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ABSTRACT: The accuracy and applicability of existing methods of solar resource modelling and solar photovoltaic 

(PV) module performance are investigated in the case of a ground array installation at Edinburgh College, Midlo-

thian Campus, the principal derived quantities consisting of slope irradiation, cell temperature, and cell efficiency. 

Experimental data were obtained on site through both automated and manual measurements for comparison with 

the calculated quantities. Results indicate that the horizontal-to-slope conversion models used are extremely accu-

rate, with a greater than 99% degree of confidence in the calculated results. Likewise, correlations between meas-

ured and calculated cell temperature were very high at up to 94%. Estimations of the cell efficiency and hence 

module output were less reliable however, with only one of the models used, for one of the days studied, giving 

reasonable results. Efficiency values were, however, in the approximately correct range of 15-20%.

1 Introduction 

1.1 Solar Energy in Scotland 

Solar energy has not traditionally been a focus of investment in Scotland, where the weather is generally considered 

to be unfavourable and the amount of solar irradiation low. However, a thriving domestic solar market and devel-

oping commercial market (examples given below) both indicate that this intuitive judgement may not match the 

reality. In fact, the average solar resource available in the south of Scotland is only 10% lower than that of middle-

England (Rugg, 2012). When factoring in regional variation, some sites in Scotland are likely to be very favourable 

to solar development indeed. 

A critical factor in the swift uptake of solar generation in Scotland and the whole of the UK has certainly been 

governmental incentivisation, largely through the Renewables Obligation. 
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The Renewables Obligation (RO) refers to an incentivisation mechanism which was introduced in 2009 and effec-

tively penalises electricity suppliers for failing to source a percentage of their energy from renewable sources 

(House of Commons, 2012). These percentage targets are met through the purchase of Renewable Obligation 

Certificates (ROCs) from certified renewable generators. At the end of an accounting year, any shortfall must be 

paid off into a buy-out fund, which is then divided amongst suppliers who met their targets. 

The purpose here is two-fold: on the one hand, suppliers are pressured to conform to government-set (and increas-

ing) targets; on the other, generators are afforded an extra source of income. ROCs were originally issued to sup-

pliers at the rate of 1 per MWh of electricity produced, but now this rate varies with the type of renewable technology. 

The equivalent scheme for the small-scale (<50kW) and domestic market is the Feed In Tariff scheme (FIT), intro-

duced in 2010. This is somewhat simpler than the ROCs, in that generators are paid directly for each unit of elec-

tricity they generate, and are offered a guaranteed price for any energy they would like to sell. The introduction of 

the FITs brought about massive uptake in solar systems in the UK, leading to greater production volumes, higher 

efficiencies and falling system prices (Cherrington, Goodship, Longfield, & Kirwan, 2013). FIT rates were cut dra-

matically at the end of 2011, leading to a severe slump in the domestic market which is only just starting to recover. 

An important point to be noted in the recent changes in solar funding is that government incentives are becoming 

less critical.  Drops in incentives, coupled with dramatic decreases in module and system prices, are making the 

savings on electricity an increasingly important factor. Martin (Another 5MW solar park to be built for Cornwall, 

thanks to falling solar prices, 2012) gives the case of a 5MW plant in Cornwall, which was built despite a massive 

reduction in incentives, simply because capital costs had fallen to the point that the investment was viable even on 

the reduced incomes. 

A specific example of a successful implementation of medium-scale solar is the 15kWp façade-mounted array at 

Edinburgh Napier University. This system, installed in 2005, produces approximately 9MWh of electrical energy 

each year, avoiding the use of 1.4 metric tons of carbon (Muneer, Younes, Lambert, & Kubie, 2006). All this with 

next to zero maintenance or upkeep requirements. Other systems successfully using the power of solar in Scotland 

include: 

• A 150kWp, 792-module array installed on the Malcolm Allen Housebuilders warehouse in Kintore, predicted 

to generate 114MWh per year (Solar Power Portal, 2012). 

• A solar installation of 150kW of solar panels on the roof of the byre at Westerton Farm, Aberdeenshire to 

reduce the company’s dependence on fossil fuels [text removed]. All the solar energy produced is used on 



 
 

3 

site to power the byre and the milking robots, replacing the dependency on power from the National grid 

produced by fossil fuels. 

