imperforated panel presented a holding down strap at 

leading and trail stud, WHT-440 from the Italian company Rothoblaas, which was 

connected to the frame by 18 no S3 screws to the frame and by M16 bolts to a 60 mm 

Kerto® packer (Figure 4-16). 

  

Figure 4-16 Holding down metal strap to plywood (left) and to KERTO 

(right) prior to fully restrained the panel to the rig. 

This holding down strap was originally glued and screwed to 45 mm plywood. 

However, the stiffness of the detail was unsatisfactory and the test had to be re-arranged 

with Kerto® instead as shown by Figure 4-16 (right). 

The Scottish company CCG manufactured the advanced K2 closed panels from 

home-grown Sitka spruce and Nordbord Sterling OSB/3 boards. Carbon Dynamic, 

another Scottish company, fabricated the RTC panel from commercially available I-

beams and also from Nordbord Sterling OSB/3 boards. The lay-out of the K2 panels were 

types A, B, C and D whilst the lay-out of the RTC panels were type D according to Figure 

4-17. 

Although the timber frame panels were produced by commercial organisations, 

special indications in terms of quality assurance procedures and checklist were facilitated 
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to maintain a level of academic rigour (Appendix X). Nevertheless, the wall panels were 

exhaustively inspected prior testing. 

 
Figure 4-17 Lay out of tested advanced closed panels 

The magnitude of the applied racking load and the resultant racking displacement 

in the top rail were recorded during the duration of the test. 

From this resultant load-displacement curve, wall strength at ultimate load and wall 

stiffness were determined. Furthermore, the horizontal displacement of the bottom rail 

and the vertical displacement of the leading stud near the bottom rail were measured 

(Figure 4-18). 
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Figure 4-18 Transducers to measure displacement and horizontal racking 

load cell 

A modified wall head displacement to neglect timber frame slip at sole plate was 

determined according to Equation 4.24: 

  

𝛿1,𝑚𝑜𝑑 = 𝛿𝑝𝑜𝑖𝑛𝑡,1 − 𝛿𝑝𝑜𝑖𝑛𝑡,2 (4.24) 
 

The racking test results for the advanced K2 and RTC advanced timber frame walls 

are discussed in the next sub-section. 

4.5.3 Experimental racking results 

The result of the twenty individual racking tests encompassing ten 2.4 m high 

timber frame wall types of different specifications is reported in this section. The racking 

test program was intended to investigate the effects of the following variables on the in-

plane strength and stiffness of advanced closed panels of several lengths: 

▪ Sheathing materials. 

▪ Sheathing fastener schedule. 

▪ Applied vertical loading. 

▪ Restrained sole plate conditions. 

▪ Openings. 

Furthermore, special attention was considered to the failure mode mechanisms and 

its potential impact on a serviceability criterion based on airtightness. This exercise was 

carried out for mere qualitative purposes which must be interpreted with caution. 

The structural performance criteria for each tested wall was defined by a series of 

strength and stiffness parameters derived by the single load-displacement curve and in 
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agreement with the standard BS EN 594:2011. This criteria is shown in Table 4-19 and it 

is and adaptation of the approach from previous research on racking walls carried out at 

Edinburgh Napier University (Leitch, 2013). 

Note that referred loads are considered by metre run of wall panel (kN/m) in order 

to facilitate direct comparison between similar racking wall types. 

Table 4-19 Criteria used in the reporting of the racking test results 

Criteria Description Designation Unit 

Racking performance 
curve 

Load(y-axis) vs modified displacement(x-

axis) at wall head 
- - 

Ultimate strength Maximum racking strength Fmax kN/m 

Displacement at Fmax 
Displacement measured at the wall 
head and corresponding with Fmax 

δFmax mm 

Load at SLS Load at 40% of Fmax 0.4Fmax kN/m 

Displacement at 0.4Fmax 
Displacement measured at the wall 
head and corresponding with 0.4Fmax 

δ0.4Fmax mm 

Displacement SLS 
Maximum displacement considered as 
0.003 H or 7.2 mm for 2.4 m height 
walls 

δSLS mm 

Load at Displacement SLS Load measured at δSLS F7.2mm kN/m 

Load at Displacement AT 
Load measured at 10 mm displacement 
and referred as thermal serviceability 
criteria 

F10mm kN/m 

Ultimate failure load Load at 80% of Fmax 0.8Fmax kN/m 

Racking stiffness 
Racking stiffness calculated as Equation 
4.6 

R N/mm 

 

Racking results for K2 single structural frame 

The six-pairs of single structural layer K2 panels presented a combination of 

different sheathing materials, different wall lengths and different sheathing fastener 

schedules. Also, shear walls P7 and P8 were tested under 5 kN vertical point load at each 

stud axis. A summary of the racking test results is described by Table 4-20. 
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Table 4-20 Summarised racking results for K2 single structural frame panels 

 
Fmax 

kN 
FMAX 

kN/m 
δFmax 

mm 
0.4Fmax 

kN 
δ0.4Fmax 

mm 
F7.2mm 

kN 
F10mm 

kN 
0.8Fmax 

kN 
R 

N/mm 

P1 4.55 3.79 35.3 1.8 9.87 1.25 1.83 3.66 182 

P2 6.06 5.05 46.79 2.41 9.48 1.98 2.58 4.85 209 

P3 5.98 4.98 45.64 2.37 12.23 1.73 2.13 4.79 139 

P4 6.77 5.64 44.24 2.7 12.8 1.68 2.19 5.41 180 

P5 3.30 2.75 17.75 1.35 6.74 1.48 2.11 2.63 162 

P6 3.00 2.50 15.1 1.19 4.15 1.65 2.09 2.39 208 

P7 21.33 8.89 41.43 8.53 4.19 n/a n/a 17.06 1451 

P8 23.08 9.62 32.96 9.23 5.25 n/a n/a 18.46 1514 

P9 26.13 7.26 54.8 10.43 11.17 7.32 9.65 20.90 767 

P10 23.77 6.60 46.82 9.53 10.23 7.26 9.36 19.04 782 

P11 47.71 9.94 36.07 18.89 6.58 20.19 24.51 38.17 2071 

P12 41.48 8.64 43.74 16.65 8.8 14.17 17.62 33.18 1385 
 

A relative low strength and stiffness was found on the partially restrained timber 

frame panels P1-P6 in comparison with the vertically loaded timber frame panels P7 and 

P8. This may be caused, apart from the restrained effect of the vertical loads at the stud 

point, by the brittle failure observed on the closely spaced sheathing screw fasteners 

where no much energy was dissipated by the sheathing connection (Figure 4-19). 

Figure 4-20 illustrates, for direct visual comparison between the same wall panel 

types, the racking strength for ultimate load in kN (Fmax), the ultimate load expressed in 

kN/m (FMAX), the load in kN (F10) for a 10 mm displacement and the racking stiffness 

derived from the load-modified displacement at Point 1, head binder, in N/mm. 

A qualitative outcome observed during the length of each testing protocol, for the 

screw fastener schedules P1 to P6, indicated an early crack initialisation. This effect may 

not be adequate if a serviceability criterion, based on low-energy resilient airtight 

buildings, is required.  
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Failure observed in P1-P2 

 
Failure observed in P3-P4 

 
Failure observed in P5-P6 

 
Failure observed in P7-P8 

Figure 4-19 Sheathing failure modes obeserved in K2 single panel 

 

  

Figure 4-20 Comparative strength and stiffness performance of K2 single 

framed panels 

 

Racking results for K2 double frame 

The two pairs of double structural layer K2 panels, P13-P16, presented identical 

sheathing fastener schedules and an identical timber frame specification. The four walls 

were tested under 5.0 kN vertical point load at each stud axis and the sole plate was 

Strength - F Stiffness - R 
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partially restrained against overturning moments.  The only difference was panels P13 

and P14 had a single sheathing layer on the structural frame whilst panels P15 and P16 

had a sheathing layer on each frame with identical sheathing fastener schedule. The aim 

of this testing schedule was to understand the contribution to racking of the non-structural 

internal frame layer. A summary of the racking results is presented by Table 4-21. 

Table 4-21 Summarised racking results for K2 double frame panels 

 
Fmax 

kN 
FMAX 

kN/m 
δFmax 

mm 
0.4Fmax 

kN 
δ0.4Fmax 

mm 
0.8Fmax 

kN 
R 

N/mm 

P13 17.01 7.09 33.43 6.8 3.31 13.61 1484 

P14 16.93 7.05 29.35 6.77 2.84 13.54 1937 

P15 16.56 6.90 25.14 6.63 4.1 13.25 1180 

P16 20.25 8.44 30.06 8.1 6.89 16.20 874 
 

The racking strength for ultimate load in kN and also expressed in kN/m, for direct 

comparison between the same wall panel types, and the racking stiffness in N/mm were 

derived from the load-modified displacement at Point 1 head binder. The strength and 

stiffness of the single structural layer P7 and P8 were also included for comparison 

purposes (Figure 4-21). 

  

Figure 4-21 Comparative strength and stiffness performance of K2 double 

framed panels 

A relative high strength and stiffness can be considered for the double frame panels 

with failure loads greater than 7.0 kN/m run and stiffness greater than 800 N/mm in all 

the cases. However, although there is not sufficient data to provide a rigour conclusion, 

there is enough evidence from the test results to state that the contribution of the 

Stiffness - R Strength - F 
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secondary structural layer has an equal or positive impact on the global strength of the 

panel but this secondary layer has no contribution to the stiffness of the dual frame. 

The characteristic failure mode observed for the dual frame K2 panels corresponded 

to the sole plate connection (Figure 4-22). A withdrawal of the fasteners connecting the 

strip of 19 mm plywood to the 38 x 200 x 2400 mm sole plate timber packer was observed 

in all of the specimens. This withdrawal was recorded for as much as three-quarters of 

the length of the panel. The loading configuration for these tests correspond to 5 kN load 

cell at each timber frame stud. 

 
Sheathing failure observed in P13-P14 

 
Sole plate failure observed in P13-P14 

 
Sheathing failure observed in P15-P1 

 
Sole plate failure observed in P15-P16 

Figure 4-22 Sheathing and sole plate failures obeserved in K2 double frame 

 

Racking results of RTC I-beam structural frame 

The two pairs of RTC I-beam timber frame panels presented identical sheathing 

fastener schedules and an identical timber frame specification. The four walls were tested 

with no vertical loading acting on the studs but walls P19 and P20 had a holding down 

strap at leading and trail studs. 
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Hence, the investigation was focused on the comparison of a closed timber frame 

panel fully restrained against overturning moments against partially restrained wall. 