 

2 The Solar Meadow Farm 

The solar plant at Edinburgh College, Midlothian Campus, South East Scotland (Figure 1) is a £1.2M, equal-part-

nership project between Edinburgh College and Scottish & Southern Electricity (SSE) Energy Solutions, who in-

stalled and maintain the site. Located in Dalkeith, to the south-east of Edinburgh, the plant was commissioned and 

built for a number of different purposes: to produce carbon-free, renewable energy, to generate an extra revenue 

stream for the college, to make good use of previously waste land. For the college, there is also the opportunity to 

use it as a research and learning environment, where students can get hands-on experience with modern renewa-

ble technology. The site has now been made dual-purpose by planting wild meadow-grasses and encouraging the 

growth of local wildlife, making this plant Scotland’s first solar meadow. An area of wetland, and a bank of beehives 

on the site will further expand the potential ecological benefit to the area. 

[Figure 1] 

The 627.5kWp installation, as shown in Figure 2, comprises 2,560 solar panels each rated at 230W, 32 P(?) Aurora 

Power One Trio-20.0-TL [text removed] 20kW inverters and attendant cabling, framing and housing. In fact, over 

11km of cable was laid out to connect the AC and DC sides of the system, while almost 1,000 ground screws were 

planted to support the module mountings. From initial assessments, the site was predicted to produce 568MWh of 

electrical energy per year, enough energy to power 170 homes. Feeding directly into the National Grid, this energy 

will offset conventional electricity production to save approximately 293 tonnes of CO2 per year. 

[Figure 2] 

The photovoltaic modules used for the plant are ASTRONENERGY Crystalline PV Module CHSM6610P Series.  

The Polycrystalline modules have a nominal power output of 230W, with an overall module efficiency of 14%. 

Modules are connected in series strings of 20 modules each, with 4 parallel strings per inverter. The Power-One 

Aurora Trio inverters each have a maximum power input of 20kW and a nominal efficiency of 98%.  The modules 

are mounted on framing orientated due south, with an inclination of 25° degrees. 
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While the site has now been completed, and in fact started producing on the 28/03/2013, contractual details have 

only recently been worked out.  This proved problematic for the completion of this project, and for the College in 

general, as the site and data access were not always available. 

 

There were a number of issues to overcome in the first year of operation.  Initially 6 out of the 32 inverters were 

not available for the parallel connection, thus preventing maximum yields for the first 2 months of operation.  This 

limiting effect resulted in the inverters only being able to operate at 12kW instead of the 20kW expected, i.e. 

these inverters were only operating at 60% of their maximum input power.  Additionally, a problem with trans-

former balancing and variable phasing issues caused the substation to trip out on the Solar Meadow side.  This 

has meant that a total of 4-5 weeks generation have been lost.  Both of these factors have contributed to a short-

fall in production during year 1 of operation.  By May 2014 440MWh of power had been generated, compared to 

the initial estimate of 568MWh. This corresponds well, however, against a revised, SAP projection of 431MWh 

which included reduction due to shading as well as the aforementioned downtime.  Subsequently, further works 

have been carried out to install fans and heatsinks to all the inverters to increase heat dissipation and the trans-

former taps have been changed on the national grid side to lower the operating level to a point where phase shifts 

and grid fluctuations will have less impact at peak times. 

3 Shading Analysis 

In the first stage of the project, a site survey was undertaken. This was done in order to ascertain what measures 

were required to complete the later experimental work, to ensure the reference documents such as site plans and 

electrical connections were accurate, and also to determine what shading, if any, was present on the site. 

Shading is an important factor in the operation of any solar installation, as it not only cuts down on the solar energy 

available to the system to be converted to electrical output, but also interferes with system operation: one shaded 

module can affect the performance of an entire string. [add reference to shading resource?] 

[Figure 3] 

A basic shading analysis was undertaken at 5 points (figure 3) toward the south end of the site where shading 

effects are more severe. The main obstacles to be considered were the tree lines to the south-east and south-west, 

and the earth wall enclosing the site. Elevations and positions were derived from both the site plan, and measure-

ments taken by theodolite. These elevations were then used to construct horizon lines for each point. Examples 

are shown in Figures 4 and 5. 
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[Figure 4] 

[Figure 5] 

The shading analysis indicates that a significant portion of incident radiation will be lost to shading effects for the 

southern-most rows of modules. This shading will be more serious in the afternoon for the southerly points, and in 

the morning for the easterly points. 

4 Experimental Measurements at Solar Meadow Farm 

Experimental data was collected at the site to fulfil two goals. Firstly to obtain detailed, specific data on the day-to-

day operation of the plant, and secondly to assess the accuracy of solar models used to predict such values as in-

plane (or slope) irradiation, PV module cell temperature, and cell efficiency. 

The experimental setup consisted of the following: 

• heat flux sensors mounted directly on the back panel of one of the PV modules. These were used to de-

termine the rate of heat transfer between the module and its surrounding. 

• K-type thermocouples. Two of these were mounted in a similar way to the heat flux sensors to determine 

cell temperature, while another two were used to record air temperature under shade. 

• solar pyranometers. These were mounted on tripods: one above the modules facing directly upwards to 

record the horizontal solar irradiation, and two in the plane of the modules (with equal inclination and ori-

entation) to record the slope irradiation. 

• Two data-loggers, which the sensors were wired into and which recorded 5-minute periodic averaged val-

ues of the sensor outputs. 

The sensors were positioned around the solar modules as shown in Figures 6 & 7. 

[Figure 6] 

[Figure 7] 

Data from each of the temperature, flux and irradiation sensors was logged using two Grant 2020 series ‘Squirrel’ 

data-loggers, taking measurements every 5 minutes across the day. These data points constituted the average 

value (temperature, irradiation or heat flux) registered over the 5-minute period, forming the basis for the calculation 

process. 

The final data values needed were the power output of the solar module being measured. Unfortunately, no method 

of automated logging of module output was available, and a compromise had to be made. Manual readings from 
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the string inverter corresponding to the chosen PV module were taken, over the course of three days. The module 

output was simply estimated as a fraction (1/80) of the input power to the inverter. 

5 Calculation Process 

The comparison of measured and calculated variables was completed according to Figure 8. 

[Figure 8] 

This being a linear calculation process, each stage relying on the previous, any errors or inaccuracies picked up 

would be propagated through the calculations, making an accurate, independent assessment of each stage difficult. 

For this reason, calculations were based on measured data along with previous-stage calculated values at every 

opportunity. 

5.1 Slope Irradiation 

As indicated in Figure 8, the principal input variables to determine the slope irradiation (once the position of the 

slope has been decided) are the horizontal irradiation and the time of day (and date), which allow the position of 

the sun in the sky to be calculated. As data readings were taken over 5 minute time intervals, not at an exact time, 

it was decided to follow the approach used by Clarke, et al. (2007) and take the mid-point of the time period as the 

data point, ie. 2.5 minutes before the logged time. 

Figure 9 shows how the time/date and irradiation data were used with solar geometry equations. One source that 

may be used for such analysis is Muneer (2004). 

[Figure 9] 

The final important factor to be determined was the diffuse irradiation component, ie the solar energy emitted across 

the whole hemisphere of the sky rather than directly from the sun. This was achieved through use of separate 

models for relating the relationship between the global clearness index 𝑘𝑘𝑡𝑡 = 𝐼𝐼𝐺𝐺/𝐼𝐼𝐸𝐸 , and the horizontal diffuse to 

global ratio 𝑘𝑘 = 𝐼𝐼𝐷𝐷/𝐼𝐼𝐺𝐺 . (Where 𝐼𝐼𝐺𝐺  is the global irradiation and 𝐼𝐼𝐷𝐷 the diffuse). 

This relationship allows us to calculate the diffuse irradiation, rather than directly measure it, which is a critical step 

towards determining the slope irradiation. 

Three different equations (5.1, 5.2, and 5.3) were selected to generate a range of results, one from Muneer et al. 