The testing protocol was slightly different from the previous K2 panels as only two 

1.2 x 2.4 RTC walls were provided to undertake four racking tests. Firstly, panels P17 

and P18 were fully restrained by connecting the sole plate packer to the frame with 12no 

6.0 x 100 mm SDS screws and the sole plate packer to the testing rig by 2 no M20 bolts. 

These panels were carefully tested to 70 % of a predicted ultimate load of 6.2 kN. 

However, the test was terminated at 4.0 kN racking load as the leading stud was starting 

to lift off from the bottom rail and the bottom rail beginning to lift from the sole plate. 

A summary of the racking test results is presented by Table 4-22 where the 

structural performance information regarding panels P17 and P18 is provided considering 

the tests aborted at 70 %, and a possibly more realistic 85 %, of the ultimate failure load. 

Table 4-22 Summarised racking results for RTC I-beam frame panels 

 
Fmax 

kN 
FMAX 

kN/m 
δFmax 

mm 
0.4Fmax 

kN 
δ0.4Fmax 

mm 
F7.2mm 

kN 
F10mm 

kN 
0.8Fmax 

kN 
R 

N/mm 

P171 5.87 4.89 n/a 2.35 6.02 2.65 3.25 4.70 298 

P172 4.84 4.03 n/a 1.93 4.67 2.65 3.25 3.87 325 

P181 5.94 4.95 n/a 2.38 8.55 2.15 2.62 4.75 205 

P182 4.89 4.08 n/a 1.96 6.29 2.15 2.62 3.92 224 

P19 6.06 5.05 62 2.64 18.2 1.32 1.70 4.85 126 

1Information reported for test ended at 0.70Fmax 
2Information reported for test ended at 0.85Fmax 

 

The characteristic failure mode observed for the RTC panels corresponded to the 

sole plate connection for the fully restrained P17 and P18 panels and to the holding down 

straps for the partially restrained P19. RTC panel P20 was decided not to test due to 

instability issues of the holding down connection to the rig (Figure 4-23). 
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Failure observed in P17 

 
Failure observed in P18 

 
Failure observed in P19 

 

 
Failure observed in P19 

 

Figure 4-23 Sheathing and sole plate failure modes obeserved in RTC panels 

Figure 4-24 illustrates, for direct visual comparison between the same wall panel 

types, the racking strength for ultimate load in kN (Fmax), the ultimate load expressed in 

kN/m (Fmax), the load in kN (F10) for a 10 mm displacement and the racking stiffness 

derived from the load-modified displacement curve at Point 1, in the head binder, in 

N/mm. 

The results of the RTC and K2 advanced timber frame panels were provided within 

this section. These empirical results are compared with the PD 6693-1 results in the sub-

section 4.6. 
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Figure 4-24 Comparative strength and stiffness performance of RTC panels 

4.6 Comparison of Experimental Results with PD 6693-1 

In this section, a direct comparison between the experimental racking tests results 

obtained in the previous section and the PD 6693-1 design is provided. The results of this 

research exercise delivered further information to the accuracy of the analytical approach 

considered for inclusion in a timber frame racking design software application detailed in 

next chapter. 

In order to compare a wider sample, the previous experiments carried out at 

Edinburgh Napier University by Leitch (2013) as initial groundwork for this thesis are 

included. The data of these tests are presented in Appendix VIII. 

The experimental versus analytical EC5 comparison of 19 open panel timber frame 

racking walls is provided in Table 4-23. The experimental versus PD 6693-1 comparison 

of 20 closed panel timber frame racking walls is provided in Table 4-24. The 

nomenclature of these racking timber frame walls was described previously (Table 4-18). 

It can be concluded from Figure 4-25 that for all the open panel racking tests 

performed in the study, the characteristic racking strength provided by PD 6693-1 is 

conservatively lower than the resultant 0.8 Fmax. However, the SLS criteria check failed 

in four samples due to a combination of wall panel dimensions (short wall and walls with 

door opening) and spacing of the sheathing fasteners (50 mm and 75 mm spacing). 

This failure of the SLS check under these considerations agrees with the outcome 

of the results obtained in the study by Leitch (2013) particularly in situations where a 

dense nailing spacing was adopted. 

Stiffness - R Strength - F 
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Table 4-23 Experimental (Leitch, 2013) vs PD 6693-1 racking comparison for 

open panel timber frame walls (values in kN). 

Wall reference Fmax 0.8 Fmax 0.4 Fmax 
PD6693 

(k) 
SLS check 

1.2.F.75. 17.02 13.62 6.81 9.17 Fails 

F.75. 36.14 28.91 14.46 18.33 OK 

F.50. 49.37 39.50 19.75 26.95 Fails 

F.50.DS. 82.48 65.98 32.99 47.17 Fails 

V10.50 34.86 27.89 13.94 18.87 OK 

V10.150 13.89 11.11 5.56 9.73 OK 

V10.50.DS. 41.94 33.55 16.78 27.54 OK 

V10.150.DS. 35.6 28.48 14.24 14.42 OK 

V10.150..3 10.23 8.18 4.09 9.73 OK 

V5.75. 21.17 16.94 8.47 11.54 OK 

V10.150.3 15.53 12.42 6.21 9.73 OK 

V5.150.900x128W 15.61 12.49 6.24 4.82 OK 

V5.150.900x128L 11.43 9.14 4.57 4.82 OK 

3.6.V5.150.1380x1250L 20.16 16.13 8.06 8.79 OK 

3.6.V5.150.1900x1365L 14.54 11.63 5.82 6.08 OK 

3.6.V5.50.1900x1365L 23.83 19.06 9.53 12.30 OK 

3.6.V5.150.2x1380x1250WL 28.47 22.78 11.40 9.64 OK 

V10.50.1200x1200C 18.53 14.82 7.41 9.91 OK 

V10.50.1200x2100C 14.58 11.66 5.83 3.18 Fails 
 

 

Figure 4-25 Open panel racking comparison: Test vs PD 6693-1 

Panel tested 
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Conversely, although the resultant 0.8 Fmax was greater than the analytical 

characteristic value provided my method PD 6693-1, a larger deformation of the timber 

frame wall panel was observed which could lead to other thermal considerations as 

detailed in Chapter 3. 

This thermal consequence in double sheathed and partially restrained timber frame 

panels could significantly be undesirable if the splitting of the bottom rail due to 

transverse bending forces occur at low racking loads. It is important to bear in mind that 

this conclusion for serviceability must be interpreted with caution as it was observed at 

ULS. 

For the case of the closed panel racking tests (Table 4-24), the analytical 

characteristic racking resistance was also in great agreement with the empirical 0.8 Fmax 

racking resistance. However, the analytical PD 6693-1 characteristic racking resistance 

in three samples was greater than 0.8 Fmax but the analytical results did not pass the SLS 

check. Figure 4-26 illustrates a comparison between the analytical racking design and the 

test results for the closed panels. 

It can be observed that for the K2 closed timber frame panels (P13, P14, P15 and 

P16) that the second sheathing layer of OSB/3 is not providing any further significant 

racking resistance to the timber frame. It can be assumed therefore that little or even no 

shear is transferred by the XPS stud webs from one sheathing layer to the opposite 

sheathing layer. 

The racking strength for the fully restrained RTC closed timber frame panels (P19 

and P20) observed was about 40 % greater than the obtained by the partially restrained 

RTC panels (P17 and P18). 
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Table 4-24 Experimental vs PD 6693-1 racking comparison for closed panel 

timber frame walls (values in kN) 

Wall reference Fmax 0.8 Fmax 0.4 Fmax 
PD6693 

(k) 
SLS check 

P1 - P[L1.2].S75.SS 4.55 3.66 1.8 3.34 OK 

P2 - P[L1.2].S75.SS 6.06 4.85 2.41  OK 

P3 – P[L1.2].S75.PV.SS 5.98 4.79 2.37 3.36 OK 

P4 – P[L1.2].S75.PV.SS 6.77 5.41 2.7  OK 

P5 – P[L1.2].S75.FC.SS 3.30 2.63 1.35 1.521 OK 

P6 – P[L1.2].S75.FC.SS 3.00 2.39 1.19  OK 

P7 – V5.S75.SS 21.33 17.06 8.53 19.33 Failed 

P8 – V5.S75.SS 23.08 18.46 9.23  Failed 

P9 –P[L3.6].75.1060x2070W 26.13 20.90 10.43 15.38 OK 

P10 –P[L3.6].75.1060x2070W 23.77 19.04 9.53  OK 

P11 –P[L4.8].75.1060x2070W 47.71 38.17 18.89 32.31 OK 

P12 –P[L4.8].75.1060x2070W 41.48 33.18 16.65  OK 

P13 – V5.75.SS 17.01 13.61 6.8 12.962 OK 

P14 – V5.75.SS 16.93 13.54 6.77  OK 

P15 – V5.75.DS 16.56 13.25 6.63  OK 

P16 – V5.75.DS 20.25 16.20 8.10  OK 

P17 – P[1.2].150.DS 4.11 3.29 1.64 3.52 OK 

P18 – P[1.2].150.DS 4.16 3.33 1.66  OK 

P19 – [1.2].150.DS.HD 6.06 4.85 2.42 7.57 Failed 

P20 – [1.2].150.DS.HD n/a 
 

 

 

Figure 4-26 Closed panel racking comparison: Test vs PD 6693-1 

Panel tested 
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However, the last two RTC closed panels were tested with holding down straps 

secured to a 75 x 360 mm LVL plate. The holding down straps fixed to the frame 

outperformed the sole plate connection to the rig as shown in Figure 4-23. This type of 

failure may also be found in real practice where the timber frame wall is secured to the 

substrate or foundations by holding down straps only (Figure 4-27). 

 

Figure 4-27 Timber frame closed panel secured to substrate by holding down 

straps only at every other stud. 

 

The investigations related to the experimental racking behaviour of the walls carried 

out in this section concluded that PD 6693-1 is a conservative approach to determine 

racking strength. However, it was noted that the analytical methodology was more 

conservative for open panels than for closed panels where the characteristic racking 

strength values was closer to the 80 % of the empirical Fmax. 