(2000), the others from Clarke et al. (2007). They are shown below with coefficients selected for Edinburgh: 

𝑘𝑘 = 0.8721 + 1.7619𝑘𝑘𝑡𝑡 − 6.2135𝑘𝑘𝑡𝑡
2 + 3.9467𝑘𝑘𝑡𝑡

3 
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𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘𝑡𝑡 < 0.25, 𝑘𝑘 = 1 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘𝑡𝑡 > 0.8, 𝑘𝑘 = 0.3 

Equation 5.1: Clarke Seasonal (Summer) Calculation, Source (Clarke, Munnawar, Davidson, Muneer, & Kubie, 

2007) 

𝑘𝑘 = 0.8798 + 1.7195𝑘𝑘𝑡𝑡 − 6.1193𝑘𝑘𝑡𝑡
2 + 3.8769𝑘𝑘𝑡𝑡

3 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘𝑡𝑡 < 0.2, 𝑘𝑘 = 0.98 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘𝑡𝑡 > 0.85, 𝑘𝑘 = 0.3 

Equation 5.2: Clarke June Calculation, Source: (Clarke, Munnawar, Davidson, Muneer, & Kubie, 2007) 

𝑘𝑘 = 1.006 − 0.317𝑘𝑘𝑡𝑡 + 3.1241𝑘𝑘𝑡𝑡
2 − 12.7616𝑘𝑘𝑡𝑡

3 + 9.7166𝑘𝑘𝑡𝑡
4 

Equation 5.3: Muneer Calculation, Source: Software Program Calc4-08 in (Muneer, Abodahab, Weir, & Kubie, 

2000) 

Once both the diffuse and global (total) horizontal irradiation are known, it becomes possible, for a given collector 

inclination and orientation, to calculate the global slope irradiation (generally referred to as the slope irradiation). 

This method is adapted directly from the Windows in Buildings (Muneer, Abodahab, Weir, & Kubie, 2000) software. 

Three quantities are calculated separately for the plane of the collector: 

• beam irradiation 

• diffuse irradiation 

• ground-reflected irradiation 

Beam irradiation depends on the global and diffuse horizontal irradiation, the angle of the Sun’s angle of incidence 

on the centre of a solar panel (SOLINC) and the Sun’s Altitude as seen in the sky above a solar panel (SOLALT).  

It is set to zero if either SOLALT is less than 7°, or SOLINC is greater than 90°. In other words, if the sun is not in 

‘view’ of the collector. Otherwise, the beam component is given by (equation 5.4): 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜𝑠𝑠𝑜𝑜𝑡𝑡𝑜𝑜𝑠𝑠
cos 𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆𝑆𝑆
sin 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 

Equation 5.4: Beam Component of Slope Irradiation, Source: Software Program Calc4-08 in (Muneer, Abodahab, 

Weir, & Kubie, 2000) 
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Diffuse slope irradiation is more complex to determine, as in the model proposed by Muneer (2004), the sky is not 

considered isotropic.  This method has been shown to give better results for diffuse irradiation (Muneer 2004).   

Complete algorithmic details for the calculation of the above mentioned slope irradiation and computations are 

provided in the latter reference.  The final value used for the slope irradiation during the given time period is simply 

the sum of the beam, diffuse and ground-reflected components. 

5.2 Cell Temperature 

The cell temperature, similarly to the slope irradiation, was estimated through the use of three different models. 

The NOCT model is based on the behavior of a solar module under certain test conditions, and utilises a simple 

calculation relating the solar irradiation to the temperature (equation 5.5): 

𝑆𝑆𝑐𝑐 = 𝑆𝑆𝑜𝑜 +
𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐺𝐺𝑜𝑜𝑠𝑠𝑐𝑐𝑡𝑡

�𝑆𝑆𝑐𝑐,𝑜𝑜𝑠𝑠𝑐𝑐𝑡𝑡 − 𝑆𝑆𝑜𝑜,𝑜𝑜𝑠𝑠𝑐𝑐𝑡𝑡� �1 −
𝜂𝜂𝑠𝑠𝑡𝑡𝑐𝑐
𝜏𝜏𝜏𝜏

� 

Equation 5.5: NOCT Cell Temperature Calculation 

Where: 𝑆𝑆𝑐𝑐  is the cell temperature, 𝑆𝑆𝑜𝑜  is the air temperature, 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the global slope irradiation, 𝐺𝐺𝑜𝑜𝑠𝑠𝑐𝑐𝑡𝑡  equals 

800W/m2, 𝑆𝑆𝑐𝑐,𝑜𝑜𝑠𝑠𝑐𝑐𝑡𝑡 and 𝑆𝑆𝑜𝑜,𝑜𝑜𝑠𝑠𝑐𝑐𝑡𝑡 are the cell and air temperatures at NOCT, 𝜂𝜂𝑠𝑠𝑡𝑡𝑐𝑐 indicates the cell efficiency at STC 

(standard test conditions) and 𝜏𝜏𝜏𝜏 is related to the absorptivity of the module to light. 