These results provided further support for the theory that partially restrained walls, 

although are able to resistance racking loads, presented a poor stiffness even for very low 

applied lateral loads. The next section provides specific recommendations for 

serviceability criteria with a focus on low energy building design. 
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4.7 Recommended Shear Wall Serviceability Criteria 

Serviceability criteria is often related to the point where a part of the structure or 

the building needs to be repaired or replaced due to aesthetics or a loss of service. There 

is a direct cost implication for this limit state criteria but it does not consider a loss in 

thermal performance (Cook, 1984). 

Heat loss due to air leakage is becoming more relevant on current and future 

building regulations in terms of building energy efficiency. This can be critical on very 

efficient and Passivhaus buildings without conventional heating installation where heat 

loss due to the apparition over time of cracks or gaps within the thermal envelope, the 

boundary timber frame, may impinge upon the adequate supply of warm air into the 

building through mechanical ventilation systems. 

During the tests undertaken in this research, the initiation of cracks on sheathing 

materials was observed to start as low as 10 % of ultimate failure load and the fissure 

developed very quickly. This was already observed in other studies (Dobrila, 2003). 

Furthermore, this author also concluded that reinforcing wall panels by adding a second 

sheathing layer practically did not improve final deflections. This phenomenon is 

noticeable when the connection between sheathing and frame is particularly brittle. 

On the other hand, imperfections such as gaps in the studs and uplift are relatively 

frequent on the manufacturing and construction of on-site timber frame wall panels. As a 

result, the stiffness of the wall panel decreases particularly for panels of short length.  

Based on the tear capacity of commercially available tapes and construction 

membranes, a maximum instantaneous racking displacement for building airtight 

serviceability criteria of 10 mm is proposed. 

4.8 Summary 

In this Chapter, the analytical and empirical structural performance of two advanced 

closed timber frame systems has been reported. The investigation included full-scale 

testing according to European standards and an assessment on different sole plate base 
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fixing details. The results were compared to the analytical methodology implemented in 

the latest revision of the UK National Annex to Eurocode 5. 

The empirical results obtained for partially restrained and for fully restrained walls 

agreed with the analytical theory implemented as published document PD 6693-1. The 

shear wall distribution of forces at the bottom runner presented two components: a vertical 

restorative overturning moment contribution and a lateral shear resistance component. 

The strength grade for the timber of eight K2 wall panels was characterised by non-

destructive acoustic methods. No significant shear strength differences were found in the 

racking test results between the acoustically graded and non-graded timber frame panels. 

This was unexpected as the measured mean density of the timber for the K2 type A and 

D tested panels was 409 kg/m3 which corresponds to strength class C22. The shear 

strength of the wall was determined, for all types, assuming strength class C16. Therefore, 

a lower density was used on the analytical EC5 connection design strength between the 

sheathing and the stud frame. Further work needs to focus on the relationship between 

strength class and mean density, particularly on lateral load shear connections, for 

Scottish Sitka spruce. 

A series of sole plate base fixing details for closed timber frame wall panels were 

provided together with structural performance information. This investigation set the 

basis for the isolation-combination methodology, based on the weakest link theory, to 

determine the overall structural performance of a complex sole plate detail based on the 

performance of its individual connections. The isolation-combination methodology also 

provides an optimised design tool when determining optimal spacing distances as the 

individual connections should present a similar shear capacity per meter run.  

As expected from the literature, no substantial racking transfer resistance was 

provided between one sheathing layer of the dual K2 panel and the other sheathing layer. 

However, it was observed a slight reduction on the global stiffness of the dual frame panel 

when a second sheathing layer was fixed. Low strength and stiffness performance was 

found on all the partially restrained timber frame panels. The use of holding down straps 

or returning walls and vertical shear transfer fixings increase the strength and stiffness of 

closed timber frame walls. This was even more evident for the RTC I-joist wall panels. 
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The failure mode mechanisms for the tested closed panel systems were also visually 

reported to understand possible potential consequences on the building thermal 

performance, especially in terms of air leakage formation. Based on the tear capacity of 

commercially available tapes and construction membranes, a maximum instantaneous 

racking displacement for building airtight serviceability criteria of 10 mm was proposed. 

PD 6693-1 has proved to be a safe design methodology for the closed timber frame 

panels investigated in the study. However, the analytical PD 6693-1 is a time-consuming 

design code which allows for the inclusion of multiple parameters. In order to perform a 

parametric multi-variate analysis and facilitate design optimisation, the need of a racking 

software application is required. Furthermore, this software tool could be a means for 

disseminating research findings to the general public. 
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5 TIMBER RACKING DESIGN 

SOFTWARE APPLICATION 

The conclusions from research are generally disseminated in the form of 

publications (scientific books, journal papers or articles), seminars or conference 

proceedings. Therefore, although this work is of great value, there is an elongated timeline 

to utilisation, due to research dissemination by these traditional methods. In addition to 

this, the application of innovation in the construction industry is difficult, often due to a 

lack of available information, confidence in the product or construction detail and 

technical compatibility issues. The timber sector is not an exception and any innovative 

solution frequently requires a long transitional process through all of the industry levels.  

In this chapter, the development of a timber frame racking software application for 

commercial purposes and based on the outcomes from the previous chapter is presented. 

The objective was to create a design tool for calculation and specification of timber frame 

walls. The organisation of this chapter is illustrated by Figure 5-1. 
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Figure 5-1 Organisation of the Chapter 5. 
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5.1 Background to the Research 

The basis of this research began as a Knowledge Transfer Partnership (KTP) project 

between The Roof Truss Company Ltd (Scotland) and The Centre for Offsite 

Construction and Innovative Structures (COCIS) at Edinburgh Napier University. One of 

the main project aims was to develop a knowledge transfer mechanism from analytical 

and empirical research to commercial applications of use by general UK structural 

engineers. 

The application Tedds® for Word (Tedds), from CSC (UK) Ltd and now Trimble 

Tekla, was selected as a timber design platform, due to its accessibility to engineers; 

availability to source programming code and the possibility of integrating research in the 

design process by means of databases. 

5.2 Knowledge Transfer into Practise 

Although there is a general public and private agreement about the need to transfer 

knowledge from academia to the industry, there is still a lack of high quality knowledge 

transfer mechanisms into action in a fast and productive manner (Ward, 2009). 

The British government through programmes such as Knowledge Transfer 

Partnerships (KTP) is helping organisations to improve competitiveness and productivity 

through a better use of knowledge, skills and technology from research organisations. 

Similarly, governmental research council agencies such as the Engineering and Physical 

Science Research Council (EPSRC) are also funding projects proposed by higher 

education institutes in relationship with industrial partners. 

5.2.1 Timber research knowledge transfer 

Research related to structural timber engineering commonly results in new design 

methods, new structural timber based materials or innovative methods of timber 

construction (Hu, 2004). The findings of the research are generally disseminated in the 

form of publications: scientific books, journal papers or articles; seminars or conference 

proceedings. Therefore, although this work is of great value, there is an elongated time-

line to utilisation due to traditional dissemination being employed. 
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In addition to this, the application of innovation in the construction industry is 

difficult often due to a lack of available information, confidence in the product or detail 

and technical compatibility issues (acoustic and thermal performance or production and 

construction processes). The timber sector is not an exception and any innovative solution 

frequently requires a long transitional process through all the industry levels. 

5.2.2 AEC timber related software and prospects 

There is a large catalogue of Architectural Engineering and Construction (AEC) 

software products concentrated mainly on steel and concrete building design in contrast 

with the limited range of products capable of providing an element of structural timber 

design (Table 5-1). 

Table 5-1 List of design software for timber buildings 

Name Design code Language Full timber 
design 

2D/3D 
CAM 

BIM 

IES 
VisualAnalysis 

NDS E No 2D/3D Via Revit 

Bautext 
(Wood module) 

DIN, EC5 E, G No No No 

Dlubal 
(TimberPro.X) 

DIN, EC5 E, G No 2D/3D No 

Dietrich’s 
(D-Wall) 

DIN, EC5 Multiple Yes 
2D/3D 

CAM 
Export IFC 

Weto 
(Viskon V5) 

DIN G Yes 
2D/3D 

CAM 
Export IFC 

Technosoft 
(AxisVM) 

EC5 Multiple No 2D/3D Export IFC 

Autodesk 
(Robot Analysis) 

Multiple Multiple No 2D/3D Via Revit 

CSC Inc 
(TEDDS) 

Multiple E No 2D No 

TRADA 
(TimberPro) 

EC5 E No 2D No 

TimberTech EC5 Multiple Yes 3D Export IFC 

Timber design code: NDS (National Design Specification) DIN (DIN 4074, Germany),                      
EC5 (Eurocode 5). Language: E (English), G (German).  
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The use and application of these tools is rather limited when considering the use of 

modern timber connections, components and systems such as propriety metal work, EWP 

and advanced closed panels such as those incorporating services or renewable energy 

technologies. Correspondingly, there is modest use made of advanced computer aid tools 

in the timber sector (Palmer, 2000) and indeed the use is normally fragmented. 

In addition to the above, the publication of the Eurocodes and its inclusion in the 

UK building regulations requires timber design processes to be Eurocode compliant. The 

shift to Eurocodes is more onerous in the UK when considering timber design given the 

need to migrate from a permissible stress approach (BS 5268-1, 1996) to a limit state 

design approach (BS EN 1995-1, 2006). Eurocode is also a more analytical approach to 

design facilitating innovation and system evolution however, it is also a more time-

consuming code to use requiring the need for easy to use yet transparent design tools.  

Although suggestions were made to simplify verification of standards (Dietsch, 

2012), particularly Eurocode 5 due to its high technical content, other actions to facilitate 

timber design are possible. An internal survey carried out by COCIS on a sample of 77 

structural engineers (Figure 5-2) concluded that software solutions and continuous 

professional development (CPD) seminars are the most relevant actions to be taken on 

the timber engineering community. However, internal and external teaching activities 

promoted by Edinburgh Napier University such as seminars or practical laboratory 

exercises for undergraduates successfully combined theoretical content with software 

demonstration. 

 

Figure 5-2 Routes to facilitate the use of Eurocode 5 
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It is evident that a software platform for timber design it is an appropriate tool for 

knowledge transfer into the timber engineering community. This software platform shall 

include not only proprietary materials and components but conclusion obtained from 

other non-commercial research activities. 