The HOMER software model alters equation 5.5 to include a linearly variable, rather than static cell efficiency 

(equation 5.6). 

𝑆𝑆𝑐𝑐 =
𝑆𝑆𝑜𝑜 + �𝑆𝑆𝑐𝑐,𝑜𝑜𝑠𝑠𝑐𝑐𝑡𝑡 − 𝑆𝑆𝑜𝑜,𝑜𝑜𝑠𝑠𝑐𝑐𝑡𝑡�

𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐺𝐺𝑜𝑜𝑠𝑠𝑐𝑐𝑡𝑡

[1 −
𝑛𝑛𝑠𝑠𝑡𝑡𝑐𝑐�1 − 𝜏𝜏𝑠𝑠𝑆𝑆𝑐𝑐,𝑠𝑠𝑡𝑡𝑐𝑐�

𝜏𝜏𝜏𝜏 ]

1 + (𝑆𝑆𝑐𝑐,𝑜𝑜𝑠𝑠𝑐𝑐𝑡𝑡 − 𝑆𝑆𝑜𝑜,𝑜𝑜𝑠𝑠𝑐𝑐𝑡𝑡)
𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐺𝐺𝑜𝑜𝑠𝑠𝑐𝑐𝑡𝑡

𝜏𝜏𝑠𝑠𝑛𝑛𝑠𝑠𝑡𝑡𝑐𝑐
𝜏𝜏𝜏𝜏

 

Equation 5.6: HOMER Cell Temperature, Source: (HOMER Energy, 2013) 

In the third case, a thermal model was implemented based on the method proposed in Aldali, et al. (2013). This 

avoids the assumption of the previous methods: that the module’s thermal parameters will not change under differ-

ent circumstances such as air temperature or irradiation. 

[Figure 10] 

In Figure 10, it can be seen that there are three main mechanisms for thermal energy transfer from the cell (or 

module) to its surroundings. These correspond to convective losses to the air on both sides of the cell, and radiative 

losses to the sky (radiative losses to the ground are much smaller, and are neglected). 
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The convective losses are a function of the temperature difference between cell and air (equation 5.7): 

𝑆𝑆𝑓𝑓𝑛𝑛𝐶𝐶𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵 𝑆𝑆𝑓𝑓𝐿𝐿𝐿𝐿 = 2ℎ𝑐𝑐𝑜𝑜(𝑆𝑆𝑐𝑐 − 𝑆𝑆𝑜𝑜) 

Equation 5.7: Convective Loss 

The radiative losses likewise, but to the sky (equation 5.8): 

𝑅𝑅𝐵𝐵𝑅𝑅𝐶𝐶𝐵𝐵𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵 𝑆𝑆𝑓𝑓𝐿𝐿𝐿𝐿 = ℎ𝑐𝑐𝑠𝑠(𝑆𝑆𝑐𝑐 − 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠) 

Equation 5.8: Radiative Loss 

In which 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠, the effective sky temperature, and ℎ𝑐𝑐𝑜𝑜 and ℎ𝑐𝑐𝑠𝑠 can be determined from equations 5.9, 5.10 and 5.11: 

𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 0.0552𝑆𝑆𝑜𝑜1.5 

Equation 5.9: Effective Sky Temperature, Source: (Aldali, Celik, & Muneer, 2013) 

ℎ𝑐𝑐𝑜𝑜 = 5.67 + 3.8𝐶𝐶 

Equation 5.10: Air Heat Transfer Coefficient, Source: (Aldali, Celik, & Muneer, 2013) 

ℎ𝑐𝑐𝑠𝑠 =
𝜎𝜎𝜀𝜀𝑐𝑐(𝑆𝑆𝑐𝑐4 − 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠4)

𝑆𝑆𝑐𝑐 − 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠
 

Equation 5.11: Sky Heat Transfer Coefficient, Source: (Aldali, Celik, & Muneer, 2013) 

The cell temperature value is found by combining the energy losses with the heating effect from the sun (equation 

5.12): 

𝑆𝑆𝑐𝑐 =
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜏𝜏𝜏𝜏(1 − 𝜂𝜂𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠) + ℎ𝑐𝑐𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 + 2ℎ𝑐𝑐𝑜𝑜𝑆𝑆𝑜𝑜

ℎ𝑐𝑐𝑠𝑠 + 2ℎ𝑐𝑐𝑜𝑜
 

Equation 5.12: Thermal Model Cell Temperature 

Where: 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the incident irradiation. The value for 𝑆𝑆𝑐𝑐 is derived iteratively as 𝑆𝑆𝑐𝑐 affects the heat transfer coeffi-

cients ℎ𝑐𝑐𝑠𝑠 and ℎ𝑐𝑐𝑜𝑜. 

5.3 Cell Efficiency 

While the other variables could be measured fairly directly, the cell efficiency had to be estimated from the meas-

ured data (using equation 5.13). 

𝑆𝑆𝐵𝐵𝐶𝐶𝐶𝐶 𝐸𝐸𝑓𝑓𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝑛𝑛𝐶𝐶𝐸𝐸 =
𝑃𝑃𝑠𝑠𝑜𝑜𝑡𝑡
𝑃𝑃𝑜𝑜𝑜𝑜

=
𝑃𝑃𝑚𝑚𝑠𝑠𝑚𝑚𝑜𝑜𝑠𝑠𝑠𝑠

𝑆𝑆𝑓𝑓. 𝑓𝑓𝑓𝑓 𝑆𝑆𝐵𝐵𝐶𝐶𝐶𝐶𝐿𝐿�

𝑆𝑆𝑓𝑓𝐶𝐶𝐵𝐵𝑓𝑓 𝐼𝐼𝑓𝑓𝑓𝑓𝐵𝐵𝑅𝑅𝐶𝐶𝐵𝐵𝐶𝐶𝐶𝐶𝑓𝑓𝑛𝑛 × 𝑆𝑆𝐵𝐵𝐶𝐶𝐶𝐶 𝑆𝑆𝑓𝑓𝐵𝐵𝐵𝐵
 

Equation 5.13: Cell Efficiency from Output 



 
 

10 

𝑃𝑃𝑚𝑚𝑠𝑠𝑚𝑚𝑜𝑜𝑠𝑠𝑠𝑠 was derived from the manually-recorded inverter power readings at each time interval. This was done in 

two ways to get the best possible result: first of all as an average of a set of instant power readings taken around 

the sample time, and secondly from the change in total inverter energy reading over the time period, divided by the 

sample time. Each reading had its own advantages. In general, the instant readings were more highly variable, 

whereas the averaged readings were adversely affected by the low resolution of the energy counter (nearest 

0.1kWh). 

𝜂𝜂𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜂𝜂𝑠𝑠𝑡𝑡𝑐𝑐[1 + 𝜏𝜏𝑠𝑠�𝑆𝑆𝑐𝑐 − 𝑆𝑆𝑐𝑐,𝑠𝑠𝑡𝑡𝑐𝑐�] 

Equation 5.14: Cell Efficiency 

𝜂𝜂𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜂𝜂𝑠𝑠𝑡𝑡𝑐𝑐[1 + 𝜏𝜏𝑠𝑠�𝑆𝑆𝑐𝑐 − 𝑆𝑆𝑐𝑐,𝑠𝑠𝑡𝑡𝑐𝑐� + 𝛾𝛾 log𝜙𝜙] 

Equation 5.15: Cell Efficiency with Irradiation, Adapted from (Mattei, Notton, Cristofari, Muselli, & Poggi, 2006) 

Equations 5.14 and 5.15 were both used as models for the cell efficiency, based on (in both cases) cell temperature 

and (in the second case only) irradiation. 

6 Results & Discussion 

6.1 Slope Irradiation 

The measurement of slope irradiation was relatively simple and reliable, as the use of a professionally calibrated 

pyranometer aligned to match the slope and orientation of the solar module in question gave accurate readings 

with which to check the calculated values against. More complex was the method used for calculating the slope 

irradiation from only the horizontal global irradiation, requiring a number of different steps and intermediate quanti-

ties (as covered in Section 5.1); regardless it was expected that the calculation accuracy would be relatively high, 

as has been demonstrated in the papers presenting the methods used (Aldali, Celik, & Muneer, 2013) (Clarke, 

Munnawar, Davidson, Muneer, & Kubie, 2007). 

The three models for determining the clearness index and hence the slope irradiation gave similar results, the best 

of which is shown in Figure 11, derived from the Clarke Summer model. 