5.2.3 Whole House Engineering platform 

The structure of a Whole House Engineering mechanism, concept can be defined 

as a group of components or proformas that use a core centralised database of collated 

information (Osterrieder et al., 2004). The database retains the material, component or 

system performance information and the proformas process this information according to 

the different structural function to be designed for i.e. roof, floor or walls which when 

combined provide a Whole House Engineering platform (WHE). There are similar 

approach but for energy consumption simulation, none for timber structural design (Holst, 

2003). 

For structural timber design, Figure 5-3 shows different components that may be 

part of an integrated WHE concept (Menendez et al., 2012). In this particular model, the 

components are able to both stand alone and to be interlinked with other WHE pro-

formas. 

WHE

Loading

Stability

Roof 
system

Floor 
system

Wall 

design

Connection

Racking

Figure 5-3 Whole House Engineering concept 
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5.2.4 Data sharing 

Open and normalise models are a step forward on the construction industry and 

shall enable a great degree of interoperability between the different parts involved in the 

AEC sector. Since 1994, an industry consortium has been working on the Industry 

Foundation Classes (IFC) to standardise Information Technologies (IT) as an open data 

model in the construction sector (Kiviniemi, 2012). The aim of IFC is to facilitate 

Building Information Modelling (BIM) between cross-compatibility software platforms. 

Osterrieder et al. (2004) concluded that the AEC industry together with the timber 

industry must be provided with viable design aided tools in order to facilitate the 

knowledge transfer from the research stage to the final market and enable data sharing 

instead of data exchange. 

The model provided in Figure 5-4 follows the same principles from the current BIM 

theory. On this model, the authors propose a sequential migration from a management 

system with a high number of bilateral processes (a) to a data exchange system with fewer 

standard templates (b) and software systems to a data sharing model managed by a single 

model (c). 

a) b) c) 

 

Figure 5-4 Data exchange model, after Osterrieder et al. (2004) 

The standardisation of construction data management through BIM technologies, 

some of them driven by the government, have been recently implemented in other 

building materials such as steel or pre-cast concrete (Jeong et al., 2009). 

In the WHE concept presented in the previous section, the database can include 

product specific, product generic or research specific information in order to facilitate the 

subsequent parametric analysis process to optimise the final structural design and 

interconnected with the different proformas or calculation libraries (Figure 5-5). It is also 
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recommended that the database is BIM enabled as information can be imported or 

exported from other software or even in a spreadsheet format (Lucas, Bulbul , & Thabet, 

2013). 

 

5.2.5 Integrated software for timber building design review 

The use of advanced computer programs for design (CAD) and manufacturing 

(CAM) is relatively common in timber construction (Haller & Menzel, 1998). There are 

many suppliers that provides software packages able to deliver complete 3D-simulation, 

cut list of materials, take-off quantities or cost (Figure 5-6). 

These tools are not only able to process graphical data but numerical and text 

information which can be used for warehouse inventory, purchasing orders or volumes 

and transportation requirements. MMC benefit especially of this technology as the 

manufacturing process and preparation of materials is streamlined. However, only few 

commercial software is available for the analysis and design of prefabricated timber 

structures with a self-explanatory Graphical User Interface (GUI) and even fewer 

applications where direct input from empirical data of timber components and systems 

can be integrated in the structural design. 

Figure 5-5 WHE database information 
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Figure 5-6 Snapshot of a CAD/CAM software program 

Other available timber engineering related proprietary software used in the UK is 

currently provided, usually free of charge, by manufacturers of EWPs or metal plate 

connections. These design tools do not provide design flexibility as they are restricted to 

the products of the manufacturer portfolio only. The internal programming system is a 

‘black box’ where the material selection, the method of construction or the design code 

of practice is normally hidden and not open for amendment. This restricts engineering 

judgement and commoditises the process. Finally, the capability to import or export 

information across other software platforms is very limited and as a result, Building 

Information Modelling (BIM) processing and the capability to apply a holistic design 

approach is restricted (Khalili & Chua, 2013).  

At the same time, the market share of timber in construction is growing due to future 

building regulation requirements, government sustainability policies, the advantages of 

off-site timber MMC (Hairstans, 2010) and the increasing demand from architects and 

clients for EWP (Wilson, 2007b). 

In addition to the above, the recent publication of the Eurocodes and its inclusion 

in the UK building regulations requires timber design processes to be Eurocode 

compliant. The shift to Eurocodes is more onerous in the UK when considering timber 
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design given the need to migrate from a permissible stress approach (BSI, 1996) to a limit 

state design approach (Griffiths et al., 2005). Eurocode is also a more analytical approach 

to design, facilitating innovation and system evolution. However, it is also a more onerous 

code requiring the need for easy-to-use yet transparent design tools. 

5.3 Development of Racking Wall Design Software 

A key objective of the EPSRC project “Structural Optimisation of Timber Offsite 

Modern Methods of Construction” awarded to the Centre for Offsite Construction and 

Innovative Structures (COCIS) at Edinburgh Napier University was to develop structural 

details for advanced panelised system that were able to conform with future building 

regulations and offsite construction. 

Outcomes of this research contributed to the EPSRC project by developing a 

software application. This tool is a mechanism to impact which is now cross-correlated 

with Eurocode design procedures and capable of exploiting a comprehensive database 

that can be potentially interfaced with other software applications in a BIM environment. 

The work carried out in this research started in collaboration with the software 

company CSC (UK) Ltd, now Trimble Navigation Limited, in order to develop a 

mechanism to streamline the release of research findings to the AEC sector. In particular, 

the collaboration was established on work undertaken on new UK timber components and 

systems and their associated details. The WHE mechanism identified in the EPSRC 

project is shown in Figure 5-7 where the Racking Application was the first pro-forma to 

be developed 

The analytical methodology described in the previous chapter and published as a 

complementary information document to Eurocode 5 was fully integrated in the program. 

The development of the racking wall design presented in this chapter involved a 

substantial C++ code and software programming learning processes. 

The material databases included in the application can be populated with either 

generic information from available standards and technical data sheets or obtained 

through United Kingdom Accreditation Service (UKAS) laboratory testing. The 

information then is ready to be distributed directly to a targeted audience hence 
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streamlining the access of practicing engineers to innovation. In this case, the material 

databases developed for the timber frame racking application contains generic data from 

standards and generic information from non-disclosure manufacturers. 

 

Figure 5-7 Methodology to deliver WHE mechanism via Trimble Tedds 

5.3.1 The Trimble Tekla Tedds environment 

Tedds – The Calc Pad for structural Engineers – is a software program developed 

by CSC (UK) Ltd. that allows the user to run engineering calculations from a 

comprehensive generic library and also to create and edit custom calculations. The timber 

design application has been developed under this proprietary platform for the following 

key reasons: 
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▪ Wide distribution across UK engineering practices: Trimble Tedds has sold more 

than 4,000 Tedds licenses in the UK, including network licenses. According to 

internal Trimble Tedds data, the estimated number of engineers using this tool 

within the UK is of around 14,000 (Figure 5-8). 

▪ Access to the programming source code: Trimble Tekla Tedds provided the author 

with the Professional Development Package (PDP) tool, which enables the 

developer to produce, from scratch, professional calculations directly from the 

source code. 

▪ Integration of databases. The software allows for the creation of Databases which 

can be populated with either generic information from available standards, 

manufacturer literature, or obtained through research and accredited laboratory 

testing. 

▪ Creation of structural reports as MS Word documents. Trimble Tedds can also be 

installed and executed as a MS Word add-on. In this environment, the application 

also allows the user to attach other documentation, such as images, 2-D and 3-D 

sketches, tables or other informative notes. 

▪  

Figure 5-8 Trimble Tedds licenses sold worldwide 

5.3.2 Platform for structural design 

The structure of the timber design mechanism, based can be defined as a group of 

pro-formas, blocks, or applications that shared a core centralised database of collated 
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information. The Tedds application produced in this research was timber frame racking 

design, which will be part of an integrated whole house engineering (WHE) mechanism 

to produce full structural reports for timber design. A flow chart of the timber frame 

racking application processes is illustrated in Figure 5-9. 

 

Figure 5-9 Tedds racking application optimisation flow chart 

The database retains the material, component or system performance information 

and the application processes this according to the function to be designed for and, when 

combined, provide a structural design values. The database, created as spreadsheet and 

embedded within the Tedds application, can therefore be product specific, product 

generic or research specific in order to facilitate the subsequent parametric analysis 

procedure. This allows for final structural design optimisation. The database also has the 
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potential to be BIM enabled as information may be able to be imported or exported from 

other software in the future. 

Language code and programming 

The programming language used to generate Tedds pro-formas is a composition of 

Visual Basic for Applications (VBA) and C++. Furthermore, CSC (UK) Ltd, as a result 

of a collaborative agreement, provided COCIS with its professional developer software 

package (Zhang & Leiss, 2001). 

This package includes two additional tools, application designer and interface 

designer, which facilitates the creation of professional sets of calculations with refined 

graphic user-friendly interfaces (GUI) simplifying the need of advance programming 

knowledge. A brief description of their capabilities is provided below: 

Application Calc Designer 

The methodology to develop a new Tedds application begins by defining a unique 

operational flow chart. This is generated from the Calc Designer tool which facilitates 

access to the Tedds programming code source. The flow chart created follows a sequence 

managed by the GUI that streamlines possible amendment, checking or verification 

processes. 

Also, for simplification reasons, the main page of the flow chart is a simple linear 

sequence, composed by sub-modules that describe in detail the whole calculation process. 

These sub-modules evolve into a more complex secondary flow chart with variable 

expressions. A screenshot of a part of the Racking application Calc Designer is shown in 

Figure 5-10. 

Internally, every process of the flow chart ultimately relates to a mini-block or 

simplified calculation section, previously documented in Trimble Tedds and saved as 

section component in the application library. 
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Figure 5-10 Calculation flow chart for Tedds Racking App 

These sections or blocks can be structural calculations, active 2-D drawings, static 

2-D and 3-D sketches, interfaces, guidance notes or supplementary language code 

information. Furthermore, these section components can be organised and structured in 

the user Tedds library as Calc sets by a folder-like system as shown Figure 5-11. 

 

Figure 5-11 Racking wall design Tedds library 

The complete library of this Timber Frame Racking Panel application contains the 

executable file, an informative document explaining the design procedure, a components 

folder with the calc sub-sections, flow charts, interface, sketches and other descriptions. 
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Finally, an additional folder containing three different examples of timber frame racking 

design is also provided. 