[Figure 11] 

It can be seen that Figure 11 shows an excellent, almost entirely linear, correlation for the site studied.  

While all three methods show a high degree of accuracy, as expected the calculations optimised for the given 

location give slightly better results. Table 1 makes a direct comparison in terms of the same quantities highlighted 



 
 

11 

in the Figure 11: gradient, y-axis intercept and regression coefficient, R2, between the computed and measure 

quantities. 

[Table 1] 

The difference between using the seasonal and monthly models follows the assessment in Clarke et al. (2007), 

namely that the increased complexity of using monthly coefficients (as in the June model) in a project gives a low 

return in increased accuracy (in this case, little to none). 

6.2 Cell Temperature 

As detailed in Section 5.2, the cell temperature was modelled in three ways; the simple but widely-used NOCT or 

nominal operating cell temperature model, the slightly more complex one used in the HOMER software, and finally 

the full thermal model. It was expected that each would give successively better results when compared with the 

cell temperature directly measured from the back of the PV module, with the thermal model being significantly more 

accurate than the other two due to its consideration of a greater number of factors. Figure 12 shows the output of 

the thermal model only across the full time range of the experiment, while Table 2 compares the outputs of the 

three models. 

[Figure 12] 

[Table 2] 

These results clearly show the relatively high reliability of the simple NOCT method. Comparing the three methods, 

we can see the reliability (or R2 value) of every method is around 94%, with the HOMER software calculation 

performing very slightly better than the others. A larger difference can be seen in the gradient, which indicates the 

average percentage error if we utilise the given method of calculation. Here, the thermal model gives the best 

results, corresponding to only a 1.5% degree of error compared to 6.6% for the NOCT model and 11.3% for the 

HOMER model. 

It is proposed that with the inclusion of reliable and high-resolution wind data, the thermal model could be optimised 

to give even better results than it has done, particularly at higher temperatures when the measured value starts to 

vary further from that calculated. 

6.3 Cell Efficiency 

The cell efficiency differed from the other two quantities since it is not a directly-measured quantity; Efficiency is 

derived from the power in to and useful power out from a system, in this case solar irradiation and electrical power. 
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Since automatic logging of electrical power was not possible as part of the experiment and manual measurements 

had to suffice, two problems arose: which method of determining the average power value for the time period to 

use (as described in Section 5.3) and assuring accuracy in the timing of measurements. 

The calculated cell efficiency, derived from the two equations given in Section 5.3, was compared with the efficiency 

value estimated from both the averaged and instantaneous power readings taken manually. Two example days are 

shown in Figures 13 and 14. 

[Figure 13] 

[Figure 14] 

As can be seen in Figure 13, a very low correlation is observed between the calculated and measured (estimated) 

values during a cloudy day. This is largely due to the fast changes in both irradiation and cell temperature with time, 

and the use of manually-recorded (and time-inaccurate) measurements. On the other hand, a fairly good correlation 

is seen over the course of a clear day (Figure 14). Here, any changes in efficiency are gradual, reducing the im-

portance of the time component. 

The range over which the cell efficiency varied was approximately correct, although the calculated value exhibited 

greater variability than the measured (estimated) values. 

[Figure 15] 

Figure 15 shows the efficiencies measured from both the instant and period-average power readings, along with 

that calculated from equation 5.18. All three show an average value of close to 16%. As would be expected, the 

instant-based readings vary more widely than the period-average readings. The calculated values stray even further 

than this, however. This would imply that the formula used is too sensitive to variable input, and that in fact the 

coefficients should be smaller. One possible cause is a high estimate of the power temperature coefficient of the 

solar module, as obtained from the ASTRONENERGY module datasheet. This may be due to safe-side estimation. 

Hmm, so this isn’t true – I thought the modules were CSUN. 

6.4 System Performance 

As covered previously, the initial estimated generation of the solar meadow farm as produced by SSE was 

568,611kWh over a full year’s operation. This is a significant amount of power, avoiding the production of 293,000kg 

of CO2. On the 4th September 2013 a generation meter reading of 283,021kWh was taken by SSE engineers, which 
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seemed to correspond fairly well to prediction, as this was covering the months April-August only. The total pro-

duced by the end of year 1, however, turned out to fall short at 439,276kWh. When taking the revised SAP estima-

tion of X kWh, including a reduction for shading of 8,566kWh and a further reduction for system downtime of X 

kWh, the system can be said to be operating well outside of the problems covered in section 2. 

The solar meadow farm at Edinburgh Midlothian campus is more than just a valuable financial investment, it is a 

firm indication of the viability and importance of large-scale solar in Scotland. It supports the strong likelihood of the 

future uptake of projects of this kind as part of a greener, more sustainable energy solution. 

7 Conclusions 

The performance of a range of solar and solar module models have been assessed through a study done on a 

commercial solar plant in the Edinburgh area. An experiment to measure a range of data quantities was designed 

and implemented, and a survey of the site to obtain an estimate of the degree of shading was performed. To 

overcome limitations on data available to the researcher, three days of manually-recorded measurements were 

made to support the experimental data.  

The shading characteristic of the site was not assessed in a great degree of detail, but it was clearly shown that 

the figure of zero shading for the site assumed by the contractors would prove to be inaccurate, particularly in the 

winter months. This was borne out by the revised SAP site assessment. Shading was shown to be most severe at 

the southern end of the site, and still notable along the eastern side. Any shading on the solar modules adversely 

affects the performance of the entire string in question, having a disproportionately large effect on plant output. 

The conversion of solar irradiation data from horizontal intensity to intensity received on a slope has been shown 

to be extremely accurate when using location-specific regression formulae. It was concluded that the seasonal 

model proposed by Clarke et al (2007) proved the most accurate of those considered over the recorded time period, 

by a small margin. A further advantage of the given method is the slightly simpler implementation compared to the 

monthly model, which requires a different set of regulated coefficients to be used for every month. 

The prediction of a solar photovoltaic module’s cell temperature from environmental data such as air temperature 

and solar irradiation was shown to be fairly accurate and reliable across three different calculation methods. The 

simplest, based on the ‘nominal operating cell temperature’ of the module, actually gave results almost as good as 

the much more complex thermal model, indicating that this is a reliable and useful method to use. The thermal 

model was assumed to be limited by the lack of good quality, high resolution wind data for the site studied. In 

addition, the range of assumed input variables requires better definition. 
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Finally, the calculation of cell efficiency over the three days of manual data recordings was performed, giving mixed 

results. Due to large uncertainties in the actual value, coupled with the small efficiency range, results were relatively 

inconclusive. The difficulty encountered was whether to ascribe the poor quality of results to the models used, or 

the data collected. The one exception, on a clear-sky day when the related uncertainties were small, indicated that 

with reliable, automatically logged power data the models used could yield much more favourable results. On the 

other hand, the approximate cell efficiency was adequately predicted, in as far as lying between 12-18% and being 

generally lower on hotter days, or in the afternoon. 

The implementation of more accurate and high-resolution data collection methods on the site in the future, currently 

under discussion, will open up excellent opportunities for further analysing and improving the results of this inves-

tigation. 
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Fig 1: Midlothian Solar Meadow Farm 

 
Fig 2: Site Plan of the Meadow 
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Fig 3: Shading Analysis Locations (based on figure 2) 

 
Fig 4: Shading at Point 2 
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Fig 5: Shading at Point 5 

 
Fig 6: Position of Pyranometers 
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Fig 7: Position of Flux Sensors 

 
Fig 8: Calculation Flow Chart  
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Fig 9: Solar Geometry and Slope Irradiation 

 
Fig 10: Heat Transmission from a Solar Module, Source: (Aldali, Celik & Muneer, 2013) 
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Fig 11: Slope Irradiation Results 

 
Fig 12: Cell Temperature Results 
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Fig 13: Cloudy-Day Efficiency 

 
Fig 14: Clear-Day Efficiency 
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Fig 15: Cell Efficiency Bands 
 

List of Tables 
Slope Irradiation Comparison 

Model Gradient Offset R2 
Summer 0.9784 0.0939 0.9929 
June 0.9761 0.3164 0.9929 
Muneer 0.9738 0.405 0.9897 

 
Table 1: Slope Irradiation Model Results 
 

Cell Temperature Comparison 
Model Gradient Offset R2 
NOCT 1.0662 0.7332 0.9401 
Homer 0.8876 2.303 0.9452 
Thermal 0.9856 -1.4864 0.9411 

 
Table 2: Cell Temperature Model Comparison 
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