Interface designer 

The second developer tool is an application to create calculation interfaces that 

governs the Calc Designer flow chart. This tool facilitates C++ programming code via 

already pre-defined action buttons and input boxes. The main interface of the Timber 

Racking Wall Design is divided into six groups: 

▪ Racking wall details 

The parameters related to the construction and dimensions of the wall are defined 

in this section. The button construction… opens up a new interface containing the input 

details for the timber frame, the sheathing and fasteners and the type of the sole plate base 

fixing. Currently, three sole plate details are activated. However, it is possible to 

incorporate any other additional sole plate detail. The user must determine an equivalent 

spacing by dividing 1.5 kN/m by the characteristic shear capacity of that particular sole 

plate detail, in kN/m. 

▪ Panel openings. 

The button Opening… is activated if the check box in the Panel openings’ heading 

is ticked. The new interface allows for the inclusion of up to five openings. To add a new 

opening the user can either click on the Add… button to create an opening after the last 

one defined or Insert… to create an opening right after the opening selected in the 

previous drop list menu. 

▪ Loading detail 

The loading button enables the introduction of the permanent load acting on top of 

the panel in kN/m, the self-weight of the panel in kN/m2 and finally, any uplift forces, 

such as wind suction on the roof, also in kN/m. The self-weight input presents a drop list 

control that automatically calculates the standard weight of the panel depending on the 

current wall configuration. However, insulation or cladding is not included. Also in this 
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section, the in-plane wind load is entered. This information may be needed in certain 

cases in order to determine the Kw factor for the racking strength.  

▪ Design options 

Here, the user can determine if the final calculation is given as design or as 

characteristic value. Characteristic values are given if the Unfactored design check 

control is ticked. In this section, service classes for the timber frame and the sole plate are 

also defined as described in Eurocode 5 cl. 2.3.1.3. At the moment, the racking capacity 

of a timber frame wall is calculated according to PD 6693-1. 

▪ Results 

Three columns are shown on the right middle section indicating the structural 

capacity and the applied stresses, and the factor of utilisation for every design check 

(Figure 5-12). In the timber racking design those checks are sliding, overturning and 

racking strength. A fourth check indicates the factor of utilisation of the deflection criteria 

according to the PD 6693-1. A green tick shows that the factor of utilisation for that design 

check is less or equal to unity. 

 

Figure 5-12 User interface for Tedds Racking App 
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▪ Output options 

Finally, in this section the user can give a title to the current calculation. Also, this 

section allows the user to select the output format of the calculation. The different details 

are Full (comprehensive full report) or Summary (brief report). In general, three pages of 

a full report equals to one page of a summary report. A sketch of the racking wall elevation 

and cross section will be included in the final calculation report, regardless its output 

detail, if the relevant check box control is ticked. 

 Figure 5-12 shows the main GUI of the Tedds racking calculation. It is important 

to note how all the information relevant to the design, including the results, is displayed 

in just one window. This provides a fast way to perform structural optimisation and a 

parametric analysis. 

An example of a full and summary output report from the Trimble Tedds Timber 

Frame Racking Design calculation from a practical timber frame racking exercise is 

included in the Appendix XI. 

5.3.3 Centralised database information system 

A Tedds DataList or Database allows the user to access stored data for a wide range 

of applications. A simple button embedded in the Tedds interface connects these stored 

and updated Databases with the Trimble Tedds applications. 

The pop-up database window allows you to select specific items where all of the 

associated information is dragged onto the calculation pad. Databases are not only an 

intuitive way of selecting data to speed up calculations but also are a powerful tool to use 

for research purposes. This information can, almost immediately, be used in the final pro-

forma calculations. 

Although there is a wide-ranging list of different databases embedded within the 

standard Tedds library, Databases can simply be created by the user as required from a 

MS Excel spreadsheet. The Trimble Tedds application, Data List Designer, is able to 

convert the data populated in MS Excel to a Tedds format accordingly. The sequence to 

create a Tedds DataList is shown in Figure 5-13. 
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Figure 5-13 Tedds DataList creation sequence 

5.4 Racking Software Validation 

In terms of the accuracy of the calculation engine, a preliminary racking analytical 

calculation of 20 wall panels was conducted which validated the Tedds Timber Frame 

Racking application. 

The standard PD 6693-1: Recommendations for the design of structures to BS EN 

1995 Eurocode 5 for timber structures was the applied design methodology. The racking 

results, given by the Tedds application, were then compared with parallel calculations in 

PTC Mathcad® and MS Excel. These 20 wall panels were also previously tested by 

Edinburgh Napier University (Leitch, 2013). The satisfactory results determined by the 

Racking Application were within a 5 % deviation of the 0.7 and 0.4 ultimate load test 

results for strength and stiffness as proposed by Porteous & Kermani (2013). 

Figure 5-14 provides a flow chart of the racking validation procedure. In this figure, 

the SLS comparison process referred to the compliance of the stiffness clause provided 

by equation 4.19. 

The racking deviation achieved in comparison to the other two methods was mostly 

due to rounding errors and it fitted within a pre-established deviation limit of ± 2%. This 

exercise successfully validated the analytical Tedds racking application process defined 

in the developer tool Calc Designer and governed by the developer tool User Interface. 
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Figure 5-14 Tedds validation flow chart 

It must be noted that the racking resistance of one panel (no. 17) was discarded for 

statistical purposes as the Mathcad result was out of consideration. Results of the racking 

application validation are additionally presented in Figure 5-15. The Mathcad results were 
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in general slightly lower values than in Tedds and Excel. As there were no difference in 

the programme analysis, this could be the result of rounding errors. 

 

(kN) Tedds Excel Mathcad 
1 9.17 9.17 9.11 
2 18.33 18.33 18.23 
3 26.94 26.95 26.78 
4 47.14 47.17 46.87 
5 18.85 18.87 18.80 
6 9.72 9.73 9.67 
7 27.34 27.54 27.42 
8 14.46 14.42 14.37 
9 9.72 9.73 9.67 

10 11.55 11.54 11.49 
11 9.72 9.73 9.67 
12 4.82 4.82 4.80 
13 4.82 4.82 4.80 
14 8.77 8.79 8.75 
15 6.08 6.08 6.06 
16 12.33 12.30 12.24 
17 9.70 9.64 2.23 
18 9.99 9.91 9.87 
19 3.20 3.18 3.17 
20 3.10 3.10 3.10     

Figure 5-15 Validation of Tedds racking application in correlation with Excel 

and Mathcad analysis of 20 timber frame panels. 

5.5 Timber Frame Racking Design User Statistics 

Since the first release of the application in January 2014, Trimble Tedds has been 

monitored the interaction between their registered users and the Timber Frame Racking 

Design application developed in this research. 

According to internal Trimble Tedds data, Figure 5-16 shows the number of times 

registered users run the racking application according to EC5 method C and BS 5268. 

The absolute number of times the racking application, according to EC5, was run for all 

of the registered Tedds users is 280, 600 and 700 times for year 2014, 2015 and 2016 

respectively. According to Trimble Tekla Tedds, the estimation is that there are three 

unregistered Tedds users per every registered user. 

Throughout the course of the PhD, specific training CPD was provided to structural 

and civil engineers and to Edinburgh Napier University students using the software 

application which is commercially available. The training manual, including a practical 

example, is provided in the Appendix XII. 
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Figure 5-16 Tedds racking application statistics 

5.6 Parametric Analysis Based on Eurocode 5 

Once the Trimble Tedds application was validated, the second part of the research 

framework defined in this chapter was carried out. The timber frame racking design tool 

was used to perform a parametric analysis of a series of timber frame wall panel 

configurations and to demonstrate the capabilities of the software in terms of speed of 

calculation. 

However, the commercial version of Trimble Tedds does not allow for running 

simultaneous timber frame racking applications, i.e. more than one panel at a time. 

Nonetheless, the output of different racking calculations can be determined directly in the 

user interface (GUI methodology). 

Another more complex data management system could have been created to 

perform multi-variate parametric calculations. As illustrated by Figure 5-17, 

programming loop techniques in language C++ could have been used for the Tedds 

Applications in order to set temporal reference variables with a series of multiple 

iterations (Tahbildar & Kalita, 2010). 

However, the additional complexity of the looping technique development for a 

single parametric study and the no need to produce a full calculation report for each of 

the parametrical combinations justified the used of GUI parametric methodology instead. 
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Figure 5-17 Programming loop techniques. Adapted from Tahbildar & 

Kalita (2010) 

The parametric analysis presented two group of variables: timber frame materials 

and timber frame design (Figure 5-18). The variable materials refers to the properties of 

the elements constituting the timber frame wall panel whereas the variable design denotes 

to the configuration, design and geometry of the wall panel. 

The different variables used in the parametric analysis are listed in Table 5-2 for 

C24 timber frame systems. Other variables such as timber frame height (2.40 m), 

sheathing fastener type (nail) and sole plate configuration did not change in this exercise. 

Table 5-2 List of variables used in the parametric analysis matrix 

Element Component Attribute Values 

Wall 

Frame 
Length (m) 2.40 / 4.20 

Openings (%) 0 / 20 / 40 

Sheathing  

Material OSB3 / P5 

Thickness (mm) 9 / 12 / 15 

Number of layers (sides) 1 / 2 

Connections 

Sheathing Nail 
Fasteners 

Length (mm) 50 / 75 /90 

Spacing (mm) 75 / 100 /150 

Base fixing 
Hold-down (kN) 0 / 22 

Withdrawal (kN/m) 2.47 

Actions UDL Permanent load (kN/m) 0 / 10 / 20 
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Figure 5-18 Parametric structural optimisation flow chart 

From all of the different variables and in order to investigate the effect of each 

variable independently, nine different possible racking scenarios were proposed as shown 

in Table 5-3. The parametric study includes different wall lengths, percentage of 
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openings, UDL applied to top runners, type of sheathing material, number of sheathing 

layers and inclusion of holding down straps. 

Table 5-3 Proposed parametric racking panel scenarios 

 
 

Furthermore, each plotted graph in the parametric wall analysis contained structural 

information about five different sheathing fastener schedules for each of the sheathing 

thicknesses (9 mm, 15 mm and 18 mm): 
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Fastener schedule Fastener schedule 

Fastener schedule 

Fastener schedule 

1. nail dia3.1x50 mm long and 150 mm perimeter spacing (n3.1-50-150) 

2. nail dia3.1x50 mm long and 100 mm perimeter spacing (n3.1-50-100) 

3. nail dia3.1x50 mm long and 75 mm perimeter spacing (n3.1-50-75) 

4. nail dia3.1x75 mm long and 150 mm perimeter spacing (n3.1-75-150) 

5. nail dia3.1x90 mm long and 150 mm perimeter spacing (n3.1-90-150) 

The result of the parametric analysis provides a general overview of the influence 

of sheathing board and sheathing fasteners on the racking strength and stiffness values 

for the different case scenarios analysed. 

The results of the parametric analysis are illustrated by groups of panels with similar 

characteristics: Figure 5-19 for imperforated wall panels, Figure 5-20 for perforated short 

wall panels and Figure 5-21 for perforated long wall panels. 

 

 
 

 
 

 
 

 
 

Figure 5-19 Parametric racking analysis for imperforated panels. 
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Fastener schedule Fastener schedule 

Fastener schedule Fastener schedule 

Fastener schedule Fastener schedule 

 
 

 
 

 
 

 
 

Figure 5-20 Parametric racking analysis for short perforated panels. 

  

 
 

 
 

Figure 5-21 Parametric racking analysis for long perforated panels.  

 

In solid black fill, light-grey and dark grey colour are represented the sheathing 

boards of thickness 9 mm, 15 mm and 18 mm respectively. In case the analytical racking 

performance does not satisfy with the serviceability criteria given by equation 4.19, the 

values are represented by a thicker border line with no solid filled rectangle. 

In addition, a parametric analysis considering dia2.8 mm and dia3.1 mm smooth 

and ring-shanked nails for OSB/3 sheathing boards of 9 mm and 15 mm was performed. 
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Fastener schedule Fastener schedule 

The nail schedule presented two different spacing of 100 mm and 150 mm. The results 

show the characteristic racking capacity of a single sheathed and fully restrained 2.4 m x 

3.6 m wall made of C24 timber (Figure 5-22). 

 
 

 
 

Figure 5-22 Parametric racking analysis for smooth nails (left) and ring-

shanked nails (right)  

The results of this parametric study show that for dia3.1 mm smooth nails, an 

optimal nail length, dependent of sheathing thickness and independent of nail spacing, 

can be specified as 5 times the sheathing thickness. This conclusion was not observed for 

dia2.8 mm ring-shanked nails which showed a more linear response. 

5.7 Summary 

There is a modest use made of advanced computer aided tools in the timber industry 

in comparison with the IT resources available in the steel and concrete construction sector 

(Palmer, 2000). The introduction of Eurocode 5, a more analytical approach to timber 

design, facilitates innovation and enables building systems evolution. 

An internal survey carried out by Edinburgh Napier University on seventy-seven 

structural engineers concluded that software solutions and continuous professional 

development seminars were the prefer actions to increase timber engineering. 

A commercial software application for the design and optimisation of timber frame 

racking walls, according to the Eurocode 5, was developed. This design tool included not 

only standardised materials, components and sole plate details but outcomes obtained 

from the research activities carried out in the previous chapter. This provides the 

engineering community with design flexibility as the tool is not restricted to any specific 
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product in comparison to other related proprietary “black-box” software. The software 

application is also part of a Whole House Engineering concept and on-going design 

platform with a centralised database of collated and shared information. 

C++ language was the programming code of the design tool developed in 

collaboration with the software company CSC (UK) Ltd, now Trimble Navigation 

Limited and integrated within their Tekla Tedds portfolio of design applications. The 

estimated number of engineers using this software is around 14,000 in UK and around 

25,000 over the world. 

Prior to public release, the timber frame racking application was validated by a 

preliminary analytical racking calculation of 20 wall panels. The analytical calculation 

was then compared with the identical calculations in PTC MathCad and MS Excel. The 

results obtained by the Tekla Tedds Racking Application was satisfactory within less than 

a pre-established deviation limit of ± 2 %. 

Once the software was validated, a parametric analysis with different wall panel 

configurations was performed. Fully restrained timber frame walls with holding-down 

devices were exposed to a larger improvement on the racking resistance by either 

increasing the number of sheathing layers and its thickness or by improving the nail 

specification. 

It was noted that the optimal racking strength, when fixing the OSB/3 sheathing 

board with smooth nails, was achieved for nails five times longer than the sheathing 

thickness. However, this conclusion was only observed for smooth nails. 

This chapter has presented the development of a software application for racking 

design. The application allows for the inclusion in of robust sole plate details within a 

comprehensive database system, including holding down straps. Furthermore, the 

understanding of the EC5 methodology implemented in the software, in terms of strength 

and stiffness, as the deflection criteria condition, for racking design can assist to develop 

optimised timber frame closed panel systems for low-energy buildings.  
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6 OUTCOME OF THE 

RESEARCH, CONCLUSIONS 

AND FUTURE WORK 

The research carried out in this thesis has addressed relevant thermal and structural 

issues for closed panel timber frame wall systems in order to provide optimised solutions 

for low-energy buildings. A “gap in knowledge” was identified regarding the relationship 

between thermal and structural performance in combination for closed timber frame 

panels. 

The direct specification of two proposed optimised closed timber frame panels for 

affordable low energy buildings (Chapter 2) is now possible. In isolation, the 

investigations included, for the closed timber frame and the sole plate details, a thermal 

performance optimisation (Chapter 3) a structural behaviour investigation (Chapter 4) 

and a software application for timber frame racking design (Chapter 5). 

This chapter collates all the outcomes generated throughout the course of the thesis 

and proposes an integrated set of solutions templates combining thermal and structural 

information. This can aid decision making in early design stages explicitly for low energy 

timber frame projects.  
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The two core aims of the thesis and presented in the introduction chapter were 

successfully accomplished: 

- To develop two closed timber frame panel wall systems with thermal and 

structural optimisation. 

The thermal optimisation was achieved by providing different wall panel build-ups 

and insulation types condensation free. The structural optimisation was achieved 

by determining adequate sole plate shear plane fastener schedules free from thermal 

bridging. 

- To develop a racking software application to provide structural engineers 

with a platform for flexible design and closed panel optimisation. 

A design tool was created based on the analytical methodology PD 6693-1 and 

published by Trimble Tekla. The tool was corroborated against MathCAD and 

Excel. The software application was then utilised to perform a parametric analysis 

for different timber frame panels. 

In order to achieve these two main objectives, the following set of secondary 

objectives presented in the introductory chapter have been also achieved:  

i. A data gathering of timber frame shear walls and sole plate connection tests from 

open timber frame panels was carried out. 

ii. Two different closed panel timber frame configurations suitable for low energy 

building design were proposed. 

iii. The hygrothermal performance of these closed panel systems based on different 

materials and sole plate details was investigated. 

iv. 2-D Thermal Finite Element Analysis (FEA) for different sole plate fixing details 

and for thermal optimisation was undertaken. 

v. The impact of current timber fraction calculations on the overall thermal 

performance of Passivhaus timber frame buildings was evaluated. 
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vi. A simplified theory, weakest link theory, for the analytical optimisation of closed 

panel timber frame sole plate details was developed. 

vii. The analytical and experimental racking results for the two proposed closed panel 

systems and under partially and fully restrained sole plate base fixing conditions 

was compared. 

viii. The software application was validated by comparing the analytical output 

obtained with the results achieved from other calculation tools under the same 

analytical methodology. 

ix. A series of multi-parametric analyses for shear wall optimisation was performed. 

x. The output of the optimised racking walls with the results from the thermal 

analyses and providing technical data-sheets for direct Passivhaus timber frame 

wall specification was integrated in a template format. 

The final conclusions from the research study and its contribution to knowledge are 

provided in this chapter. Other suggestions and comments regarding potential future work 

on low-energy timber frame buildings are also presented. 

6.1 Integrated Set of Solutions 

Very few accredited closed panel timber frame construction details have been 

standardised for conformity with regards to low-energy building requirements and in 

terms of thermal and structural performance combined. 

As a direct outcome of this research, robust details including thermal and structural 

data in combination, for the proposed K2 and RTC closed panel timber frame panel 

systems, can now be delivered in a visual and informative manner. These enhanced 

construction details can include assembly, structural performance and thermal related 

information as shown in Table 6-1. 
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Table 6-1 Information available for integrated set of solutions 

Assembly Structural Thermal 

Timber frame materials Racking resistance U-Value 

Dimensions Holding down straps Sole plate thermal bridge 

Type of fixings Foundation type Temperature factor 

Service cavity Sheathing nail spacing Phase shift 

External insulation Applied permanent load Heat storage capacity 

 Sole plate installation Permeability 

  Phase shift 

  Condensation risk 

Climates: cold, cold-temperate and warm-temperate according to Passivhaus 
 

An example of enhanced construction details for the RTC and the K2 closed timber 

panels is included in the Appendix XIIII. The proposed set of solution included in the 

examples is a potential visual representation of a particular closed panel system detail 

which can contained, if required, other specific thermal or structural information provided 

within this thesis. 

6.2 Main Conclusions and Contribution to Knowledge 

The conclusions of this research and the critical evaluation of the evidence and 

results presented are summarised in line with each chapter as they chronologically appear 

within this thesis. Explicit contribution to knowledge resulted throughout the course of 

this research is also highlighted in bold. 

6.2.1 Requirements for future affordable housing 

Building Regulations are being updated to reduce housing CO2 emissions by 

improving the thermal envelop performance. The Passivhaus standard has been adopted 

as building regulation in several European local authorities. Passivhaus standard may 

fulfil the EU directive 2010/31 where these buildings are regarded as NZEB. 

The current UK housing scenario is economically driven by a housing shortage 

whilst 25 % of the households are considered to be in fuel poverty. These and other 

production related factors, such as the lack of skilled workforce, were the drivers of the 
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Construction 2025 report (DBIS, 2013). Advanced timber frame closed panels are a 

potential mainstream construction system for low-energy and Passivhaus design. 

Timber frame walls, considering also the integration of windows, account for 

almost half of the energy losses within a dwelling. The improvement of standard open 

panel timber frame systems into advanced closed panel solutions provides a practical 

challenge to achieve integrated and innovative low-energy building design in a cost-

effective manner. 

Robust construction details with tight interlocking connections and minimal 

tolerances between components, the practical implementation of these details both off-

site and on-site and an adequate stiffness of the timber frame around high stress 

concentration areas were considered in this research. To avoid the occurrence of air 

leakage as a consequence of construction gaps during service life, tight interlocking 

connections with 5 mm tolerances and minimum shear planes are recommended. 

Prefabricated timber frame panel systems require a high level of detailing which is 

not always produced causing difficulties in the erection phase. A common example was 

found on the sole plate base fixing detail for closed panel timber frame construction. 

Very few timber frame construction details have been standardised for conformity 

with regards future regulatory requirements. This research provides a compilation of 

informative data sheets containing thermal and structural details for advanced timber 

frame panelised systems. 

6.2.2 Thermal performance of timber frame walls 

The conclusions of the airtight measurements of two projects accounting for 56 

Passivhaus and Minergie-P buildings after completion and two years after showed that 

32 out of the 56 buildings showed a certain degree of airtightness degradation whilst 13 

out of these 56 buildings presented 50% or greater air change rate. 

Two closed panel systems, dual frame and I-joist frame, were investigated with 

various stud depths and insulation configurations in order to obtain different tabulated U-

values and hence, better thermal transmittance. Low-energy closed timber frame panels 
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can moisture safely accommodate several levels of insulation for cold and temperate 

climates. 

Additionally, two different sole plate base fixing details were proposed for timber 

frame on top of a concrete raft and timber frame on top of suspended timber floor cassettes 

where the foundation was thermally optimised with XPS rigid insulation on the edge. The 

sole plates proposed tried to provide robust details considering the conclusions from the 

literature review in terms of resilient airtight constructability. 

Three different software packages, for 2-D steady-state thermal simulation, were 

evaluated to assess the accuracy of their engines with regard of the ISO 2011 method. A 

fourth 2-D method on-line tool was also evaluated. These values were compared to the 

analytical simplify method EN 6946. Simplified U-value analysis methods can be 

considered effective for timber frame wall panel thermal transmittance. 

The literature review undertaken on timber fraction showed not only a high 

discrepancy between published standardised timber fraction values but on the 

methodology employed to measure this percentage. A new approach to account for the 

timber fraction on low-energy timber frame buildings, where thermal bridges are 

determined, was provided. Another interesting conclusion was that timber fraction has a 

greater impact on less insulated timber frame walls, especially on the benchmark scenario. 

The timber fraction impact when insulation is placed externally was almost negligible. A 

new methodology to determine timber fraction values for low-energy timber frame 

buildings was presented. The mean timber fraction factor observed in four different 

projects was 10 %. 

One of the main conclusions from the fifty-six U-Value calculations performed is 

that the benchmark timber frame configuration was not suitable for Passivhaus 

construction even with external rigid wood fibre board insulation and internal insulated 

service cavity. Furthermore, the benchmark wall panel without additional insulation and 

with wood fibre insulation in the core layer did not even comply with current Building 

Regulations. The benchmark standard 6-inches timber frame kit, even when a 

service cavity is insulated, are not suitable for Passivhaus construction. 
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In total, over one hundred and fifty thermal bridge were calculated for four different 

panel configurations and two different sole plate details for each of the closed panel 

systems proposed. One of the conclusions obtained was that no additional heat loss due 

to thermal bridging occurred at the sole plate detail for closed timber frame panels. The 

study also concluded that in general, the RTC wall panel performed slightly better for all 

timber frame widths except the 300 mm thick. Also, the slab on grade foundation type 

thermally performed better than the suspended floor system. The insulated service 

cavity in the thermal bridge simulations was modelled with horizontal and vertical battens 

spaced every 610 mm centres and mineral wool insulation in between them. Horizontal 

battens performed thermally slightly worse than vertical battens as the lowest 

batten, commonly placed to fix the skirt board, increased the thermal bridge.  

Finally, three climates were considered for condensation risk analysis in relation 

with the range of U-values resulted for the closed panel systems and its respective 

Passivhaus U-value recommendations for cold, cold temperate and warm temperate 

climates. Three different methodologies were used: temperature factor, Glaser method 

and transient 1-D WUFI analysis. 

In terms of moisture management, both closed timber frame panels with 195 mm 

core, the more unfavourable panel, can be rated as condensation-risk safe for cold-

temperate and warm-temperate climates except the suspended floor foundation with no 

additional insulation. The benchmark timber frame panel condensation risk analysis 

showed potential condensation issues for both steady-state and transient calculation 

methods. 

6.2.3 Structural performance of timber frame walls 

A series of twenty timber frame racking tests were carried out in order to compare 

the experimental results with the analytical approach provided by EC5 – method C. The 

comparison of both methodologies was in good agreement hence, the analytical 

methodology for the timber frame racking design application developed was validated. 

Partially restrained shear walls presented lower shear capacity, greater deflection at 

maximum loads, less energy dissipation and greater localised damage than fully 
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restrained walls. This is of vital significance for maintaining a robust airtight envelop 

over its service life. 

The racking strength for fully restrained RTC closed panels was about 40 % greater 

than the obtained by the partially restrained panels. Furthermore, the holding down straps 

in the partially restrained panels outperformed the sole plate connection. This type of 

failure may also be found in real practice where the timber frame panels are secured to 

the substrate by holding down straps only. 

A relative low strength and stiffness was found on the single sheathed K2 closed 

panel partially restrained walls. This may be caused by the brittle failure observed on the 

closely spaced sheathing screw fasteners. 

A relative higher strength performance was found for the double sheathed K2 

closed panels in comparison with the single sheathed K2 panels. The contribution of the 

secondary layer had a little positive impact on the global strength of the panel but this 

secondary sheathing board showed no contribution to the stiffness of the dual K2 frame. 

It can be concluded that the characteristic racking resistance provided by PD 6693-

1 is conservatively lower than the resultant 0.8 Fmax from test results. However, the SLS 

criteria failed in some wall panels mainly due to high aspect ratio wall dimensions and 

close sheathing screw fastener spacing. 

The isolation-combination approach, based on the weakest link theory, was 

validated in order to provide an analytical methodology for the structural 

optimisation of the sole plate base fixing detail. 

Based on the tear capacity of commercially available tape and construction 

membranes, a maximum instantaneous racking displacement for a building airtight 

serviceability criterion of 10 mm is proposed.  

6.2.4 Timber racking design software application 

An internal survey carried out by Edinburgh Napier University on seventy-seven 

structural engineers concluded that continuous professional development activities and 
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software solutions are the preferred actions to increase the use of timber in structural 

practices. 

A commercial software application for the design and optimisation of timber frame 

racking walls based on the analytical PD 6693-1 approach was developed. This tool 

includes standardise materials, components and sole plate details and allows for the 

inclusion of streamlined research findings. 

After software validation, a parametric analysis with different wall panel 

configurations and sheathing fastener schedule was carried out. The optimised racking 

strength performance, when using smooth nails, was achieved for nails five times 

longer than the sheathing thickness. 

The development of the software application facilitates the structural optimisation 

of timber frame walls but also can be used in a future as a mechanism to include other 

BIM related information. 

6.3 Recommendations for Future Work 

Timber frame closed panel systems for low-energy buildings is a broad research 

field which offers many areas of study for future work. Although this thesis has met the 

requirements of the main objectives outlined in section 1.4 and made a contribution to 

develop potential solutions for low-energy affordable housing, some future directions for 

additional hygrothermal and structural research related to timber frame systems were 

provided. Future studies on the topic of this research are recommended on the next sub-

sections. 

6.3.1 Alternative reinforced closed panel systems 

A greater racking stiffness can potentially reduce the deformation and 

displacements on timber frame shear walls and hence, improve the resilient of highly air-

tight, energy efficient buildings. This can be achieved by reinforcing the timber frame 

system in many different ways. 
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Two reinforcement techniques were proposed in Figure 6-1 and in Figure 6-2 which 

could be investigated. 

 

  

[1] Glued duo stud                                           [2] Off-site metal cap 

[3] High compression strength plate         [4] On-site steel threaded bar 

[5] Substrate or foundation                          [6] Top rail  

Figure 6-1Post-tensioned wall on-site threaded-bar installation 

 

  

[1] I-Joist 300 mm                                     [2] Truss web 

[3] Insulation (hidden)                            [4] Bottom runner 

[5] Sole plate                                               [6] Substrate 

[7] Top runner 

Figure 6-2 Reinforced truss box stud panel 

In the first reinforcement suggested, the innovative solution is particularly focused 

on the sole plate base fixing details and on the inclusion of post-tensioned steel or FRP 

bars within the timber studs. 
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In the second reinforcement suggested, the innovative solution is focused on the 

strengthening of the leading and trailing studs of the I-joist panels by fabricating a 

structural truss within the first and last pair of studs. Diagonal timbers are placed only in 

the flanges of the I-joists hence reducing thermal bridging. 

6.3.2 Three-dimensional full-house stiffness investigation 

A three-dimensional FEA model could be developed to predict the serviceability 

and displacement response of a building under full loading scenarios. This investigation 

could improve the understanding of the global stiffness of the model in relation to a 

thermal airtightness criterion. 

The model may evaluate the full diaphragm action of the building and the 

contribution to stiffness of non-structural materials such as internal and external finishing. 

In future investigations, it might be possible to compare the values predicted by this 3-D 

FEA model with an in-situ displacement monitoring. Other structural issues such as shear 

torsional moments generated by an asymmetrical racking building stiffness could also be 

investigated. 

6.3.3 Post-occupancy evaluation correlation 

Continuous monitoring and data collection for closed panel low-energy buildings 

may be relevant to investigate potential changes in the performance of the building and 

to help to mitigate the building “performance gap” problem. Placing long-term 

displacement gauges on critical places of the building envelope, i.e. sole plate fixing, at 

corner junctions or at window connections can monitor internal movements. Furthermore, 

recurring blower door tests may correlate these displacements with air-leakage. 

Other post-occupancy evaluation of timber frame buildings could assess the U-

value of the building envelope over time in order to correlate design and as-built heat 

losses through the fabric and throughout the year. 
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6.3.4 Platform for innovation and BIM 

The work carried out in this research delivered the first set of calculations for a 

whole house engineering platform. This mechanism is a valuable and capable tool of 

transferring research findings into structural engineering practices. However, the 

structural design platform created can, through its generic database, also be integrated 

with additional information where a holistic approach is required including for example 

cost and other building performance i.e. thermal and acoustic. 

As a result, the platform has the potential to provide architects, engineers, quantity 

surveyors, building planners and the timber industry in general with a reliable valuable 

information of timber built systems. The long-term aim is for the software to become 

BIM enabled by the inclusion of relevant information, in a compatible file format; i.e. 

IFC, to the product library. This could facilitate linking between different applications, 

i.e. a connection calculation linked directly to the sole plate base fixing definition within 

the racking application in order to optimise design under certain defined criteria. 
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I. Timber frame wall full structural design example 
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II. RTC, K2 and Benchmark panel build-ups and hygrothermal 

analysis. 
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III. U-value Calculation Results 

 

Calculation results from FLIXO 
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Calculation results from THERM 
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IV. Timber Fraction manufacturing layouts 

Layout of Project no. 4:  Two storeys: Stud 45mmx120 mm at 625 mm c/c 

Floor plan of ground floor 
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Panelised timber frame walls. Ground floor Part I. 
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Panelised timber frame walls. Ground floor Part II. 
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Floor plan of first floor. 
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Panelised timber frame walls. First floor I. 
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Panelised timber frame walls. First floor II. 
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Panel by Panel TF calculation. Overall TF = 10 %    

         

Ground floor Panel 1 5919 3212 0  TF 7.4%  

         

  9276 60 19011828     

  3920 60 0     

   60      

   60      

   60      

   60      

  23360 1401600 19011828     

         

 Panel 2 2720 2890 0  TF 16.7%  

         

   60 7860800     

   60 0     

   60      

   60      

   60      

   60      

  21905 1314300 7860800     

         

 Panel 3 4560 3190   TF 15.6%  

         

   60 14546400     

   60 0     

   60      

   60      

   60      

   60      

  37940 2276400 14546400     

         

 Panel 4 6900 2890 0  TF 12.0%  

         

   60 19941000     

   60 0     

   60      

   60      

   60      

   60      

   60      

  39845 2390700 19941000     

         

 Panel 5 4360 3190   TF 6.8%  
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   60 13908400     

   60 0     

   60      

   60      

   60      

   60      

   60      

  15705 942300 13908400     

         

 Panel 6 5790 2890   TF 13.7%  

         

   60 16733100     

   60 0     

   60      

   60      

   60      

   60      

   60      

  38220 2293200 16733100     

         

 Panel 7 6239 3212   TF 2.2%  

         

   60 20039668     

   60 0     

   60      

   60      

   60      

   60      

   60      

  7450 447000 20039668     

         

 Panel 8 5790 2890   TF 4.0%  

         

  8670 60 16733100     

  2420 60 0     

   60      

   60      

   60      

   60      

   60      

  11090 665400 16733100     
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 Panel 9 6960 2890   TF 7.7%  

         

   60 20114400     

   60 0     

   60      

   60      

   60      

   60      

   60      

  25900 1554000 20114400     

         

 Panel 10 4197 2890   TF 15.7%  

         

   60 12129330     

   60 0     

   60      

   60      

   60      

   60      

   60      

  31697 1901820 12129330     

         

 Panel 11 4680 3190   TF 14.6%  

         

   60 14929200     

   60 0     

   60      

   60      

   60      

   60      

   60      

  36380 2182800 14929200     

         

 Panel 12 1340 2890   TF 22.7%  

         

   60 3872600     

   60 0     

   60      

   60      

   60      

   60      

   60      

  14660 879600 3872600     
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 Panel 13 5790 2890   TF 10.8%  

         

   60 16733100     

   60 0     

   60      

   60      

   60      

   60      

   60      

  30040 1802400 16733100     

         

First floor Panel 1 6079 2940 0  TF 4.6%  

         

   60 17872260     

   60 0     

   60      

   60      

   60      

   60      

  13688 821280 17872260     

         

 Panel 2 6000 2281 1500  TF 12.9%  

         

   60 13686000     

   60 4500000     

   60      

   60      

   60      

   60      

  39024 2341440 18186000     

         

 Panel 3 4560 2260   TF 11.3%  

         

   60 10305600     

   60 0     

   60      

   60      

   60      

   60      

  19332 1159920 10305600     

         

 Panel 4 6900 2281 1725  TF 4.0%  
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   60 15738900     

   60 5951250     

   60      

   60      

   60      

   60      

   60      

  14346 860760 21690150     

         

 Panel 5 1110 3916   TF 27.9%  

         

   60 4346760     

   60 0     

   60      

   60      

   60      

   60      

   60      

  20230 1213800 4346760     

         

 Panel 6 5630 2609 1396  TF 9.3%  

         

   60 14688670     

   60 3929740     

   60      

   60      

   60      

   60      

   60      

  28720 1723200 18618410     

         

 Panel 7 5510 2588   TF 13.2%  

         

   60 14259880     

   60 0     

   60      

   60      

   60      

   60      

   60      

  31308 1878480 14259880     
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V. RTC closed panel full thermal bridge simulation 

Thermal bridge calculation for 195 mm thick RTC timber frame wall panel with 

both internal and external insulation. 
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VI. K2 closed panel temperature factor reports 
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Thermal bridge simulation 

 

Isotherms 
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Relative humidity view 

 

Partial pressure view 
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Vapour flux view 
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VII. K2 and RTC closed panel WUFI® reports for Warsaw 

climate 
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VIII. Previous Experiments on Timber Frame Racking Walls 

Carried Out at Edinburgh Napier 

 

The specification of the walls was carried out with the objective of replicating 

standardised procedure adapted by the UK timber frame industry and already reported in 

Table 3-8. Other literature reviewed in chapter 4  showed the timber frame materials and 

fasteners commonly specified: 

▪ 38x140 mm timber classified as C16 

▪ 9 mm OSB structural sheathing board 

▪ 2.50 x 50 mm smooth wire nails to fix sheathing to frame 

▪ 3.25 x 90 mm helical or twisted fasteners to assembly the frame 

The fasteners fixed around the perimeter of the frame were fixed in the centre stud 

line whilst two sheathing sheets were fixed to the same stud the end and edge distance 

was approximately 6 mm. In all of the cases, fasteners fixed on internal studs were spaced 

twice the distance of those around the perimeter. 

The results provided by these experiments were considered pertinent for the 

benchmark open timber frame scenario. Furthermore, the empirical data was compared 

with the analytical approach incorporated in the software racking design application. 

According to the naming convention explained in Table 4-18, the racking strength and 

stiffness average values, according to Equation 4.6, of sixteen pairs of imperforated walls 

tested are presented in Table 8-1. 

The racking strength and stiffness values resulted from these previous tests were 

used to compare the benchmark open timber frame with both closed timber frame panels. 

Furthermore, the characteristic Fv,Rk, racking strength of these frame references together 

with other perforated open panels and the closed panels specified in next section was 

determined by three different calculation tools to validate the software developed in this 

thesis. 
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Table 8-1 Values from previous racking tests (Leitch, 2013) 

Series name Reference Fmax (kN) 
RSLS,594 

(N/mm) 

Imperforate 
fully restrained 

F[L1.2].75  17.02 414 

F.75 36.14 2,012 

F.50 49.37 1,916 

F.50.DS 82.48 4,500 

Imperforate 
subjected to 
vertical load 

V10.50.BR 34.86 1,954 

V10.150.BR 13.89 1,723 

V10.50.BR.DS 41.94 2,805 

V10.150.BR.DS 35.60 2,088 

Imperforate 
partially 

restrained 

P.150.BR 8.06 868 

P.50.BR 9.98 724 

P.50 24.79 1,753 

P.50.DS.BR 16.84 1,174 

P.150.DS.BR 16.84 1,172 

P.75.BR 12.57 943 

P.150 12.25 1,949 

P[L1.2].75 4.72 287 

Perforate 
subjected to 
vertical load 

V5.150.900x128W 15.61 660 

V5.150.900x128L 11.43 441 

3.6.V5.150.1380x1250L 20.16 1,051 

3.6.V5.150.1900x1365L 14.54 936 

3.6.V5.50.1900x1365L 23.83 1,221 

3.6.V5.150.2x1380x1250WL 28.47 1,426 

V10.50.1200x1200C 18.53 1,305 

V10.50.1200x2100C 14.58 1,889 
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IX. Isolation-Combination Sole Plate Testing Details from 

Previous Research 

 

In this Appendix, the complete test results with images of the apparatus and 

equipment utilised and the load versus displacement diagrams from previous published 

research is provided (Menendez et al., 2013; Leitch, 2013). 

The results of the isolated connection tests are given in Table 1. Due to the ductile 

nature of the connections, the ultimate strength is based upon the measured force 

resistance at 15mm of displacement. 

Figure 1 shows the connection types a) b) and type d) being tested with their 

associated load slip curve results. In order to confirm the performance of the SPFD in 

isolation with the overall performance of the complete detail, full sole plate fixing open 

and closed panel details were also tested. 

These tests were performed according to a heavily modified version of the BS EN 

1380 test set up so as to replicate the shear load being transferred from the wall panel to 

the substrate. 

In addition to the lateral shear resistance for each connection type, the experiment 

also includes testing of fasteners for tensile strength, yield moment and axial withdrawal 

capacity. On the other hand, nominal wire and root diameter were considered to 

analytically determine the mechanical properties of nails and screws respectively. Test 

results, as mean values, are shown in Table 2. 

Figure 2 illustrates the sole plate fixing detail test set up and the load – slip curves 

for the sole plate tested and for the open (OP) and the closed panel (CP) systems. 

Furthermore, Table 3 presents the strength and stiffness test results of the full sole plate 

base fixing detail. 

Table 3 presents the strength and stiffness test results of the full SPFD. The 

maximum strength value, fmax, is determined when 15mm displacement of the bottom rail 

relative to the substrate occurs. Similarly, stiffness, Kser, is based upon the displacement 

of the bottom rail at 40% of its ultimate strength. 
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Table 1: Strength and stiffness results of the isolated sole plate components 

 

 

 

Figure 1 Test execution and displacement results of isolated sole plate components 
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Table 2. Mechanical properties for sole plate fasteners 

 

 

Fig. 2. Test execution and displacement results for full open and closed panel sole 

plate details. 
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Table 3. Strength and stiffness results for both open and closed panel SPFD 
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X. Timber Frame Quality Assurance Procedure 
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XI. Timber Racking Wall Design Manual 
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XII. Integrated Set of Solutions: Simplified Details 
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